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Abstract

The alternating current optimal power flow (ACOPF) problem, also referred to as

the optimal power flow (OPF) problem, is at the core of competitive wholesale elec-

tricity markets and vertically integrated utility operations. ACOPF simultaneously

co-optimizes real and reactive power. First formulated over half a century ago in 1962

by Carpentier, the ACOPF is the most representative mathematical programming-

based formulation of steady-state operations in AC networks. However the ACOPF is

not solved in practice due to the nonconvex structure of the problem, which is known

to be NP-hard. Instead, least-cost unit commitment and generation dispatch in the

day-ahead, intra-day, and real-time markets is determined with numerous simplifica-

tions of the ACOPF constraint set.

This work presents a series of essays on the ACOPF problem, which include for-

mulations, approximations, and applications in the electricity markets. The main

themes center around ACOPF modeling fundamentals, followed by local and global

solution methods for a variety of applications in the electricity markets. Original

contributions of these essays include an alternative formulation of the ACOPF, a suc-

cessive linear programming algorithm to solving the ACOPF for the real-time energy

ii



market, an outer approximation method to solving integrated ACOPF-unit commit-

ment as a mixed-integer linear program for the day-ahead market, and applications of

convex relaxations to the ACOPF and its approximations for the purpose of globally

optimal storage integration. These contributions are concluded with a discussion of

potential future directions for work.
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1 Introduction

1.1 Background and Motivation

Computational advancements are enabling independent system operators (ISOs) and

regional transmission operators (RTOs) to adopt more efficient market designs. Un-

like other commodities, electricity markets have strict physical constraints related to

the network structure, Kirchhoff’s laws, and electric power technologies. The alter-

nating current optimal power flow (ACOPF) problem, also referred to as the optimal

power flow (OPF)1 problem, simultaneously co-optimizes real (MW)2 and reactive

(MVAr)3 power dispatch to promote reliable system operation and market efficiency.

The ACOPF formulation is a nonconvex, nonlinear optimization problem, which is

known to be non-deterministic polynomial-time (NP) hard [2, 3]; discrete variables,

e.g., to represent equipment state controls, generator unit commitments and net-

work topology control, further complicate the ACOPF. The ACOPF originated from

Carpentier’s reformulation of the economic dispatch problem based on the Karush-

1ACOPF and OPF are used synonymously and interchangeably throughout this work to denote
the full optimal power flow problem for AC networks, whereas approximations of the OPF problem
are otherwise denoted.

2Mega Watt
3Mega Volt-Ampere reactive
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Figure 1.1: Real-world OPF-based applications. Green in the upper heat map de-
notes up to a 24-hour lead time for the decision making process, whereas red denotes
an increase in the time-criticality. In the middle heat map, grey denotes highly
approximated mathematical representations whereas dark red denotes the most rep-
resentative mathematical programming-based formulation of steady-state operations
in AC networks. The lower heat map is in solid dark red to indicate the actual AC
network.

Kuhn-Tucker (KKT) conditions in 1962 [4]. Today, over 50 years after the problem

was formulated, there is still no fast and robust solution technique for the full ACOPF.

Instead ISOs and RTOs leverage approximations along with commercial mixed-integer

linear programming (MILP) commercial solvers to ensure convergence and computa-

tion of prices within acceptable timeframes. For the purpose of this discussion, the

ISO/RTO market software is defined as follows: The modeling and solution techniques

applied to implement the day-ahead, intra-day, and real-time markets.

In practice, the application of approximations, decompositions and engineering

judgment are applied to obtain solutions within reasonably acceptable runtimes [5,6],
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as depicted in Figure 1.1. The locational marginal price (LMP), which is central to

market settlements in the U.S. electricity markets, is a function of both time and

location and can be disaggregated into the following three components for a given

terminal bus [7]:

1. The price of the next incremental unit of energy at the reference bus;

2. The marginal congestion cost associated with delivering energy from the refer-

ence bus to the terminal bus;

3. The marginal losses cost associated with delivering energy from the reference

bus to the terminal bus.

Fundamentally, the LMP reflects parallel flows by respecting Kirchhoff’s current law4

(KCL) and Kirchhoff’s voltage law5 (KVL). Mathematically, the LMP corresponds to

the marginal value of the real power balancing constraint. The real power balancing is

affected by resource constraints such as ramp rates and minimum operating levels as

well as reliability requirements (e.g., nodal voltage limits and angle difference limits).

Furthermore, start-up and no-load costs make the price of the next incremental unit

of energy more complicated and therefore the market software becomes more complex.

ISOs/RTOs frequently use a linear approximation of the OPF called the DCOPF

[6,8]. The DCOPF is computationally tractable but does not include all the physical

constraints in the LMP; finding ways to account for these constraints is an ongoing

4The sum of all current flowing out of and into a given bus is zero.
5The total voltage change around a closed loop must be zero.
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challenge. In DC-based algorithms, the power flow constraints linearly relate the MW

controls to the real power flows on the network, and as a result optimal MVAr dispatch

is neglected. Then alternating current (AC) feasibility, which is the physical feasibility

of the injections and withdrawals on an AC network, is tested through an iterative

process with metaheuristics in order to ensure that a realistic engineering solution

is obtained [6]. Such approaches become ineffective when the system is stressed; for

example, when there is a strong physical coupling between real and reactive power

availability (e.g., when the system is operating along the boundary of a generator

capability curve), when voltage drops restrict real power dispatch, or when reactive

power compensation can increase the network throughput. In fact, the ACOPF is

the only AC-based problem that simultaneously co-optimizes real and reactive power

dispatch for steady-state operations.

Currently, security constrained economic dispatch (SCED) is the basic way that

all ISOs and RTOs (or utilities) dispatch resources to meet electricity load, and is

defined as: “the operation of generation facilities to produce energy at the lowest

cost to reliably serve consumers, recognizing any operational limits of generation and

transmission facilities” [9]. The “security” aspect of the SCED requires that flows

are within reliability limits and the voltages within stability ranges. The SCED algo-

rithm is implemented differently in each ISO but typically includes a DCOPF with a
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AC feasibility check [6]. The SCED is used in the day-ahead,6 intra-day,7 and real-

time8 markets of ISOs in order to balance the trade-offs between economic value and

reliability requirements. Adjustments occur as often as every five minutes in some

markets and can result in corrective actions such as curtailing transmission service

or energy schedules, adjusting operating equipment (e.g., generators, phase shifters,

breakers), or shedding firm load in order to alleviate operating emergencies to meet

North American Electric Reliability Corporation (NERC) standards [12]. Further-

more, some system operators plan for N-1-1 contingencies;9 when N-1-1 resources

are secured outside of the security constrained unit commitment (SCUC) and SCED,

these additional units are unrepresented in the market software and can negatively

impact market settlements.

The SCUC is applied in the day-ahead market prior to the SCED and determines

committed resources based on load forecasting, intermittent energy resource forecast-

ing, and transmission constraints. In selecting the most economic generation mix, the

SCUC accounts for each generator’s bid offer, including start-up, shut-down and pro-

duction costs, as well as its physical operating characteristics, including ramp rates,

6The day-ahead energy market enables market participants to commit to buy or sell wholesale
electricity one day before the operating day to mitigate price volatility that may occur at time of
use [10].

7The intra-day market enables market participants to adjust their day-ahead schedules at prede-
termined times during delivery day [11].

8The real-time market enables market participants to buy and sell wholesale electricity during the
course of the operating day by balancing the differences between the day-ahead commitments and
the actual real-time demand for and production of electricity. The real-time locational marginal price
(LMP) produces a separate financial settlement, which is either paid or charged to participants in
the day-ahead market for demand or generation that deviates from the day-ahead commitments [10].

9a second contingency that occurs quickly after a primary contingency
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power rating, minimum runtime, and environmental restrictions. The “security” as-

pect of the SCUC accounts for how forecasted conditions can affect system reliability,

network line capacity, and facility outages. After the day-ahead market takes place,

a residual unit commitment (RUC) is performed in the intra-day market10 in order to

address: (1) resource gaps; (2) reliability issues; and (3) other operational issues as

a result of uncertainty (e.g., weather and load forecast uncertainty) [13]. The RUC

normally maintains the commitment and dispatch determined in the day-ahead mar-

ket and either increases the dispatch levels of units that are already committed or

makes additional commitments; this intra-day market minimizes the additional costs

associated with any incremental commitments beyond the day-ahead schedule [13].

Since the approximations in both the SCED and SCUC can oversimplify the phys-

ical problem, operators intervene to satisfy reliability requirements and other physical

constraints that are unrepresented in the market software. The Federal Energy Reg-

ulatory Commission (FERC) recently reported that uplift, which represents out-of-

market payments that result when a higher generation cost is incurred and possibly

other lower cost units are reduced in order to relieve a constraint [14], can arise due to

the inability of ISOs to fully model the physical constraints on an AC network [15].

As a result, certain resources are consistently committed outside of the market to

address reliability issues; this results in concentrated uplift payments [15]. Such re-

sources are often required for reactive power compensation in order to provide system

10Excluding New York ISO (NYISO), which integrates the RUC into the day-ahead market.
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voltage control that enables more efficient delivery and utilization of real power [16].

However, there is currently no uniform approach across the U.S. electricity markets

for remunerating resources for reactive power capability and dispatch. In some mar-

kets, the out-of-market commitments corresponding to reactive power compensation

are included into the day-ahead schedule; for further details see [13]. Although these

resources normally do not set the clearing price,11 the clearing price can be affected

because these out-of-market commitments displace resources that have lower costs for

providing real power dispatch. As a result these out-of-market commitments are more

likely to require uplift payments. In the real-time market, operators may also have

to manually commit and dispatch a resource that is needed to resolve a constraint,

while also manually re-dispatching or de-committing other resources.12

The Joint Board on Economic Dispatch for the Northeast Region stated in 2006

that some operational constraints are not fully represented within the current soft-

ware, and the benefits of economic dispatch can be negatively impacted if all the

available services and products are not accurately considered [9]. Inaccuracies in the

market software and the subsequent operator intervention cause economic inefficien-

cies due to suboptimal dispatch in the short term and misplaced incentives for long

term decision making.

By improving the DCOPF through the addition of an AC feasibility check that

11The out-of-market commitments are absent from the day-ahead schedule because such resources
are not cost effective given that the reliability requirements are unmodeled.

12e.g., exceptional dispatches in California ISO (CAISO) [17], out-of-merit generation in New York
ISO (NYISO) [18], and balancing operating reserves in PJM Interconnection LLC (PJM) [19]
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is utilized in the SCED and SCUC, voltage and reactive power schedules that are

physically feasible may be obtained. Ideally, incorporating the ACOPF directly into

the SCED and SCUC would result in the optimal real and reactive power schedules.

However given the nonconvex nature of the ACOPF, there may be formidable chal-

lenges with current computing power to solve the nonlinear program (NLP) directly

on a large-scale (10,000+ nodes) power system within the operational time frames

required for the day-ahead, intra-day, and real-time markets. Furthermore, the pres-

ence of stationary points in the solution space (i.e., local optima and saddlepoints)

that are not a global optimum may result in prices that do not cover the system

costs.13 Until optimization techniques can be applied to obtain a global optimum

of the ACOPF in practice, approaches to make current practices more accurate and

tractable are also desirable. Along those lines, research in both local and global so-

lution methods to solve the ACOPF, as well as alternative ways to formulate and

approximate the ACOPF, are all paths to advancement.

A report to Congress prepared by the U.S. Department of Energy (DOE) states:

“the technical quality of current economic dispatch tools–software, data, algorithms,

and assumptions–deserves scrutiny. Any enhancements to these tools will improve

the reliability and affordability of the nation’s electricity supplies” [20]. Reports by

the FERC concluded that since the cost of upgrading existing ISO market software

is less than $10 million dollars [6] and small increases in the economic efficiency of

13Revenue adequacy is also an issue for generator start-up and shut-down costs, which are non-
convex and discrete.
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dispatch can be measured in billions of dollars per year, the potential benefit-to-cost

ratio of better market software is at least 100 fold [21].

As discussed above, ignoring or approximating the AC network can result in a

divergence between the solution and actual operating conditions. As a result, the

present market software may compute market settlements based on assumptions that

do not reflect the true marginal value of the products and services being bought and

sold in electricity markets. Historically, continual operator intervention has been nec-

essary to correct problems arising because the market software can not physically

dispatch and price resources in a manner that respects unrepresented physical con-

straints. To conclude, the essays in this work address a variety of aspects related to

the core issues presented above.

1.2 Scope and Outline

This dissertation is a collection of essays on the ACOPF, which can be grouped as

follows:

Part 1 ACOPF Modeling Fundamentals. The following essay reviews steady-state

AC network modeling and then presents a novel ACOPF formulation that is

proven to be equivalent to canonical ACOPF formulations.

• Chapter 2.2. The ACOPF Problem and its Formulations : This primer

extends the numerous concepts discussed in the “Background and Mo-

tivation” section of Chapter 1 by discussing the history of ACOPF so-
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lution techniques in more detail. It then establishes a modeling frame-

work for the ACOPF formulation and its approximations, including a

proposed IV-ACOPF formulation that has a different mathematical rep-

resentation from canonical ACOPF formulations but is provably equiva-

lent. In particular, the IV-ACOPF computes linear current flows based

on the current injections method and then balances the nodal power

injections and withdrawals through nonconvex constraints that relate

the bilinear terms within each node, whereas the canonical ACOPF for-

mulations compute the nonlinear and nonconvex apparent power flows.

This work was originally published in [22].

Part 2 Local Solution Methods. These essays propose improved formulations of and

solution techniques for the ACOPF problem for applications in economic

dispatch (ED) and unit commitment (UC).14

• Chapter 3. A Successive Linear Programming Approach to Solving the

IV-ACOPF : A successive linear programming (SLP) approach is pro-

posed to solve the IV-ACOPF. The SLP IV-ACOPF leverages com-

mercial linear programming (LP) solvers and can be readily extended

and integrated into more complex decision processes, e.g., unit commit-

ment and transmission switching. This work demonstrates an accept-

able quality of convergence to a best-known solution and linear scaling

14Certain security constraints, e.g., forecast uncertainty, are omitted due to lack of data.
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of computational time in proportion to network size. Moreover, the

time complexity of the SLP algorithm outperforms that of the NLP

commercial solvers for the full range of test networks. As a result, the

SLP algorithm is expected to outperform the NLP solvers tested, i.e.,

Ipopt and KNITRO, on larger scale networks. Furthermore, the SLP

algorithm could be applied in parallel with both Gurobi and CPLEX

from various starting points, which may further improve the reported

linear time complexity. I originally published this work in [22].

• Chapter 4. The Unit Commitment Problem with AC Optimal Power

Flow Constraints : A mathematical programming-based approach to op-

timize the unit commitment problem with ACOPF constraints is pro-

posed in this study. An outer approximation method is proposed to

solve this nonconvex mixed-integer nonlinear program (MINLP). The

solution technique simultaneously co-optimizes real and reactive power

scheduling and dispatch subject to both unit commitment constraints

and ACOPF constraints. The proposed approach is a local solution

method that incorporates the SLP IV-ACOPF proposed in Chapter 3 in

order to leverage powerful linear and mixed-integer commercial solvers.

This work demonstrates the relative economic and operational impact

of more accurate ACOPF constraint modeling on the unit commitment

problem, when compared to copperplate and DCOPF approaches. Fur-

11



thermore, a DCOPF approach including real power losses and another

DCOPF approach with a RUC-based routine are also modeled and in-

cluded in the analysis. The results indicate considerable divergence be-

tween the market settlements and the stability and reliability require-

ments when overly approximated network models are assumed. The

computational speeds for both the ACOPF and the ACOPF for RUC

approaches are promising: the ACOPF approach is 5×–15× slower than

the DCOPF approach and incorporating the RUC to the DCOPF ap-

proach is 1.5×–5× slower than the DCOPF alone. Since the proposed

OA method spends most of the computational time in the single iter-

ation of the master problem, further improvements to the MILP and

leveraging decomposition techniques for distributed, parallel optimiza-

tion could lead to significant gains. This work was initially published

in [23].

Part 3 Global Solution Methods. These essays propose novel applications, new for-

mulations, and theoretical properties to optimal storage integration in AC

networks.

• Chapter 5. Energy Storage for Transmission System VAr Support: Trade-

offs Between Grid Benefits and Storage Operator Profit : This work ex-

amines trade-offs that arise when energy storage systems provide reac-
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tive power (VAr) support on the transmission system in addition to tra-

ditional power and energy services. The ACOPF with storage model is

formulated and then the semidefinite relaxation (SDR) proposed in [24]

is applied; the SDR is a convex problem for which theoretical properties

can be derived under strong duality [25]. The main contribution uses

a novel analytical approach to relate the energy storage system (ESS)

services, including power, energy, and reactive power compensation, to

its profits through nodal pricing theory. The analysis demonstrates

that energy storage operators can make substantially higher profits by

providing not only power and energy services but also reactive power

compensation. This study also compares payments based on the nodal

prices for reactive power to the remuneration approaches in current mar-

ket practice. The results demonstrate that there may be a disincentive

for storage operators to provide this service if it is not adequately paid

for in the market. The results highlight the tight connections between

market design and the financial viability of large-scale storage integra-

tion in the power system. The proposed framework can be extended to

incorporate other valuable ESS services (e.g., regulation)15 as well as

further to investigate market design for reactive power compensation.

This work is an extension of a conference proceeding [26].

15Regulation service is the continuous balancing of resources with load in order to control system
frequency.
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• Chapter 6. The Role of Network Losses in Optimal Storage Allocation:

A DCOPF with losses formulation is proposed in order to analyze how

real power losses improve the DCOPF approach for optimal storage in-

tegration in AC networks when storage is remunerated for power and

energy services but for not reactive power compensation, as is the case

for most ESS installations in current market design. This work incor-

porates quadratic loss approximations derived from the AC power flows

(ACPF); the resulting formulation of the DCOPF with losses and stor-

age model is a nonconvex quadratically constrained quadratic program

(QCQP). Both a SDR and a second-order cone relaxation (SOCR) are

proposed to reformulate the original QCQP as a convex problem. The

main theoretical results prove that both of these relaxations provide an

exact lower bound to the original QCQP. The work demonstrates that

costs due to real power losses are a key component of the LMP and

therefore are critical in determining optimal ESS dynamics and alloca-

tion. This work can be extended to provide an analytical model for

losses for a variety of other applications. This work is an extension of a

conference proceeding [27].

These essays are the central contributions of the dissertation. Then Chapter 7 com-

pletes the dissertation with concluding remarks including a summary of the main

contributions, limitations of the current work, and future extensions.
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2 The ACOPF Problem and its Formulations

2.1 Introduction

The field of power engineering deals with the generation, transmission, distribution

and utilization of electric power. Essentially the power grid is an electric system that

transfers power from generators to demand (load). This system has been analyzed as

an undirected network from a graph-theoretic perspective where the generators and

loads map to buses (also referred to as nodes) that represent sources and sinks, re-

spectively, and are connected by branches which are arcs that transmit power between

the buses in the network.

To understand the notions of operation and efficiency, a circuit-based mathemat-

ical model of the network is applied to understand how power and current flow in a

power grid. The U.S. electric grid is mostly an AC system,16 meaning that voltage17

(v) and current18 (i) are assumed to be sinusoidal wave patterns that cycle at a con-

stant of 60 times per second (or 60 Hertz). Technically the system can be represented

16e.g., DC power lines, also referred to as ”asynchronous links,” connect the Eastern Interconnect,
Western Interconnect, and the Texas grid (ERCOT)

17Potential electrical energy, i.e., energy/charge, expressed in Volt (V).
18Rate of movement of charge, i.e., charge/time, expressed in Ampere (A).
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with phasors when a constant frequency is assumed. Therefore apparent power19 is

the measure of power on an AC system and is the product of the phasor value of

voltage and phasor value of the complex conjugate of current; apparent power (s) is

a complex number representing both active20 (p) and reactive21 (q) power, i.e.,

s = p+ jq = diag(v)i∗ (2.1)

where the complex number form is denoted with j :=
√
−1, ∗ denotes the complex

conjugate, diag(·) denotes the square diagonal matrix with the entries of the vector

argument on its diagonals, and vectors are written as column vectors by default. The

analysis of apparent power on AC networks is the basis of this dissertation work. The

analysis of AC networks is grounded in the law of conservation of complex power,

where the amount of energy going into the circuit must equal the amount of energy

coming out of the circuit at any instant.

Following a brief history of the ACOPF problem, this chapter introduces some

of the basic power engineering principles and mathematical programming approaches

to analyzing steady-state operations on AC networks. This overview is foundational

to the work presented in this dissertation; a more thorough treatment can be found

in e.g., [8, 28–32]. The end of this chapter proposes the IV-ACOPF formulation; an

19The measure of AC power, i.e., energy per unit time, in Volt-Amperes (VA).
20Also referred to as real power, produced when the current waveform is in phase with the voltage

waveform, expressed in Watt (W).
21Produced when the current waveform is out of phase with the voltage waveform, expressed in

Volt-Amperes reactive (VAr).
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original proof of mathematical equivalence to canonical ACOPF formulations is also

presented.

2.2 History of the ACOPF Problem

There are three types of problems commonly referred to in the power systems lit-

erature: the power flow (or load flow), economic dispatch, and optimal power flow.

These terms are defined below.

1. The power flow or load flow determines a solution to the set of power balance

equations for an electric system for a given load. Power flow methods find a

mathematically but not necessarily physically feasible or optimal solution. The

power flow equations themselves do not take into account generator limits or

transmission line limits, but these constraints can be incorporated into many

power flow solution techniques.

2. Economic dispatch describes a variety of formulations to determine the least-

cost generation dispatch to serve a given load with a reserve margin, but these

formulations simplify or sometimes altogether ignore power flow constraints.

3. The OPF finds the optimal solution to an objective function subject to the

power flow constraints and other operational constraints, such as generator,

transmission, stability, and voltage constraints. Optimal power flow is some-

times referred to as SCED; however most implementations of SCED include
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only thermal limits and proxies for voltage limits. For the purpose of this work,

the OPF (or ACOPF) is the simultaneous co-optimization of real and reactive

power dispatch subject to operational and physical network constraints in order

to minimize system operating costs. The DCOPF is a linear simplification that

only considers real power and ignores reactive power dispatch; details of the

DCOPF are presented in Section 2.6.2.

In the 1930’s, the economic dispatch problem was solved analytically using the

principle of equal incremental loading; these early computations of economic dispatch

were slow [33]. Kirchmayer estimated that it would take 10 minutes of computational

time to produce the schedules for a 10 generator system at a given system price [34].

In contrast, ISOs and RTOs today solve economic dispatch for systems of hundreds

of generators in a matter of seconds.

As early as 1929, the power flow problem was solved with analog network analyz-

ers in order to simulate power systems prior to the digital era [35]. Ward and Hale

published the first automated digital solution to the power flow problem in 1956 [36].

Sasson and Jaimes provide a survey and comparison of early load flow solution meth-

ods, which are various iterative methods based on the nodal admittance matrix (Y

matrix) or its inverse, the nodal impedance matrix (Z matrix) [35]. Early researchers,

including Carpentier, applied the Gauss-Siedel method to solve for the system of equa-

tions, whereas the Newton-Raphson method became the commonly applied solution

method during the 1960’s [37]. Tinney and others made the Newton-Raphson method
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more practical to apply on the ACOPF by developing sparsity techniques to take ad-

vantage of the structure of the admittance matrix. As a result the ACOPF was solved

with both reduced data storage requirements and increased computational speed [38].

Early research on OPF applied classical Lagrangian techniques for the optimality

conditions,22 but neglected bounds on variables [40]. In 1962, Carpentier published

the optimality conditions for an OPF including variable bounds, based on the Kuhn-

Tucker conditions; this is generally considered the first publication of a fully formu-

lated OPF including the full AC power flow equations, generator apparent power

bounds, voltage magnitude bounds, and voltage angle difference bounds for intercon-

nected buses [4]. Carpentier assumed that the applicable functions displayed “suit-

able convexity” for the Kuhn-Tucker (now referred to as the Karush-Kuhn-Tucker or

KKT) conditions23 for first-order optimality when the linear independence constraint

22The variable vector x̃ ∈ F∗ is a local minimum of an arbitrary nonlinear problem
inf {f (x) |g (x) ≤ 0, h (x) = 0, x ∈ X} if there exists ε > 0 such that f (x̃) ≤ f (x) for all x ∈
B (x̃, ε) ∩ F∗ where B defines a ball with center x̃ and radius ε, and F∗ defines the feasible re-
gion F∗ = {x|g (x) ≤ 0, h (x) = 0, x ∈ X}. If f (x̃) ≤ f (x) for all x ∈ F∗ then x̃ ∈ F∗ is a global
minimum [39].

23Consider the general constrained primal problem (P )

min
x

f (x)

s.t.

ci (x) = 0, i ∈ E ,
ci (x) ≥ 0, i ∈ I,

where x ∈ Rn, f and the functions ci are all continuously differentiable, real-valued functions on a
subset of x ∈ Rn, and I and E are two finite sets of indices. The Lagrange function for P is defined
as: L (x, λ) = f (x)−

∑
i∈E∪I λici (x). Suppose that x∗ is a local solution of P and that the linear

independence constraint qualification holds at x∗. Then there is a Lagrange multiplier vector λ∗,
with components λ∗

i , i ∈ E ∪I, such that the following KKT conditions are satisfied at (x∗, λ∗) [41]:

1. ∇xL (x∗, λ∗) = 0,

2. ci (x
∗) = 0,∀i ∈ E and ci (x

∗) ≥ 0,∀i ∈ I,

3. λ∗
i ≥ 0,∀i ∈ I and λ∗

i ci (x
∗) = 0,∀i ∈ E ∪ I.
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qualification24 (LICQ) holds. Given the structure of the power flow equations, this

may be a detrimental assumption because the approach ignores the solution bound-

ary and could result in less robust operations [42]. Then in 1969, Carpentier and

Abadie published the generalized reduced gradient method (GRG) 25 for nonlinear

constraints. The GRG method is a generalization of Carpentier’s “differential injec-

tions” method that was originally conceived in 1964 to solve the OPF problem [43].

Since Carpentier’s initial contributions, there has been a wealth of research done on

algorithms to solve the ACOPF.

Huneault and Galiana provide an extensive survey of optimal power flow literature

up to 1991, surveying over 300 articles and citing 163 of these [44]: “The history of

optimal power flow (OPF) research can be characterized as the application of increas-

ingly powerful optimization tools to a problem that basically has been well-defined

since the early 1960’s.” Given the mathematical structure and real-world applications

of the OPF, this statement still holds today, over half a century after the problem

was initially formulated by Carpentier. Throughout the history of OPF research,

trends in algorithmic approaches to solving the problem have shadowed the latest

24Define the active set A (x) at any feasible x as that consisting of the equality constraint indices
from E together with the indices of the inequality constraints i for which ci (x) = 0; that is, A =
E ∪{i ∈ I|ci (x) = 0}. Given the point x and the active set A (x), the linear independence constraint
qualification holds if the set of active constraint gradients {∇ci (x) , i ∈ A (x)} is linearly independent
[41].

25Although there are several variations of the generalized reduced gradient method, the basis is a
steepest descent method in reduced space where the condition for accepting a new point can be the
simple reduction f (xk+1) < f (xk). The advantage of this approach is that the dimension of the
problem is reduced due to variable elimination (i.e., partitioning of variables into basic and nonbasic),
and the method can also make use of special problem structures including nonlinear problems with
many linear constraints or with sparse structures [41].
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developments in nonlinear optimization techniques; surveys of recent developments

are provided in [21, 44–51]. However most algorithms to date compute a KKT point

that is potentially a local minimum and a handful of more recent algorithms com-

pute a global minimum upon satisfying a sufficient condition, e.g., see [24, 52]; these

most recent advancements are summarized in the beginning of Chapter 3. Still the

practical extensions to the OPF including transmission contingency constraints (e.g.,

security constrained OPF) and modeling discrete variables (e.g., unit commitment)

pose formidable challenges to computing such OPF solutions quickly and reliably.

2.3 Modeling Assumptions

Asssuming balanced three-phase, steady-state conditions, consider a power network

with the set of buses N := {1, . . . , N} and the set of branches K := {1, . . . , K}.

Each branch k is associated with the ordered pair (n,m) ∈ A where A is the set

of interconnected buses n,m ∈ N . Furthermore, k (n,m) is the directional flow on

branch k from bus n to bus m for the same ordered bus pair (n,m) ∈ A and k (m,n)

is the directional flow on branch k from bus m to bus n for the ordered bus pair

(n,m) ∈ A, where k (·) = {k (n,m) , k (m,n)} and k (·) ∈ F := {1, . . . , 2K} where

F is the set of directional line flows. The directional notation of k (·) ∈ F becomes

important depending on the presence of network devices such as transformers and

shunts; i.e., the current flows in both directions on a branch k are not symmetric.
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2.4 Branch Admittance Matrix

Figure 2.1: The generalized π-model diagram for branch k.

The generalized π-model is shown in Figure 2.1. The series admittance yk =

gk + jbk is equivalent to the inverse of the branch impedance zk where the series

conductance gk and series susceptance bk are determined as:

gk = rk

/(
r2k + x2k

)
, (2.2)

bk = −xk
/(

r2k + x2k
)

(2.3)

for all transmission lines k ∈ K.

Furthermore, actual transmission lines that are medium and long distance over-

head lines or underground cables can have significant charging currents due to the

separation of the conductive material by an insulating medium; as a result there is an

effective capacitance between the conductors and potentially a conductance, which is

the result of leakage over the surface of the insulating medium. These line character-

istics are accounted for with a shunt component ysk = gsk + jbsk to represent the shunt
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susceptance bsk (i.e., the reactive capacitance) and the shunt conductance gsk. This

line shunt is incorporated into the generalized π-model as two equal shunt elements

yskm and yskn distributed at each end of line k, assuming homogeneous line parameters

along the length of k. Typically the shunt conductance is negligible, which leads to

the assumption that only the shunt susceptance is nonnegative, i.e., gskn = gskm = 0

and bskn, b
s
km ≥ 0.

The π-model can be generalized to incorporate an in-phase or phase-shifting trans-

former at either the bus n-side or the m-side of branch k; therefore the generalized

π-model is defined for each branch k ∈ K interconnecting buses n and m according

to the ordered pair (n,m) ∈ A. A practical transformer that is located on the bus

n-side of k can be modeled as an ideal transformer with turns ratio |τkn| in series

with admittance yk, in order to characterize the resistive losses and leakage flux (i.e.,

self-resistance). Depending on if τkn is real or complex, the transformer is in-phase

or phase-shifting. If in-phase on the bus n-side of k, then τkn = |τkn|; otherwise for

a phase-shift of ϕkn radians, then τkn = |τkn| ejϕkn = |τkn| cosϕkn + j |τkn| sinϕkn (by

Euler’s formula). Therefore the generalized branch (primitive) admittance matrix [28]

for a π-model for a line or transformer is defined as

⎡⎢⎢⎣Y k
1,1 Y k

1,2

Y k
2,1 Y k

2,2

⎤⎥⎥⎦ :=

⎡⎢⎢⎣|τkn|2 (yk + yskn) −τ ∗knτkmyk

−τknτ ∗kmyk |τkm|
2 (yk + yskm)

⎤⎥⎥⎦ (2.4)

for all k ∈ K. Note that for modeling a transmission line, |τkn| = |τkm| = 1 and
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ϕkn = ϕkm = 0; for an in-phase transformer on the n-side of k, then yskn = yskm = 0,

|τkm| = 1, and ϕkn = ϕkm = 0; and for a phase-shifting transformer on the n-side of k,

then yskn = yskm = 0, |τkm| = 1, and ϕkm = 0. Furthermore, the above representation

models a two-winding transformer; generally for a P -winding (P > 1) transformer at

branch k, the Y k matrix would be of size P × P .

