12,152 research outputs found

    Exploiting programmable architectures for WiFi/ZigBee inter-technology cooperation

    Get PDF
    The increasing complexity of wireless standards has shown that protocols cannot be designed once for all possible deployments, especially when unpredictable and mutating interference situations are present due to the coexistence of heterogeneous technologies. As such, flexibility and (re)programmability of wireless devices is crucial in the emerging scenarios of technology proliferation and unpredictable interference conditions. In this paper, we focus on the possibility to improve coexistence performance of WiFi and ZigBee networks by exploiting novel programmable architectures of wireless devices able to support run-time modifications of medium access operations. Differently from software-defined radio (SDR) platforms, in which every function is programmed from scratch, our programmable architectures are based on a clear decoupling between elementary commands (hard-coded into the devices) and programmable protocol logic (injected into the devices) according to which the commands execution is scheduled. Our contribution is two-fold: first, we designed and implemented a cross-technology time division multiple access (TDMA) scheme devised to provide a global synchronization signal and allocate alternating channel intervals to WiFi and ZigBee programmable nodes; second, we used the OMF control framework to define an interference detection and adaptation strategy that in principle could work in independent and autonomous networks. Experimental results prove the benefits of the envisioned solution

    Co-Scheduling Algorithms for High-Throughput Workload Execution

    Get PDF
    This paper investigates co-scheduling algorithms for processing a set of parallel applications. Instead of executing each application one by one, using a maximum degree of parallelism for each of them, we aim at scheduling several applications concurrently. We partition the original application set into a series of packs, which are executed one by one. A pack comprises several applications, each of them with an assigned number of processors, with the constraint that the total number of processors assigned within a pack does not exceed the maximum number of available processors. The objective is to determine a partition into packs, and an assignment of processors to applications, that minimize the sum of the execution times of the packs. We thoroughly study the complexity of this optimization problem, and propose several heuristics that exhibit very good performance on a variety of workloads, whose application execution times model profiles of parallel scientific codes. We show that co-scheduling leads to to faster workload completion time and to faster response times on average (hence increasing system throughput and saving energy), for significant benefits over traditional scheduling from both the user and system perspectives

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Accurate Battery Modelling for Control Design and Economic Analysis of Lithium-ion Battery Energy Storage Systems in Smart Grid

