936 research outputs found

    Optimal Scheduling of Combined Heat and Power Generation Considering Heating Grid Dynamics

    Get PDF
    As the share of renewable generation increases in electric grids, the traditionally heat driven operation of combined heat and power plants (CHPs) reaches its limits. Thermal storage is required for a flexible operation of CHPs. This work proposes three novel methods to use a heating grid as thermal storage by exploiting its thermal dynamics. These include the first approach proving global optimality, a novel linear formulation of grid dynamics and an easily real world applicable approach

    Tabu Search Experience in Forest Management and Planning

    Get PDF

    Optimization Methods Applied to Power Systems Ⅱ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Supply function equilibrium analysis for electricity markets

    Get PDF
    The research presented in this Thesis investigates the strategic behaviour of generating firms in bid-based electricity pool markets and the effects of control methods and network features on the electricity market outcome by utilising the AC network model to represent the electric grid. A market equilibrium algorithm has been implemented to represent the bi-level market problem for social welfare maximization from the system operator and utility assets optimisation from the strategic market participants, based on the primal-dual interior point method. The strategic interactions in the market are modelled using supply function equilibrium theory and the optimum strategies are determined by parameterization of the marginal cost functions of the generating units. The AC power network model explicitly represents the active and reactive power flows and various network components and control functions. The market analysis examines the relation between market power and AC networks, while the different parameterization methods for the supply function bids are also investigated. The first part of the market analysis focuses on the effects of particular characteristics of the AC network on the interactions between the strategic generating firms, which directly affect the electricity market outcome. In particular, the examined topics include the impact of transformer tap-ratio control, reactive power control, different locations for a new entry’s generating unit in the system, and introduction of photovoltaic solar power production in the pool market by considering its dependencyon the applied solar irradiance. The observations on the numerical results have shown that their impact on the market is significant and the employment of AC network representation is required for reliable market outcome predictions and for a better understanding of the strategic behaviour as it depends on the topology of the system. The analysis that examines the supply function parameterizations has shown that the resulting market solutions from the different parameterization methods can be very similar or differ substantially, depending on the presence and level of network congestion and on the size and complexity of the examined system. Furthermore, the convergence performance of the implemented market algorithm has been examined and proven to exhibit superior computational efficiency, being able to provide market solutions for large complex AC systems with multiple asymmetric firms, providing the opportunity for applications on practical electricity markets

    Essays on the ACOPF Problem: Formulations, Approximations, and Applications in the Electricity Markets

    Get PDF
    The alternating current optimal power flow (ACOPF) problem, also referred to as the optimal power flow (OPF) problem, is at the core of competitive wholesale electricity markets and vertically integrated utility operations. ACOPF simultaneously co-optimizes real and reactive power. First formulated over half a century ago in 1962 by Carpentier, the ACOPF is the most representative mathematical programming-based formulation of steady-state operations in AC networks. However the ACOPF is not solved in practice due to the nonconvex structure of the problem, which is known to be NP-hard. Instead, least-cost unit commitment and generation dispatch in the day-ahead, intra-day, and real-time markets is determined with numerous simplifications of the ACOPF constraint set. This work presents a series of essays on the ACOPF problem, which include formulations, approximations, and applications in the electricity markets. The main themes center around ACOPF modeling fundamentals, followed by local and global solution methods for a variety of applications in the electricity markets. Original contributions of these essays include an alternative formulation of the ACOPF, a successive linear programming algorithm to solving the ACOPF for the real-time energy market, an outer approximation method to solving integrated ACOPF-unit commitment as a mixed-integer linear program for the day-ahead market, and applications of convex relaxations to the ACOPF and its approximations for the purpose of globally optimal storage integration. These contributions are concluded with a discussion of potential future directions for work

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Speeding up Energy System Models - a Best Practice Guide

    Get PDF
    Background Energy system models (ESM) are widely used in research and industry to analyze todays and future energy systems and potential pathways for the European energy transition. Current studies address future policy design, analysis of technology pathways and of future energy systems. To address these questions and support the transformation of today’s energy systems, ESM have to increase in complexity to provide valuable quantitative insights for policy makers and industry. Especially when dealing with uncertainty and in integrating large shares of renewable energies, ESM require a detailed implementation of the underlying electricity system. The increased complexity of the models makes the application of ESM more and more difficult, as the models are limited by the available computational power of today’s decentralized workstations. Severe simplifications of the models are common strategies to solve problems in a reasonable amount of time – naturally significantly influencing the validity of results and reliability of the models in general. Solutions for Energy-System Modelling Within BEAM-ME a consortium of researchers from different research fields (system analysis, mathematics, operations research and informatics) develop new strategies to increase the computational performance of energy system models and to transform energy system models for usage on high performance computing clusters. Within the project, an ESM will be applied on two of Germany’s fastest supercomputers. To further demonstrate the general application of named techniques on ESM, a model experiment is implemented as part of the project. Within this experiment up to six energy system models will jointly develop, implement and benchmark speed-up methods. Finally, continually collecting all experiences from the project and the experiment, identified efficient strategies will be documented and general standards for increasing computational performance and for applying ESM to high performance computing will be documented in a best-practice guide
    corecore