2.5 Nodal Admittance Matrix

To calculate the nodal admittance matrix, Thévenin’s theorem26 can be applied to

represent a complicated circuit, i.e., a circuit with numerous network elements be-

tween connecting buses, with a simple equivalent circuit, i.e., a single equivalent

element between connecting buses. For example, for transmission lines in series, the

equivalent branch impedance is
∑

k zk; furthermore, for transmission lines in parallel,

the equivalent branch impedance is
∑

k 1/zk. However, when transmission elements

such as transformers (in-phase or phase-shifting) or flexible AC transmission system

(FACTS) devices are present, then constructing the equivalent branch admittance

matrix requires special treatment, as detailed in reference [53].

The nodal admittance matrix Y = G + jB for Y ∈ C|N |×|N | for the equivalent

26Any combination of sinusoidal AC sources and impedances with two terminals can be replaced
by a single voltage source in series with a single impedance [32].
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network can then be specified as [28]

Y :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ynn = Y s

n +
∑

k(n,·) |τkn|
2 (yk + yskn)

Ynm = −τ ∗knτkmyk n ̸= m.

(2.5)

The nodal shunt is Y s
n = Gs

n + jBs
n. Note that for (n,m) /∈ A, the off-diagonal entry

Ynm = 0; since actual power systems are not densely connected infrastructures, typi-

cally the nodal admittance matrix is a sparse matrix with numerous zero off-diagonal

entries. The corresponding nodal conductance matrix G and nodal susceptance ma-

trix B for the equivalent network are

G :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gnn = Gs

n +
∑

k(n,·) |τkn|
2 gk

Gnm = −τ ∗knτkmgk n ̸= m,

(2.6)

and

B :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bnn = Bs

n +
∑

k(n,·) |τkn|
2 (bk + bskn)

Bnm = −τ ∗knτkmbk n ̸= m,

(2.7)

respectively. The construction of the nodal admittance matrix leads to the following

lemma.
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Lemma 2.1. By the superposition theorem,27 the nodal admittance matrix of the

equivalent network is equal to the sum of linear algebraic expressions that are com-

prised of the branch admittance matrices for each element in the full network.

Proof. Define the vectors Y1,1, Y1,2, Y2,1, Y2,2 ∈ C|K| constructed from the branch ad-

mittance matrix Y k (2.4) for all k ∈ K. Further define connection matrices Cf , Ct ∈

R|K|×|N | where Cf (k, n) and Ct(k,m) are equal to 1 for each branch k connecting

buses n and m; all other elements of Cf and Ct are zero. Given the nodal shunts

Ỹ s := diag (Y s) ∈ C|N |×|N |, the following equivalence relation holds [55,56]:

Y ∼ CT
f (Y1,1Cf + Y1,2Ct) + CT

t (Y2,1Cf + Y2,2Ct) + Ỹ s, (2.8)

where Y ∈ C|N |×|N | is the nodal admittance matrix defined in (2.7).

2.6 Power Flows

This section presents the power flow equations for AC networks, which is a system

of equations that is nonlinear and nonconvex. Therefore approximations are also

presented.

27The current flow or voltage across any network element is equal to the algebraic sum of the
currents or voltages produced independently by each source [54].
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2.6.1 Alternating Current Power Flows (ACPF)

The physical constraints of the power system determine the operational characteristics

and power flows for the AC network. The solution to Kirchhoff’s Laws is equivalent

to a solution of the ACPF [7]. This is a solution to the system of equations involving

both real and reactive power dispatch with voltage magnitude and angles.

The nodal voltage phasor can be expressed in polar or rectangular (Cartesian)

coordinates, i.e., vn,t = |vn,t|ejθn,t = |vn,t| cos θn,t + j|vn,t| sin θn,t or vn,t = vrn,t + jvjn,t,

for each bus n ∈ N given the time interval t ∈ T . In matrix form, the net current

injected at each bus into the power network is a linear function of the nodal voltage

phasor vector v = [v1, . . . , vN ]
T for the given nodal admittance matrix Y as shown

below:

i = Y v, (2.9)

where i = [i1, . . . , iN ]
T is the nodal current phasor vector.

The complex power s = p+ jq for s ∈ C|N |×1 is expressed as

s = diag(v)i∗ (2.10)

= diag(v) [Y v]∗ .

Substituting in the conductance and susceptance components of the nodal admittance
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matrix Y , the real (p) and reactive (q) parts of the apparent power are

p+ jq = diag(v) [G− jB] v∗. (2.11)

This set of equalities guarantee that both KCL and KVL are satisfied for the system.

Expanding (2.11) for each bus n ∈ N results in the respective real and reactive nodal

power flow balance, shown in both polar and rectangular forms:

pn,t = |vn,t|
∑
m∈N

|vm,t|
(
Gnm cos θnm,t +Bnm sin θnm,t

)
(2.12)

= vrn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+ vjn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
,

qn,t = |vn,t|
∑
m∈N

|vm,t|
(
Gnm sin θnm,t −Bnm cos θnm,t

)
(2.13)

= vjn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
− vrn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
,

where θnm,t := θn,t − θm,t.

Furthermore, the power flows pk(n,m),t and qk(n,m),t for the equivalent network can

be computed with the nodal admittance matrix Y as

pk(n,m),t = −
(
Gnm

)
|vn,t|2 + |vn,t||vm,t|

(
Gnm cos θnm,t +Bnm sin θnm,t

)
(2.14)

= −Gnm

((
vrn,t
)2

+
(
vjn,t
)2)

+ vrn,t

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+ vjn,t

(
Gnmv

j
m,t +Bnmv

r
m,t

)
,
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qk(n,m),t =
(
Bnm − bskn

)
|vn,t|2 + |vn,t||vm,t|

(
Gnm sin θnm,t −Bnm cos θnm,t

)
(2.15)

=
(
Bnm − bskn

)((
vrn,t
)2

+
(
vjn,t
)2)

+ vjn,t

(
Gnmv

r
m,t −Bnmv

j
m,t

)
− vrn,t

(
Gnmv

j
m,t +Bnmv

r
m,t

)
,

where both polar and rectangular formulations appear above. Furthermore, the power

flows in the other direction, i.e., pk(m,n),t and qk(m,n),t, are similarly computed as

follows:

pk(m,n),t = −
(
Gmn

)
|vm,t|2 + |vn,t||vm,t|

(
Gmn cos θnm,t −Bmn sin θnm,t

)
(2.16)

= −Gmn

((
vrm,t

)2
+
(
vjm,t

)2)
+ vrn,t

(
Gmnv

r
m,t −Bmnv

j
m,t

)
+ vjn,t

(
Gmnv

j
m,t −Bmnv

r
m,t

)
,

qk(m,n),t =
(
Bmn − bskm

)
|vm,t|2 − |vn,t||vm,t|

(
Gmn sin θnm,t +Bmn cos θnm,t

)
(2.17)

=
(
Bmn − bskm

)((
vrm,t

)2
+
(
vjm,t

)2)− vjn,t(Gmnv
r
m,t +Bmnv

j
m,t

)
− vrn,t

(
Gmnv

j
m,t +Bmnv

r
m,t

)
,

Note that the above formulations of (2.16) and (2.17) apply the following respective

even and odd function identities: cos (−x) = cos (x) , sin (−x) = − sin (x).

Also, the power flows on the full network 28 can be determined in both polar and

28If only one network element exists between connecting nodes, then the equivalent network power
flow equations are identical for that branch.
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rectangular forms as follows:

pk(n,m),t = gk (|τkn| |vn,t|)
2

− (|τkn| |vn,t|) (|τkm| |vm,t|)
(
gk cos (θnm,t + ϕkn − ϕkm)

+ bk sin (θnm,t + ϕkn − ϕkm)
)

= gk |τkn|
2
((
vrn,t
)2

+
(
vjn,t
)2)− vrn,t(gk|τkn||τkm| cos (ϕkn − ϕkm) v

r
m,t

− bk|τkn||τkm| cos (ϕkn − ϕkm) v
j
m,t

)
− vjn,t

(
gk|τkn||τkm| cos (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

)
+ vrn,t

(
bk|τkn||τkm| sin (ϕkn − ϕkm) v

r
m,t

− gk|τkn||τkm| sin (ϕkn − ϕkm) v
j
m,t

)
+ vjn,t

(
bk|τkn||τkm| sin (ϕkn − ϕkm) v

j
m,t

+ gk|τkn||τkm| sin (ϕkn − ϕkm) v
r
m,t

)
, (2.18)

qk(n,m),t = − (bk + bskn) (|τkn| |vn,t|)
2

− (|τkn| |vn,t|) (|τkm| |vm,t|)
(
gk sin (θnm,t + ϕkn − ϕkm)

− bk cos (θnm,t + ϕkn − ϕkm)
)

= − (bk + bskn) |τkn|
2
((
vrn,t
)2

+
(
vjn,t
)2)− vjn,t(gk|τkn||τkm| cos (ϕkn − ϕkm) v

r
m,t

− bk|τkn||τkm| cos (ϕkn − ϕkm) v
j
m,t

)
+ vrn,t

(
gk|τkn||τkm| cos (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

)
+ vjn,t

(
gk|τkn||τkm| sin (ϕkn − ϕkm) v

r
m,t

− bk|τkn||τkm| sin (ϕkn − ϕkm) v
j
m,t

)
− vrn,t

(
gk|τkn||τkm| sin (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| sin (ϕkn − ϕkm) v
r
m,t

)
. (2.19)
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Furthermore the power flows in the other direction, i.e., pk(m,n),t and qk(m,n),t, are

similarly computed as follows:

pk(m,n),t = gk (|τkm| |vm,t|)2

− (|τkn| |vn,t|) (|τkm| |vm,t|)
(
gk cos (θnm,t + ϕkn − ϕkm)

− bk sin (θnm,t + ϕkn − ϕkm)
)

= gk |τkm|
2
((
vrm,t

)2
+
(
vjm,t

)2)− vrn,t(gk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

− bk|τkn||τkm| cos (ϕkn − ϕkm) v
j
m,t

)
− vjn,t

(
gk|τkn||τkm| cos (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

)
− vrn,t

(
bk|τkn||τkm| sin (ϕkn − ϕkm) v

r
m,t

− gk|τkn||τkm| sin (ϕkn − ϕkm) v
j
m,t

)
− vjn,t

(
bk|τkn||τkm| sin (ϕkn − ϕkm) v

j
m,t

+ gk|τkn||τkm| sin (ϕkn − ϕkm) v
r
m,t

)
, (2.20)

qk(m,n),t = − (bk + bskm) (|τkm| |vm,t|)2

+ (|τkn| |vn,t|) (|τkm| |vm,t|)
(
gk sin (θnm,t + ϕkn − ϕkm)

+ bk cos (θnm,t + ϕkn − ϕkm)
)

= − (bk + bskm) |τkm|
2
((
vrm,t

)2
+
(
vjm,t

)2)− vjn,t(gk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

− bk|τkn||τkm| cos (ϕkn − ϕkm) v
j
m,t

)
+ vrn,t

(
gk|τkn||τkm| cos (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| cos (ϕkn − ϕkm) v
r
m,t

)
− vjn,t

(
gk|τkn||τkm| sin (ϕkn − ϕkm) v

r
m,t
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− bk|τkn||τkm| sin (ϕkn − ϕkm) v
j
m,t

)
+ vrn,t

(
gk|τkn||τkm| sin (ϕkn − ϕkm) v

j
m,t

+ bk|τkn||τkm| sin (ϕkn − ϕkm) v
r
m,t

)
. (2.21)

These equations are nonlinear and nonconvex in nature due to the bilinear terms

comprised of the variables: |vn,t|, |vm,t|, and θnm,t in the polar form and vrn,t, v
r
m,t, v

j
n,t,

and vjm,t in the rectangular form. If network devices are treated as variables, then

these equations are multilinear in nature, with possible discontinuities if discrete

variables are present.

2.6.2 Linearized Real Power Flows and Quadratic Loss Approximations

Given the nonlinear and nonconvex nature of the above power flow equations (2.14)−

(2.21), many research and practical applications resort to a linearized OPF approach.

The most common approximation is referred to as the DC power flow (DCPF) [8,29]

which is applied to the polar form of the ACPF. In particular, this approach assumes:

1. Small angle differences θnm,t such that sin θnm,t ≈ θnm,t for all (n,m) ∈ A in

time t ∈ T .

2. Unitary voltage, i.e., |υn,t| = 1 for all n ∈ N in time t ∈ T .

3. Low resistance-to-reactance ratios, i.e., rk ≪ xk for all k ∈ K.

As a result, the DCPF approach works better on transmission networks in a normal

operating state since large angle differences and increased line loading correspond
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to higher stress (i.e., an operating condition that leads to pre- or post-contingency

stability violations) [57]. Furthermore, these load flow assumptions become more

inaccurate for lower voltage, sub-transmission and distribution systems due to higher

resistance-to-reactance ratios.

For a transmission branch k ∈ K in time t ∈ T , the above assumptions lead to

approximations of (2.19) and (2.21) that give negligible reactive power flow and the

following real power flow approximation of (2.18) in polar form

p̃k(n,m),t = −bkθnm,t, (2.22)

where p̃k(m,n),t = −p̃k(n,m),t. Note that in the presence of an in-phase transformer,

the approximation in (2.22) remains unchanged since assuming |τkn| = |τkm| = 1 is

analogous to the unitary voltage approach; but for a phase-shifter the DCPF power

flows are

p̃k(n,m),t = −bk (θnm,t + ϕkn − ϕkm) , (2.23)

where ϕkm = 0 for a phase-shifter on the n-side of k and ϕkn = 0 for a phase-shifter

on the m-side of k.

The linear angle-to-power relationship in (2.22) and (2.23) is the basis of the

DCPF approach, which can be further extended to account for the real power losses

that occur through Joule heating. Based on (2.18) and (2.20) the total real power

losses on each transmission line k ∈ K in time t ∈ T in polar form can be calculated
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as

pℓk,t = pk(n,m),t + pk(m,n),t

= gk
(
|υn,t|2 + |υm,t|2 − 2 |υn,t| |υm,t| cos θnm,t

)
. (2.24)

In the presence of a phase-shifter, then the total real power losses are

pℓk,t = gk
(
|υn,t|2 + |υm,t|2 − 2 |υn,t| |υm,t| cos (θnm,t + ϕkn − ϕkm)

)
. (2.25)

Applying the voltage related DCPF assumptions to (2.24), the real power losses

can be approximated as

pℓk,t ≈ gk (θnm,t)
2 , (2.26)

where for all (n,m) ∈ A, t ∈ T the approximation cos θnm,t ≈ 1− (θnm,t)
2 /2 is based

on the first two terms in its Taylor series. Assuming that the real power losses are

equally distributed between the bidirectional flow components for a given line leads

to the following real power loss approximation

p̃ℓk,t =
1

2
gk (θnm,t)

2 (2.27)
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for all lines k ∈ K where p̃ℓk,t = p̃ℓk(n,m),t = p̃ℓk(m,n),t and p̃
ℓ
k,t is treated as a withdrawal

at both buses n and m, i.e., 2p̃ℓk,t approximates the total loss on the line. The DCPF

loss approximation of (2.25) in the presence of a phase-shifter yields

p̃ℓk,t =
1

2
gk (θnm,t + ϕkn − ϕkm)

2 , (2.28)

where |τkn| = |τkm| = 1 and ϕkm = 0 for a phase-shifter on the n-side of k; otherwise

|τkn| = |τkm| = 1 and ϕkn = 0 for a phase-shifter on the m-side of k.

As a result, the real power flows for the DCPF with losses are

p̂k(n,m),t = p̃k(n,m),t + p̃ℓk,t (2.29)

for all k ∈ K, t ∈ T .

The above DCPF assumptions can be directly applied to the following ACOPF

polar formulation (in Section 2.7.1) in order to formulate the DCOPF or DCOPF

with losses optimization problem. However unlike the DCOPF, the DCOPF with

losses is not a linear optimization problem but rather a nonconvex QCQP due to the

quadratic equality in (2.27). Chapter 6 proposes a global solution method to make

this problem tractable and the solution exact.

In practice system operators use similar assumptions in their market software to

those presented in this section when building the power transfer distribution factor

(PTDF) linear model of the power system [6]; instead of calculating an angle-to-power
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relationship, the PTDF model expresses the percentage of a power transfer that flows

on a particular network branch. This approach can be extended to include marginal

loss modeling, as demonstrated by the ISO New England (ISO-NE) in [58]. However,

such approximations still consider only real power dispatch. Reactive power dispatch

can be increasingly important since it affects both real power losses and voltage

magnitudes.

2.6.3 Decoupled Power Flows

Initially proposed by Stott and Alsaç in 1974, the decoupled power flow solves for the

real and reactive power injections sequentially instead of simultaneously [38]. This

approach is based on the principle that when the Jacobian of the power flow equations

⎡⎢⎢⎣ ∂p/∂θ ∂p/∂v

∂q/∂θ ∂q/∂v

⎤⎥⎥⎦
is evaluated numerically, the off-diagonal submatrices are much smaller in magnitude

than the diagonal submatrices, i.e., ∂p/∂θ >> ∂q/∂θ and ∂q/∂v >> ∂p/∂v. By

setting the off-diagonal entries of the Jacobian to zero, the ACPF problem can be

decomposed into a pair of subproblems where a p− θ model solves for the real power

dispatch and voltage angles, and a q− v model solves for the reactive power dispatch

and voltage magnitudes. This approach may assume small angle differences and

low resistance-to-reactance ratios in order to construct a pair of linear subproblems.
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Typically this method iterates between the pair of subproblems with updates to the

p− θ parameterization in the q−v model, and vice-versa, until a convergence criteria

is met.

However when the system has high losses, is highly loaded, or either subproblem

is infeasible, the decoupled approach becomes ineffective; Chapters 3 and 4 propose

an approach that instead solves a coupled model where the real and reactive power

injections are simultaneously co-optimized.

2.7 The Canonical Alternating Current Optimal Power Flow (ACOPF)

Formulation

The ACOPF formulation minimizes or maximizes some objective function, subject to

the apparent power flows in (2.11) and other operational constraints. The objective

generally minimizes system cost or maximizes surplus. Since the ACOPF is an opti-

mization problem where the number of variables does not have to equal the number

of constraints, specifying a slack or reference bus is unnecessary [4].

The optimal set of real and reactive generation profiles and phasor voltages for

each bus that satisfies KCL and KVL is the OPF solution. Although the problem

presented in this work minimizes system costs in terms of real power dispatch alone,

it could be desirable to include a price on reactive power compensation; this concept

is explored further in Chapter 5.
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2.7.1 Polar Form

Most of the ACOPF literature uses the polar form based on the early work of Car-

pentier during the 1960’s [4]. The polar form of the ACOPF problem for time t where

the objective minimizes the system costs for linear or convex quadratic generator bid

curves fi is:

min
θ,v,pg ,qg

∑
i∈I

fi
(
pgi,t
)

(2.30)

subject to the respective real and reactive nodal power flow balances in

|vn,t|
∑
m∈N

|vm,t| (Gnm cos θnm,t +Bnm sin θnm,t)− p+n,t + p−n,t = 0, ∀n ∈ N , (2.31)

|vn,t|
∑
m∈N

|vm,t| (Gnm sin θnm,t −Bnm cos θnm,t)− q+n,t + q−n,t = 0, ∀n ∈ N , (2.32)

the limits on real and reactive power outputs on generating units in

P i ≤ pgi,t ≤ P i, ∀i ∈ I, (2.33)

Q
i
≤ qgi,t ≤ Qi, ∀i ∈ I, (2.34)

the nodal voltage limits in

V n ≤ |vn,t| ≤ V n, ∀n ∈ N , (2.35)
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the apparent power capacity limit on transmission elements in

(
pk(·),t

)2
+
(
qk(·),t

)2 ≤ (Sk

)2
, ∀k (·) ∈ F , (2.36)

and the limit on the voltage angle difference for interconnected buses in

Θnm ≤ θnm,t ≤ Θnm, ∀ (n,m) ∈ A, (2.37)

where for a given node n ∈ N the real and reactive power injections equal the gener-

ation, e.g., p+n,t =
∑

i∈I(n) p
g
i,t and q

+
n,t =

∑
i∈I(n) q

g
i,t, and the real and reactive power

withdrawals equal the demand, e.g., p−n,t = P d
n,t and q

−
n,t = Qd

n,t. These nodal power

balance equations can be extended to incorporate other sources of power injections

and withdrawals in the power system. By Lemma 2.1, note that (2.31) and (2.32) can

be formulated analogously with the power flow equations for the equivalent network,

i.e., (2.18) and (2.19), or with the power flow equations for the full network, i.e.,

(2.20) and (2.21), as follows:

∑
k(n,·)∈K

pk(n,m),t + |vn,t|2Gs
n − p+n,t + p−n,t = 0, ∀n ∈ N , (2.38)

∑
k(n,·)∈K

qk(n,m),t − |vn,t|2Bs
n − q+n,t + q−n,t = 0, ∀n ∈ N . (2.39)

For the OPF optimization problem in (2.30) − (2.37), the variables are as follows:

θ = [θ1,t, . . . , θN,t]
T is the vector of nodal voltage angles, v = [v1,t, . . . , vN,t]

T is the
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vector of nodal voltage magnitudes, pg =
[
pg1,t, . . . , p

g
I,t

]T
is the vector of real power

generation, and qg =
[
qg1,t, . . . , q

g
I,t

]T
is the vector of reactive power compensation.

2.7.2 Rectangular Form

To derive the ACOPF formulation in rectangular coordinates, the voltage phasor

is converted to rectangular form, which results in vrn,t = |vn,t| cos θn,t and vjn,t =

|vn,t| sin θn,t for all n ∈ N , t ∈ T . Then the equivalent ACOPF problem in rectangular

form for time t is

min
vr,vj ,pg ,qg

∑
i∈I

fi
(
pgi,t
)

(2.40)

subject to the respective real and reactive nodal power flow balance in

vrn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+ vjn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− p+n,t + p−n,t = 0, ∀n ∈ N , (2.41)

vjn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
− vrn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− q+n,t + q−n,t = 0, ∀n ∈ N , (2.42)

the limits on real and reactive power outputs on generating units in

P i ≤ pgi,t ≤ P i, ∀i ∈ I, (2.43)
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Q
i
≤ qgi,t ≤ Qi, ∀i ∈ I, (2.44)

the nodal voltage limits in

(V n)
2 ≤

(
vrn,t
)2

+
(
vjn,t
)2 ≤ (V n

)2
, ∀n ∈ N , (2.45)

the apparent power capacity limit on transmission elements in

(
pk(·),t

)2
+
(
qk(·),t

)2 ≤ (Sk

)2
, ∀k (·) ∈ F , (2.46)

and the limit on the voltage angle difference for interconnected buses in

Θnm ≤ arctan
(
vjn,t/v

r
n,t

)
− arctan

(
vjm,t/v

r
m,t

)
≤ Θnm, ∀ (n,m) ∈ A, (2.47)

where for a given node n ∈ N the real and reactive power injections equal the

generation, e.g., p+n,t =
∑

i∈I(n) p
g
i,t and q+n,t =

∑
i∈I(n) q

g
i,t, and the real and reactive

power withdrawals equal the demand, e.g., p−n,t = P d
n,t and q−n,t = Qd

n,t. Similar to

the polar approach, again by Lemma 2.1 the nodal power flow balance in (2.41) and

(2.42) can be formulated analogously with the power flow equations for the equivalent

network, i.e., (2.18) and (2.19), or with the power flow equations for the full network,
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i.e., (2.20) and (2.21), as follows:

∑
k(n,·)∈F

pk(n,m),t +
((
vrn,t
)2

+
(
vjn,t
)2)

Gs
n − p+n,t + p−n,t = 0, ∀n ∈ N , (2.48)

∑
k(n,·)∈F

qk(n,m),t −
((
vrn,t
)2

+
(
vjn,t
)2)

Bs
n − q+n,t + q−n,t = 0, ∀n ∈ N . (2.49)

For the optimization problem in (2.40)− (2.47), the variables are as follows: vr =[
vr1,t, . . . , v

r
N,t

]T
is the vector of real part of the voltage phasors, vj =

[
vj1,t, . . . , v

j
N,t

]T
is the vector of imaginary part of the voltage phasors, pg =

[
pg1,t, . . . , p

g
I,t

]T
is the

vector of real power generation, and qg =
[
qg1,t, . . . , q

g
I,t

]T
is the vector of reactive

power compensation.

2.8 Spot Pricing Theory

The LMP is derived from the Lagrange multiplier29 on the nodal real power balance of

the OPF optimization model, i.e., equation (2.31) in polar form or equation (2.41) in

rectangular form, and reflects parallel flow effects through obeying Kirchhoff’s laws.

The LMP is the marginal cost of suppling the next MW of load at a particular location

and time, and accounts for the next incremental unit of energy, network congestion,

and transmission losses. Therefore, the value of the Lagrange multiplier is the rate

at which the optimal value of the objective function changes when augmenting the

corresponding constraint.30 The LMP is therefore both spatially and temporally

29also referred to as the dual variable or the “shadow price” of the resource
30assuming no degeneracy
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dependent, i.e., this spot price of electricity depends on where the customer is located

in the network, and when the customer is consuming since the system is more heavily

loaded during peak time periods. Furthermore, there is an analogous shadow price on

nodal reactive power balances, which is referred to as the Q-LMP and later explored

in Chapter 5.

2.9 The Proposed IV-ACOPF Formulation

The proposed IV-ACOPF problem is expressed in terms of the current-voltage (IV)

equations in (2.9) and extends the initial concepts for an alternative OPF formula-

tion presented in [59]; this work was originally published in [22]. Unlike the canonical

ACOPF formulations which represent the network balancing through a nonlinear cou-

pling of the apparent power flows through each branch k, the IV-ACOPF leverages

the current injections method where the network flows are linear and the nonconvex-

ities appear in the constraints relating bilinear terms (i.e., vrn,ti
r
n,t, v

j
n,ti

r
n,t, v

r
n,ti

j
n,t, and

vjn,ti
j
n,t) within each node. The current injections method for the power flow equa-

tions was originally expressed by Dommel et al. in 1970 as a mix of state variables in

both polar and rectangular form [60]. The IV-ACOPF formulation is in rectangular

coordinates and applies the branch admittance matrix to determine the current flows,
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instead of the apparent power flows, as

⎡⎢⎢⎣ ik(n,m),t

ik(m,n),t

⎤⎥⎥⎦ =

⎡⎢⎢⎣Y k
1,1 Y k

1,2

Y k
2,1 Y k

2,2

⎤⎥⎥⎦×
⎡⎢⎢⎣ vn,t

vm,t

⎤⎥⎥⎦ (2.50)

for all k ∈ K where

irk(n,m),t = Re
(
Y k
1,1vn,t + Y k

1,2vm,t

)
(2.51)

=
[
gk |τkn|2 vrn,t −

(
gk|τkn||τkm| cos (ϕkn − ϕkm) + bk|τkn||τkm| sin (ϕkn

−ϕkm)
)
vrm,t

]
−
[
(bk + bskn) |τkn|

2 vjn,t −
(
bk|τkn||τkm| cos (ϕkn − ϕkm)

− gk|τkn||τkm| sin (ϕkn − ϕkm)
)
vjm,t

]
,

ijk(n,m),t = Im
(
Y k
1,1vn,t + Y k

1,2vm,t

)
(2.52)

=
[
gk |τkn|2 vjn,t −

(
gk|τkn||τkm| cos (ϕkn − ϕkm) + bk|τkn||τkm| sin (ϕkn

−ϕkm)
)
vjm,t

]
+
[
(bk + bskn) |τkn|

2 vrn,t −
(
bk|τkn||τkm| cos (ϕkn − ϕkm)

− gk|τkn||τkm| sin (ϕkn − ϕkm)
)
vrm,t

]
,

irk(m,n),t = Re
(
Y k
2,1vn,t + Y k

2,2vm,t

)
(2.53)

= −
[(
gk|τkn||τkm| cos (ϕkn − ϕkm) + bk|τkn||τkm| sin (ϕkn − ϕkm)

)
vrn,t

− gk |τkm|
2 vrm,t

]
+
[(
bk|τkn||τkm| cos (ϕkn − ϕkm)− gk|τkn||τkm| sin (ϕkn

−ϕkm)
)
vjn,t − (bk + bskn) |τkm|

2 vjm,t

]
,

ijk(m,n),t = Im
(
Y k
2,1vn,t + Y k

2,2vm,t

)
(2.54)

= −
[(
gk|τkn||τkm| cos (ϕkn − ϕkm) + bk|τkn||τkm| sin (ϕkn − ϕkm)

)
vjn,t

45



− gk |τkm|
2 vjm,t

]
−
[(
bk|τkn||τkm| cos (ϕkn − ϕkm)− gk|τkn||τkm| sin (ϕkn

−ϕkm)
)
vrn,t − (bk + bskn) |τkm|

2 vrm,t

]
.

Then the IV-ACOPF formulation minimizes the system costs as follows:

min
vr,vj ,pg ,qg

∑
i∈I

fi
(
pgi,t
)

(2.55)

subject to the linear constraints on the respective real and imaginary parts of the

current flows, which are fully derived above, in

irk(n,m),t = Re
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, ∀k (n,m) ∈ F , (2.56)

ijk(n,m),t = Im
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, ∀k (n,m) ∈ F , (2.57)

irk(m,n),t = Re
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, ∀k (m,n) ∈ F , (2.58)

ijk(m,n),t = Im
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, ∀k (m,n) ∈ F , (2.59)

the following linear constraints on the nodal current balances in

irn,t −
( ∑

k(n,·)∈F

irk(n,m),t +Gs
nv

r
n,t −Bs

nv
j
n,t

)
= 0, ∀n ∈ N , (2.60)

ijn,t −
( ∑

k(n,·)∈F

ijk(n,m),t +Gs
nv

j
n,t +Bs

nv
r
n,t

)
= 0, ∀n ∈ N , (2.61)
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the real and reactive nodal power injections balance in

(
vrn,ti

r
n,t + vjn,ti

j
n,t

)
− p+n,t + p−n,t = 0, ∀n ∈ N , (2.62)(

vjn,ti
r
n,t − vrn,ti

j
n,t

)
− q+n,t + q−n,t = 0, ∀n ∈ N , (2.63)

the limits on real and reactive power outputs on generating units in

P i ≤ pgi,t ≤ P i, ∀i ∈ I, (2.64)

Q
i
≤ qgi,t ≤ Qi, ∀i ∈ I, (2.65)

the nodal voltage limits in

(V n)
2 ≤

(
vrn,t
)2

+
(
vjn,t
)2 ≤ (V n

)2
, ∀n ∈ N , (2.66)

the thermal capacity limit on transmission elements in

(
irk(·),t

)2
+
(
ijk(·),t

)2 ≤ (Ik)2 , ∀k (·) ∈ F , (2.67)

and the limit on the voltage angle difference for interconnected buses in

Θnm ≤ arctan
(
vjn,t/v

r
n,t

)
− arctan

(
vjm,t/v

r
m,t

)
≤ Θnm, ∀ (n,m) ∈ A, (2.68)
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where for a given node n ∈ N the real and reactive power injections equal the gener-

ation, i.e., p+n,t =
∑

i∈I(n) p
g
i,t and q

+
n,t =

∑
i∈I(n) q

g
i,t, and the real and reactive power

withdrawals equal the demand, i.e., p−n,t = P d
n,t and q

−
n,t = Qd

n,t. For the optimization

problem in (2.55)−(2.68), the variables are the same as in the rectangular formulation

in Section 2.7.2.

