459 research outputs found

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Loss Diagnosis and Indoor Position Location System based on IEEE 802.11 WLANs

    Get PDF
    Wireless local area networks (WLANs) have been widely deployed to provide short range broadband communications. Due to the fast evolvement of IEEE 802.11 based WLAN standards and various relevant applications, many research efforts have been focused on the optimization of WLAN data rate, power and channel utilization efficiency. On the other hand, many emerging applications based on WLANs have been introduced. Indoor position location (IPL) system is one of such applications which turns IEEE 802.11 from a wireless communications infrastructure into a position location network. This thesis mainly focuses on data transmission rate enhancement techniques and the development of IEEE 802.11 WLAN based IPL system with improved locationing accuracy. In IEEE 802.11 systems, rate adaptation algorithms (RAAs) are employed to improve transmission efficiency by choosing an appropriate modulation and coding scheme accord­ ing to point-to-point channel conditions. However, due to the resource-sharing nature of WLANs, co-channel interferences and frame collisions cannot be avoided, which further complicates the wireless environment and makes the RAA design a more challenging task. As WLAN performance depends on many dynamic factors such as multipath fading and co-channel interferences, differentiating the cause of performance degradation such as frame losses, which is known as loss diagnosis techniques, is essential for performance enhance­ ments of existing rate adaptation schemes. In this thesis, we propose a fast and reliable collision detection scheme for frame loss diagnosis in IEEE 802.11 WLANs. Collisions are detected by tracking changes of the signal-to-interference-and-noise-ratio (SINR) in IEEE 802.11 WLANs with a nonparametric order-based cumulative sum (CUSUM) algorithm for rapid loss diagnosis. Numerical simulations are conducted to evaluate the effectiveness of the proposed collision detection scheme. The other aspect of this thesis is the investigation of an IEEE 802.11 WLAN based IPL system. WLAN based IPL systems have received increasing attentions due to their variety of potential applications. Instead of relying on dedicated locationing networks and devices, IEEE 802.11 WLAN based IPL systems utilize widely deployed IEEE 802.11 WLAN infrastructures and standardized wireless stations to determine the position of a target station in indoor environments. iii Abstract In this thesis, a WLAN protocol-based distance measurement technique is investigated, which takes advantages of existing IEEE 802.11 data/ACK frame exchange sequences. In the proposed distance measurement technique, neither dedicated hardware nor hardware modifications is required. Thus it can be easily integrated into off-the-shelf commercial, inexpensive WLAN stations for IPL system implementation. Field test results confirm the efficacy of the proposed protocol-based distance measurement technique. Furthermore, a preliminary IPL system based on the proposed method is also developed to evaluate the feasibility of the proposed technique in realistic indoor wireless environments

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft

    Cross-layer design and optimization of medium access control protocols for wlans

    Get PDF
    This thesis provides a contribution to the field of Medium Access Control (MAC) layer protocol design for wireless networks by proposing and evaluating mechanisms that enhance different aspects of the network performance. These enhancements are achieved through the exchange of information between different layers of the traditional protocol stack, a concept known as Cross-Layer (CL) design. The main thesis contributions are divided into two parts. The first part of the thesis introduces a novel MAC layer protocol named Distributed Queuing Collision Avoidance (DQCA). DQCA behaves as a reservation scheme that ensures collision-free data transmissions at the majority of the time and switches automatically to an Aloha-like random access mechanism when the traffic load is low. DQCA can be enriched by more advanced scheduling algorithms based on a CL dialogue between the MAC and other protocol layers, to provide higher throughput and Quality of Service (QoS) guarantees. The second part of the thesis explores a different challenge in MAC layer design, related to the ability of multiple antenna systems to offer point-to-multipoint communications. Some modifications to the recently approved IEEE 802.11n standard are proposed in order to handle simultaneous multiuser downlink transmissions. A number of multiuser MAC schemes that handle channel access and scheduling issues and provide mechanisms for feedback acquisition have been presented and evaluated. The obtained performance enhancements have been demonstrated with the help of both theoretical analysis and simulation obtained results
    • …
    corecore