    Get PDF
    Adoption of lithium-ion battery energy storage systems (Li-ion BESSs) as a flexible energy source (FES) has been rapid, particularly for active network management (ANM) schemes to facilitate better utilisation of inverter based renewable energy sources (RES) in power systems. However, Li-ion BESSs display highly nonlinear performance characteristics, which are based on parameters such as state of charge (SOC), temperature, depth of discharge (DOD), charge/discharge rate (C-rate), and battery-aging conditions. Therefore, it is important to include the dynamic nature of battery characteristics in the process of the design and development of battery system controllers for grid applications and for techno-economic studies analyzing the BESS economic profitability. This thesis focuses on improving the design and development of Li-ion BESS controllers for ANM applications by utilizing accurate battery performance models based on the second-order equivalent-circuit dynamic battery modelling technique, which considers the SOC, C-rate, temperature, and aging as its performance affecting parameters. The proposed ANM scheme has been designed to control and manage the power system parameters within the limits defined by grid codes by managing the transients introduced due to the intermittence of RESs and increasing the RES penetration at the same time. The validation of the ANM scheme and the effectiveness of controllers that manage the flexibilities in the power system, which are a part of the energy management system (EMS) of ANM, has been validated with the help of simulation studies based on an existing real-life smart grid pilot in Finland, Sundom Smart Grid (SSG). The studies were performed with offline (short-term transient-stability analysis) and real-time (long-term transient analysis) simulations. In long-term simulation studies, the effect of battery aging has also been considered as part of the Li-ion BESS controller design; thus, its impact on the overall power system operation can be analyzed. For this purpose, aging models that can determine the evolving peak power characteristics associated with aging have been established. Such aging models are included in the control loop of the Li-ion BESS controller design, which can help analyse battery aging impacts on the power system control and stability. These analyses have been validated using various use cases. Finally, the impact of battery aging on economic profitability has been studied by including battery-aging models in techno-economic studies.Aurinkosähköjärjestelmien ja tuulivoiman laajamittainen integrointi sähkövoimajärjestelmän eri jännitetasoille on lisääntynyt nopeasti. Uusiutuva energia on kuitenkin luonteeltaan vaihtelevaa, joka voi aiheuttaa nopeita muutoksia taajuudessa ja jännitteessä. Näiden vaihteluiden hallintaan tarvitaan erilaisia joustavia energiaresursseja, kuten energiavarastoja, sekä niiden tehokkaan hyödyntämisen mahdollistaviea älykkäitä ja aktiivisia hallinta- ja ohjausjärjestelmiä. Litiumioniakkuihin pohjautuvien invertteriliitäntäisten energian varastointijärjestelmien käyttö joustoresursseina aktiiviseen verkonhallintaan niiden pätö- ja loistehon ohjauksen avulla on lisääntynyt nopeasti johtuen niiden kustannusten laskusta, modulaarisuudesta ja teknisistä ominaisuuksista. Litiumioniakuilla on erittäin epälineaariset ominaisuudet joita kuvaavat parametrit ovat esimerkiksi lataustila, lämpötila, purkaussyvyys, lataus/ purkausnopeus ja akun ikääntyminen. Akkujen ominaisuuksien dynaaminen luonne onkin tärkeää huomioida myös akkujen sähköverkkoratkaisuihin liittyvien säätöjärjestelmien kehittämisessä sekä teknis-taloudellisissa kannattavuusanalyyseissa. Tämä väitöstutkimus keskittyy ensisijaisesti aktiiviseen verkonhallintaan käytettävien litiumioniakkujen säätöratkaisuiden parantamiseen hyödyntämällä tarkkoja, dynaamisia akun suorituskykymalleja, jotka perustuvat toisen asteen ekvivalenttipiirien akkumallinnustekniikkaan, jossa otetaan huomioon lataustila, lataus/purkausnopeus ja lämpötila. Työssä kehitetyn aktiivisen verkonhallintajärjestelmän avulla tehtävät akun pätö- ja loistehon ohjausperiaatteet on validoitu laajamittaisten simulointien avulla, esimerkiksi paikallista älyverkkopilottia Sundom Smart Gridiä simuloimalla. Simuloinnit tehtiin sekä lyhyen aikavälin offline-simulaatio-ohjelmistoilla että pitkän aikavälin simulaatioilla hyödyntäen reaaliaikasimulointilaitteistoa. Pitkän aikavälin simulaatioissa akun ikääntymisen vaikutus otettiin huomioon litiumioniakun ohjauksen suunnittelussa jotta sen vaikutusta sähköjärjestelmän kokonaistoimintaan voitiin analysoida. Tätä tarkoitusta varten luotiin akun ikääntymismalleja, joilla on mahdollista määrittää akun huipputehon muutos sen ikääntyessä. Akun huipputehon muutos taas vaikuttaa sen hyödynnettävyyteen erilaisten pätötehon ohjaukseen perustuvien joustopalveluiden tarjoamiseen liittyen. Lisäksi väitöstutkimuksessa tarkasteltiin akkujen ikääntymisen vaikutusta niiden taloudelliseen kannattavuuteen sisällyttämällä akkujen ikääntymismalleja teknis-taloudellisiin tarkasteluihin.fi=vertaisarvioitu|en=peerReviewed

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Networks on Chips: Structure and Design Methodologies

    Get PDF

    Adaptive runtime techniques for power and resource management on multi-core systems

    Full text link
    Energy-related costs are among the major contributors to the total cost of ownership of data centers and high-performance computing (HPC) clusters. As a result, future data centers must be energy-efficient to meet the continuously increasing computational demand. Constraining the power consumption of the servers is a widely used approach for managing energy costs and complying with power delivery limitations. In tandem, virtualization has become a common practice, as virtualization reduces hardware and power requirements by enabling consolidation of multiple applications on to a smaller set of physical resources. However, administration and management of data center resources have become more complex due to the growing number of virtualized servers installed in data centers. Therefore, designing autonomous and adaptive energy efficiency approaches is crucial to achieve sustainable and cost-efficient operation in data centers. Many modern data centers running enterprise workloads successfully implement energy efficiency approaches today. However, the nature of multi-threaded applications, which are becoming more common in all computing domains, brings additional design and management challenges. Tackling these challenges requires a deeper understanding of the interactions between the applications and the underlying hardware nodes. Although cluster-level management techniques bring significant benefits, node-level techniques provide more visibility into application characteristics, which can then be used to further improve the overall energy efficiency of the data centers. This thesis proposes adaptive runtime power and resource management techniques on multi-core systems. It demonstrates that taking the multi-threaded workload characteristics into account during management significantly improves the energy efficiency of the server nodes, which are the basic building blocks of data centers. The key distinguishing features of this work are as follows: We implement the proposed runtime techniques on state-of-the-art commodity multi-core servers and show that their energy efficiency can be significantly improved by (1) taking multi-threaded application specific characteristics into account while making resource allocation decisions, (2) accurately tracking dynamically changing power constraints by using low-overhead application-aware runtime techniques, and (3) coordinating dynamic adaptive decisions at various layers of the computing stack, specifically at system and application levels. Our results show that efficient resource distribution under power constraints yields energy savings of up to 24% compared to existing approaches, along with the ability to meet power constraints 98% of the time for a diverse set of multi-threaded applications
    corecore