2.10 Mathematically Equivalent ACOPF Formulations

The following proves that the polar ACOPF, rectangular ACOPF, and the IV-ACOPF

excluding line capacity limits are mathematically equivalent formulations.

Theorem 2.2. The polar ACOPF (mP ) in (2.30)−(2.35) and (2.37), the rectangular

ACOPF (mR) in (2.40) − (2.45) and (2.47), and the IV-ACOPF (mC) in (2.55) −

(2.66) and (2.68) are isomorphic.

Proof. In order to prove this theorem, Euler’s Law, Thévenin’s theorem and the

superposition theorem as applied in Lemma 2.1, and trigonometric identities are

invoked. First the equivalence between the polar ACOPF and rectangular ACOPF is

proven. Second, the equivalence between the rectangular ACOPF and IV-ACOPF is

proven. Third, by transitivity the equivalence of the polar ACOPF and IV-ACOPF

holds. In other words,

mP,mR,mC =⇒ (mP = mR ∧mR = mC) , (2.69)

(mP = mR ∧mR = mC) =⇒ mP = mC. (2.70)
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Step 1. Show mP = mR.

(a). First, by Euler’s Law:

vrn,t = |vn,t| cos θn,t, (2.71)

vjn,t = |vn,t| sin θn,t. (2.72)

Given the following nodal power flow balances of mP as:

|vn,t|
∑
m∈N

|vm,t| (Gnm cos θnm,t +Bnm sin θnm,t)− p+n,t + p−n,t = 0,

|vn,t|
∑
m∈N

|vm,t| (Gnm sin θnm,t −Bnm cos θnm,t)− q+n,t + q−n,t = 0,

and then applying sine and cosine angle sum and difference identities leads to:

|vn,t|
∑
m∈N

|vm,t| (Gnm cos θn,t cos θm,t +Gnm sin θn,t sin θm,t)

+ |vn,t|
∑
m∈N

|vm,t| (Bnm sin θn,t cos θm,t −Bnm cos θn,t sin θm,t)− p+n,t + p−n,t = 0,

|vn,t|
∑
m∈N

|vm,t| (Gnm sin θn,t cos θm,t −Gnm cos θn,t sin θm,t)

− |vn,t|
∑
m∈N

|vm,t| (Bnm cos θn,t cos θm,t +Bnm sin θn,t sin θm,t)− q+n,t + q−n,t = 0.

Next, using the substitutions in (2.71) and (2.72) results in the nodal power flow
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balances of mQ as follows:

vrn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+ vjn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− p+n,t + p−n,t = 0,

vjn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
− vrn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− q+n,t + q−n,t = 0,

for all n ∈ N .

(b). Second, by Euler’s Law,

|vn,t| =
√(

vrn,t
)2

+
(
vjn,t
)2
,

and applying it to the nodal voltage constraint of mP :

V n ≤ |vn,t| ≤ V n, ∀n ∈ N ,

results in the nodal voltage constraint of mQ:

(V n)
2 ≤

(
vrn,t
)2

+
(
vjn,t
)2 ≤ (V n

)2
, ∀n ∈ N .

(c). Last, by Euler’s Law:

|vn,t| =
√(

vrn,t
)2

+
(
vjn,t
)2
,
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and applying it to the angle difference constraint of mP :

Θnm ≤ θnm,t ≤ Θnm, ∀ (n,m) ∈ A,

results in the angle difference constraint of mQ:

Θnm ≤ arctan
(
vjn,t/v

r
n,t

)
− arctan

(
vjm,t/v

r
m,t

)
≤ Θnm, ∀ (n,m) ∈ A.

Therefore, mP = mQ holds.

Step 2. Show mR = mC. Substituting for the irn,t and ijn,t terms in the real and

reactive nodal power injections balance of mC, i.e.,

(
vrn,ti

r
n,t + vjn,ti

j
n,t

)
− p+n,t + p−n,t = 0, ∀n ∈ N ,(

vjn,ti
r
n,t − vrn,ti

j
n,t

)
− q+n,t + q−n,t = 0, ∀n ∈ N ,

with the linear constraints on the nodal current balances in

irn,t −
( ∑

k(n,·)∈F

irk(n,m),t +Gs
nv

r
n,t −Bs

nv
j
n,t

)
= 0, ∀n ∈ N ,

ijn,t −
( ∑

k(n,·)∈F

ijk(n,m),t +Gs
nv

j
n,t +Bs

nv
r
n,t

)
= 0, ∀n ∈ N ,
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results in the following expressions for mC:

vrn,t

( ∑
k(n,·)∈F

irk(n,m),t +Gs
nv

r
n,t −Bs

nv
j
n,t

)
+ vjn,t

( ∑
k(n,·)∈F

ijk(n,m),t +Gs
nv

j
n,t +Bs

nv
r
n,t

)
− p+n,t + p−n,t = 0, (2.73)

vjn,t

( ∑
k(n,·)∈F

irk(n,m),t +Gs
nv

r
n,t −Bs

nv
j
n,t

)
− vrn,t

( ∑
k(n,·)∈F

ijk(n,m),t +Gs
nv

j
n,t +Bs

nv
r
n,t

)
− q+n,t + q−n,t = 0. (2.74)

Then by incorporating the linear current flow constraints of mC, i.e.,

irk(n,m),t = Re
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, ∀k (n,m) ∈ F ,

ijk(n,m),t = Im
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, ∀k (n,m) ∈ F ,

irk(m,n),t = Re
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, ∀k (m,n) ∈ F ,

ijk(m,n),t = Im
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, ∀k (m,n) ∈ F ,

into expressions (2.73) and (2.74), the real and reactive power flows, i.e., (2.20) and

(2.21), for the full network can be aggregated as follows:

∑
k(n,·)∈F

pk(n,m),t +
((
vrn,t
)2

+
(
vjn,t
)2)

Gs
n − p+n,t + p−n,t = 0, (2.75)

∑
k(n,·)∈F

qk(n,m),t −
((
vrn,t
)2

+
(
vjn,t
)2)

Bs
n − q+n,t + q−n,t = 0. (2.76)
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Consequently, the expressions (2.75) and (2.76) are equivalent to constraints (2.48)

and (2.49) of mQ. Therefore by Lemma 2.1, the expressions (2.75) and (2.76) are

equivalent to the nodal power balance of mQ:

vrn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+ vjn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− p+n,t + p−n,t = 0,

vjn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
− vrn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
− q+n,t + q−n,t = 0,

for all n ∈ N .

As a result, mQ = mC holds.

Step 3. Since mP = mR and mR = mC holds, by transitivity mP = mC holds.

2.11 Discussion and Extensions

The key distinction between the canonical ACOPF formulations and the IV-ACOPF

are the way that the network flows are modeled. The canonical ACOPF formulations

compute the nonlinear and nonconvex apparent power flows, whereas the IV-ACOPF

computes linear current flows and then balances the nodal power injections and with-

drawals through constraints that relate the bilinear terms within each node. As

proven above, the polar and rectangular forms of the canonical ACOPF problem as

well as the IV-ACOPF are mathematically equivalent approaches, excluding the line

capacity limits on the apparent power in (2.36) and (2.46) compared to the line ther-

53



mal limits on the current magnitude in (2.67). The line flow constraints31 in terms

of thermal limits on the current magnitude is a more direct function of the actual

physical limits due to the temperature sensitivity of the conductor and supporting

material in the transmission line and elements, where the heating of the material is

a function of the current; in fact, current is the only crucial quantity to be measured

with respect to thermal capacity limits [54].

There are some similarities in the three presented OPF formulations: the upper

bound on the voltage magnitude in (2.35), (2.45) and (2.66), as well as the upper

bound on the line capacity in (2.36), (2.46) and (2.67), are nonlinear and convex.

The lower bound on the voltage magnitude in (2.35), (2.45) and (2.66), as well as

the arctan functions in (2.47) and (2.68) are nonlinear and concave. Often the angle

difference constraint in (2.37), (2.47) and (2.68) is omitted since there are capacity

limits on the lines between interconnected nodes.

The following chapters extend the network modeling principles presented here.

More specifically, Chapters 3 and 4 of Part II introduce novel local solution methods

in order to solve the proposed IV-ACOPF formulation for day-ahead, intra-day, and

31Typically the only available line parameters are the impedance, line charge, and the nominal
voltage limits of the interconnecting buses. Therefore it is common to estimate the thermal limit
with the Surge Impedance Loading (SIL) defined as

SIL = V 2
LL

/
Z0 (2.77)

where VLL is the line-to-line voltage in volts, Z0 =
√

L/C, L is the inductance per unit length, and
C is the capacitance per unit length. A significant shortcoming of this approach is that all lines
within a given voltage level have the same thermal limit which is not reflective of actual physical
conditions [61,62].
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real-time market applications. Then Chapters 5 and 6 of Part III focus on global

solution techniques to solve OPF models for the particular application of optimal

storage integration.
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II Local Solution Methods
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3 A Successive Linear Programming Approach to Solving

the IV-ACOPF

3.1 Prologue and Motivation

Chapter 2 presented the steady-state modeling framework underlying the ACOPF,

which is defined as:

The simultaneous co-optimization of real and reactive power dispatch subject to oper-

ational and physical network constraints in order to minimize system operating costs.

However as discussed in Chapters 1 and 2, the ACOPF formulation is a nonlinear

and nonconvex problem that is currently impractical to solve directly in electricity

markets. Improved formulations of and solution techniques for the ACOPF problem

are critical to improving current practices in the day-ahead, intra-day, and real-time

markets. Chapter 3 extends the proposed IV-ACOPF formulation introduced in Sec-

tion 2.9 and presents a SLP approach, which is a local solution method to solve the

problem; global solution methods are later explored in Part II of this dissertation
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work.

A sequential linear program solves a sequence of linear approximations, converging

to a stationary point, i.e., a KKT point [63]. The sequence of linear approximations

are based on a first order Taylor series approximation of nonlinear terms in the ob-

jective functions and constraints. For an arbitrary multivariate function f : RN → R

and variable vector x ∈ RN ,

f (x) := f
(
x̂(h)

)
+ Jf

(
x̂(h)

) (
x− x̂(h)

)
+ o

(
∥x− x̂(h)∥

)

where x̂(h) is a fixed point in RN , Jf
(
x̂(h)

)
= ▽x̂(h)fT , and o is the little o-notation,

which is used to denote the asymptotic behavior of the approximation error. For

functions with bilinear terms only, the first two terms analytically derive a linear

approximation of the nonlinear function and can be solved as a SLP for x → x̂(h)

in iterations h ∈ H; therefore the last (remainder) term is an indication of the ap-

proximation error. As such, this method may be used in conjunction with a penalty

term. As discussed in Chapter 2, the necessary conditions are not sufficient to prove

optimality of the KKT point to the original nonlinear program if it is nonconvex; in

this case, the KKT point can be a local optimum, a saddlepoint, or a global optimum.

For large-scale problems, SLP approaches are more computationally efficient than

sequential quadratic programming (SQP) approaches; however SQP approaches are
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robust in inducing global convergence.32 Furthermore, both approaches have the

potential difficulty of finding a global optimum of the nonconvex subproblems in the

iterates [64]. A significant disadvantage of SLP approaches includes the violating of

nonlinear constraints during the iterative process to achieve optimality [65]. This

work presents novel infeasibility handling that utilizes the mathematical structure of

the OPF to address this drawback.

The approach proposed in this chapter leverages commercial LP solvers Gurobi

[66] and CPLEX [67], which are the current industry standard. As a result, the SLP

approach can be readily extended and integrated into more complex decision pro-

cesses, e.g., unit commitment as presented next in Chapter 4. This chapter demon-

strates that the proposed SLP approach achieves an acceptable quality of convergence

to a best-known solution and linear scaling of computational time in proportion to

network size. Moreover, the time complexity of the SLP algorithm outperforms that

of the NLP commercial solvers for the full range of test networks. As a result, the SLP

algorithm is expected to outperform the NLP solvers tested, i.e., Ipopt and KNI-

TRO, on larger scale networks. Furthermore, the SLP algorithm could be applied

in parallel with both Gurobi and CPLEX from various starting points, which may

further improve the reported linear time complexity. These results were originally

published in [22].

32For an arbitrary initialization, the sequence of solutions generated by the iterative algorithm
converges to a stationary point [41].
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3.2 Introduction

The ACOPF problem co-optimizes real and reactive power dispatch in order to pro-

mote reliable operation and efficient markets. The ACOPF originated from Car-

pentier’s reformulation of the economic dispatch problem based on the KKT condi-

tions [4]. Identifying a globally optimal solution to the ACOPF is known to be NP

hard [2, 3]. Consequently, this key dispatch problem is not presently solved exactly,

although doing so would address many of the operational challenges in markets today.

According to Stott and Alsaç [5], there are basic requirements other than absolute

optimality for practical and non-trivial applications, and the appropriate amount of

detail is a balance among several objectives which are situationally dependent.

As such, ISOs and other grid operators use approximations in order to leverage the

performance of commercial LP/MILP solvers such as Gurobi [66] and CPLEX [67].

System operators frequently solve the DCOPF problem adjusted with loss factors. As

detailed in Chapter 2, the DCOPF approach holds voltage constant, ignores reactive

power flows, assumes small voltage angle differences, and models resistances as much

less than reactances on network components. Subsequently, AC feasibility is achieved

through an iterative process in which metaheuristics are applied in order to ensure

that a realistic engineering solution is obtained by the DCOPF model and to iden-

tify constraint violations that may require preventive actions including re-dispatch,

reactive power compensation, and voltage support. Some system operators solve a
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decoupled OPF model, which iterates between p− θ and q − v subproblems in order

to check for AC feasibility [6]. As a result, dispatch and prices are usually obtained

within the required time limits, but these approximations can lead to suboptimal so-

lutions, e.g., when the system is stressed or when there is a strong physical coupling

between real and reactive power.

The DCOPF and decoupled OPF approaches oversimplify the physical problem

and require operator intervention in the day-ahead, intra-day, and real-time markets.

Purchala et al. [68] demonstrate that the DCOPF approach is acceptable if the voltage

profile is sufficiently flat, the resistance-to-reactance ratio of transmission lines is less

than 0.25, and the network is not heavily loaded. In many cases these conditions

do not hold in actual networks, therefore the DCOPF approach may not be able

to physically dispatch the resources that are required to satisfy constraints, such as

voltage limits, that are not accurately reflected in the market software. For example,

system operators intervene in order to commit units for voltage and local reliability

requirements within load pockets; producing voltage and reactive power schedules

without compromising MW line capacity limits and efficiency would require ACOPF

constraint modeling [69].

The computational tractability and convexity of any solution approach is critical

to support market clearing strategies based on the LMP. In the DCOPF and decoupled

OPF models, the LMP is highly dependent on the modeling assumptions.33 Without

33see Sections 2.6.2 and 2.6.3
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transparency into the exact form of the problem solved in the markets, it is difficult

to assess to what extent price signals are ensuring efficient and reliable operations.

In 2009, Liu et al. [70] reported that full derivations of the LMP are not available in

ISO tariffs and other publicly available manuals. Furthermore, the clearing prices in

current markets do not reflect the true marginal cost of production, which accounts

for all physical and operational system constraints and also fully compensates all re-

sources for the variable cost of providing service [13]. Subsequently, certain resources

may be committed outside of the market to address reliability issues, which results

in uplift payments [15]. A central challenge in accounting for better physical and

operational constraints is to apply better representations of the underlying AC power

system in the market software [13].

Efforts to incorporate all physical and operational constraints have been an im-

portant part of the last half century’s work on load flow and ACOPF formulations,

decomposition methods, and algorithms; please see [21,44–51] for comprehensive sur-

veys. Kirchhoff’s laws impose nonconvex constraints through the products of un-

known bus voltages, which are represented in either polar or rectangular coordinates,

or a combination of both [60]. Both power injection [71] and current injection [60]

formulations have been developed to solve the load flow problems. When rectangu-

lar coordinates with current injections are applied to determine the load flow, the

network balancing becomes a linear system of equations. This load flow approach is
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applied in the proposed IV-ACOPF problem,34 which is mathematically equivalent

to the canonical ACOPF.35

In this work the SLP algorithm is presented to solve the proposed IV-ACOPF

problem. This algorithm uses first-order Taylor series expansions to construct lo-

cal subproblems, along with a combination of outer approximation and constraint

reduction techniques. Each subproblem solves a coupled model and the solution

technique iteratively co-optimizes real and reactive power dispatch simultaneously.

This approach can be extended to include discrete controls and also can be embed-

ded within branch-and-bound algorithms to support more complex decision processes,

including unit commitment and transmission switching. Since ISO market software

depends on commercial LP/MILP solvers, this proposed approach is suitable for such

applications; furthermore the solution is tractable and the LMPs and Q-LMPs are

recoverable. This approach demonstrates an acceptable quality of convergence to the

best-known solution and linear scaling of computational time in proportion to network

size as compared to that of the reported nonlinear programming (NLP) approaches.

These performance characteristics may be achieved in real-world applications.

The remainder of this chapter is organized as follows. Section 3.3 provides a

literature review of seminal and recent linearization and convexification techniques

for the ACOPF. Section 3.4 introduces the framework and convergence quality for

general SLP algorithms. Then Section 3.5 summarizes the proposed SLP algorithm

34see Section 2.9
35see Section 2.10
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and Section 3.6 formulates the local subproblem of the SLP. Section 3.7 demonstrates

the computational performance and convergence quality of the SLP IV-ACOPF al-

gorithm. Section 3.8 concludes this chapter with a brief discussion of the results.

3.3 Related Work

Most LP approaches take advantage of the loose coupling between voltage angle and

magnitude, as initially proposed by Alsaç and Stott [72]. Such decoupled approaches

can be difficult to resolve if the system has high losses, is highly loaded, or either

subproblem is infeasible. Kirschen and Meeteren [73] propose an improved method

which reschedules real power controls in order to correct voltage magnitude violations

that arise in the decoupled subproblem. However, when there is a strong physical

coupling between p− q, even such reschedules can be ineffective.

Coupled models, such as the one proposed in this work, respect bus voltage limits

and reactive power requirements during real power scheduling. Although the de-

coupled model has smaller subproblems in each iteration, the coupled version can

take fewer iterations and be faster overall depending upon the linearization tech-

nique and underlying network [74]. Other coupled models include the recent works

described in [75–77]. Franco et al. [75] apply a least-squares regression to obtain a

non-iterative linear approximation of the ACOPF in terms of the real and imaginary

voltage components. However, the study omits numerous physical constraints (e.g.,

voltage magnitudes, reactive power, and line limits) that are important to power sys-
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tems operations. Mohapatra et al. [76] formulate the ACOPF in terms of incremental

variables and then solve the nonlinear formulation by applying Newton’s method and

the primal-dual interior point methods; however this approach neglects thermal line

limits. Coffrin et al. [77] apply piecewise linear approximations of the cosine term

and Taylor series expansions of the remaining nonlinear terms. The piecewise lin-

ear approximations result in discontinuous derivatives and moreover the accuracy of

this approach depends on the number of segments used, which can result in a heavy

computational burden for large-scale or more densely connected networks. All three

studies report applications on limited sized networks and apply local solution meth-

ods, which are not guaranteed to converge to a global optimum since the ACOPF is

nonconvex.

Therefore there is growing interest in applying convexification techniques to the

ACOPF in order to find a global optimum. Like linear and quadratic programs,
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semidefinite programming36 (SDP) and second-order conic programming37 (SOCP)

approaches can be solved in polynomial time by interior point methods. Such convex

reformulations can be valuable in determining bounds on nonconvex problems and

also to initialize local solution methods. Bai et al. [52] propose a SDR for which

Lavaei and Low [24] derive a rank-one sufficient condition under which the SDR is

exact, i.e., a global optimum is guaranteed. It has been proven that if the network is

radial, then this sufficient condition always holds [24,79] and the SOCR is equivalent

to solving the ACOPF for these cases [80]; this can be attributed to the fact that

36For example, for the standard form LP expressed as:

min
x

cTx

s.t.

Ax = b

x ≥ 0,

where A ∈ Rp×n, c ∈ Rn×1, and b ∈ Rp×1, a standard form SDP has linear equality constraints and
a matrix nonnegativity constraint on the variable X ∈ Sn:

min
X

tr (CX)

s.t.

tr (AiX) = bi, i = 1, ..., p

X ⪰ 0,

where tr {·} is the trace operator, and C,Ai, ..., Ap ∈ Sn. Recall that tr (CX) =
∑n

i,j=1 CijXij . The

notation Sk denotes the set of symmetric k × k matrices [78].
37For example, a SOCP can be expressed as:

min
x

fTx

s.t.

∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, ...,m

Fx = g,

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n. The second-order cone
constraint requires the affine function

(
Aix+ bi, c

T
i x+ di

)
to lie in the second-order cone in Rni×1.

If Ai = 0, i = 1, ...,m, then the SOCP reduces to a general LP [78].
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the power flow solution of a radial network is unique [81]. A shortcoming of these

convexifications is that there is no mechanism to recover an ACOPF feasible solution

when the sufficient condition is not satisfied. Therefore Molzahn and Hiskens [82] and

Josz et al. [83] propose moment relaxations in order to obtain tighter lower bounds.

Furthermore, there are still practical difficulties in efficiently implementing a SDR

in a mixed integer problem (MIP) including the lack of an initialization method and

limitations in scalability due to the number of linear algebraic iterations required dur-

ing the solution process. Moreover, Lesieutre et al. [84] illustrate practical scenarios

where the SDR fails to produce physically meaningful solutions.

There has been a number of SOCR applied to the ACOPF, e.g., please see [85–89],

which is a weaker relaxation than the SDR in general. The computational effort per

iteration to solve SOCP problems is greater than that required to solve linear and

quadratic programs, but less than that required to solve a SDP problem of similar

size and structure [78]. Kocuk et al. propose strong SOCR formulations, which

are an order of magnitude faster than standard SDR formulations but not as tight,

and are also an order of magnitude slower yet more accurate than Jabr’s original

SOCR formulation [85]. The SOCR solutions are often inexact but with a finite

optimality gap; closing the gap may require stronger bounds (which could guarantee

a global optimum when exact) or a local solution method in order to achieve ACOPF

feasibility. Although these approaches may be more suitable than SDR in a mixed

integer approach, current drawbacks include the need to initialize from a strictly
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feasible primal-dual pair of solutions, and determining feasibility with respect to the

integer variables on inexact solutions. Incorporating convex relaxations into more

complex decision processes that also include mixed integer variables is a growing

research area that is still in early stages of development.

In conclusion, current state-of-the-art advancements continue to demonstrate trade-

offs between convergence quality and computational performance.

3.4 Fundamentals of General SLP Algorithms

The earliest known application of SLP is the 1961 publication by Griffith and Stewart

where the authors apply this approach to optimize a large-scale nonlinear chemical

process model [90]. In general, the SLP algorithm seeks to solve a penalty problem

P ε in order to solve the original nonlinear problem P of the form

P : min
x
f(x)

s.t.

gi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., p

x ∈ X := {x : Ax ≤ b} ,

where all the functions are continuously differentiable, x ∈ Rn, and the linear con-

straints defining the problem are included into the set X ; the penalty problem P ε is
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as follows:

P ε : min
x
{f ε(x) : x ∈ X} ,

where

f ε(x) = f(x) + µ

[
m∑
i=1

max {0, gi(x)}+
p∑

i=1

|hi(x)|

]

for penalty parameter µ > 0. Bazaraa et al. prove that solving P ε is equivalent

to solving P , i.e., a KKT point is a solution in P ε if and only if the KKT point is

a solution in P [65]. Furthermore, by Theorem 10.3.1 [65], the authors prove the

following convergence behavior for a SLP:

1. If xk in iteration k of the SLP is a KKT point for P ε and it is feasible to P ,

then it is a KKT point for P .

2. The solution to the SLP with direction dk = 0 is optimal38 for the LP(xk, δk)
39

for step size δk if and only if xk is a KKT point for P ε.

38The stopping criterion dk = 0 is typically replaced by several practical termination criteria. For
example, given a specified tolerance ε if the iterate is ε-feasible and either the KKT conditions are
satisfied within an ε-tolerance or the fractional change in the objective function value for P is less
than ε for c consecutive iterations, the procedure can be terminated [65].

39The linear program LP(xk, δk) represents the direction finding subproblem for iterate k, which
yields an optimal direction dk [65]. In other words, given a feasibly point xk, a direction dk is
determined such that for step size δk > 0, the following properties hold true:

(a) xk + δkdk is feasible, and

(b) the objective value at xk + δkdk is better than the objective value at xk.
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3. Either the SLP terminates finitely or else an infinite sequence {xk} is generated

such that if the problem is bounded, then {xk} has an accumulation point, and

every such accumulation point is a KKT point for P ε.

Only if xk satisfies the second-order sufficiency conditions for P is it then a global

optimum. However, convergence to a global optimum is not guaranteed.

Not to be mistaken with convergence to a global optimum, Fletcher, Leyffer

and Toint [91] prove global convergence to a KKT point by incorporating second-

order information used in conjunction with a trust region, merit function,40 and filter

method.41 Even so, the sufficient conditions for optimality can not be guaranteed

a priori since the SLP is a local solution method and not a global solution method.

Given the above convergence qualities of SLP, this work proceeds to formulate the

SLP IV-ACOPF algorithm. Then the scalability and performance of the proposed

approach is demonstrated on a full range of test networks.

3.5 Algorithm Outline

The overall solution strategy in the SLP IV-ACOPF is depicted in the process diagram

of Figure 3.1. In the initial iteration (h = 0), the algorithm initializes the variables

and the evaluation point for the first order Taylor series approximations using a flat

40A merit function in constrained optimization allows iterates to violate the constraints and re-
quires some means to assess the quality of the steps [41].

41Filter techniques are a step acceptance mechanism based on ideas from multiobjective optimiza-
tion where the filter method accepts a trial step x+ as a new iterate if the pair (fk(x

+), hk(x
+))

for the objective function fk and the measure of infeasibility in function hk for iteration k is not
dominated by a previous pair (fk−n(x

+), hk−n(x
+)) for 0 ≤ k − n < k [41].
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Figure 3.1: The SLP IV-ACOPF algorithm

start, warm start, or cold start. If the calculated power flows from this initialization

are not feasible, the algorithm updates the initializations to reside within constraint

bounds. The algorithm then iteratively solves the resulting LP subproblem by first

updating the Taylor series evaluation points, which are denoted by placing a caret

or “hat” over the corresponding parameter; for an arbitrary evaluation point x̂(h),

x̂(h) = x∗, which is the optimal solution from iteration h− 1.

After updating the evaluation points, the algorithm updates all flowgate moni-

tors42 in order to identify lines that are near or at capacities. For any evaluation

point that is ACOPF infeasible according to the nodal voltage magnitude limits or

the flowgate monitors, the algorithm projects the evaluation point to be within the

original bounds and incorporates cutting planes to enforce feasibility in the following

42line capacity constraints that are observed
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iteration; further details provided in Section 3.6.1.3. The step size bounds are also

modified before re-solving the LP subproblem; these bounds limit the approximation

error and control oscillations in the first order Taylor series. The algorithm imposes

constraint satisfaction of the inequality constraints by introducing slack variables that

are penalized in the cost function.

Following each iteration h, the stopping criteria assesses three possible scenarios:

(1) the mismatch error on real and reactive power injections for all buses n ∈ N and

time periods t ∈ T is less than a specified tolerance, (2) the net of these mismatches is

less than a specified tolerance, or (3) the maximum iteration limit has been reached.

1: P ∗
n,t = P d

n,t + vr∗n,ti
r∗
n,t + vj∗n,ti

j∗
n,t

2: Q∗
n,t = Qd

n,t + vj∗n,ti
r∗
n,t − vr∗n,ti

j∗
n,t

3: for all n ∈ N , t ∈ T do

4: δpn,t ←
⏐⏐P ∗

n,t − p
g
n,t

⏐⏐/min
(⏐⏐P ∗

n,t

⏐⏐ , ⏐⏐pgn,t⏐⏐)
5: δqn,t ←

⏐⏐Q∗
n,t − q

g
n,t

⏐⏐/min
(⏐⏐Q∗

n,t

⏐⏐ , ⏐⏐qgn,t⏐⏐)
6: end for

7: if

⎛⎜⎜⎜⎜⎜⎜⎝
max

n∈N ,t∈T
δpn,t ≤ ∆P

n and max
n∈N ,t∈T

δqn,t ≤ ∆Q
n

or
∑

n∈N ,t∈T δ
p
n,t ≤ ∆P and

∑
n∈N ,t∈T δ

q
n,t ≤ ∆Q

or h ≥ LIM

⎞⎟⎟⎟⎟⎟⎟⎠ then

8: return solution;

9: end if
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Figure 3.2: The SLP IV-ACOPF algorithm solution outcome

Upon termination, the algorithm can yield one of the four following outcomes43

as illustrated in Figure 3.2: (1) a KKT point to the ACOPF is identified, (2) the SLP

solution is ACOPF feasible but not optimal, (3) the SLP solution is ACOPF infeasible

(i.e., there are active penalties present), or (4) the SLP solution is infeasible. Results

meeting criteria (1) through (3) may be meaningful in practice. An additional step

to recover the non-penalized LMPs is required if the criterion (3) is met; to recover

the LMPs, the algorithm resets all the penalty factors to equal zero and re-solves the

LP subproblem where the step-size limit is set to an infinitesimal quantity. However

the solution to (3) would require operator judgment in order to assess whether the

infeasibilities present in the model would cause undue operational stress.

A converged solution is defined as one meeting the mismatch tolerances as set in

43These outcomes are equivalent to the proven properties presented for general SLP algorithms in
Section 3.4.
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the stopping criteria. Since the necessary optimality conditions are related to the

Taylor series approximations through first order derivatives, and first order Taylor

series approximations are applied to all the nonlinear terms in the formulation, the

algorithm is guaranteed a KKT point44 to the ACOPF when the SLP algorithm con-

verges with no active penalties, i.e., outcome (1). For a converged solution with active

penalties, the algorithm has outcome (3). Outcome (2) is a result of early termina-

tion45 and outcome (4) is due to poor parameterization, e.g., the SLP IV-ACOPF

requires a better initialization or the step size was not appropriately computed from

the prior iteration [65], of the SLP, or infeasibility or unboundedness in the ACOPF.

3.6 Algorithm Details

This section details a successive linearization of the proposed IV-ACOPF formulation

presented in (2.55) − (2.67). Without loss of generality, this approach assumes all

generating units to be thermal generation, i.e., G = I, where pgn,t =
∑

i∈G(n) p
g
i,t and

qgn,t =
∑

i∈G(n) q
g
i,t for all n ∈ N , t ∈ T . However this approach can be readily extended

to include other energy resources.

3.6.1 Linearization and Reduction Methods

This work applies approximations, relaxations, penalty variables, and constraint set

reduction in order to reformulate the nonlinearities in (2.55)− (2.67) where the gen-

44within the specified tolerances
45When the ACOPF is bounded, otherwise outcome (4) occurs as k →∞.
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erator cost function with nonnegative cost coefficients Cg,2
i and Cg,1

i is defined as

fi (·) =
∑
t∈T

[
Cg,2

i

(
pgi,t
)2

+ Cg,1
i pgi,t

]
(3.1)

and is continuous in pgi,t ∈
[
P i, P i

]
for all i ∈ G.

3.6.1.1 Piecewise Linear Interpolations

A piecewise linear interpolation can be applied to approximate the quadratic gener-

ator offer curve in (3.1) where the generators offer real power at marginal cost. Typ-

ically, generator offer curves are monotonically increasing, and by partitioning the

interval into more linear segments, the approach detailed below results in a tighter

upper bound46 on the quadratic cost function. In practice, generators typically offer

into the market where its supply offer is a step function; thus a piecewise linearization

is an appropriate approach.

To construct the piecewise linear function, the real power production interval[
P i, P i

]
is partitioned into |L| into linear segments with length P g

i =
(
P i − P i

)
/ |L|.

There are |L|+1 points where the l-th segment is associated with points

[xi,l, xi,l+1] := [P i + lP g
i , P i + (l + 1)P g

i ] . (3.2)

For l = 0, . . . , |L|, xi,0 < xi,1 < . . . < xi,|L|+1.

46See Theorem 3.1 for proof.
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By calculating the midpoint and applying the slope of the offer curve for each

segment l ∈ L and thermal generating unit i ∈ G, the resulting cost coefficient is

Cg
i,l = Cg,1

i +
(
BMVA

)2
Cg,2

i (xi,l + xi,l+1) . (3.3)

Note that the
(
BMVA

)2
is a constant accounting for any per-unit scaling of the power

variables. The aggregate offer curve in (2.55) is approximated as

offers (·)(h) =
∑

i∈G,l∈L,t∈T

[
Cg

i,lp
g
i,l,t + Cg,0

i

]
(3.4)

for iteration h, where Cg,0
i =

(
BMVA

)2
Cg,2

i (P i)
2 + Cg,1

i P i when P i > 0.

Furthermore, each segment pgi,l,t of the piecewise linear function is limited by P g
i ,

that is

pgi,l,t ≤ P g
i (3.5)

for all i ∈ G, l ∈ L, t ∈ T . The aggregate of the segments for thermal generator i in

time t must equal the real power generation

pgi,t =
∑
l∈L

pgi,l,t + P i (3.6)

for all i ∈ G, t ∈ T .
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Theorem 3.1. The piecewise linear function

offersi (·)(h) =
∑

l∈L,t∈T

[
Cg

i,lp
g
i,l,t + Cg,0

i

]

is an upper bound of the form

fi (·) ≤ offersi (·)(h)

on the quadratic objective function fi (·) in (3.1) for all thermal generating units i ∈ G.

Proof. Without loss of generality, set the minimum real power output parameter to

zero (i.e., P i = 0), the linear cost coefficient to zero (i.e., Cg,1
i = 0), and represent

the real power generation (i.e., pgi,t for all time periods t ∈ T ) in nominal scaling (i.e.,(
BMVA

)2
= 1) for each generator i ∈ G.

Since ∂2fi (·)
/
∂
(
pgi,t
)2 ≥ 0 for the nonnegative cost coefficient Cg,2

i , the function

fi (·) is convex for all real power production outputs pgi,t ∈
[
P i, P i

]
. Therefore, fi (·)

is also midpoint convex, i.e.,

fi

(
xi,l + xi,l+1

2

)
≤ fi (xi,l) + fi (xi,l+1)

2
,

fi

(
(2l + 1)P g

i

2

)
≤ fi (lP

g
i ) + fi ((l + 1)P g

i )

2
,

∑
t∈T

[
Cg,2

i

(
(2l + 1)P g

i

2

)2
]
≤

∑
t∈T

[
Cg,2

i (lP g
i )

2
]
+
∑

t∈T

[
Cg,2

i ((l + 1)P g
i )

2
]

2
,

77



∑
t∈T

[
Cg,2

i (P g
i )

2 (l2 + l + 0.25
)]
≤
∑
t∈T

[
Cg,2

i (P g
i )

2 (l2 + l + 0.5
)]

for all points P i ≤ xi,0 < xi,1 < . . . < xi,|L|+1 ≤ P i. Furthermore, for any l-th segment

[xi,l, xi,l+1],

fi (xi,l) + fi (xi,l+1)

2
=

offersi (xi,l)
(h) + offersi (xi,l+1)

(h)

2

holds, i.e.,

offersi (xi,l)
(h) + offersi (xi,l+1)

(h)

2

=
∑
t∈T

⎡⎣Cg,2
i (P g

i )
2
(∑l−1

l̃=0
(2l̃ + 1)

)
+ Cg,2

i (P g
i )

2
(∑l

l̃=0(2l̃ + 1)
)

2

⎤⎦ ,
=
∑
t∈T

⎡⎣Cg,2
i (P g

i )
2
[(
l + 2

∑l−1

l̃=1
l̃
)
+
(
(l + 1) + 2

∑l
l̃=1 l̃

)]
2

⎤⎦ ,
=
∑
t∈T

⎡⎣Cg,2
i (P g

i )
2
[(
l + (l − 1) l

)
+
(
(l + 1) + l (l + 1)

)]
2

⎤⎦ , (⋆)

=
∑
t∈T

[
Cg,2

i (P g
i )

2 (l2 + l + 0.5
)]
.

Note that in step (⋆) above, the arithmetic series is finite and
∑l

l̃=0(2l̃+1) = (l + 1)+

2 l(l+1)
2

because

l∑
l̃=1

l̃ = 1 + 2 + 3 + . . .+ (l − 2) + (l − 1) + l =
l

2
(l + 1) .
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Similarly,
∑l−1

l̃=0
(2l̃ + 1) = l + 2 (l−1)l

2
.

Moreover, since offersi (·)(h) is an affine function, the equality

offersi

(
xi,l + xi,l+1

2

)(h)

=
offersi (xi,l)

(h) + offersi (xi,l+1)
(h)

2

holds. Therefore the piecewise linear function offersi (·)(h) is an upperbound to the

quadratic function fi (·), i.e.,

fi (·) ≤ offersi (·)(h) .

3.6.1.2 Taylor Series Approximations

The SLP algorithm applies first order Taylor series approximations to address the

nonlinear terms in constraints (2.60), (2.61), (2.64) and (2.65), respectively. For iter-

ation h, a multivariate Taylor series expansion about an evaluation point (denoted

with a caret or “hat”) is as follows:

vsqn = 2v̂
r(h)
n,t v

r
n,t + 2v̂

j(h)
n,t v

j
n,t −

(
v̂
r(h)
n,t

)2
−
(
v̂
j(h)
n,t

)2
, (3.7)

pgn,t = v̂
r(h)
n,t i

r
n,t + v̂

j(h)
n,t i

j
n,t + vrn,tî

r(h)
n,t + vjn,tî

j(h)
n,t − v̂

r(h)
n,t î

r(h)
n,t − v̂

j(h)
n,t î

j(h)
n,t + P d

n,t, (3.8)

qgn,t = v̂
j(h)
n,t i

r
n,t − v̂

r(h)
n,t i

j
n,t + vjn,tî

r(h)
n,t − vrn,tî

j(h)
n,t − v̂

j(h)
n,t î

r(h)
n,t + v̂

r(h)
n,t î

j(h)
n,t +Qd

n,t (3.9)
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for all buses n ∈ N in time periods t ∈ T , and

isqk(·),t = 2̂i
r(h)
k(·),ti

r
k(·),t + 2̂i

j(h)
k(·),ti

j
k(·),t −

(
î
r(h)
k(·),t

)2
−
(
î
j(h)
k(·),t

)2
(3.10)

for all flows k (·) ∈ F in time periods t ∈ T . Since a first order method is used, larger

step sizes result in larger approximation error. Therefore, this algorithm requires step

sizes that are small enough to gain reasonable accuracy (i.e., low truncation error)

but large enough to result in a reasonably small number of iterations. Depending

on the penalty and real power mismatch costs, the step size V
(h)
n,t is restricted at an

accelerated or decelerated rate.

At the end of each iteration h > 0, the tunable parameter V
(h)
n,t is modified to

control the approximation error. As the approximation nears ACOPF feasibility, the

convergence rate accelerates; if the approximation worsens, this rate decelerates as a

function of the ratio

γ(h) =
penalty (·)(h) + f (·)(h)

cost (·)(h) + f (·)(h)
, (3.11)

where 0 ≤ γ(h) ≤ 1,

f (·)(h) =
∑

n∈N ,t∈T

δϵn
⏐⏐P ∗

n,t − p
g
n,t

⏐⏐, (3.12)
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and

P ∗
n,t = P d

n,t + vr∗n,ti
r∗
n,t + vj∗n,ti

j∗
n,t. (3.13)

As γ(h) → 0, the solution becomes ACOPF feasible, i.e., f (·)(h) = 0 and penalty (·)(h) =

0. The tunable parameters are β = −a log γ(h)+b and α = δ/β for δ = 1−⌊10γ(h)⌋/10

where the allowable step-size is

V
(h)
n,t ← α

⏐⏐V n

⏐⏐/hβ. (3.14)

For faster decay, the user can increase a. When γ(h) = 1, then β = b.

The algorithm applies the above approach to update the tunable parameter V
(h)
n

and then introduces the step size limits

⏐⏐⏐vrn,t − v̂r(h)n,t

⏐⏐⏐ ≤ V
(h)
n,t (3.15)⏐⏐⏐vjn,t − v̂j(h)n,t

⏐⏐⏐ ≤ V
(h)
n,t (3.16)

on the real and imaginary parts of the nodal voltage, vrn,t and v
j
n,t, for all buses n ∈ N

in time periods t ∈ T . Controlling the step size for the real and imaginary parts

of the nodal voltages in turn limits the approximation error in the real and reactive

power, and the corresponding error in LMP as derived from the dual variable to the

nodal real power balance in (3.8).
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Figure 3.3: Outer approximation of the voltage and current phasor bounds with box
constraints

3.6.1.3 Outer Approximations with Infeasibility Handling and

Penalty Factors

In conjunction with the voltage magnitude linearization in (3.7), the algorithm intro-

duces box constraints on the real and imaginary parts of the nodal voltage as

−V n ≤ vrn,t ≤ V n, (3.17)

−V n ≤ vjn,t ≤ V n (3.18)

for all buses n ∈ N in time periods t ∈ T , and in conjunction with the current

magnitude linearization in (3.10), the algorithm also introduces
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−Ik ≤ irk(·),t ≤ Ik, (3.19)

−Ik ≤ ijk(·),t ≤ Ik (3.20)

on the real and imaginary parts for all current flows k (·) ∈ F in time periods t ∈ T .

These box constraints are outer approximations, as illustrated in Figure 3.3.

Given that these outer approximations are not tight, ACOPF infeasible solutions

may result. The following routine determines the updated evaluation point and re-

sulting tangential cutting plane

x̂r(h)xr + x̂j(h)xj ≤
(
X
)2

+ xviol,+ (3.21)

when either the voltage magnitude upper bound in (2.64) or the thermal line limit

in (2.65) is violated by the optimal solution of the LP subproblem in iteration h.

Without loss of generality, the real part is denoted as xr, the imaginary part as xj,

and the upper bound as X. The cutting plane is calculated as follows:

1: if
(
x̂r(h)

)2
+
(
x̂j(h)

)2
> X

2
then

2: µ← x̂j(h)/x̂r(h)

3: x̂r(h) ← sign
(
x̂r(h)

)√
X

2
/
(1 + µ2)

4: x̂j(h) ← sign
(
x̂j(h)

) ⏐⏐µx̂r(h)⏐⏐
5: add constraint: x̂r(h)xr + x̂j(h)xj ≤ X

2
+ xviol,+

83



Figure 3.4: The infeasible solution x∗ from iteration h − 1, the updated evaluation
point x̂(h), and the tangential cutting plane included to the constraint set for iteration
h.

6: end if

In other words, when an ACOPF infeasibility occurs due to violations of the volt-

age (2.64) or current (2.65) upperbound, the algorithm resets the violating evaluation

points of the Taylor series approximation to be within these bounds. The algorithm

then includes a tangential cutting plane to the constraint set for the subsequent iter-

ation, as illustrated in Figure 3.4. The algorithm imposes constraint satisfaction of

the tangential cutting plane by introducing a slack variable, which is penalized in the

cost function. This approach only applies for the outer approximation on the upper

bounds.

When the lower bound constraint in (2.64) is violated, the algorithm does not

introduce a tangential cutting plane, which would eliminate parts of the ACOPF
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feasible region. Instead, the algorithm only imposes constraint satisfaction by intro-

ducing slack variables that are penalized in the cost function. The algorithm treats the

bounds on the first order Taylor approximations similarly. As a result (2.62)− (2.65)

are reformulated as

P i − p
viol,−
i,t ≤ pgi,t ≤ P i + pviol,+i,t (3.22)

Q
i
− qviol,−i,t ≤ qgi,t ≤ Qi + qviol,+i,t (3.23)

V 2
n − v

viol,−
n,t ≤ vsqn,t ≤ V

2

n + vviol,+n,t (3.24)

isqk(·),t ≤ I
2

k + iviol,+k(·),t (3.25)

where the slack variables pviol,−i,t , qviol,−i,t , pviol,+i,t , qviol,+i,t , vviol,−n,t , vviol,+n,t , and iviol,+k(·),t are pe-

nalized in the objective function.

3.6.1.4 Constraint Reduction

The algorithm incorporates the concept of flowgate monitors to solve the linearized

formulation with a reduced constraint set. The algorithm computes and monitors the

flows for a subset of lines k′ ∈ K′(h) ⊂ K where k′ (·) ∈ F are near or at r2I
2

k′ for the

flowgate monitor rate 0 ≤ r ≤ 1 and the thermal capacity limit Ik′ . The subset of

lines K′(h) ⊂ K is updated at each iteration h > 0. The constraint set is therefore

reduced to only include (3.10), (3.19), (3.20), and (3.25) for all k (·) = k (·)′ ∈ F .
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3.6.2 LP Subproblem Formulation

For each iteration h, the SLP IV-ACOPF solves the following LP subproblem:

cost (·)(h) = min
(
offers (·)(h) + penalty (·)(h)

)
(3.26)

subject to

(2.56)− (2.61), (3.5)− (3.25), (3.27)

where offers (·)(h) is defined in (3.4) and penalty(·)(h) is defined as

penalty (·)(h) =
∑

n∈N ,t∈T

[ ∑
i∈I(n)

[
P ϵ
n

(
pviol,−i,t + pviol,+i,t

)
+Qϵ

n

(
qviol,−i,t + qviol,+i,t

) ]
+ V ϵ

n

(
vviol,−n,t + vviol,+n,t

)]
(3.28)

+
∑

k′(·)∈K′(h),t∈T

Iϵk′i
viol,+
k′(·),t

where P ϵ
n, Q

ϵ
n, V

ϵ
n , and I

ϵ
k′ are user-specified penalty factors.

3.7 Results

This work now reports on the computational performance and convergence quality of

the SLP IV-ACOPF and compares the results to solving the nonlinear IV-ACOPF as
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defined by the constraint set in (2.56)− (2.61), and the piecewise linear cost function

in (3.4) − (3.6). In [92], Castillo et al. demonstrate that the mathematical formula-

tion, solver algorithm, and initialization all contribute to the performance of ACOPF

solution techniques. Therefore this work focuses on the mathematical formulations

proposed here, and compares performance of the SLP versus NLP approaches for

various solvers and initializations.

A globally optimal solution to the nonlinear IV-ACOPF is not readily attainable

via SDR for each and every problem in the entire test suite; often the SDR is aug-

mented, e.g., to include penalties on constraint violations, and in many cases these

penalties are non-uniform and thus make it difficult to determine a global optimum.

Instead, this study reports an upper bound on the solution cost by solving the IV-

ACOPF with KNITRO MS (multi-start) using the default settings [93], which is

referred to as NLP/KNITRO MS. Although a global optimum is not guaranteed, the

probability of finding a better local solution is higher using a multi-start approach on

the globally convergent KNITRO algorithms (Interior/CG, Interior/Direct, Active-

Set). Since the KNITRO multi-start runtime is much longer than that of the SLP

IV-ACOPF algorithm, the CPU time reported is for KNITRO without multi-start.

The nonlinear IV-ACOPF is also solved with Ipopt, which uses a filter line search

to ensure global convergence under mild assumptions [94].

Both the IV-ACOPF model and SLP IV-ACOPF algorithm are implemented in

Python 2.7 with Pyomo 3.5 [95] and executed on a workstation with four quad-
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core Intel Xeon 2.7 GHz processors with hyper-threading and 512GB RAM. The

LP subproblems of the SLP IV-ACOPF are solved with either Gurobi 5.6.2 [66] or

CPLEX 12.5.1 [67] barrier method limited to two threads, and the IV-ACOPF with

either Ipopt 3.11.4 configured using the MA27 linear sub-solver (no multi-threading

support) [94] or KNITRO 9.1, where KNITRO chooses the algorithm to apply [93];

each set of simulations is referred to as SLP/Gurobi, SLP/CPLEX, NLP/Ipopt, and

NLP/KNITRO, respectively. Since MATPOWER 5.1 [56] specifically formulates the

ACOPF in polar coordinates and augments user-specified initializations by selecting

an interior point, the MATPOWER 5.1 solvers could not be readily included into the

testing. A feasibility and optimality tolerance of 1.0× 10−6 is applied to each solver

in this study.

The algorithm is executed from multiple starting points on a publicly available

test suite consisting of: (1) IEEE networks with 14, 30, 57, 118, and 300 buses, and

(2) Polish networks 2383wp, 2737sop, 2746wop, 3012wp, 3120sp, 3375wp, where the

number represents the number of buses in the respective network model, and the

acronyms are “sp” for summer peak, “sop” for summer off-peak, “wp” for winter

peak, and “wop” for winter off-peak [56]; for ease of reference in the subsequent anal-

ysis, the acronyms are omitted. These data sets include demand for a single time

period, i.e., |T | = 1. For buses with multiple generators, these units are aggregated

with an average cost function; therefore I ⊆ N . In the baseline case these networks

are solved without line limits and in the thermally constrained case with line limits
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(not including limits on transformers). The line ratings in terms of current are sys-

tematically computed from the approach by Lipka et al. [96] and presented in Table

3.2.

The performance of any SLP-based algorithm is highly dependent on strategies

used, the computer implementation, and parameter settings [97]. In the proposed

SLP algorithm, there are parameters to control penalty factors, constraint reduction,

iterative step-size, and power mismatch tolerances. It is impossible to fine-tune these

parameters to have optimal settings for all possible problems without positively bias-

ing the results, so this study demonstrates the performance for the default values as

reported in Table 4.2. The magnitude of the penalties, on average, are loosely cor-

related to the types of constraint most likely require slacks to be incorporated. For

example, the penalty on the real power is the lowest since dispatching it is already

priced into the market. The iteration limit was arbitrarily set to 20 for the reported

test suite, but it could be set higher for larger scale or more constrained networks that

might require more iterations. The step-size parameters a and b tune the parameters

α and β as described in Section 3.6.1.2. Most importantly, a controls the rate of decay

in the allowable step-size, where the default step-size region varies in proportion to

the power of the iteration count, as determined by b when there are excessive penal-

ties present. Finally, power mismatch tolerances well below the threshold of known
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state estimator precision47 are applied; in practice and as demonstrated below, high

accuracy in convergence is not required to obtain a meaningful result.

This analysis considers four types of initialization methods: (1) flat start, (2) DC

warm start, (3) AC warm start, and (4) uniform cold start. The flat start assumes

unit voltage and real power output of
(
P i − P i

)
/2 for all generation. The DC and

AC warm starts are constructed from DCOPF and ACOPF locally optimal solutions,

respectively, where the demand is parameterized as P d
n,t ∼ U

(
0.9P d

n,t, 1.1P
d
n,t

)
for all

n ∈ N , t ∈ T . The uniform starts assume that vrn,t ∼ U
(
V n, V n

)
and vjn,t = 0 for all

n ∈ N , t ∈ T ; given that the uniform start does not incorporate any knowledge of a

prior operating state, it is by definition a cold start. The sample size for the various

initialization types is one sample for the flat start and 10 samples for the remaining

start types. To reduce variance in the comparison, this analysis uses identical starting

points to test SLP/Gurobi, SLP/CPLEX, NLP/Ipopt, and NLP/KNITRO.

The overall frequency of convergence is as follows. For the nonlinear IV-ACOPF,

NLP/KNITRO and NLP/Ipopt converged 99.7% and 96.9% of the time, respectively.

For the SLP algorithms a converged solution is defined as meeting the mismatch tol-

erances specified in Table 4.2 of the algorithm’s stopping criteria. For LP subproblem

iterations that are locally infeasible or if the iteration count reaches the user defined

limit, then the simulation is labeled as unconverged. SLP/CPLEX converged in 98.4%

47The primary state estimator measurement in PJM is on the MW flows where metering accuracy
ranges between 1.0×10−2 and 5.0×10−2, as compared to the P -mismatch tolerance ∆P

n in Table 4.2.
This range results in a moderate impact on the state estimator solution accuracy and furthermore
there are unobservable measurements due to lack of telemetry [98].
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Parameter Description Value
LIM Iteration Limit 20
|L| Piecewise Segments 10
a Step-Size Parameter 0.25
b Step-Size Parameter 1.5

r2I
2

k Flowgate Monitor Rate r = 0.9

Iϵk′ Line Current Penalty 25maxiC
g,1
i

V ϵ
n Voltage Penalty 15maxnC

g,1
n

Qϵ
n Reactive Power Penalty 12.5maxiC

g,1
i

P ϵ
n Real Power Penalty 2.5maxiC

g,1
i

∆P
n P -Mismatch Tolerance 1.0× 10−3

∆Q
n Q-Mismatch Tolerance 5.0× 10−3

∆P Total P -Mismatch Tolerance 5∆P
n

∆Q Total Q-Mismatch Tolerance 10∆Q
n

Table 3.1: The SLP IV-ACOPF parameter defaults.

Network Line Limits (MVA)
IEEE-14 26.75
IEEE-30 31.25
IEEE-57 142.75
IEEE-118 114
IEEE-300 682

Polish Networks Sk(·)
/
mini=n,m∈k(·) V i ∀k ∈ K

Table 3.2: Thermal line limits in terms of current (MVA) at 1 p.u. voltage.

of the runs and the SLP/Gurobi in 99.1% of the runs. Of the converged runs, 10.3%

of the SLP/CPLEX and 10.3% of the SLP/Gurobi runs resulted in active penalties;

these only occurred in the IEEE-118 and Polish-2,383 thermally constrained cases.

The active penalty in the thermally constrained IEEE-118 is due to reactive power

compensation requirements at a single bus located in a congested area of the net-

work. The active penalty in the Polish-2,383 system is on a real power injection at

a single generator bus; by increasing the real power penalty by a factor of three so
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that P ϵ
n = 7.5maxiC

g,1
i for all n ∈ N , SLP/CPLEX and SLP/Gurobi converge to

the unpenalized optimum. As is evident, the SLP parameterization should ideally

be determined on a case-by-case basis, but for the purpose of demonstrating general

application and performance, default parameters are applied here.

Best-Case Simulations All Converged Simulations
Baseline p R2 RMSE (s) p R2 RMSE (s)

NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/Ipopt 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP/Gurobi 1.01 0.99 0.21 1.03 0.98 0.33

Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/Ipopt 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP/Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

Table 3.3: The scaling factor p for the experimental time complexity, Θ
(
np
)
, with

corresponding R-squared (R2) and root mean squared error (RMSE) values, of
NLP/KNITRO, NLP/Ipopt, SLP/CPLEX, and SLP/Gurobi. The exponent p = 1
corresponds to linear algorithmic scaling. The high R2 values indicate that the time
complexity model np explains nearly all the variability in computational time as a
function of the network size. RMSE is reported in seconds (s); a value closer to zero
indicates a fit that is more useful for prediction.

To analyze algorithm scaling properties, the experimental time complexity Θ
(
T (n)

)
is classified by the nature of the function T (n) = np for network size n and unknown

exponent p > 0. Instead of reporting numerous run time samples, Big-Theta (“Θ”)

notation describes the asymptotic behavior for large problem sizes by reporting the

exact dependence of the run time on network size for the subset of converged simula-

tions in this study. A regression model with logarithmic transformations is applied to
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Solver CPU Time NLP/Knitro NLP/Ipopt SLP/CPLEX SLP/Gurobi

(s) Baseline Case
IEEE-14 0.12 0.16 0.24 (4) 0.25 (4)
IEEE-30 0.19 0.2 0.84 (9) 0.89 (9)
IEEE-57 0.32 0.38 0.76 (5) 0.95 (5)
IEEE-118 0.84 1.18 2.53 (7) 3.49 (7)
IEEE-300 2.27 2.63 4.88 (6) 9.23 (6)

Polish-2,383 38.65 88.47 37.05 (6) 68.62 (6)
Polish-2,737 29.57 25.29 42.69 (6) 58.63 (6)
Polish-2,746 42.43 20.67 51.71 (7) 70.62 (7)
Polish-3,012 96.51 33.15 49.73 (6) 68.22 (6)
Polish-3,120 84.34 30.47 57.17 (6) 70.55 (6)
Polish-3,375 6,473.40 145.05 59.39 (6) 83.97 (6)

Thermally Constrained Case
IEEE-14 0.12 0.19 0.19 (3) 0.17 (3)
IEEE-30 0.19 0.19 0.58 (6) 0.67 (6)
IEEE-57 0.32 0.35 0.79 (5) 1.03 (5)
IEEE-118 1.23 1.18 2.86 (7) 3.49 (7)
IEEE-300 1.96 2.22 5.23 (6) 8.86 (6)

Polish-2,383 43.63 26.32 36.42 (6) 64.27 (6)
Polish-2,737 31.29 46.37 41.79 (6) 54.69 (6)
Polish-2,746 82.02 39.66 43.78 (6) 68.34 (6)
Polish-3,012 99.53 35.56 46.34 (6) 68.69 (6)
Polish-3,120 66.46 31.22 49.54 (6) 75.73 (6)
Polish-3,375 2,348.57 80.51 61.95 (6) 89.28 (6)

Table 3.4: The fastest recorded solver CPU time s across all simulations for both base-
line and thermally constrained networks. The number of SLP subproblem iterations
is denoted in parentheses.

determine whether a linear or nonlinear relationship exists, and the characteristic of

that relationship, between the network size and the computational time. Therefore

a linear regression is applied on log (s) = p log (n) + log (b) to determine the power

function s = bnp, where s is the simulation run time and the coefficient b (relating

to the y-intercept of log (b)) is irrelevant when determining the order of T (n). The
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Offer Production Cost Baseline Case Thermally Constrained Case
($) NLP/Knitro MS NLP/Knitro MS

IEEE-14 8,091 9,294
IEEE-30 575 582
IEEE-57 41,817 41,978
IEEE-118 129,903 135,189
IEEE-300 720,149 726,794

Polish-2,383 1,858,447 1,863,627
Polish-2,737 742,679 742,688
Polish-2,746 1,185,115 1,185,507
Polish-3,012 2,581,020 2,597,386
Polish-3,120 2,137,309 2,140,727
Polish-3,375 7,402,883 7,415,108

Table 3.5: Offer production costs for the best-known multi-start solutions found by
NLP/KNITRO MS.

MATLAB function polyfit is applied to minimize the sum of the squares of the

data deviations that yield the least-squares fit [99]. Table 3.3 reports the experimen-

tal best-case and overall (i.e., for all the converged runs) time complexity exponent,

along with the corresponding R-squared for the log-log regression and root mean

squared error (RMSE) values. The high R-squared values and low RMSE values (for

NLP/Ipopt, SLP/CPLEX, and SLP/Gurobi) indicate the potential for IV-ACOPF

and the SLP IV-ACOPF algorithm in practical applications. When p is near 1 (lin-

ear), this indicates that the running time of the SLP algorithm grows almost directly

proportional to the network size n. Furthermore, the time complexity of the SLP

algorithm outperforms that of the NLP commercial solvers for the full range of test

networks.

The time complexity across all the simulations, as reported in the right column of
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Relative Change NLP/Knitro NLP/Ipopt SLP/CPLEX SLP/Gurobi
to Table 3.5 Solution Baseline Case

IEEE-14 0 0 1.2× 10−4 1.2× 10−4

IEEE-30 0 0 0 0
IEEE-57 0 0 5.3× 10−4 1.7× 10−4

IEEE-118 0 0 1.2× 10−3 1.2× 10−3

IEEE-300 0 0 3.6× 10−5 1.9× 10−5

Polish-2,383 0 0 2.6× 10−4 4.8× 10−4

Polish-2,737 0 0 1.1× 10−4 1.1× 10−4

Polish-2,746 0 0 1.8× 10−4 1.8× 10−4

Polish-3,012 0 0 1.4× 10−4 3.7× 10−4

Polish-3,120 0 0 2.0× 10−4 1.4× 10−4

Polish-3,375 5.4× 10−7 2.7× 10−7 1.2× 10−3 1.4× 10−3

Thermally Constrained Case
IEEE-14 0 0 −3.2× 10−4 −3.2× 10−4

IEEE-30 0 0 1.7× 10−2 2.4× 10−2

IEEE-57 0 0 2.4× 10−4 −4.8× 10−5

IEEE-118 0 0 3.0× 10−3 5.1× 10−3

IEEE-300 0 0 2.3× 10−5 2.2× 10−5

Polish-2,383 0 0 −1.4× 10−3 −1.8× 10−3

Polish-2,737 0 0 7.3× 10−5 5.1× 10−5

Polish-2,746 0 0 2.4× 10−4 2.3× 10−4

Polish-3,012 0 0 4.7× 10−4 4.1× 10−4

Polish-3,120 0 0 3.2× 10−4 3.0× 10−4

Polish-3,375 2.1× 10−7 1.5× 10−7 1.3× 10−3 1.3× 10−3

Table 3.6: The relative convergence quality in the optimal solution, as compared
to the best-known multi-start solution in Table 3.5, for the fastest recorded run as
presented in Table 3.4; a positive (negative) metric indicates the relative increase
(decrease) amount in solution value. Decreasing the mismatch tolerance in the SLP
algorithm, as defined in Table 4.2, also effectively decreases the relative change in
exchange for more computational time.

Table 3.3, is comparable to that of the best-case, as reported in the left column. The

best-case corresponds to the fastest recorded solver CPU time for each test configura-

tion; the run times for these simulations are reported in Table 3.4, and the number of

SLP subproblem iterations (where applicable) are reported in parentheses. Moreover

95



the time complexity results reported for the best-case indicate that the proposed SLP

algorithm is expected to outperform the NLP/Ipopt and NLP/KNITRO approaches

on larger scale networks. Furthermore, the SLP algorithm could be applied in par-

allel with both Gurobi and CPLEX from various starting points, which may further

improve the reported trends.

Table 3.5 reports the offer production costs associated with the best-known multi-

start solutions, i.e., offers (·)(h) in Equation (3.26), as determined by NLP/KNITRO

MS (multi-start). Table 3.6 reports how the best-case solutions from the various

algorithmic approaches compare to the multi-start solution.48 The results indicate

that the SLP algorithm solutions are close in convergence quality to the multi-start

solutions, with the deviation representing a fractional cost of the overall real power

dispatched. By decreasing the mismatch tolerance and any active penalties if present,

the SLP algorithm can effectively decrease the relative change in exchange for more

computational time. Since NLP/KNITRO and NLP/Ipopt do no worse than the

NLP/KNITRO MS, the best-known optimum is most likely the only optimum found.

Figures 3.5 and 3.6 report the fastest recorded solve times across the four initial-

ization types for SLP/CPLEX and SLP/Gurobi, aggregating on both the baseline and

thermally constrained cases. The flat start does not perform competitively for the IV-

ACOPF formulation. With the flat start (vrn,t = 1 and vjn,t = 0 for all n ∈ N , t ∈ T ),
48Although the same parameter default values are applied for all simulations on the full range

of test networks in this study, the convergence quality on the thermally constrained IEEE-30, for
example, can be improved (i.e., obtain lower relative deviations) by increasing the line current
penalty factors Iϵk′ . Ideally the SLP algorithm parameters are fine-tuned for the power system under
consideration.
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Figure 3.5: The fastest recorded CPU time for SLP/CPLEX on each initialization
type in both the baseline and thermally constrained Polish networks.

the current flows are initialized to zero across symmetric transmission elements, and

the Taylor series approximations in Equations (3.7) − (3.9) are such that the entire

first order expansion is not assessed for the initial iteration h = 0. However, the uni-

form starts perform competitively compared to the DCOPF and ACOPF starts. The

uniform starts do not require any knowledge of the prior operating state; by initializ-

ing vrn,t with some variation, the voltage magnitudes become nonzero while the voltage

angles remain zero. In the initial iteration, the current flows are nonzero; as a result,

the nodal real power injections are calculated in terms of the network conductance

and the nodal reactive power injections in terms of the network susceptance.
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Figure 3.6: The fastest recorded CPU time for SLP/Gurobi on each initialization
type in both the baseline and thermally constrained Polish networks.

3.8 Discussion

This work proposes a SLP algorithm to solve the proposed IV-ACOPF formulation

which leverages the current injections method, where the network flows are linear and

the nonconvexities appear in the constraints relating bilinear terms within each node.

This study demonstrates acceptable quality of convergence to best-known solutions

and linear scaling of computational time in proportion to network size using commer-

cial LP solvers. Moreover, the time complexity of the SLP algorithm outperforms

that of the NLP commercial solvers for the full range of test networks. As a re-
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sult, the SLP algorithm is expected to outperform the NLP on larger scale networks.

Furthermore, the SLP algorithm could be solved in parallel with both Gurobi and

CPLEX from various starting points, which may further improve the reported linear

time complexity.

The proposed approach has flexibility in balancing the trade-offs between optimal-

ity and computational tractability and can be integrated into more complex models

(e.g., including integer variables) that include discrete controls or system states in

order to represent decision-making processes in both the operational and planning

levels, while still leveraging commercial LP/MILP solver performance. Unlike well-

established methods of approximation, such as the DCOPF with AC feasibility, the

SLP IV-ACOPF simultaneously co-optimizes real and reactive power dispatch and

enables the system operator more optimal control over system resources.

A current limitation of the proposed work is that for nonconvex problems, there

is no known theoretical convergence results to a global optimum for local solution

methods such as the SLP algorithm. Despite the fact that the proposed SLP algorithm

is not a global solution method, guaranteeing convergence to a local optimum is useful

in practice. Global convergence to a stationary point has been proven for general

SLP algorithms [91], which is a robust convergence quality of any solution technique.

Extending the SLP IV-ACOPF to include such global convergence properties could

make the computational performance slower but improve the convergence quality (i.e.,

accuracy of the solution).
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4 The Unit Commitment Problem with AC Optimal Power

Flow Constraints

4.1 Prologue

Chapter 3 proposed an SLP algorithm to solve the proposed IV-ACOPF formula-

tion.49 In this chapter a mathematical-programming based approach that extends the

SLP algorithm is presented in order to optimize the UC problem subject to ACOPF

network constraints. This problem is a MINLP that is nonconvex in the continuous

variables and is solved here through a solution technique based on the outer approxi-

mation (OA) method; based on principles of decomposition, outer-approximation and

relaxation, the OA algorithm as originally proposed by Duran and Grossman [100]

solves an alternating finite sequence of NLP subproblems and a mixed-integer linear

master program. The proposed approach is a local solution method that leverages

powerful linear and mixed-integer commercial solvers; global solution methods are

explored later in Chapters 5 and 6 for the particular application of optimal storage

integration. This chapter demonstrates the relative economic and operational impact

of more accurate ACOPF constraint modeling on the unit commitment problem when

49see Section 2.9
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compared to copperplate and DCOPF constraint modeling approaches. An interme-

diate model is also proposed, which is a hybrid of DCOPF and ACOPF approaches,

where the initial UC schedule is determined with the DCOPF, which is then made

AC feasible through a RUC-based process. The results indicate considerable diver-

gence between the market settlements and the stability and reliability requirements

for the full model versus the commonly applied approximations. The computational

speeds for both the ACOPF and the ACOPF for RUC approaches are promising: the

ACOPF approach is 5–15 times slower than the DCOPF approach and incorporat-

ing an ACOPF-based RUC to the DCOPF approach is 1.5–5 times slower than the

DCOPF alone. Since the proposed OA method spends most of the computational

time in the master problem, further improvements to the MILP and leveraging de-

composition techniques for distributed, parallel optimization could lead to significant

gains. This work was originally published in [23].

4.2 Introduction and Background

Operational constraints on thermal generation units such as ramping limits and min-

imum up/down times require those units to be committed in advance of when they

are needed, typically via day-ahead unit commitment (UC). UC is a decision-making

process executed by utilities, ISOs, and other system operators to minimize cost pro-

duction schedules for thermal generating fleets. Although variants of UC have been

used in practice since the 1970s, algorithmic techniques for computing UC schedules
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have changed drastically over the years. This large-scale combinatorial optimization

problem is the focus of significant, active research due to the potential savings in

operational costs.

What has varied most significantly in practice as well as in the state-of-the-art

research on deterministic UC modeling are the assumptions in security (i.e., con-

tingency [5]), network and operational constraints for AC power systems. Improv-

ing on the seminal UC formulation by Garver [101], many notable approaches to-

date have focused on MILP with tighter convex hull representations of the thermal

unit operations without network constraints [1,102–106]; such UC formulations have

been extended to include a linear (DC) representation of the network either with

(e.g., [107,108]) or without (e.g., [109]) real power losses. The resulting commitment

schedules ignore reactive power dispatch and AC power flow constraints, which must

subsequently be accounted for via corrective and typically ad-hoc processes. For

extensive literature surveys, see [110,111].

Because the subclass of the UC problem formulated as a MILP is NP-hard [112]

and the subclass of the ACOPF problem as a nonconvex NLP is also NP-hard [2,3], the

MINLP problem of UC and ACOPF combines the difficulties of both subclasses and is

(not surprisingly) very challenging to solve [113]. A limited number of previous works

have applied solution techniques such as Lagrangian relaxation (LR) and Benders

decomposition (BD) in order to solve some form of this problem [114–120]. MILP

is preferred to LR [114] since LR usually yields an infeasible primal solution due to
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a nonzero duality gap. Ma and Shahidehpour [115] apply BD to iteratively perform

unit commitment rescheduling in order to satisfy real power flow (capacity) limits and

to make reactive power adjustments to control bus voltage magnitudes. Fu et al. [116]

apply BD to maintain an AC feasible UC schedule, which is later extended in [117] to

include contingencies. Similar to [116], Nasri et al. [120] also apply BD to solve the

unit commitment for AC feasibility, but further decompose the problem by scenario

and time period in order to model the stochasticity of wind power production.

Although the above approaches aim to provide least cost UC schedules that are

also physically feasible on AC power systems, none of these studies focus on co-

optimization of real and reactive power scheduling and dispatch, which is referred

to as the UC problem subject to ACOPF constraints (UC+ACOPF). Sifuentes et

al. [118] use an ACOPF subproblem to generate Benders cuts for optimal short-term

hydrothermal scheduling. Then more recently Murillo-Sánchez et al. [119] presented

a formulation framework for the stochastic UC+ACOPF problem but left computa-

tional results for future work.

Another technique for solving MINLP is the OA algorithm [100], which has been

applied to variants of both the UC [121] and UC with DC network constraints [122].

For MINLPs with a convex relaxation of the mixed-integer variables (e.g., the afore-

mentioned studies [121] and [122]), the OA as presented by Duran and Grossmann

[100] is an exact algorithm provided assumptions hold on convexity, differentiability,

and constraint qualifications [123]. Moreover, Generalized Benders decomposition
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(GBD) [124], which is the framework for many of the studies discussed above, is a

particular case of OA where the lower bounds are generally weaker (i.e., the lower

bound predicted by the relaxed master problem of the OA is provably greater than

or equal to that predicted by the master problem of the GBD [100]); although GBD

commonly requires a large number of cycles or major iterations as the number of bi-

nary variables increases, the computational cost of solving the master problem in OA

is greater due to the number of constraints added per iteration [125, 126]. Therefore

both approaches have advantages and disadvantages.

Regardless, for a MINLP with nonconvex continuous variables such as the UC with

AC network constraints, OA and GBD methods are heuristics. Determining a tight

lower bound for nonconvex MINLP and more specifically solving the UC+ACOPF or

even the UC+AC feasibility (with/without security constraints) to global optimality

are complementary areas of active research [127,128]. Bai and Wei [127] perform the

only other study to date to solve the UC subject to ACOPF constraints; however in

order to reformulate the problem as a SDP, the 0-1 variables are relaxed and therefore

are likely to be infeasible. As a result, a heuristic rounding strategy is applied [127].

Therefore, the approach in [127] is comparable to other local solution methods instead

of a being classified as a global optimization method, yet does not have the scalability

of MILP. However other local solution methods, such as the approach presented here,

can leverage the powerful linear and mixed-integer commercial solvers that are applied

in the ISO market software.
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The novel contributions in this work are in the formulation, the solution tech-

nique, as well as an extensive comparative analysis. Based on the OA algorithm, this

work proposes to solve the UC+ACOPF problem through an iterative, finite sequence

of MILP master problems and NLP subproblems. To solve the NLP subproblems,

the algorithm leverages the linearization technique in [22],50 which enables the con-

struction and inclusion of a localized ACOPF constraint set into the commitment

scheduling of the MILP master problem. This approach extends the power produc-

tion constraints in [1], which is the tightest known convex hull representation for

the unit operation without ramping constraints; this selection is confirmed through

an independent assessment comparing the UC formulations presented in [1, 103–105]

using copperplate, DCOPF, and ACOPF constraint sets for the network modeling.

This proposed approach co-optimizes real and reactive power scheduling and dis-

patch with respect to all unit operational constraints, bus voltage limits, and thermal

line limits. The subsequent analysis demonstrates the monetary value of real and reac-

tive power co-optimization for the UC+ACOPF problem by comparing costs savings

relative to feasible schedules obtained by more simplified network modeling assump-

tions. This is the first study known to analyze the economic and operational impact

of more accurate ACOPF constraint modeling on the UC problem when compared to

copperplate and DCOPF constraint modeling approaches. The study also includes

estimates of the cost of network losses for the UC+DCOPF, an AC feasibility check

50see Section 2.9
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of the UC+DCOPF commitment schedule, and a RUC-based approach to adjusting

AC infeasible UC+DCOPF commitment schedules. This analysis is performed on a

six-bus, the IEEE RTS-79, and the IEEE-118 test systems over a day with hourly

time periods.

The remainder of this chapter is organized as follows. Sections 4.3 and 4.4 de-

tail the UC+ACOPF nonconvex MINLP formulation and solution technique, with

supporting material provided in Section 4.7. Section 4.5 compares the proposed

UC+ACOPF problem with the UC problem and the UC+DCOPF problem. Sec-

tion 4.6 concludes by discussing limitations and future extensions for this area of

research.

4.3 Problem Formulation

This work formulates the unit commitment model with ACOPF constraints, also

referred to as UC+ACOPF, in which the objective is to minimize the total generation

cost required to meet the load (and reserve) requirements as follows:

min
∑
i∈G

(
fp
i + fu

i + fd
i

)
+ δ (4.1)

subject to ACOPF network and power production constraints. In (4.1) fp
i represents

the production cost function (including no-load costs, i.e., fixed costs incurred every

time interval a unit is running), fu
i represents the start-up cost function, and fd

i
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represents the shut-down cost function; these quantities are defined for each thermal

generator i ∈ G. The quantity δ abstractly denotes a penalty function associated

with constraint violations.

This section details the constraint set of the UC+ACOPF as follows. The ACOPF

constraints in Section 4.3.1 is equivalent to the IV-ACOPF constraint set presented

in equations (2.56) − (2.67). The power production constraints in Section 4.3.2, are

a function of the thermal unit characteristics. Finally Section 4.3.3 includes details

on the objective function.

4.3.1 ACOPF Constraint Set

This work assumes balanced three-phase, steady-state conditions and extends the pro-

posed IV-ACOPF network constraints presented in (2.56)− (2.63), (2.66) and (2.67)

which includes the following respective real and imaginary parts of the linear current

flows

irk(n,m),t = Re
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, (4.2)

ijk(n,m),t = Im
(
Y k
1,1vn,t + Y k

1,2vm,t

)
, (4.3)

irk(m,n),t = Re
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, (4.4)

ijk(m,n),t = Im
(
Y k
2,1vn,t + Y k

2,2vm,t

)
, (4.5)
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for all k ∈ K and the following linear constraints on the nodal current balances

irn,t −
( ∑

k(n,·)∈F

irk(n,m),t +Gs
nv

r
n,t −Bs

nv
j
n,t

)
= 0, (4.6)

ijn,t −
( ∑

k(n,·)∈F

ijk(n,m),t +Gs
nv

j
n,t +Bs

nv
r
n,t

)
= 0 (4.7)

for all n ∈ N . The respective real and reactive nodal power injections balance are

pgn,t −
(
vrn,ti

r
n,t + vjn,ti

j
n,t

)
= P d

n,t +
(
pϵ,+n,t − p

ϵ,−
n,t

)
, (4.8)

qgn,t −
(
vjn,ti

r
n,t − vrn,ti

j
n,t

)
= Qd

n,t +
(
qϵ,+n,t − q

ϵ,−
n,t

)
(4.9)

for all n ∈ N , where pgn,t =
∑

i∈I(n) p
g
i,t and qgn,t =

∑
i∈I(n) q

g
i,t. The nodal voltage

limits are

V 2
n − v

ϵ,−
n,t ≤ (vrn,t)

2 + (vjn,t)
2 ≤ V

2

n + vϵ,+n,t (4.10)

for all n ∈ N , and the thermal line limits are(
irk(·),t

)2
+
(
ijk(·),t

)2
≤ I

2

k + iϵ,+k(·),t (4.11)

for all k (·) ∈ F . Then the spinning reserve requirements are defined as∑
i∈I

rgi,t ≥ P r
t − r

ϵ,−
t . (4.12)

The slack variables iϵ,+k(·),t, v
ϵ,−
n,t , v

ϵ,+
n,t , p

ϵ,+
n,t , p

ϵ,−
n,t , q

ϵ,+
n,t , q

ϵ,−
n,t , and r

ϵ,−
t are nonnegative penal-

ties in the penalty function (4.32) below.

The ACOPF network constraint set is nonconvex in the lowerbound of (4.10)

and the equalities of (4.8) and (4.9). Furthermore, the upperbounds of (4.10) and

(4.11) are nonlinear but convex. In order to seamlessly co-optimize the real and

reactive power needs during the commitment scheduling within a MILP framework,
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the linearizations (3.5)− (3.25) introduced in Section 3.6.1 are applied directly to the

above network constraint set in the UC+ACOPF formulation.

4.3.2 Power Production Constraint Set

Extending the model by Morales-España et al. [1] to include reactive power dis-

patch, this section details the generating unit constraints below. The following set

of constraints (4.13) − (4.16) and (4.18) − (4.20), as originally proposed in Morales-

España et al., the tightest known convex hull for the unit operation without ramping

constraints [1]. Although the presented ramp constraints (4.21) and (4.22) can be

tightened (e.g., see equations (21) − (24) of [104]), this extension is omitted due to

data limitations.51

Furthermore, this work details models specifically for thermal units only, i.e.,

G = I, also due to data limitations; however, modeling other types of generating

units52 could be a linear or mixed-integer extension to the presented formulation.

4.3.2.1 Binary Constraint

For the three-binary approach, constraint

bi,t − bi,t−1 = bui,t − bdi,t (4.13)

for all i ∈ G, t ∈ T enforces that bui,t and b
d
i,t take on the appropriate values when a

unit starts up or shuts down (i.e., bui,t = 1 if unit i is started up in time t or bdi,t = 1

51The publicly available data sets to perform a UC+ACOPF study characterize thermal units
that are capable of ramping to full capacity within the modeled hourly time frame.

52e.g., must-run generators, energy storage systems, and renewable energy resources
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if unit i is shut down in time t, 0 otherwise), respectively; note that bi,t−1 = B0
i for

t = 1.

4.3.2.2 Minimum Uptime and Downtime Constraints

The minimum uptime and downtime constraints respectively refer to the minimum

time the unit has to be on once it starts up (i.e., bui,t = 1) and the minimum time

it has to be off once a shutdown occurs (i.e., bdi,t = 1). The minimum uptime and

downtime constraints from [1] extending [102] are formulated as
t∑

t′=t−Tu
i +1

bui,t′ ≤ bi,t (4.14)

for all i ∈ G, t ∈ {T u
i , . . . , T} and

t∑
t′=t−T d

i +1

bdi,t′ ≤ 1− bi,t (4.15)

for all i ∈ G, t ∈
{
T d
i , . . . , T

}
, respectively. The initial up/down time constraints are

enforced in

bi,t = B0
i (4.16)

for all i ∈ G, t ∈
{
1, . . . , T0di + T0ui

}
where T0di = max

{
0,
(
T d
i − T0

d

i

)(
1 − B0

i

)}
and T0ui = max

{
0,
(
T u
i − T0

u

i

)
B0

i

}
.

4.3.2.3 Real Power Dispatch Constraints

For thermal units i ∈ G, the total unit production is the aggregate of the minimum

power output P i, otherwise known as the minimum operating level (MOL), and the
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generation over that minimum, pg∆i,t , where

pgi,t = P ibi,t + pg∆i,t , (4.17)

for all i ∈ G, t ∈ T . The generation over the MOL and the spinning reserves are

limited by

pg∆i,t + rgi,t ≤
(
P i − P i

)
bi,t −

(
P i − C

u

i

)
bui,t −

(
P i − C

d

i

)
bdi,t+1 (4.18)

when T u
i ≥ 2 for all i ∈ G, t ∈ T . The constraint (4.18) is invalid when T u

i = 1 (e.g.,

the case when bi,t = 1, bui,t = 1 and bdi,t+1 = 1) and therefore the constraints

pg∆i,t + rgi,t ≤
(
P i − P i

)
bi,t −

(
P i − C

u

i

)
bui,t, (4.19)

pg∆i,t + rgi,t ≤
(
P i − P i

)
bi,t −

(
P i − C

d

i

)
bdi,t+1, (4.20)

are applied instead; note that C
u

i and C
d

i are the start-up and shut-down MW ca-

pability, which can be assumed to equal the unit minimum output (i.e., P i) unless

otherwise specified [1]. The ramp-up constraint for all i ∈ G, t ∈ T is

pg∆i,t + rgi,t − p
g∆
i,t−1 ≤ RRu

i (4.21)

which ensures that the unit can provide spinning reserve without violating the up-

wards ramp limit. The ramp-down constraint for all i ∈ G, t ∈ T is

− pg∆i,t + pg∆i,t−1 ≤ RRd
i . (4.22)

4.3.2.4 Reactive Power Dispatch Constraints

Synchronous condensers i ∈ C have reactive power dispatch limited by

Q
i
≤ qgi,t ≤ Qi (4.23)
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for all t ∈ T ; note that these units are modeled with no variable costs53 nor are

these units required to schedule commitment into the market (and therefore have

no associated binary variables) since synchronous condensers do not produce energy.

Then the reactive power dispatch for the thermal generation fleet is limited by

Q
i
bi,t ≤ qgi,t ≤ Qibi,t (4.24)

for all i ∈ G, t ∈ T .

4.3.3 Objective Function

This section details the computation of the objective function in (4.1). The production

cost fp
i depends on generator i’s offer curve, which in turn is a function of the real

power dispatch pgi,t across all time periods t ∈ T . Generator offer curves for thermal

units i ∈ G can be expressed as the convex quadratic cost function

fp
i =

∑
t∈T

C2
i

(
pgi,t
)2

+ C1
i p

g
i,t + C0

i bi,t, (4.25)

but are modeled in the ISO markets as piecewise linear offer curves.54

Furthermore for all thermal units i ∈ G, the start-up and shut-down costs are

calculated as

fu
i =

∑
t∈T

cui,t, (4.26)

fd
i =

∑
t∈T

cdi,t, (4.27)

53Although a synchronous condenser does consume a small amount of station power, these motors
do not burn fuel to provide reactive power [129]. Furthermore synchronous condensers have much
higher capital costs as compared to its operational costs, with minor maintenance costs typically
priced on the capacity at around $0.4 to $0.8/kVAr per year [130].

54see Section 3.6.1.1
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where the nonnegative variables cui,t and c
d
i,t are defined as

cui,t ≥
∑
s∈Si

Ku
i,sb

0
i,s,t, (4.28)

cdi,t ≥ Kd
i b

d
i,t, (4.29)

respectively, for all t ∈ T . Extending Morales-España et al. [1], the binary variable

b0i,s,t in the above constraint (4.28) associates the corresponding start-up cost Ku
i,s

based on the start-up type (i.e., cold, warm, or hot start) to the amount of time

elapsed since the last time period that thermal unit i was online

b0i,s,t ≤
T l
i,s+1−1∑
t′=T l

i,s

bdi,t−t′ (4.30)

for all i ∈ G, s ∈ Si, t ∈
{
T l
i,s+1, . . . , T

}
, and∑

s∈Si

b0i,s,t = bui,t (4.31)

for all i ∈ G, t ∈ T , where bui,t is equal to 1 if unit i is started up in time t, and 0

otherwise. The timeframes
[
T l
i,s, T

l
i,s+1

)
are defined by the length of the start-up lag

segment s.

Finally, the penalty function is

δ =
∑
t∈T

[∑
n∈N

(
P ϵ
n

(
pϵ,+n,t + pϵ,−n,t

)
+Qϵ

n

(
qϵ,+n,t + qϵ,−n,t

)
+ V ϵ

n

(
vϵ,+n,t + vϵ,−n,t

) )
+Rϵrϵ,−t +

∑
k∈K

Iϵki
ϵ,+
k(·),t

]
. (4.32)

In conclusion, the offer curve in (4.25), start-up and shut-down costs in (4.26)

and (4.27), and penalty in (4.32) define the objective function initially presented in

equation (4.1).
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4.4 The Solution Technique

Initialize Model 

Solve the MIP Master 
Problem 

γ > 0: Update 
Upperbound and 

Incumbent 

O.L. 
Stopping 
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Met? Fix Binaries 

I.L. 
Stopping 
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h = h + 1 

γ = γ + 1 

No 

Optimal 
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No 
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Inner Loop (I.L.) 

Outer Loop (O.L.) 
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Solve the LP 
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h = 0 
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Unfix Binaries Linearization 
Constraint Set 

Adapt Step-Size 
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Infeasibility 
Handling 

Update Taylor 
Series 

Constraint 
Reduction 

Infeasible 

Yes 

Figure 4.1: The UC+ACOPF algorithm flow diagram

The MINLP UC+ACOPF formulation includes (4.1) − (4.32) and is nonconvex

due to the network constraints detailed in Section 4.3.1, the mixed-integer power pro-

duction constraints detailed in Section 4.3.2, and the start-up constraints in Section

4.3.3. The proposed approach solves an alternating finite sequence of NLP subprob-

lems (with binary variables fixed) and a mixed-integer linear master program. The

NLP subproblem is equivalent to solving the ACOPF, which is approximated as a
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Algorithm 1 The UC+ACOPF algorithm description

1: fU := +∞ (cost upperbound)
2: δU := +∞ (penalty upperbound)
3: incumbent := ∅
4: γ∗ := 0 (iteration of most recent incumbent solution)
5: γ = 0
6: Ω :=

{
xinit, yinit|xinit continuous; 0 ≤ yinit ≤ 1

}
7: (x∗, y∗) := optimal solution of P̃ (Ω)
8: Ω := {x∗, y∗|x∗ continuous; y∗ ∈ {0, 1}}
9: (xγ, yγ) := optimal solution of P (Ω)
10: while true do
11: Ω := {xγ, yγ|xγ continuous; yγ fixed}
12: (x∗, y∗) := optimal solution of P̃ (Ω)
13: if P̃ (Ω) infeasible then
14: break;
15: end if
16: γ := γ + 1
17: if f(x∗, y∗) < fU or δ(x∗, y∗) < δU then
18: fU := f(x∗, y∗)
19: δU := δ(x∗, y∗)
20: incumbent := (x∗, y∗)
21: γ∗ := γ
22: add constraint: f(·) < fU − ϵ to P (·)
23: end if
24: Ω := {x∗, y∗|x∗ continuous; y∗ ∈ {0, 1}}
25: V γ ← see Section 4.7.2 (linearized constraint set)
26: (xγ, yγ) := optimal solution of P (Ω;V γ)
27: if P (Ω) infeasible or γ > |Γ| or γ > γ∗ + LIM then
28: break;
29: end if
30: end while

115



SLP. The MILP master problem is equivalent to solving the unit commitment sched-

ule subject to ACOPF network constraints that are constructed from a linearization

around the optimal solution to the SLP. See the UC+ACOPF algorithm flow diagram

and description above for more details.

The NLP subproblem is solved as a SLP subproblem P̃ using a user-specified

commercial LP solver. Then the MILP master problem P is solved directly with a

user-specified commercial MIP solver. The resulting formulation that is applied in

the inner and outer loops of this algorithm includes: the objective function (4.1), con-

straints (4.2)− (4.7), the linearization55 of (4.8)− (4.11), constraints (4.12)− (4.24),

the linearization56 of (4.25), and constraints (4.26)− (4.32). The linearized constraint

set is a reduced set of constraints within an evaluation region that defines the neigh-

borhood around the KKT point to the SLP; therefore active constraints that are

outside this evaluation region would never bind and are excluded. This is valid be-

cause the master problem only solves a single iteration of the Taylor series evaluation

points through solving for both the binary and continuous variables simultaneously.

Upon termination within specified tolerances, the SLP algorithm yields: (1) a

KKT point to the ACOPF, (2) a SLP solution that is ACOPF feasible but not optimal,

(3) a SLP solution that is ACOPF infeasible (i.e., there are active penalties present),

or (4) a SLP solution that is infeasible.57 Because the algorithm balances improving

the upper bound with decreasing active penalties when searching for an incumbent

55see Section 3.6.1.2 and Section 4.7
56see Section 3.6.1.1
57see Section 3.5
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solution, results that are a KKT point to the SLP58 are acceptable outcomes to then

construct the linearized constraint set that is applied in the outer loop. A solution

that is infeasible in the SLP indicates that the inner loop routine requires better SLP

parameterization or that the underlying problem is unbounded or has no solution.

If the SLP solution is ACOPF feasible but not optimal (early termination), further

parameter tuning can be employed to drive the system closer to optimality (e.g.,

increasing the inner loop iteration limit or improving the initialization).

The lowest cost incumbent solution is a locally optimal solution (within the spec-

ified tolerances) to the original MINLP UC+ACOPF formulation when δ = 0; when

active penalties are present (δ > 0), the solution may still be physically practi-

cal depending on whether soft or hard constraints are violated. In the event that

no incumbent solution is determined, the algorithm parameters must be adjusted.

However a problem that is unbounded or has no solution will have no incumbent

solution and this cannot be known a priori. Otherwise the proposed algorithm ter-

minates in a finite number of iterations by solving a sequence of increasingly tighter

outer approximations through iterative upperbound cuts (i.e., if f(x∗, y∗) < fU or

δ(x∗, y∗) < δU then update fU , δU , and the incumbent solution) on more restricted

evaluation regions. In essence, since bounding properties cannot be guaranteed, the

search is terminated when there is no further improvement in the incumbent solution;

according to Grossmann [125], OA heuristics work well for many problems.

58with the potential of also being a KKT point to the ACOPF
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4.5 Case Studies

The proposed UC+ACOPF algorithm is applied to a six-bus test system [117], the

IEEE RTS-79 24-bus test system [131], and a modified IEEE 118-bus test system [117]

as summarized in Table 4.1; the six-bus data set is provided in Section 4.7.3 and the

larger data sets are available online [132]. Note that the 6-Bus and RTS-79 have nodal

voltage limits specified in general for all buses, and the IEEE-118 has nodal voltage

limits that are bus dependent with the most restrictive bounds being 0.95 − 1.00

p.u. A comparative analysis of the relative impacts of copperplate (no network),

DC, and AC transmission network models on UC solutions is conducted for each test

system. These variants are referred to as UC, UC+DCOPF (BΘ formulation), and

UC+ACOPF. The UC and UC+DCOPF are MILP problems. The UC+ACOPF is

solved with the OA algorithm in Section 4.4 that is composed of LP subproblems and

a MILP master problem.

Then this study extends the UC+DCOPF model to perform a more in depth com-

parison. Incorporated into this analysis is a UC+DCOPF with losses in which the

demand buses are uniformly scaled by the computed loss factor from the UC+ACOPF

results. Ideally, a loss factor formulation is endogenous to the solution, but this study

applies a straightforward loss estimation into the analysis. Additionally, this study

checks the UC+DCOPF solutions for AC feasibility by fixing the resulting commit-

ment schedule (but not the dispatch) and solving for this resource availability problem
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with the ACOPF constraint set specified in Section 4.3.1 with generator dispatch lim-

its. If the result is AC infeasible, then the incremental unit commitments are solved

for with the proposed UC+ACOPF approach in order to determine additional com-

mitments in the current schedule that attains AC feasibility. The UC+DCOPF+RUC

does not result in de-commitments of any units but rather determines the residual

commitments and updated dispatch; this is referred to as the UC+DCOPF+RUC for

its similarities to RUC in practice. Furthermore, in this RUC-based implementation,

there is no recourse to exclude thermal units cleared in the day-ahead from dispatch

in the real-time market.

All UC+ACOPF trials are executed using the parameter values specified in Table

4.2. These parameters as well as the solver parameters can be fine-tuned to further

improve computational performance. The UC+ACOPF approximation is initialized

with vrn,t = 1 and vjn,t = 0 for all buses n ∈ N , and then feasible power flows are

determined subject to generator and network constraints. This initialization requires

no prior knowledge of the operating state, but a better initialization strategy could

further improve computational performance.

In the UC+DCOPF runs, line capacity limits specified in apparent power (MVA)

for the above systems are translated into MW limits at an ideal power factor. Because

in actual practice the capacity line ratings can be specified as thermal line ratings,

apparent power limits can be transformed to limits on the current magnitude (assum-

ing a nominal voltage, i.e., 1 p.u.) for use in the UC+ACOPF. Because the DCOPF
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model approximates these current limits using real power flow limits while assuming

nominal voltage and lossless transfers, the DCOPF results can be either too relaxed

or restrictive depending upon whether the actual system voltages are lower or higher

than 1 p.u., respectively, at terminal buses.

6-Bus RTS-79 IEEE-118

Buses 6 24 118

Generators 3 33 54

Synchronous Condensers 0 1 14

Loads 3 17 90

Lines 7 38 186

Tap Transformers (static) 2 5 8

Phase Shifters (static) 0 0 1

Voltage Limits (p.u.) [0.85, 1.15] [0.94, 1.06] bus dependent

within [0.94, 1.06]

Table 4.1: Overview of case study characteristics

Parameter Description Value
|H| Inner Loop Iteration Limit 50
|Γ| Outer Loop Iteration Limit 10
LIM No Improvement Iteration Limit 2
ϵ Upperbound Relative Decrease 1.0× 10−4

|L| Piecewise Segments 10

r2
(
Ik
)2

Flowgate Monitor Rate r = 0.9
Iϵk′ Line Current Penalty (< 100 buses, 100+ buses) 1.0× 105, 1.0× 107

V ϵ
n Voltage Penalty (< 100 buses, 100+ buses) 1.0× 105, 1.0× 107

P ϵ
n, Q

ϵ
n Power Mismatch Penalties 1.0× 105

∆P
n ,∆

Q
n Mismatch Tolerances 1.0× 10−4

∆P ,∆Q Total Mismatch Tolerances 5∆P
n ,5∆

Q
n

Table 4.2: UC+ACOPF algorithm parameter defaults

The models are implemented in Python 2.7 with Pyomo 3.5 [95] and solved on
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a 2.2 GHz Intel Core i7 with 16GB RAM. The LP and MILP problems are solved

with CPLEX 12.6.2 [133] using a 1.0 × 10−4 relative MIP gap tolerance, except for

the initial iteration of the UC+ACOPF algorithm outer loop in which a 1% gap is

used in order to quickly warm-start the algorithm with an integer feasible, empirically

near optimal solution. The UC+ACOPF optimal solutions reported here are without

active penalties (δ = 0). This approach also further validates the UC+ACOPF

optimal solution by solving the original MINLP formulation (2.56)−(2.61) and (4.1)−

(4.32) as a nonlinear ACOPF with binary variables fixed at the solution reported by

the OA algorithm. The resulting model is solved with Ipopt [94], which uses a line

search filter method to ensure global convergence under mild assumptions [134]; the

OA results reported here are within a 1.0 × 10−4 relative tolerance of the nonlinear

ACOPF with binary variables fixed. This study does not directly solve the MINLP

due to lack of accessibility to scalable MINLP solvers.

4.5.1 Six-Bus Test System

UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

Costs ($) 101, 269 106, 887 101, 763 102, 523

Commitment (h)

Bus 1 G1 1− 24 1− 24 1− 24 1− 24

Bus 2 G2 1, 12− 21 1, 11− 22 1, 12− 21 1, 11− 22

Bus 6 G3 10− 22 10− 22 10− 22 10− 22

Table 4.3: System costs and commitments for the six-bus test system

The six-bus test system [117], shown in Figure 4.2, consists of three generators,
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Figure 4.2: The six-bus test system, annotated with line limits, transformer tap ratios,
and demand distribution factors

three loads, and two tap transformers; the data set is fully specified in the supporting

material provided in Section 4.7.3. System costs and commitment schedules are shown

in Table 4.3, while dispatch levels are shown in Figures 4.3− 4.5.

The UC+DCOPF model increases system costs relative to the base UC model due

to a congested transmission line between buses 1 and 4 in time periods 10 through 22.

Hence, more energy must be supplied by the more expensive unit G2 at bus 2 to meet

the demand at bus 4; this increase of generation from G2 in the UC+DCOPF model

is illustrated in Figures 4.3 and 4.4. System costs under the UC+ACOPF model are

4.8% lower than those under the UC+DCOPF model, as reported in Table 4.3. This

difference is due to the more realistic thermal line ratings in the UC+ACOPF, which

are expressed in terms of MVA whereas the UC+DCOPF approximates these limits
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Figure 4.3: Generator dispatch stack for the copperplate unit commitment problem
with no network constraints (UC)

in terms of MW while assuming a nominal voltage. In the UC+ACOPF solution, high

system voltages (i.e., greater than the nominal voltage 1 p.u.) enable higher power

transfers as compared to the binding limits imposed in the UC+DCOPF model;

as a result there is no line congestion in the UC+ACOPF.59 For the six-bus case,

the power transfer limits used in the UC+DCOPF model are more restrictive than

the UC+ACOPF thermal limits due to the nominal voltage assumption. For exam-

ple, the UC+DCOPF+RUC with AC feasibility enforced results in a system cost of

59In instances where the actual system voltages are lower than the nominal voltage assumed in
the UC+DCOPF, then the UC+DCOPF could imply higher power transfers than what may be AC
feasible.
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Figure 4.4: Generator dispatch stack for the unit commitment problem with DCOPF
network constraints (UC+DCOPF)

$102, 523, which is lower compared to the initial solution of the UC+DCOPF that is

AC infeasible. This is due to the former approach achieving higher power transfers

from the least expensive generator at bus 1 and no network congestion; however,

the UC+DCOPF+RUC at a system cost of $102, 523 is still more expensive than

the UC+ACOPF at a system cost of $101, 763 due to the over commitment in the

DCOPF approach of G2 in time periods 11 and 22.

System costs under the UC+ACOPF model are slightly more expensive than in

the copperplate UC solution due to costs associated with real power losses (total

losses of 20.15 MW, 0.4% of dispatch), which is evident in the dispatch stacks as
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Figure 4.5: Generator dispatch stack for the unit commitment problem with ACOPF
network constraints (UC+ACOPF)

shown in Figures 4.3 and 4.5. Solving the UC+DCOPF with uniform losses through

scaling the demand by 0.4%, the estimated system cost increases to $107, 689.

4.5.2 IEEE RTS-79 Test System

The RTS-79 [131] includes 24 buses, 32 generators, 17 loads, and 1 synchronous

condenser (SC) with a reactive power compensation between -50 MVAr to 200 MVAr.

The 24-hour time period load is representative of a summer weekday. Generator type

and cost characteristics are reported in Table 4.4.

System costs and commitment schedules are reported in Table 4.5. In the commit-

125



Generator type (UP̄ ) Start-up Cost ($) Production Cost ($/h)
and size (P̄ MW) Hot Cold No Load Linear Quadratic

U12 (Oil\Steam) 209 374 86.39 56.56 0.33
U20 (Oil\CT) 50 50 400.68 130 0
U50 (Hydro) 0 0 0 0 0
U76 (Coal\Steam) 894 894 212.31 16.08 0.01
U100 (Oil\Steam) 1,375 3,113 781.52 43.66 0.05
U155 (Coal\Steam) 390 1,429.5 382.24 12.39 0.01
U197 (Oil\Steam) 2,436.5 4,262.5 832.76 48.58 0.01
U350 (Coal\Steam) 2,872.5 6,702 665.11 11.85 0
U400 (Nuclear) 0 0 395.37 4.42 0
SC (Sync Cond) 0 0 0 0 0

Table 4.4: Generator characteristics for RTS-79 test system

ment schedules, multiple solutions for similar fuel generating unit types are observed,

for instance, at buses 7 and 13, respectively. The UC+ACOPF system cost accounts

for an additional 1, 382 MW in losses, which is 2.4% of the overall dispatch; the

UC+DCOPF with uniform losses using a 2.4% demand scaling results in a system

cost of $891, 453 which is an increase 8.2% cost increase of the UC+DCOPF results.

Then the 0.1% cost increase from UC to UC+DCOPF is due to a binding power

flow limit on the line between buses 7 and 8 in time period 10. Bus 7 is radially

connected to bus 8 (as shown in Figures 4.6 and 4.7), and connects 3 oil generators to

the grid. Because of the congestion, energy from these generators cannot be supplied

to the rest of the system and generator 16 (located at bus 15) is brought online for

compensation.

The 8.7% cost increase from UC+DCOPF to UC+ACOPF is mainly due to com-

mitments of the more expensive oil generators with larger reactive power capability
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UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC
Costs ($) 823, 145 823, 894 895, 281 896, 169

Commitment (h)
Bus 1 G1.U20 ∅ ∅ ∅ ∅
Bus 1 G2.U20 ∅ ∅ ∅ ∅
Bus 1 G3.U76 8− 23 8− 23 8− 23 8− 23
Bus 1 G4.U76 8− 23 8− 23 8− 23 8− 23
Bus 2 G5.U20 ∅ ∅ 10 10
Bus 2 G6.U20 ∅ ∅ 10 10
Bus 2 G7.U76 8− 23 8− 23 8− 23 8− 24
Bus 2 G8.U76 8− 23 8− 23 8− 23 8− 23
Bus 7 G9.U100 10− 22 9− 16 10− 23 1− 24
Bus 7 G10.U100 9− 16 10− 22 1− 18 10− 22
Bus 7 G11.U100 10− 18 10− 18 9− 24 9− 18
Bus 13 G12.U197 ∅ 11− 23 ∅ 11− 23
Bus 13 G13.U197 ∅ ∅ ∅ ∅
Bus 13 G14.U197 11− 23 ∅ 11− 22 ∅
Bus 14 G15.SC ∅ ∅ 1− 24 1− 24
Bus 15 G16.U12 ∅ 9− 12 10− 13 9− 12
Bus 15 G17.U12 10− 13 9− 12 10− 15 9− 15
Bus 15 G18.U12 10− 13 9− 12 10− 15 10− 15
Bus 15 G19.U12 ∅ ∅ 10− 15 9− 12
Bus 15 G20.U12 9− 12 9− 12 10− 13 9− 15
Bus 15 G21.U155 1− 24 1− 24 9− 24 1− 24
Bus 16 G22.U155 9− 24 1− 24 1− 24 1− 24
Bus 18 G23.U400 1− 24 1− 24 1− 24 1− 24
Bus 21 G24.U400 1− 24 1− 24 1− 24 1− 24
Bus 22 G25.U50 1− 24 1− 24 1− 24 1− 24
Bus 22 G26.U50 1− 24 1− 24 1− 24 1− 24
Bus 22 G27.U50 1− 24 1− 24 1− 24 1− 24
Bus 22 G28.U50 1− 24 1− 24 1− 24 1− 24
Bus 22 G29.U50 1− 24 1− 24 1− 24 1− 24
Bus 22 G30.U50 1− 24 1− 24 1− 24 1− 24
Bus 23 G31.U155 1− 24 9− 24 1− 24 9− 24
Bus 23 G32.U155 1− 24 1− 24 1− 24 1− 24
Bus 23 G33.U350 1− 24 1− 24 1− 24 1− 24

Table 4.5: System costs and commitments for each {generator ID}.{generator type}
in the RTS-79 test system
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Figure 4.6: UC+ACOPF: The voltage heat map for a normal operating state for
voltage limits 0.94− 1.06p.u. in time period 20.

used to meet reactive power demand and manage under-voltage conditions. For in-

stance, commitment of the larger oil\steam unit G10.U100 is expanded to replace

the smaller oil\steam unit G12.U197 because of the larger reactive power capability

it provides; more specifically unlike any other commitment schedule, thermal unit

G10.U100 is operated at its MOL for an extended time frame in the early day, i.e.,

from time periods 1 through 8. In actual practice, where such reliability commit-

ments aren’t included in the day-ahead market settlement, this additional $15.2K

in costs to the system would be incorporated into the side payments for reliability

commitments [13].
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Figure 4.7: UC+DCOPF: The voltage heat map for an alert operating state, as
a result of an AC feasibility check of the UC+DCOPF commitment schedule (i.e.,
production levels allowed to vary), in time period 20. For voltage limits 0.94−1.06p.u.,
there are voltage violations and load mismatches for the UC+DCOPF commitment
schedule, which is AC infeasible.

Meeting reactive power demand is imperative to ensure normal operations. If

implemented directly, the UC+DCOPF commitment schedule results in real and re-

active load shedding. The voltage heat maps in Figures 4.6 and 4.7 compare the

UC+ACOPF solution to an AC feasibility check of the UC+DCOPF commitment

schedule (i.e., production levels allowed to vary), specifically when the system is at

92% of peak demand at time period 20. Without the additional commitments to

increase reactive power dispatch, there are voltage violations as well as unmet load.
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These conditions are unacceptable and drive the system out of its normal operat-

ing state into an emergency state [135]. One way to attain AC feasibility in the

UC+DCOPF model is to determine the additional commitments required in order

to satisfy the AC network constraints; therefore the commitments resulting from the

UC+DCOPF model are fixed and then the above proposed solution technique is ap-

plied to solve for the residual commitments, referred to as the UC+DCOPF+RUC.

This local solution method determines a cost effective solution that resolves the load

mismatch and other violations in the problematic time periods. In such a case, the

UC+DCOPF system cost increases to $896, 169 in the UC+DCOPF+RUC, which is

slightly more expensive than the UC+ACOPF solution.

The IEEE RTS-79 exhibits solutions to the UC+ACOPF in which system voltages

are lower than nominal (i.e., 1 p.u.). The lower voltages cause thermal line limits to

be more restrictive in the UC+ACOPF results as compared to the UC+DCOPF

results. This also indicates that power transfers in the UC+DCOPF might violate

actual power transfer limits. In such a case, transmission limits could be tightened in

the UC+DCOPF model as a way to proxy AC feasibility; this approach is frequently

applied in actual operations (i.e., using nomograms)60 which in turn drive the solution

cost up and can result in a dramatically different commitment schedule than a more

efficient UC+ACOPF approach.

60a constraint set that approximates actual nodal voltage limits and reactive power needs through
restricting real power imports
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UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC
Costs ($) 811, 658 814, 715 843, 591 844, 922

Commitment (h)
G1 ∅ ∅ ∅ ∅
G2 ∅ ∅ ∅ ∅
G3 ∅ ∅ ∅ ∅
G4 1− 24 1− 24 1− 24 1− 24
G5 1− 24 1− 24 1− 24 1− 24
G6 ∅ ∅ ∅ ∅
G7 ∅ ∅ 10− 23 10− 22
G8 ∅ ∅ ∅ ∅
G9 ∅ ∅ ∅ ∅
G10 1− 24 1− 24 1− 24 1− 24
G11 1− 24 1− 24 1− 24 1− 24
G12 ∅ ∅ ∅ ∅
G13 ∅ ∅ ∅ ∅
G14 ∅ ∅ 9− 22 11− 18
G15 ∅ ∅ ∅ ∅
G16 ∅ 10− 18 10− 23 9− 22
G17 ∅ ∅ ∅ ∅
G18 ∅ ∅ ∅ ∅
G19 ∅ ∅ ∅ ∅
G20 1− 23 1− 24 1− 24 1− 24
G21 ∅ ∅ 8− 24 8− 23
G22 ∅ ∅ ∅ ∅
G23 ∅ ∅ ∅ ∅
G24 ∅ ∅ 9− 23 9− 23
G25 ∅ 10− 22 ∅ ∅
G26 ∅ ∅ ∅ ∅
G27 1− 24 1− 24 1− 24 1− 24

Table 4.6: System costs and commitments for each generator in the IEEE-118 test
system (Table 1 of 2)

4.5.3 IEEE-118 Test System

The modified IEEE-118 test system from [117] has 118 buses, 54 generators, 14 syn-

chronous condensers, and 90 loads; for this test system there are no buses with
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UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC
Costs ($) 811, 658 814, 715 843, 591 844, 922

Commitment (h)
G28 1− 23 1− 24 1− 24 1− 24
G29 1− 24 1− 24 1− 24 1− 24
G30 9− 23 8− 23 7− 24 7− 24
G31 ∅ ∅ ∅ ∅
G32 ∅ ∅ ∅ ∅
G33 ∅ ∅ ∅ ∅
G34 8− 24 7− 24 7− 24 7− 24
G35 1− 24 1− 24 1− 24 1− 24
G36 1− 24 1− 24 1− 24 1− 24
G37 8− 24 1− 24 11− 17 1− 24
G38 ∅ ∅ ∅ ∅
G39 1− 24 1− 24 1− 24 1− 24
G40 1− 24 1− 24 1− 24 1− 24
G41 ∅ ∅ ∅ ∅
G42 ∅ ∅ ∅ ∅
G43 1− 24 9− 24 10− 23 1− 24
G44 ∅ ∅ ∅ ∅
G45 1− 24 1− 24 1− 24 1− 24
G46 ∅ ∅ ∅ ∅
G47 ∅ ∅ ∅ ∅
G48 ∅ ∅ ∅ ∅
G49 ∅ ∅ ∅ ∅
G50 ∅ ∅ ∅ 16− 17
G51 10− 22 ∅ 9− 24 1− 24
G52 ∅ ∅ ∅ ∅
G53 8− 24 8− 24 1− 24 1− 24
G54 9− 23 9− 23 9− 20 9− 23

Table 4.7: (Table 4.6 Continued) System costs and commitments for each generator
in the IEEE-118 test system (Table 2 of 2)

multiple thermal units, but a thermal unit may be co-located with a synchronous

condenser.

The system costs and commitment schedules are reported in Tables 4.6 and 4.7.

The UC+ACOPF system cost accounts for an additional 2.6% in network losses;
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the UC+DCOPF with uniform losses using a 2.6% demand scaling results in a 3.1%

cost increase. Network congestion on three transmission lines for bus pairs (77,82),

(82,83), and (30,38) results in a 0.4% cost increase from the UC to the UC+DCOPF

solution. However the UC+DCOPF is AC infeasible, primarily due to over-voltages

at bus 111 which is radially connected to bus 110; the voltage limits of 1 − 1.06p.u.

at bus 111 are tighter nodal voltage bounds than for most of the network. The

UC+DCOPF+RUC results in additional commitments of G50 at bus 110 and G51 at

bus 111 in order to address the over-voltages at bus 111. Also the UC+DCOPF+RUC

solution includes additional commitments that appear in the UC+ACOPF schedule

but not in the UC+DCOPF schedule. The resulting UC+DCOPF+RUC system cost

of $844, 922 is a 3.7% increase in the UC+DCOPF system cost in order to make its

commitment schedule AC feasible. Although the UC+ACOPF solution has a 3.5%

cost increase over the UC+DCOPF, applying the UC+ACOPF is more cost effective

than determining residual commitments to make the UC+DCOPF an AC feasible

solution.

4.5.4 Computational Results

Table 4.8 reports the computational results for the three case studies when as-

suming 10 piecewise linear segments for the production cost function. The per-

formance metrics include solution time as reported by CPLEX 12.6.2, as well as

outer loop (UC+ACOPF MILP) and inner loop (UC+ACOPF SLP) iterations in
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10 piecewise linear segments, relative MIP gap tolerance 0.1%

UC UC+DCOPF UC+ACOPF UC+DCOPF+RUC

MILP MILP MILP SLP MILP SLP

Solution Time (s)

6-Bus 0.13 0.21 0.88(3) 0.07(50) 1.02(1, 1) 0.06(33)

RTS-79 1.86 6.76 88.71(3) 0.75(36) 10.37(1, 2) 0.45(26)

IEEE-118 5.04 21.42 110.17(2) 5.06(46) 57.2(1, 1) 3.71(33)

Cost ($)

6-Bus 101, 270 106, 987 101, 763 102, 523

RTS-79 823, 145 823, 894 895, 281 896, 169

IEEE-118 811, 658 814, 715 843, 591 844, 922

Table 4.8: Summary computational results

parentheses. Note that these metrics are parameter and implementation dependent,

as specified in Table 4.2. The UC+ACOPF is around 5–15 times slower than the

UC+DCOPF problem for the simulations reported. More notably, however, is the

computational performance and system costs for the UC+DCOPF+RUC problem;

the UC+DCOPF+RUC is around 1.5–5 times slower than the UC+DCOPF prob-

lem but obtains AC feasibility through ACOPF optimal residual commitments for

the simulations reported. Therefore, the UC+DCOPF+RUC results in system costs

that are akin to the UC+ACOPF system costs, with a slight upwards deviation no

greater than 0.74%. Since the OA method spends most of the computational time

in the master problem, further improvements to the MILP could lead to significant

computational gains.
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4.6 Discussion

This work proposes a formulation and algorithm to solve the UC with ACOPF con-

straints, which is a nonconvex MINLP. Then an extensive, comparative analysis is

performed to assess the economic and operational impact of more accurate ACOPF

constraint modeling on the UC problem when compared to copperplate and DCOPF

approaches. This analysis is extended to consider losses in the DCOPF approach,

and also to check that the commitment schedule determined by the UC with DCOPF

constraints is AC feasible. When the commitment schedule is AC infeasible, then

residual commitments are determined with the proposed UC+ACOPF method in

order to achieve AC feasibility.

Overall the results indicate a significant disparity in the unit commitment sched-

ules due to the differences in the physical and operational constraints for the copper-

plate, DCOPF, and ACOPF approaches. The differences in the overly approximated

copperplate and DCOPF approaches as compared to the ACOPF approach indicate

a divergence between the market settlements and the stability and reliability re-

quirements for normal grid operations. However the computational cost of the more

accurate ACOPF approach could be considerable, its computation times are 5–15

times slower than the UC with DCOPF constraints for the systems tested. More

promising is the computational speeds for updating the DCOPF approach to include

residual commitments for AC feasibility; this approach is only 1.5–5 times slower
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than the UC+DCOPF problem but has system costs that are similar to the ACOPF

approach. The relative computational speeds for more realistic size examples can be

different than this outcome. More generally, since the OA method spends most of the

computational time in the single iteration of the master problem, further improve-

ments to the MILP could lead to significant computational gains. For example, tighter

convex hull representations in the master problem of the OA method and potentially

decomposing the algorithm for distributed, parallel optimization could improve the

solution times for both the ACOPF and the ACOPF for RUC approaches.

4.7 Supporting Material

4.7.1 Adaptive Step-size Region

At each inner loop iteration h, the adaptive step-size regions V
r(h)
n,t and V

j(h)
n,t are

updated to constrain the difference between the real and imaginary parts of the

nodal voltage with their corresponding Taylor series evaluation points in the following

manner

−V r(h)
n,t ≤ vrn,t − v̂

r(h)
n,t ≤ V

r(h)
n,t (4.33)

−V j(h)
n,t ≤ vjn,t − v̂

j(h)
n,t ≤ V

j(h)
n,t (4.34)

for all n ∈ N , t ∈ T . At the end of each iteration h > 0, this tunable parameter

V
(h)
n,t is modified in order to control the approximation error in the first-order Taylor
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series linearization. This parameter is adapted based on the relative real and reactive

power mismatch error:

φ
P (h)
n,t = max

(
0.001,

⏐⏐P (h)
n,t − Pn,t

⏐⏐/min
(
P

(h)
n,t , Pn,t

))
φ
Q(h)
n,t = max

(
0.001,

⏐⏐Q(h)
n,t −Qn,t

⏐⏐/min
(
Q

(h)
n,t , Qn,t

))

where P
(h)
n,t and Q

(h)
n,t are respectively calculated from the Taylor series approximations

of (3.8) and (3.9) applied directly to (4.8) and (4.9), and then Pn,t and Qn,t are

respectively calculated from the bilinear terms in (4.8) and (4.9) for the solution to

iteration h − 1. Note that if one of the values within the absolute difference term is

within some epsilon of zero, then the denominator should be computed as 1+min (·).

Calculating parameters β
r(h)
n,t = −a logφQ(h)

n,t + b, β
j(h)
n,t = −a logφP (h)

n,t + b, α
r(h)
n,t =

1/β
r(h)
n,t , and α

j(h)
n,t = 1/β

j(h)
n,t , the adaptive step-size regions are specified as:

V
r(h)
n,t ← α

r(h)
n,t

⏐⏐V n

⏐⏐/hβr(h)
n,t

V
j(h)
n,t ← α

j(h)
n,t

⏐⏐V n

⏐⏐/hβj(h)
n,t .

For some intuition on the above approach, the relative reactive power mismatch

error is associated to the approximation of vrn,t because the coupling between Q–Θ is

relatively weak [136] and as vjn,t → 0, then vrn,t converges to the voltage magnitude

(V ); the weak coupling similarly applies to P–V .

This study assumes a = 0.15 and then tunes b = 1 for the six-bus, b = 1.485 for
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the RTS-79, and b = 1.5 for the IEEE-118; for faster decay, the user can increase a,

and as φ
Q(h)
n,t → 1, then β

r(h)
n,t → b; similarly for φ

P (h)
n,t .

4.7.2 Linearized Constraint Set

At each outer loop iteration γ > 0, this approach first updates the evaluation point

to the optimal solution from the inner loop, i.e., x̂γ = x∗ where x∗ is the optimal

solution from the last iteration h in the inner loop. Then the evaluation region V γ is

set as

V γ ← c/eγ/d

where c = 0.1 and d = 1 is tuned for the smaller networks (six-bus and RTS-79) and

c = 1/3 and d = 10 for the larger network (IEEE-118). Then γ is incorporated into

the outer loop

−V γ ≤ vrn,t − v̂
r(γ)
n,t ≤ V γ (4.35)

−V γ ≤ vjn,t − v̂
j(γ)
n,t ≤ V γ (4.36)

for all n ∈ N , t ∈ T . Finally, the linearized constraint set is constructed as the

reduced set of constraints within the region V γ, i.e., excluding constraints that would

never bind. For the initial outer loop iteration, an evaluation region is not defined

for the first order approximation, which enables an unconstrained search for the best
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integer feasible solution in the ACOPF constraint set for the given Taylor series

evaluation points; however, the trade-off results in higher error terms in the first

order approximations, which then must be corrected in subsequent inner and outer

loop iterations.

4.7.3 Six-Bus Data Set

Thermal Unit
Cost Data G1 G2 G3

Fuel Price ($/Mbtu) 1.2469 1.2461 1.2462

Quadratic Cost (Mbtu/MW2h) 0.0004 0.001 0.005

Linear Cost (Mbtu/MWh) 13.5 32.6 17.6

Fixed Cost (Mbtu) 176.9 129.9 137.4

Table 4.9: Thermal unit production cost data

Branch Tap Thermal
Flow Resistance Reactance Transformer Limit
k (n,m) rk xk |τkn| Ik

1 (1, 2) 0.005 0.17 1 200
2 (1, 4) 0.003 0.258 1 100
3 (2, 4) 0.007 0.197 1 100
4 (5, 6) 0.002 0.140 1 100
5 (3, 6) 0 0.018 1 100
6 (2, 3) 0 0.037 1/0.98 10,000
7 (4, 5) 0 0.037 1/0.98 10,000

Table 4.10: Relevant network data; voltage in [0.85,1.15]
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Thermal Unit
Parameter Description G1 G2 G3

C
d

i Shutdown capacity (MW) 55 50 20

C
u

i Startup capacity (MW) 55 50 20

Ku
i,s Single segment startup cost ($) 124.69 249.22 0

T0
d

i Initial time periods offline (hr) 0 0 1

T0
u

i Initial time periods online (hr) 4 1 0

T d
i Min downtime (hr) 4 3 1

T u
i Min uptime (hr) 4 2 1

P 0
i Power generated t = 0 (MW) 160 55 0

P i Max real dispatch (MW) 220 100 20

P i Min real dispatch (MW) 100 10 10

Qi Max reactive dispatch (MVAr) 200 70 50

Q
i

Min reactive dispatch (MVAr) -80 -40 -40

RRd
i Ramp down limit (MW/h) 55 50 20

RRu
i Ramp up limit (MW/h) 55 50 20

s′ Single segment startup lag (hr) 4 3 1

Table 4.11: Thermal unit parameterization
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Real Power Demand Reactive Power Demand
P d
n,t (MW) Qd

n,t (MVAr)
Hour Bus 3 Bus 4 Bus 5 Bus 3 Bus 4 Bus 5
1 35.738 71.476 71.476 10.074 20.148 20.148
2 33.690 67.380 67.380 9.496 18.992 18.992
3 32.368 64.736 64.736 9.124 18.248 18.248
4 31.566 63.132 63.132 8.898 17.796 17.796
5 31.632 63.264 63.264 8.916 17.832 17.832
6 32.738 65.476 65.476 9.228 18.456 18.456
7 35.372 70.744 70.744 9.970 19.940 19.940
8 38.842 77.684 77.684 10.212 20.424 20.424
9 41.934 83.868 83.868 10.742 21.484 21.484
10 44.308 88.616 88.616 11.900 23.800 23.800
11 46.636 93.272 93.272 13.146 26.292 26.292
12 48.164 96.328 96.328 13.576 27.152 27.152
13 49.406 98.812 98.812 13.926 27.852 27.852
14 49.694 99.388 99.388 14.006 28.012 28.012
15 50.766 101.532 101.532 14.310 28.620 28.620
16 52.180 104.360 104.360 14.708 29.416 29.416
17 52.224 104.448 104.448 14.720 29.440 29.440
18 50.336 100.672 100.672 14.188 28.376 28.376
19 50.178 100.356 100.356 14.144 28.288 28.288
20 48.420 96.840 96.840 13.648 27.296 27.296
21 48.410 96.820 96.820 13.646 27.292 27.292
22 46.336 92.672 92.672 13.378 26.756 26.756
23 41.014 82.028 82.028 11.266 22.532 22.532
24 40.138 80.276 80.276 11.246 22.492 22.492

Table 4.12: Demand profile per bus
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III Global Solution Methods
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5 Energy Storage for Transmission System VAr Support:

Trade-offs Between Grid Benefits and Storage Operator

Profit

5.1 Prologue and Motivation

The prior work presented in Chapters 3 and 4 focused on proposing local solu-

tion methods for practical applications of the ACOPF in real-time and day-ahead

operations. The remaining chapters, which constitute Part III of this dissertation,

focus on global solution techniques for solving OPF models and OPF approximations

for optimal storage integration. Although local optima of the OPF have not been

reported in practice [137], global solution techniques can guarantee no duality gap,

which allows more vigorous analysis of the OPF problem as it relates to spot pricing

theory. Chapter 5 investigates optimal storage integration in markets with payments

for both real and reactive power. Then Chapter 6 proposes a global solution technique

to solve DCOPF with losses approximation of the OPF and compares this approach

to the DCOPF and ACOPF for optimal storage integration.

The global solution techniques applied in these studies reformulate nonconvex
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problems as convex relaxations of the original problems. These relaxations are exact

under certain conditions. These properties are discussed later in more detail but first,

in order to motivate the necessity of a global solution method for optimal storage in-

tegration, this prologue presents a simple example where applying a local solution

method results in a non-global local optima. The example demonstrates that solving

the ACOPF with optimal storage integration using a commercial NLP solver may

result in a sub-optimal local solution, whereas applying the semidefinite relaxation

approach originally proposed in [24] guarantees a global optimum.61

A Motivating Example: Non-Global Local Optima

Consider the three-bus AC network shown in Figure 5.1 [84] where energy storage

can be optimally integrated and operated at any bus, and the aggregate system

storage capacity limit is 20 MWh. The storage technology under consideration has

the following technical characteristics:

1. Unlimited power ratings on the charge and discharge dynamics,

2. A roundtrip efficiency of 81%, and

3. Reactive power compensation (dispatch availability up to 1/5 the energy capac-

ity).

The optimization problem chooses where in the network to site the 20 MW of

61Given the rank one condition holds, i.e., xxT = X, which is covered in more detail later in this
chapter.
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Figure 5.1: Three-bus network with conventional generators at buses 1 and 2, a
synchronous condenser at bus 3, and load at all buses.

storage, which can be divided up continuously among more than one bus. The

conventional generators at buses 1 and 2 have unconstrained power generation and

the synchronous condenser at bus 3 is unconstrained in reactive power capacity.

The real and reactive power demands at buses 1 and 2 for hours t = [1, 5] where

p = 110 MW and q = 40 MVAr are P d
1,t = P d

2,t = [0.6p, 0.75p, p, 0.85p, 0.5p] and

Qd
1,t = Qd

2,t = [0.6q, 0.75q, q, 0.85q, 0.5q]; the real and reactive power demands at bus

3 where p = 95 MW and q = 50 MVAr are P d
3,t = [0.6p, 0.75p, p, 0.85p, 0.5p] and

Qd
3,t = [0.6q, 0.75q, q, 0.85q, 0.5q].

Table 5.1 presents results for solving the ACOPF with optimal storage integration
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Time-Period t = 1 t = 2 t = 3 t = 4 t = 5

Bus Storage Level in MWh

opt∗ 1 0.4 0.4 0 0 0

(global) 2 0 0 0 0 0

3 19.6 19.6 0 0 0

Bus Storage Level in MWh

optL 1 20 20 0 0 0

(local) 2 0 0 0 0 0

3 0 0 0 0 0

Bus Charging (+) & Discharging (-) in MW

opt∗ 1 0.5 0 -0.4 0 0

(global) 2 0 0 0 0 0

3 21.7 0 -17.6 0 0

Bus Charging (+) & Discharging (-) in MW

optL 1 22.2 0 -18 0 0

(local) 2 0 0 0 0 0

3 0 0 0 0 0

Table 5.1: Comparing a non-global local optima to a global optimum.

problem62 (ACOPF+S or OPF+S). A local solution was recovered by solving the

ACOPF+S directly as a NLP using Knitro 8.1.1 with the active-set algorithm and

a relative error tolerance of 1.0 × 10−6 for first order optimality satisfaction [138].

The global solution was recovered by applying a semidefinite relaxation and solving

this reformulation using Sedumi 1.21 with a desired accuracy of 1.0 × 10−9 [139];

the solution satisfies the rank-one sufficient condition and is feasible for the original

ACOPF+S (i.e., the solution is exact). The global solution, denoted by opt∗, has

62more formally defined in Section 5.3
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an objective function value of $17, 047 whereas the locally optimal solution, optL,

has a value of $31, 157; both solutions satisfy first order optimality conditions within

Knitro 8.1.1, yet a global optimum has nearly half the cost function value of the

local optima. Furthermore, the local optima is a low voltage solution that has higher

current flows which result in higher losses compared to a global optimum; although

such solutions are common outcomes of the optimization routine, the local optima

may or may not be acceptable operating points in practice [137]. For the local optima,

there is a higher MW dispatch from the more expensive generator at bus 1 than from

the generator at bus 2 due to low voltage limits; therefore, in order to decrease the

generation requirements during the peak period at bus 1, all 20 MW of storage is

placed at that location and then charged to full capacity in the first period. In a

global optimum, most of the storage is optimally integrated at bus 3; since bus 3 has

no native generation to meet its demand, placing storage at this location decreases

the required MW imports from elsewhere on the network. To summarize, the energy

storage integration across the network is different in both solutions.

Although global techniques are much slower than local ones, the application of

global solution techniques eliminates such suboptimal outcomes. Chapter 5 seeks

globally optimal solutions by applying the semidefinite relaxation approach and uses

the resulting problem to examine the trade-offs that arise when distributed energy

storage is used to provide VAr support in addition to traditional grid-scale storage

services. In particular, this work focuses on how the provision of reactive power
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dispatch impacts the storage operator’s marginal profits63 using a novel analytical

approach that relates real and reactive nodal price signals to energy storage dynamics.

Such a study could not be completed with the DCPF-based assumptions that system

operators use in their market software [6]. This work extends the preliminary results

reported in [26].

5.2 Introduction and Background

The benefits of grid-scale storage are often discussed in the contexts of energy ar-

bitrage, reserve power, frequency regulation and other power quality services for re-

newable energy integration; e.g., see [140–144]. One less discussed storage application

is the provision of reactive power support through the power electronics connecting

storage technologies such as batteries to the grid or the generator-motor excitation

of a pumped hydro storage system [145].

Reactive power is critical to the efficient and reliable operation of the electric power

grid. For example, reactive power is used to control voltage levels and ensure grid

stability and power quality [142]. An energy storage system (ESS) refers to an energy

storage technology with power electronics such as a converter or flexible AC trans-

mission system (FACTS) device [146]. Such ESS installations can supply dynamic

reactive power which has distinct advantages over the use of transmission equipment

63The marginal profits are equal to the marginal revenues minus marginal costs and does not
include the entire cost structure (e.g., capital costs, fixed costs, and variable costs that are not
related to incremental unit production are not included) of the market participant.
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such as capacitors and inductors that supply and consumer static reactive power.

This capability enables ESS to quickly change the amount of VAr support indepen-

dent of the voltage level, which can provide faster response to sudden large voltage

surges or drops [147–150]. Furthermore, renewables are displacing synchronous gen-

erators that have historically provided reactive power compensation; there is concern

that this may lead to a reactive power deficiencies. Therefore system operators are

currently assessing whether asynchronous resources should be required to provide re-

active power compensation, similar to synchronous resources.

This study extends the preliminary work in [92] by augmenting the previously

proposed ACOPF+S model to include VAr injection and absorption from ESS units.

A number of other studies have employed ACOPF+S based analysis, see e.g., [25,92,

151–156], and either neglected reactive power support in the formulation [92,151–156]

or excluded its effect in the analysis [25, 92]. However this study extends the OPF-

based approach to investigate the economics of using ESS to provide VAr support in

addition to the more traditional energy and power services. The proposed ACOPF+S

problem is solved using the SDR technique originally presented in [25], which extends

the work in [24]; this convex problem is referred to as the SDR-OPF+S. The solution

of SDR-OPF+S is equivalent to the original ACOPF+S problem when the relaxation

is exact.

The theoretical results of this study leverage the fact that the KKT point for the

SDR-OPF+S problem is a global optimum of the ACOPF+S when the relaxation
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is exact. First this work proves a sufficient condition for preventing simultaneous

charging and discharging of individual ESS units governed by linear storage dynamics

without having to incorporate mixed integer or nonlinear constraints as in [157–159].

Then the Lagrangian dual of the SDR is used to form a storage operator subproblem,

which isolates the primal and dual variables related to storage. This problem defines

the value of storage as a function of its cost and revenue streams from charging, dis-

charging and VAr support. The second theoretical result exploits the properties of

strong duality to prove that maximizing the marginal profits to the storage operator

is equivalent to minimizing system costs in a purely competitive market.

The study further investigates the storage subproblem by examining the role of

the Lagrange multipliers (dual variables) for the real and reactive power balance equa-

tions in the SDR-OPF+S problem; when the relaxation is exact, this provides insight

to a global optimum of the ACOPF+S. In particular, this study examines the role

of the Lagrange multiplier on the reactive power balance constraint, which indicates

the economic value of leading/lagging VAr dispatch. This nodal (or shadow) price

of VAr support is referred to as the Q-LMP due to its mathematical similarity to

the LMP, which is the Lagrange multiplier on the real power balance constraint and

determines the marginal clearing price of energy. Reactive power prices have also

been investigated within a market design context in [160–164].

Case studies using an augmented IEEE-14 transmission system with wind power

illustrate the effect of VAr support from ESS units. Since the SDR is exact in all
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reported cases, the solutions obtained provide insight regarding a global optimum of

the ACOPF+S problem. The case study results first demonstrate that the inclusion

of VAr support can greatly change the optimal allocation of resources in the network

and that the power system operations are more efficient, resulting in market settle-

ments that clear at a lower operating cost. Storage is also more profitable due to

revenues from providing VAr support.

A second case study examines how the compensation mechanism for VAr support

affects the economic value proposition for a storage installation. The results demon-

strate that a market design which does not compensate reactive power dispatch can

actually disincentivize the willingness to provide it as a service. Then the Q-LMP,

which reflects the marginal value of VAr support, is compared to current reactive

power capability rates in NYISO and ISO-NE. The results demonstrate that the dis-

connect between these rates and nodal prices can lead to significant over-supply of

VAr in some areas and scarcity in others. Problems also arise due to the differences in

capability rates between system operators. The shortcomings of the current schemes

mean that storage which dispatches reactive power more frequently than other storage

with higher reactive power capability, for example, may not be compensated accord-

ingly.

The combination of theoretical results and case studies provide insight that can

be used to develop better models of ESS integration and dispatch, improve mar-

ket design, and determine optimal scheduling policies for ESS units. This approach
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provides insight to potential outcomes in purely competitive markets and does not

consider strategic interactions or market power manipulation amongst market par-

ticipants. This purely competitive market situation is also researched as a Bertrand

game where the firm takes the nodal prices as fixed, and intense competition can

result due to locational and temporal price variation caused by operational and other

physical network constraints [165].

The remainder of the chapter is organized as follows. The ACOPF+S formulation

is presented in Section 5.3 followed by a discussion of the SDR-OPF+S in Section 5.4.

The main theoretical results are presented in Sections 5.5 and 5.6 with an illustrative

example in Section 5.7. A case study on compensation mechanisms is presented in

Section 5.8 and final remarks in Section 5.9.

5.3 Problem Formulation

This study extends the ACOPF formulation in rectangular coordinates, as presented

in (2.40) − (2.46) of Chapter 2 by incorporating a linear storage model, renewable

energy availability, and ramp rates on conventional generation as follows.

5.3.1 Storage Model

Here a generic storage model is proposed that can be adapted to specify a particular

storage technology through parameterization. An ESS installation of energy capacity

cn is modeled as a single unit that can be located at each bus n ∈ N . The energy
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storage level sn,t is specified through a linear relationship between the charge rcn,t and

discharge rdn,t dynamics; reactive power rates zn,t are also incorporated by determining

the power converter size as a linear function of the energy capacity of the unit.

The storage level sn,t at each bus n during time interval t ∈ T is specified through

the following linear storage dynamics

sn,t = sn,t−1 + ηcnr
c
n,t −

(
ηdn
)−1

rdn,t, (5.1)

where sn,0 is the initial storage level parameterized by the terminal storage level in

the prior operating cycle. Here, rcn,t and r
d
n,t are the respective real power charge and

discharge rates at each bus n ∈ N for time interval t ∈ T . The parameters ηcn and

ηdn denote the corresponding charge and discharge efficiencies. The real power charge

and discharge rates are respectively bounded as

0 ≤ rcn,t ≤ Rc
n (5.2)

0 ≤ rdn,t ≤ Rd
n. (5.3)

The energy storage level sn,t at each bus n during time interval t ∈ T is bounded

as

Cn ≤ sn,t ≤ cn, (5.4)

where Cn represents a technology dependent depth of discharge in the storage dispatch
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problem.

Depending upon the controls, the active and reactive output of an ESS can be

independent [146]. An ESS unit can also operate in all four quadrants in terms of de-

livering/absorbing controllable real and reactive power. VAr injection and absorption

rates are bounded as

Zn ≤ zn,t ≤ Zn (5.5)

for all n ∈ N , t ∈ T , where zn,t > 0 indicates VAr injection and zn,t < 0 indicates

absorption. The VAr rate bounds are determined by the power converter size as a

linear function of the energy capacity cn, i.e., Zn = αcn and Zn = βcn.

A single operating cycle is assumed in which the terminal storage level in the

current cycle equals the terminal storage level in the prior operating cycle, that is

s̃n,T − sn,T = 0 (5.6)

for all buses n ∈ N , i.e., for a given optimization problem the initial and final storage

levels are the same. This assumption is based on the notion of using a finite length

time interval to approximate naturally occurring cyclic variations in demand and

generation profiles, e.g., diurnal or seasonal cycles.
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The Storage Allocation Problem

The formulation in (5.1)−(5.6) can be modified to solve the storage allocation problem

by setting Cn := 0 in (5.4) and adding the following constraint on the total overall

energy storage allocated throughout the network

∑
n∈N

cn ≤ h. (5.7)

Here h is the total storage budget to be allocated.

Remark 5.1. The generic storage model described by (5.1) − (5.7) can be adapted

to specific storage technologies through parameterization of the model variables, e.g.,

Rd
n, R

c
n, Zn, Zn, η

d
n, η

c
n, α, β, Cn, and cn. The model can also be easily extended to

installations of more than one type of storage technology at a single bus, e.g., using

the approach in [166].

The apparent power rating of an ESS unit can be incorporated through the following

constraint

(rn,t)
2 + (zn,t)

2 ≤ (Sn,t)
2,

where rn,t := rcn,t − rdn,t and Sn,t denotes the apparent power rating of the technology.

However given the the reactive power capability of an ESS unit is largely dependent on

the power electronic technologies, sizing of the power converter, and overload capacity

(i.e., capabilities higher than the specified power rating), a simplified box constraint,
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which is a typical construct when the resource capability curve is unknown, is assumed

in this study.

5.3.2 Power Flow Constraints

The power balance constraint set includes (2.43)− (2.46), along with modifications to

the respective real and reactive nodal power flow balance in (2.41) and (2.42). This

study also incorporates renewable energy availability where the real power injected

to the grid in time t ∈ T from the wind farm i ∈ W is limited by

0 ≤ pwi,t ≤ Cw
i,t (5.8)

where Cw
i,t is the resource availability.

The real and reactive power injections from conventional generators i ∈ G are

respectively bounded as

P i ≤ pgi,t ≤ P i (5.9)

and

Q
i
≤ qgi,t ≤ Qi (5.10)

for all t ∈ T ; note that similar to the storage model, the conventional generators are
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modeled with box constraints. The real power injection for each generator i ∈ G is

also constrained through the following ramp rates

−RRd
i ≤ pgi,t − p

g
i,t−1 ≤ RRu

i (5.11)

in time t ∈ {2, . . . , T}.

The respective real and reactive power flow balance for all buses n ∈ N and time

periods t ∈ T is

vrn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
+vjn,t

∑
n∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
−p+n,t+p−n,t = 0, (5.12)

vjn,t
∑
m∈N

(
Gnmv

r
m,t −Bnmv

j
m,t

)
−vrn,t

∑
m∈N

(
Gnmv

j
m,t +Bnmv

r
m,t

)
−q+n,t+q−n,t = 0, (5.13)

where the injections equal the generation, i.e., p+n,t = rdn,t +
∑

i∈I(n)
(
pgi,t + pwi,t

)
and

q+n,t = zn,t +
∑

i∈I(n)
(
qgi,t + qwi,t

)
, and the withdrawals equal the demand, i.e., p−n,t =

rcn,t + P d
n,t and q

−
n,t = Qd

n,t. The nodal voltage limits are

(V n)
2 ≤

(
vrn,t
)2

+
(
vjn,t
)2 ≤ (V n

)2
(5.14)

for all n ∈ N and on the apparent power transfers are

(
pk(·),t

)2
+
(
qk(·),t

)2 ≤ (Sk

)2
(5.15)
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for all k (·) ∈ F where pk(·),t and qk(·),t are derived in Section 2.6 of Chapter 2.

5.3.3 Optimal Power Flow with Storage

The multi-period ACOPF with storage dynamics, referred to as the ACOPF+S for-

mulation, is defined as:

p := min
v,rc,rd,z,s,pg,qg,pw,c

f g (·) + fw (·) + f s (·) (5.16)

subject to

(5.1)− (5.15), (5.17)

where

f g (·) :=
∑
t∈T

∑
i∈G

Cg,2
i

(
pgi,t
)2

+ Cg,1
i pgi,t (5.18)

is a strictly convex cost function of real power generation,

fw (·) :=
∑
t∈T

∑
i∈W

Cw,1
i pwi,t (5.19)

is a linear cost function of wind power production, and

f s (·) :=
∑
t∈T

∑
n∈N

Cs,1
n rdn,t (5.20)
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is a linear cost function of the storage discharge, which represents variable operation

and maintenance (O&M) costs.

Instead of incorporating a marginal cost for charging dynamics, the storage opera-

tor implicitly pays the LMP when charging. This LMP is the sign indefinite Lagrange

multiplier λn,t corresponding to the real power balance in (5.12) and accounts for the

marginal unit cost, congestion cost, and cost due to real power losses for each location

n ∈ N and time period t ∈ T . The value of the LMP indicates the rate at which

the optimal value of the objective function changes when increasing or decreasing the

corresponding constraint bound.64

Remark 5.2. Alternatively, a capital cost for storage could be assumed, which would

be levelized appropriately given the time horizon of the dispatch, e.g., see [166]. As a

result the total capital and operating cost could be minimized.

5.4 Solution Technique

The ACOPF+S in (5.16) and (5.17) is solved by first applying a SDR in order

to obtain the SDR-OPF+S which is a convex problem. In this section, the SDR-

OPF+S and its corresponding Lagrangian dual are formulated in the manner pro-

posed in [24, 25]. The convex relaxation can then be solved as a SDP. For the opti-

64assuming no degeneracy
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mal solution to the SDR-OPF+S, Slater’s condition65 is satisfied and strong duality

holds [25]. Therefore the optimal solution of the Lagrangian dual of the SDR-OPF+S

is always equivalent to the optimal solution of the SDR-OPF+S problem at the KKT

point. When the rank one condition holds, then the SDR-OPF+S, the SDR-OPF+S

dual, and the ACOPF+S are all equivalent. Therefore the SDR formulation can be

exploited to derive properties that hold for a global optimum of the ACOPF+S.

5.4.1 Semidefinite Relaxation

The ACOPF+S formulation in (5.16) and (5.17) is solved by first applying a SDR to

obtain a convex problem. In particular, the proposed approach defines Wt := ωtω
T
t ∈

R2|N |×2|N | for all t ∈ T where ωt =
[
vr1,t, ..., v

r
N,t, v

j
1,t, ..., v

j
N,t

]T
.

65If the optimization problem is convex, i.e., of the form

min f0(x)

s.t. fi(x) ≤ 0, i = 1, ...,m

Ax = b,

with variable x ∈ Rn and f0, ..., fm convex, then under certain constraint qualifications (such as
Slater’s condition) beyond convexity, strong duality holds. Slater’s condition states that there exists
a x ∈ relint D, i.e., D has a nonempty interior, such that

fi(x) < 0, i = 1, ...,m,

Ax = b.

For this problem, relint D = Rn and such a point x ∈ relint D is called strictly feasible, since the
inequality constraints hold with strict inequalities. The above condition can be weakened if some
of the inequality constraint functions fi are affine. Given the first k constraint functions are affine,
strong duality holds if there exists a x ∈ relint D with

fi(x) ≤ 0, i = 1, ..., k,

fi(x) < 0, i = k + 1, ...,m,

Ax = b.

Therefore, affine inequalities do not need to hold with strict inequality. Slater’s condition in short
states that if the optimization problem is strictly feasible (and convex), then strong duality holds [78].
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Here the semidefinite convex relaxation for the ACOPF+S is formulated as the

following primal optimization problem. Define Y n := ene
T
nY for each bus n ∈ N and

Y
ℓ

k(n,m) := |τkn|2 (yk + yskn) ene
T
n − τ ∗knτkm (yk) ene

T
m for each line flow k (·) ∈ F , given

the standard basis vector en ∈ RN , and the coefficient matrix Mn := ene
T
n

⨁
ene

T
n .

Then Φn := h
(
Y n

)
is defined for h : C|N |×|N | → R2|N |×2|N | and Φℓ

k(·) := h
(
Y

ℓ

k(·)

)
is defined for h : C|K|×|N | → R2|N |×2|N | where

h (Ω) :=
1

2

⎡⎢⎢⎣ Re
{
Ω + ΩT

}
Im
{
Ω− ΩT

}
Im
{
Ω− ΩT

}
Re
{
Ω + ΩT

}
⎤⎥⎥⎦

and Re {·} and Im {·} denote the real and imaginary parts, respectively. Similarly

this study defines Ψn := h̃
(
Y n

)
for h̃ : C|N |×|N | → R2|N |×2|N | and Ψℓ

k(·) := h̃
(
Y

ℓ

k(·)

)
for h̃ : C|K|×|N | → R2|N |×2|N | where

h̃ (Ω) := −1

2

⎡⎢⎢⎣ Im
{
Ω + ΩT

}
Re
{
ΩT − Ω

}
Re
{
ΩT − Ω

}
Im
{
Ω + ΩT

}
⎤⎥⎥⎦ .

The real and reactive power injections for each bus n ∈ N can be expressed as

tr {ΦnWt} and tr {ΨnWt} where tr {·} is the trace operator;66 similarly, the real and

reactive power flows k (·) ∈ F can be expressed as tr
{
Φℓ

k(·)Wt

}
and tr

{
Ψℓ

k(·)Wt

}
,

respectively.

66The trace of a square n× n matrix X, denoted by trX, is the sum of its diagonal elements, i.e.,
trX =

∑n
i=1 Xii [167].
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The SDR-OPF+S is formulated as follows:

p∗ := min
W,αg ,αw,αs,rc,rd,z,s,pg,qg,pw,c

∑
t∈T

(∑
i∈G

αg
i,t +

∑
i∈W

Cw,1
i pwi,t +

∑
n∈N

Cs,1
n rdn,t

)
(5.21)

subject to

tr {ΦnWt} = rdn,t − rcn,t +
∑

i∈I(n)

(
pgi,t + pwi,t

)
− P d

n,t ∀n ∈ N , t ∈ T (5.22a)

tr {ΨnWt} = zn,t +
∑

i∈I(n)

(
qgi,t + qwi,t

)
−Qd

n,t ∀n ∈ N , t ∈ T (5.22b)

P i ≤ pgi,t ≤ P i ∀i ∈ G, t ∈ T (5.22c)

−RRd
i ≤ pgi,t − p

g
i,t−1 ≤ RRu

i ∀i ∈ G, t ∈ T (5.22d)

Q
i
≤ qgi,t ≤ Qi ∀i ∈ G, t ∈ T (5.22e)

0 ≤ pwi,t ≤ Cw
i,t ∀i ∈ W , t ∈ T (5.22f)

sn,t = sn,t−1 + ηcnr
c
n,t −

(
ηdn
)−1

rdn,t ∀n ∈ N , t ∈ T (5.22g)

s̃n,T − sn,T = 0 ∀n ∈ N , t ∈ T (5.22h)

0 ≤ rcn,t ≤ Rc
n ∀n ∈ N , t ∈ T (5.22i)

0 ≤ rdn,t ≤ Rd
n ∀n ∈ N , t ∈ T (5.22j)

Cn ≤ sn,t ≤ cn ∀n ∈ N , t ∈ T (5.22k)∑
n∈N

cn ≤ h ∀n ∈ N , t ∈ T (5.22l)

Zn ≤ zn,t ≤ Zn ∀n ∈ N , t ∈ T (5.22m)
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(V n)
2 ≤ tr {MnWt} ≤

(
V n

)2 ∀n ∈ N , t ∈ T (5.22n)⎡⎢⎢⎣ Cg,1
i pgi,t − α

g
i,t

√
Cg,2

i pgi,t√
Cg,2

i pgi,t −1

⎤⎥⎥⎦ ⪯ 0 ∀i ∈ G, t ∈ T (5.22o)

⎡⎢⎢⎢⎢⎢⎢⎣
−
(
Sk

)2
tr
{
Φℓ

k(·)Wt

}
tr
{
Ψℓ

k(·)Wt

}
tr
{
Φℓ

k(·)Wt

}
−1 0

tr
{
Ψℓ

k(·)Wt

}
0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ ⪯ 0 ∀k (·) ∈ F , t ∈ T (5.22p)

Wt ⪰ 0 ∀t ∈ T , (5.22q)

where the nonconvex rank one constraint (i.e., rank (Wt) = 1,∀t ∈ T ) is omitted.

Note that the above relaxation has a linear cost (5.21), linear equality and inequal-

ity constraints in equations (5.22a) − (5.22n), and linear matrix inequality67 (LMI)

constraints in (5.22o) − (5.22q) where the LMIs are obtained from the Schur com-

plements68 of (5.22o) and (5.22p). The matrices in (5.22o) and (5.22p) are negative

67A linear matrix inequality has the form

F (x) := F0 +

m∑
i=1

xiFi ≻ 0,

where x ∈ Rm is the variable and the symmetric matrices Fi = FT
i ∈ Rn×n, i = 0, ...,m are given.

The inequality symbol “≻” means that F (x) is positive definite (i.e., uTF (x)u > 0 for all nonzero
u ∈ Rn). Furthermore, a nonstrict LMI has the form F (x) ⪰ 0 (i.e., uTF (x)u ≥ 0 for all nonzero
u ∈ Rn) [168].

68 Let X be a symmetric matrix partitioned into blocks

X =

[
A B
BT C

]
,

where both A,C are symmetric and square. Assume that C is positive definite. Then the following
properties are equivalent:

1. X is positive semidefinite (PSD).
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semidefinite69 (NSD) whereas the matrix in (5.22q) is positive semidefinite70 (PSD).

Furthermore, note that a limit on the apparent power rating for an ESS unit of the

form

(rn,t)
2 + (zn,t)

2 ≤ (Sn,t)
2,

is equivalently modeled as the following LMI:

⎡⎢⎢⎢⎢⎢⎢⎣
−
(
Sn,t

)2
rn,t zn,t

rn,t −1 0

zn,t 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ ⪯ 0, (5.23)

for all n ∈ N , t ∈ T , where rn,t := rcn,t − rdn,t and Sn,t.

Note that the SDR-OPF+S is equivalent to the ACOPF+S in (5.16) and (5.17)

when the rank of Wt equals one for all t ∈ T , i.e., the rank one solution is equivalent

to a global optimum of the ACOPF+S problem. There is ongoing work describing

conditions under which this rank condition is guaranteed to be satisfied, e.g., [79,169,

170]. It is verified that the rank one condition is satisfied for the examples presented

in this work.

2. The Schur complement of C in X, defined as the matrix A − BC−1BT (which is equivalent
to AC −BTB), is PSD [167].

69The inequality symbol denotes a componentwise ‘less than or equal to’ inequality and the no-
tation X ⪯ 0 for X ∈ Rn×n means that X is a negative semidefinite (i.e., uTXu ≤ 0 for all nonzero
u ∈ Rn) [78,167].

70The inequality symbol denotes a componentwise ‘greater than or equal to’ inequality and the
notation X ⪰ 0 for X ∈ Rn×n means that X is positive semidefinite (i.e., uTXu ≥ 0 for all nonzero
u ∈ Rn) [78,167].
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5.4.2 Lagrangian Dual Function

The Lagrangian dual function Λ (·) for the SDR-OPF+S is

Λ (·) =
∑
t∈T

[∑
i∈G

(
Cg,1

i,t p
g
i,t + 2

√
Cg,2

i pgi,t
[
µg
i,t

]
1
−
[
µg
i,t

]
2

)
+
∑
i∈W

(
Cw,1

i,t p
w
i,t

)
+
∑
n∈N

(
Cs,1

n,tr
d
n,t

)]
+
∑
t∈T

∑
n∈N

(
ϑn,t

[
(V n)

2 − tr {MnWt}
]
+ ϑn,t

[
tr {MnWt} −

(
V n

)2]
+ γn,t

[
sn,t − sn,t−1 − ηcnrcn,t +

(
ηdn
)−1

rdn,t

]
− ρ

n,t
rcn,t + ρn,t

[
rcn,t −Rc

n

]
− σn,tr

d
n,t

+ σn,t

[
rdn,t −Rd

n

]
+ β

n,t
[Cn − sn,t] + βn,t [sn,t − cn] + ψ

n,t
[Zn − zn,t]

+ ψn,t

[
zn,t − Zn

]
+ λn,t

[ ∑
i∈I(n)

(
pgi,t + pwi,t

)
+ rdn,t − rcn,t − tr {ΦnWt} − P d

n,t

]
(5.24)

+ φn,t

[ ∑
i∈I(n)

(
qgi,t + qwi,t

)
+ zn,t − tr {ΨnWt} −Qd

n,t

])
+
∑
t∈T

∑
i∈W

(
αi,t

[
pwi,t − Cw

i,t

]
− αi,tp

w
i,t

)
+
∑
t∈T

∑
i∈G

(
λi,t
[
P i − p

g
i,t

]
+ λi,t

[
pgi,t − P i

]
+ φ

i,t

[
Q

i
− qgi,t

]
+ φi,t

[
qgi,t −Qi

] )
+

∑
t∈T ∩{t>1}

∑
i∈G

(
δi,t
[
−RRd

i − p
g
i,t + pgi,t−1

]
+ δi,t

[
pgi,t − p

g
i,t−1 −RRu

i

] )
+
∑
t∈T

∑
k(·)∈F

(
2
[
κk(·),t

]
2
tr
{
Φℓ

k(·)Wt

}
+ 2

[
κk(·),t

]
3
tr
{
Ψℓ

k(·)Wt

}
−
[
κk(·),t

]
1
S
2

k −
[
κk(·),t

]
4
−
[
κk(·),t

]
6

)
+ ϕ

[∑
n∈N

cn − h

]
+
∑
n∈N

κn [sn,T − s̃n,T ] ,
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where tr {·} is the trace operator and the matrices

µg
i,t :=

⎡⎢⎢⎣ 1
[
µg
i,t

]
1[

µg
i,t

]
1

[
µg
i,t

]
2

⎤⎥⎥⎦ ⪰ 0, i ∈ G, t ∈ T , (5.25a)

κk(·),t :=

⎡⎢⎢⎢⎢⎢⎢⎣
[
κk(·),t

]
1

[
κk(·),t

]
2

[
κk(·),t

]
3[

κk(·),t
]
2

[
κk(·),t

]
4

[
κk(·),t

]
5[

κk(·),t
]
3

[
κk(·),t

]
5

[
κk(·),t

]
6

⎤⎥⎥⎥⎥⎥⎥⎦ ⪰ 0, k (·) ∈ F , t ∈ T , (5.25b)

are the Lagrange multiplier associated with the LMIs in (5.22o) and (5.22p), respec-

tively. The Lagrange multipliers γn,t, λn,t, φn,t and κn are sign indefinite, and the re-

maining Lagrange multipliers ϑn,t, ϑn,t, ρn,t, ρn,t, σn,t, σn,t, βn,t
, βn,t, ψn,t

, ψn,t, αi,t, αi,t,

λi,t, λi,t, φi,t
, φi,t, δi,t, δi,t and ϕ are nonnegative.

The corresponding Lagrange dual problem to the SDR-OPF+S is

d∗ := max
Ω

min
Ω

Λ (·) , (5.26)

which is referred to as the SDR-OPF+S dual for the dual variable set µg, κ, γ, λ,

φ, κ, ϑ, ϑ, ρ, ρ, σ, σ, β, β, ψ, ψ, α, α, λ, λ, φ, φ, δ, δ, ϕ ∈ Ω and the primal

variable set W, αg, αw, αs, rc, rd, z, s, pg, qg, pw, c ∈ Ω.
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5.4.3 Strong Duality

The SDR approach results in a convex reformulation of the ACOPF+S. Therefore,

both the SDR-OPF+S and its dual are convex problems that represent the same

optimization problem; whereas the SDR-OPF+S is a cost minimization problem, its

dual is a resource maximization problem. At the optimum of either the SDR-OPF+S

or its dual, the equality

d∗ = p∗ (5.27)

holds, i.e., the optimal duality gap is zero. In conclusion, the marginal values (i.e.,

dual variables) support the hyperplane (i.e., primal variables) of the SDR-OPF+S

optimal solution; furthermore, when the relaxation is exact then a global optimum

to the ACOPF+S has been recovered and strong duality holds.

5.5 Unimodal Storage Dynamics

The properties of the Lagrangian dual of the SDR-OPF+S problem are used to pro-

vide the first theoretical result, which proves a sufficient condition for unimodal stor-

age dynamics. Unimodal storage dynamics is defined as the ESS in one of three

modes:

1. Charging,
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2. Discharging, or

3. Neither charging nor discharging.

In current market design, ESS technologies that can simultaneously charge and dis-

charge (or cycle instantaneously within the given time period) would be paid to

dissipate excess energy when LMPs are negative. Negative LMPs can occur in the

real-time markets due to an over-supply on the network,71 binding line limits, or more

typically because of negative bid-in costs [171].

However the ability to simultaneously charge and discharge (i.e., multimodal op-

erations) is largely dependent on the ESS configuration and storage technology; for

example, a single battery unit is not capable of multimodal operations but certain

configurations (e.g., pumped hydro systems with a separate pump and compressor)

or storage technologies (e.g., vanadium redox and redox flow batteries) would be able

to provide this service. Furthermore, multimodal operations is not as valuable as

unimodal operations to the system operator nor the storage operator when LMPs

are positive; in fact, such multimodal behavior is optimal for storage with roundtrip

inefficiencies when LMPs are negative. A negative LMP suggests that an ESS unit

would be paid to charge and then pay to discharge, where the payment to discharge

is less due to the dissipated energy from the storage unit’s roundtrip inefficiencies, as

the following example demonstrates.

71This is for an equality constraint on the real power balancing, which is different than enforcing
the ability to over-satisfy via an inequality on the real power balancing, as is discussed in further
detail later in this section.
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Unimodal Operations

Time-Period (h) t = 1 t = 2 t = 3 Total Profit ($)

Storage Level (MWh) 1 1.5 0

Charge (MW withdrawal) −1.11 −0.55 0

Discharge (MW injection) 0 0 1.35

Positive LMP Scenario

LMP ($/MWh) λ > 0 λ > 0 2λ > 0

Profit ($) −1.11λ −0.55λ 2.70λ = 1.04λ

Negative LMP Scenario

LMP ($/MWh) λ > 0 λ < 0 2λ > 0

Profit ($) −1.11λ 0.55λ 2.70λ = 2.14λ

Multimodal Operations

Time-Period (h) t = 1 t = 2 t = 3 Total Profit ($)

Storage Level (MWh) 1 1.5 0

Charge (MW withdrawal) −1.11 −1.66 0

Discharge (MW injection) 0 0.9 1.35

Positive LMP Scenario

LMP ($/MWh) λ > 0 λ > 0 2λ > 0

Profit ($) −1.11λ −0.76λ 2.70λ = 0.83λ

Negative LMP Scenario

LMP ($/MWh) λ > 0 λ < 0 2λ > 0

Profit ($) −1.11λ 0.76λ 2.70λ = 2.35λ

Table 5.2: The storage level, charging, and discharging operations along with the
accrued marginal profits during unimodal operations and multimodal operations when
negative or positive LMPs are present.

Example 5.1. Assume an operating horizon of T = {1, 2, 3} with off-peak periods 1

and 2 denoted by a lower LMP (i.e., λ) and peak period 3 denoted by a higher LMP

(i.e., 2λ). Consider an ESS unit with 1.5MWh capacity, roundtrip efficiency of 81%

(i.e., ηc = ηd = 0.9), and no discharge costs where the storage level is specified to be
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1 MWh in period 1 (i.e., partially charged), 1.5 MWh in period 2 (i.e., completely

charged), and 0 MWh in period 3 (i.e., completely discharged). Table 5.2 reports the

results for unimodal and multimodal operations when positive or negative LMPs are

present. Unimodal behavior is more profitable than multimodal behavior when positive

LMPs occur since the storage operator must pay to charge and is paid to discharge;

however, multimodal behavior is more profitable to the storage operator than unimodal

behavior when negative LMPs occur.

The linear storage dynamics in (5.1) and constraints in (5.2) − (5.7) do not ex-

plicitly prevent multimodal operations of the storage unit at bus n ∈ N in time

interval t ∈ T . In particular, there is no constraint preventing both rcn,t and rdn,t

from being positive for the same n and t. In a number of formulations, this be-

havior is prevented through the use of a mixed integer or nonlinear approach, e.g.,

see [157–159]. Other studies assume a perfect roundtrip efficiency (i.e., ηcn = ηdn = 1)

where multimodal operations result in a zero net injection to the network, i.e. no

effect [25,154,172,173]. Yet a number of OPF-based storage integration studies allow

unimodal storage dynamics but do not address whether or not this is a desirable

behavior [151,152,166,174].

The following theorem provides a condition that ensures rcn,tr
d
n,t = 0 for the storage

model in (5.1) − (5.7), i.e., satisfying this condition obviates the need for integer

variables or nonlinear constraints in ensuring unimodal storage dynamics at each

bus. Therefore the following theorem addresses a shortcoming in the current storage
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modeling literature.

Theorem 5.1. Consider an ESS unit at bus n ∈ N with capacity cn > 0 and positive

cost coefficient Cs,1
n > 0 at the KKT point of the SDR-OPF+S. If the Lagrangian mul-

tiplier λn,t associated with the real power balance (5.12) at bus n ∈ N is nonnegative,

i.e., λn,t ≥ 0 for all time intervals t ∈ T , then rcn,trdn,t = 0 for all t ∈ T .

Proof. At the KKT point for the SDR-OPF+S dual in (5.27), the storage variables cn,

sn,t, r
c
n,t, r

d
n,t and zn,t provide a feasible solution for every bus n ∈ N . By construction,

a rank one solution to the SDR-OPF+S problem satisfies the constraints (5.1)− (5.7)

and (5.12), as well as the associated complementary slackness conditions:

γn,t

[
sn,t − sn,t−1 − ηcnrcn,t +

(
ηdn
)−1

rdn,t

]
= 0, (5.28)

ρ
n,t
rcn,t = 0, (5.29)

ρn,t
[
rcn,t −Rc

n

]
= 0, (5.30)

σn,tr
d
n,t = 0, (5.31)

σn

[
rdn,t −Rd

n

]
= 0, (5.32)

β
n,t

[Cn − sn,t] = 0, (5.33)

βn,t [sn,t − cn] = 0, (5.34)

κn [s̃n,T − sn,T ] = 0, (5.35)

λn,t
[ ∑
i∈I(n)

(
pgi,t + pwi,t

)
+ rdn,t − rcn,t − pn,t − P d

n,t

]
= 0, (5.36)
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φn,t

[ ∑
i∈I(n)

(
qgi,t + qwi,t

)
+ zn,t − qn,t −Qd

n,t

]
= 0, (5.37)

ϕ

[∑
n∈N

cn − h

]
= 0, (5.38)

for all t ∈ T in (5.28) − (5.37), where pn,t and qn,t are determined by the affine

functions

pn,t = tr {ΦnWt} , (5.39)

and

qn,t = tr {ΨnWt} (5.40)

respectively, of the SDR-OPF+S. Additionally, a rank one solution to the SDR-

OPF+S problem satisfies the zero gradient conditions as follows:

∂Λ (·) /∂cn := ϕ− βn,t = 0, (5.41)

∂Λ (·) /∂sn,t := γn,t − γn,t−1 + βn,t − βn,t
+ ⟨κn|t = T ⟩ = 0, (5.42)

∂Λ (·) /∂rcn,t := ρn,t − ρn,t − λn,t − η
c
nγn,t = 0, (5.43)

∂Λ (·) /∂rdn,t := σn,t − σn,t + λn,t +
(
ηdn
)−1

γn,t + Cs,1
n = 0, (5.44)

∂Λ (·) /∂zn,t := ψn,t − ψn,t
+ φn,t = 0, (5.45)
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for all t ∈ T . The dual variables ϕ, λn,t,κn, and γn,t are sign indefinite. Also by dual

feasibility β
n,t
, βn,t, ρn,t, ρn,t, σn,t, and σn,t are nonnegative.

From the zero gradient conditions, when λn,t ≥ 0 the ESS dynamics at bus n are

given by

− Cs,1
n + ρ

n,t
− ρn,t + σn,t − σn,t +

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, (5.46)

where Cs,1
n is a positive coefficient. Finally note that for any storage technology with

efficiencies ηcn, η
d
n ∈ (0, 1], then

([
ηcnη

d
n − 1

]/
ηdn

)
≤ 0. Regardless of the values for

ρ
n,t
, ρn,t, σn,t, and σn,t,

− Cs,1
n +

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≤ 0 (5.47)

when γn,t ≤ 0 or Cs,1
n ≥

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t.

However the following properties for any value of γn,t at the KKT point ensure

that if λn,t ≥ 0, then ρn,t and σn,t are never simultaneously positive, which implies

that rcn,tr
d
n,t = 0 implicitly holds for every time interval t ∈ T :

1. If γn,t ≤ max
{
0, ηdnC

s,1
n

/[
ηcnη

d
n − 1

]}
from the inequality in (5.47), then one of

the following outcomes must hold by condition (5.46):

(a) For −Cs,1
n + ρ

n,t
+
([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions

hold: ρ
n,t

> 0, ρn,t = 0, σn,t = 0, and σn,t = 0. Therefore, rcn,t = 0 and
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0 < rdn,t < Rd
n (i.e., the storage is partially discharging).

(b) For −Cs,1
n +ρ

n,t
−σn,t+

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions

hold: ρ
n,t

> 0, ρn,t = 0, σn,t = 0, and σn,t > 0. Therefore, rcn,t = 0 and

rdn,t = Rd
n (i.e., the storage is fully discharging).

(c) For −Cs,1
n +σn,t+

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions hold:

ρ
n,t

= 0, ρn,t = 0, σn,t > 0, and σn,t = 0. Therefore 0 < rcn,t < RC
n and

rdn,t = 0 (i.e., the storage is partially charging).

(d) For −Cs,1
n −ρn,t+σn,t+

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions

hold: ρ
n,t

= 0, ρn,t > 0, σn,t > 0, and σn,t = 0. Therefore, rcn,t = Rc
n and

rdn,t = 0 (i.e., the storage is fully charging).

(e) For −Cs,1
n +ρ

n,t
+σn,t+

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions

hold: ρ
n,t

> 0, ρn,t = 0, σn,t > 0 and σn,t = 0. Therefore rcn,t = 0 and

rdn,t = 0 (i.e., the storage is idle).

Note that for γn,t ≤ max
{
0, ηdnC

s,1
n

/[
ηcnη

d
n − 1

]}
the following cases, which

enable multimodal operations, violate condition (5.46) and are mathematically

invalid outcomes:

(a) For −Cs,1
n −ρn,t−σn,t+

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions

hold: ρ
n,t

= 0, ρn,t > 0, σn,t = 0, and σn,t > 0. Therefore rcn,t = Rc
n and

rdn,t = Rd
n (i.e., the storage is fully charging and fully discharging).

(b) For −Cs,1
n +

([
ηcnη

d
n − 1

]/
ηdn

)
γn,t ≥ 0, the following conditions hold:
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ρ
n,t

= 0, ρn,t = 0, σn,t = 0, and σn,t = 0. Therefore 0 < rcn,t < Rc
n

and 0 < rdn,t < Rd
n (i.e., the storage is partially charging and partially

discharging).

2. If γn,t > max
{
0, ηdnC

s,1
n

/[
ηcnη

d
n − 1

]}
, then γn,t > 0 and the following condi-

tions hold from (5.43) and (5.44):

− λn,t + ρn,t − ρn,t > 0, (5.48)

− λn,t − Cs,1
n + σn,t − σn,t > 0, (5.49)

where

(λn,t ≥ 0) ∧
(
−λn,t + ρn,t − ρn,t > 0

)
=⇒ ρn,t − ρn,t > λn,t ≥ 0

and

(
Cs,1

n > 0
)
∧ (λn,t ≥ 0) ∧

(
−λn,t − Cs,1

n + σn,t − σn,t > 0
)

=⇒ σn,t − σn,t > λn,t + Cs,1
n > 0.

As a result, if γn,t > 0, then ρ
n,t

= 0, σn,t > 0, and σn,t = 0. Therefore rdn,t = 0

(i.e., the storage is not discharging) implies that the storage is in unimodal

operations (i.e., the storage is charging only) or idle.
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Theorem 5.1 provides a sufficient condition for unimodal storage dynamics when

λn,t ≥ 0 given Cs,1
n > 0. The following Corollary is an equivalent sufficient condition

which does not require λn,t ≥ 0 a priori to solving, nor does it require that Cs,1
n >

0, even though the operational costs for storage are typically positive in practice.

Instead the real power balance equality (5.22a) is relaxed to an inequality which

enables an over-satisfaction of loads;72 this technique is commonly employed to enforce

desirable solution properties in OPF problems (see e.g., [24,175,176]) such as enforcing

nonnegative LMPs, which is proven in the following corollary.

Corollary 5.2. The nonnegative LMP condition, i.e., λn,t ≥ 0, holds for all n ∈

N , t ∈ T if and only if there can be an over-satisfaction of load, i.e., pn,t+P
d
n,t+r

c
n,t ≤∑

i∈I(n)
(
pgi,t + pwi,t

)
+ rdn,t.

Proof. The proof (⇐=) The real power balance equality (5.22a) can be equivalently

formulated as the following two inequalities

pn,t + P d
n,t + rcn,t ≤

∑
i∈I(n)

(
pgi,t + pwi,t

)
+ rdn,t, λ+n,t, (5.50a)

pn,t + P d
n,t + rcn,t ≥

∑
i∈I(n)

(
pgi,t + pwi,t

)
+ rdn,t, λ−n,t, (5.50b)

72Over-satisfaction is where the nodal generation is allowed to be equal to or greater than the
nodal demand for a given bus.
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for all t ∈ T , n ∈ N where for the corresponding duals λ+n,t, λ
−
n,t ≥ 0, the condition

λn,t := λ+n,t − λ−n,t ≥ 0 (5.51)

holds. This implies that if λ+n,t ≥ λ−n,t, then pn,t+P
d
n,t+r

c
n,t ≤

∑
i∈I(n)

(
pgi,t + pwi,t

)
+rdn,t.

(=⇒) Assume the real power balance equality (5.22a) is replaced by

pn,t + P d
n,t + rcn,t ≤

∑
i∈I(n)

(
pgi,t + pwi,t

)
+ rdn,t, (5.52)

and suppose pn,t, r
c
n,t, p

g
i,t, p

w
i,t, and r

d
n,t for all t ∈ T , n ∈ N is a feasible solution to this

modified SDR-OPF+S. By dual feasibility, the modified SDR-OPF+S dual gives a

nontrivial lower bound (i.e., strong duality is obtained) on the modified SDR-OPF+S

only when (5.52) is binding, which implies λn,t ≥ 0.

The intuition for these results on unimodal storage dynamics is that for a rank

one solution to the SDR-OPF+S, the above condition holds at a global optimum of

the ACOPF+S.

5.6 Storage Operator Subproblem

This section formulates a storage operator subproblem that is derived from the SDR-

OPF+S and its corresponding dual. It is then shown that the marginal profit maxi-

mization of the storage operator subproblem corresponds to optimizing storage allo-
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cation and dispatch in a global optimum to the ACOPF+S. In a perfectly competitive

market as modeled in this study, the profit maximizing behavior of the storage oper-

ator is dual to the cost minimization of the system operator.

5.6.1 Subproblem Formulation

An ESS unit differs from a conventional generator in that its available capacity de-

pends on the energy storage level, which is determined by charging and discharging

operations in previous time intervals. Therefore its marginal cost is dynamic and

includes the discharge cost plus a payment originating from the nodal price signal,

i.e., the LMP, for that location and time period.

The dependence of the ESS units on the nodal prices can be exploited to form

a storage subproblem that isolates the interactions among the storage variables and

the dual variables for the real and reactive power balance constraints in (5.22a) and

(5.22b), respectively λn,t and φn,t. Analogous to referring to λn,t as the LMP, the φn,t

is referred to as the Q-LMP for each n ∈ N , t ∈ T as it mathematically accounts for

the nodal price of VAr support.

The corresponding storage subproblem is given by

gs (λ,φ) := min
rc,rd,z,s,c

Λs (·) (5.53)

subject to

(5.1)− (5.5), (5.54)
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where

Λs (·) = f s (·) +
∑
t∈T

∑
n∈N

{
λn,t
[
rcn,t − rdn,t

]
− φn,tzn,t

}
.

The storage operator subproblem is optimal for a rank one solution to the SDR-

OPF+S for either a single storage operator or multiple storage operator subproblems

(e.g., a storage operator per technology or per bus) due to strong duality. The KKT

conditions ensure that the optimal solution to the subproblem is also optimal to the

SDR-OPF+S and a global optimum of the ACOPF+S when the SDR-OPF+S fulfills

the rank one condition.

5.6.2 Profit Maximizing Storage Allocation

Now the storage subproblem is applied to connect the storage operator’s marginal

profit maximization to the optimal allocation and dispatch of ESS units.

Theorem 5.3. For an arbitrary operating cycle T := {1, . . . , T}, the energy storage

capacity cn receives the most incremental value at the bus n where the marginal profits

of the storage operator are maximized, i.e.,

max
n∈N

(
max
λ,φ

πs,∗
n

)
(5.55)

for πs,∗
n = πsP ,∗

n + πsQ,∗
n , (5.56)
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πsP ,∗
n = −f s,∗

n (·) +
∑
t∈T

λ∗n,t

[
rd,∗n,t − r

c,∗
n,t

]
, (5.57)

and πsQ,∗
n =

∑
t∈T

φ∗
n,t

[
z∗n,t
]
. (5.58)

Proof. Given the KKT point of the SDR-OPF+S dual in (5.27), the corresponding

optimal solution to the storage subproblem in (5.53) and (5.54) is

max
λ,φ

gs (λ,φ) , (5.59)

where gs (λ,φ) is equivalent to gs,∗ (λ,φ) and

gs,∗ (λ,φ) := max
rc,rd,z,s,c

∑
n∈N

πs
n. (5.60)

Therefore the greatest marginal profits are attained at the bus where πs,∗
n is max-

imized. This theorem leads to an important observation about the relationship be-

tween maximizing storage operator profits and minimal operational costs (as defined

by a global optimal solution of the ACOPF+S problem); these problems have a nat-

ural duality in a purely competitive market as summarized below.

Corollary 5.4. Given the KKT point of the SDR-OPF+S, the marginal profit to the

storage at bus n must be nonnegative, i.e., πs
n ≥ 0, whenever the storage capacity is
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positive at that location, i.e., cn > 0. Therefore,

gs,∗ (λ,φ) ≥ 0. (5.61)

The condition in (5.61) holds true for the optimal solution to the SDR-OPF+S dual,

and as a result this optimal solution also minimizes costs in the SDR-OPF+S problem

for a purely competitive market.

5.6.3 Energy Storage for VAr Support

The results in Theorem 5.3 and Corollary 5.4 also point to the role of VAr support in

maximizing the storage operator’s marginal profits. In particular, if an ESS unit does

not provide VAr support then Zn = Zn = 0 (i.e., zn,t = 0) for all n ∈ N , t ∈ T and

in this case the total marginal profits to the storage operator can be computed solely

based on (5.57). When an ESS unit provides VAr support, then the total marginal

profits require the addition of the term in equation (5.58).

The role of the VAr support can be better understood by dividing the revenues

and costs into those associated with real and reactive power. The total energy service

revenues and costs associated with real power are respectively given by

∑
t∈T

∑
n∈N

λ∗n,tr
d,∗
n,t , (5.62)

∑
t∈T

∑
n∈N

{
λ∗n,tr

c,∗
n,t+ Cs,1

n rd,∗n,t

}
. (5.63)
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The total VAr support revenues and costs are respectively given by

∑
t∈T

∑
n∈N

{
φ∗
n,tz

∗
n,t

⏐⏐⏐ (z∗n,t ≥ 0 ∧ φ∗
n,t ≥ 0

)
∨
(
z∗n,t ≤ 0 ∧ φ∗

n,t ≤ 0
)}

, (5.64)

∑
t∈T

∑
n∈N

{
φ∗
n,tz

∗
n,t

⏐⏐⏐ (z∗n,t ≤ 0 ∧ φ∗
n,t ≥ 0

)
∨
(
z∗n,t ≥ 0 ∧ φ∗

n,t ≤ 0
)}

. (5.65)

Note that the VAr support revenues depend on whether the ESS is consuming (−)

or supplying (+), as well as the −/+ Q-LMP value. The next section illustrates the

results in Theorem 5.3 and Corollary 5.4, paying particular attention to the role of

VAr support.

5.7 Case Study: The role of VAr support

The case study is carried out over a single day on the IEEE-14 bus test system

network [177]. The real power demand profile for each bus, shown in Fig. 5.3, is based

on half-hour increments of demand data obtained from Southern California Edison

for July 2010 [154]. A power factor of 0.98 is used to calculate the corresponding

reactive power demand. The line ratings are specified as 80 MVA between buses

(1, 2), 40 MVA between buses (1, 5) and (2, 5), and 30 MVA between buses (2, 3) and

(2, 4).

The generator characteristics are provided in Table 5.3 and the ramp rates are set

to 15% of the generating unit capacity; for more details refer [56]. The wind power

availability for the wind farms at buses 1 and 2, shown in Fig. 5.4, is based on data
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Figure 5.2: The IEEE 14-bus benchmark system topology with wind farms and po-
tential ESS sitings as denoted with the battery storage icons. The percentages next
to each bus represent the portion of aggregated demand at that bus.

P P Q Q Cg,2 (quadratic) Cg,1 (linear)
Bus (MW) (MW) (MVAr) (MVAr) ($/MW2h) ($/MW)
1 0 332.4 0 10 0.043 20
2 0 140 -40 50 0.25 20
3 0 100 0 40 0.01 40
6 0 100 -6 24 0.01 40
8 0 100 -6 24 0.01 40

Table 5.3: Generator characteristics for the IEEE14-bus system; a single generator
corresponds to each bus shown.

from the NREL Western Wind Resources Dataset for 2006 [178]; the overall wind

power capacity (MW) is determined as ω
/
(1− ω)

∑
i∈G P i where ω ∈ (0, 1] denotes

the wind penetration as a portion of the overall generation capacity. The wind farms
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Figure 5.3: The total real power demand based on actual feeder data for an average
day in Southern California, July 2010.

do not provide reactive power compensation.

A single storage technology is modeled with a network aggregate storage capacity

of h =100 MW∆t where ∆t= 30-minutes, i.e., 50 MWh. The storage technology has

charging and discharging power rates of 8 MW per time interval and full discharge

capability (i.e., Cn = 0). A roundtrip efficiency of 81% (i.e., ηcn × ηdn = 0.81) is

assumed, which is consistent with a technology such as compressed air energy storage

(CAES) [142]. When VAr support is employed, the reactive power range is half the

energy storage capacity, i.e., Zn = −0.5cn and Zn = 0.5cn. For ESS installations

that do not provide VAr support, Zn = Zn = 0. Finally, the operational cost of
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Figure 5.4: The wind power availability for 68.1 MW installed capacity based on the
2006 NREL Western Wind Resources Dataset.

discharging in (5.20) is set to $0.1/MWh in order to enforce unimodal operations73

and the storage operator pays the LMP for charging.

The SDR-OPF+S is implemented in Matlab [99] and the optimization problem is

solved with Sedumi 1.21 [179] on a 2.2 GHz Intel Core i7 machine with 16 GB 1600

MHz DDR3. The reported results have a zero duality gap, and therefore represent a

global optimum of the ACOPF+S problem in (5.16) and (5.17).

Table 5.4 compares the difference in optimal storage allocation and corresponding

marginal profits at each bus for ESS units with only traditional grid services and

73See Theorem 5.1 in Section 5.5.
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ESS ESS+VAr Support
Storage Capacity Profits Storage Capacity Profits

cn πs,∗
n := πsP ,∗

n cn πs,∗
n := πsP ,∗

n + πsQ,∗
n

Bus (MW/30-min) ($) (MW/30-min) ($)
1 1.7 20.79 0 0
2 11.4 145.85 6.0 110.87
3 0 0 0 0
4 75.8 553.84 54.1 609.24
5 0 0 36.6 445.84

6-11 0 0 0 0
12 1.0 6.74 0 0
13 3.4 24.09 0 0
14 6.7 46.91 3.3 36.31

Total 100 798.37 100 1,202.39

Table 5.4: Nodal storage capacity and marginal profits for ESS without and with VAr
support, with a specified roundtrip efficiency of 81%.

Computation ESS ESS + VAr Support

Total System Cost ($) p∗ in (5.21) 205,164.00 204,697.28

I2R Losses (MW)
∑

k∈K,t∈T p
ℓ
k,t 151.7 145.1

Total Marginal Profit to ESS ($) πs,∗ 798.37 1,202.39

Table 5.5: A comparison of the total system cost, I2R losses, and total marginal
profit for ESS with 81% roundtrip efficiency, and either with or without VAr support.
Note that the solutions reported here have a zero duality gap and therefore the SDR-
OPF+S total system cost in (5.21) is equal to the ACOPF+S total system cost in
(5.16).

those that also provide VAr support. Table 5.5 provides the corresponding optimal

objective function value (5.16), real power losses, and total marginal profits to ESS

for the two operating schemes. The net savings of $466.72 in total system costs

when compensating ESS for VAr support is greater than the $404.02 increase in total

marginal profits.

These results show that when ESS units provide VAr compensation, the total costs
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and real power losses in the system are lower, i.e., the power system operates more

efficiently and the market settlements clear at a lower operating cost. Furthermore,

the added VAr from ESS units leads to higher overall system voltages; this operating

state requires less current, which results in lower real power losses, as illustrated by

Figures 5.5 and 5.6.
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Figure 5.5: This graph illustrates the overall maximum and minimum system voltages
for the network in Figure 5.2 including ESS units with and without VAr support. In
both cases, the maximum allowable network voltage is 1.06 p.u.

The 50.6% increase in marginal profits to the ESS when providing VAr support

is substantial. Prior to ESS integration, the only dynamic reactive power capability

is provided by generating units at buses 1, 2, 3, 6, and 8. The ESS units increase the
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Figure 5.6: The total real power network losses (I2R losses) corresponding to the
voltage profiles in Figure 5.5.

Reactive Power Capability maxt |zn,t| Reactive Dispatch Total VAr Dispatch
Bus (MVAr) (MVAr) (MVAr)
1 0 0 0
2 3.0 0.08 1.69
3 0 0 0
4 27.05 27.05 1,298.79
5 18.3 18.3 879.56

6-13 0 0 0
14 1.65 1.63 74.70

Total 50 47.06 2,254.74

Table 5.6: Reactive power capability (power rating) and maximum leading/lagging
dispatch for the given operating cycle.

dynamic reactive power capability on the network by 33.8% and introduce new VAr

support at buses 4, 5, and 14. Tables 5.6 and 5.7 illustrate that Q-LMP payments
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Nodal Q-LMP ESS + VAr Support
Minimum Maximum Load Weighted Mean Total VAr Total Q-LMP

Bus ($/MVAr) ($/MVAr) ($/MVAr) Dispatch (MVAr) Payments ($)
2 0 0 0 1.69 0
4 0.058 0.255 0.176 1,298.79 213.61
5 0.086 0.424 0.285 879.56 233.10
14 0 0.321 0.202 74.70 13.22

Table 5.7: The minimum and maximum Q-LMP prices, the load weighted mean
Q-LMP and total Q-LMP payments to storage.

can be quite substantial depending on the magnitude of the Q-LMP and the amount

of VAr dispatched from the ESS; whereas the reactive power capability of the ESS

at bus 2 is 97.3% under-utilized, the ESS units at buses 4 and 5 are dispatching VAr

support at full reactive power capability for the duration of the operating cycle. Note

that the Q-LMP payments implicitly include both revenues and costs as calculated in

(5.64) and (5.65), although no costs related to reactive power dispatch are incurred.

Table 5.8 reports nodal Q-LMP statistics at the buses with conventional genera-

tion, along with the total VAr dispatch and corresponding Q-LMP payment for each

generator. Compared to the nodal Q-LMP statistics in Table 5.7, the marginal value

of VAr support is much lower at these buses. Consequently, the Q-LMP payments

to generators are significantly lower than the Q-LMP payments to ESS units that

are optimally integrated to provide not only power and energy services but also VAr

support.

Costs and benefits to other market participants of optimally integrating ESS units

that either provide or do not provide VAr support are shown in Table 5.9. The
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Case Study: ESS (without VAr Support)
Nodal Q-LMP Generator

Minimum Maximum Load Weighted Mean Total VAr Total Q-LMP
Bus ($/MVAr) ($/MVAr) ($/MVAr) Dispatch (MVAr) Payments ($)
1 -0.012 0 - 122.64 0
2 0 0 0 304.76 0
3 -0.757 0 0 739.75 0
6 -0.008 0.207 0 656.16 47.85
8 0 0.035 - 773.33 0.85

Case Study: ESS with VAr Support
Nodal Q-LMP Generator

Minimum Maximum Load Weighted Mean Total VAr Total Q-LMP
Bus ($/MVAr) ($/MVAr) ($/MVAr) Dispatch (MVAr) Payments ($)
1 -0.031 0 - 17.61 0
2 0 0 0 245.67 0
3 -0.764 0 -0.139 706.13 0
6 -0.165 0 -0.026 517.97 10.40
8 0 0.235 - 829.10 53.62

Table 5.8: The minimum and maximum Q-LMP prices, the load weighted average
Q-LMP and total Q-LMP payments to generators.

consumer costs at bus n are computed as

∑
t∈T

(
λn,tP

d
n,t + φn,tQ

d
n,t

)
, (5.66)

and the generator marginal profits at bus n are computed as

∑
i∈I(n),t∈T

(
λn,tp

g
i,t + λn,tp

w
i,t + φn,tq

g
i,t + φn,tq

w
i,t − α

g
i,t − Cw

i,tp
w
i,t

)
. (5.67)

Based on the SDR-OPF+S dual objective function in (5.27), not all market settle-

ments are included in the above calculations. The optimal integration of ESS with

VAr support results in lower total costs to consumers and higher total marginal profits
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to generators as compared to the optimal integration of ESS units that do not provide

VAr support. However the effects are negligible, i.e., accounting for less than 1% of

the overall benefits to consumers and marginal profits to generators. Since the total

marginal profits to storage is approximately 0.9% (without VAr support) and 1.4%

(with VAr support) of the overall marginal profits to producers, the large increase in

marginal profits to ESS providing VAr support is inframarginal when compared to the

market as a whole. Furthermore, the payments for VAr support increases marginal

profits of the storage operator by 50.6%, which indicates that Q-LMP payments create

substantial incentives to optimally integrate ESS units to provide services in addition

to power and energy that improve operational efficiency.

Consumer Costs Generator Marginal Profits
ESS ESS + VAr Support ESS ESS + VAr Support

Bus ($) ($) ($) ($)
1 - - 52,101.34 52,191.70
2 17,600.00 17,661.68 32,932.91 33,008.10
3 154,579.53 154,558.66 1,117.54 1,110.97
4 66,983.00 66,872.91 - -
5 9,916.90 9,926.44 - -
6 15,022.78 14,994.88 47.85 10.40
7 - - - -
8 - - 310.45 354.33
9 38,918.46 38,943.43 - -
10 11,836.50 11,840.61 - -
11 5,231.05 5,227.22 - -
12 8,123.65 8,107.98 - -
13 16,138.23 16,111.45 - -
14 19,492.92 19,479.95 - -

Energy Services ($) 363,728.02 363,671.68 86,461.39 86,611.41
VAr Support ($) 114.99 53.54 48.70 64.06

Total ($) 363,843.02 363,725.22 86,510.09 86,675.47

Table 5.9: The costs to consumers and marginal profits to generators are compared
for when the ESS does and does not provide VAr support.
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5.8 Payments for VAr Support: Capability or Dispatch Rates?

The discussion in Section 5.7 is now extended to compare the Q-LMP payment mech-

anism, which pays for reactive power dispatch, to current market mechanisms, which

pay for reactive power capability. The Q-LMP payment mechanism is compared to

current open access transmission tariff (OATT) Schedule 2 Rates for actual system

operators, more specifically ISO-NE and NYISO [180]. Both NYISO and ISO-NE pay

qualified units for VAr capability, where the cost is typically allocated to customers

based on a load ratio that is measured in terms of real power. The NYISO and

ISO-NE VAr capability rates are $3, 919/MVAr-year and $2, 190/MVAr-year respec-

tively [180]. Both system operators also make lost opportunity cost (LOC) payments

when the qualified unit’s real power output is dispatched down for the purpose of

providing VAr support. LOC payments are not considered in this study since it is

assumed that there is no trade-off between real and reactive power outputs from the

power electronics on the ESS unit; however, such trade-offs do occur in practice for

conventional generation operating along the border of its capability curve.74

The case study in Section 5.7 demonstrates that having ESS units which can

provide VAr support is beneficial to grid operations. In current energy markets,

storage operators receive LMP payments for providing real energy services and in

74This trade-off in ESS operations is largely dependent on the configuration of the system and
energy storage technology. A growing trend for asynchronous generation is to oversize the power
converters in order to increase reactive power capacity [181, 182], which may result in little to no
trade-off depending upon the local reactive power needs of the system.
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limited situations (e.g., pumped storage [183]) are classified as qualified units for

receiving VAr payments under OATT Schedule 2; otherwise no remuneration for VAr

support is provided.

Current market settlements based on nodal pricing are determined with dispatch

models that include numerous simplifications of the ACOPF [6]; Table 5.10 reports

additional results for the ESS+VAr support case study from Section 5.7; the results

represent a global optimum to the ACOPF+S, which can be thought of as the best-

case scenario. Note that a global optimum to the ACOPF+S simultaneously co-

optimizes real and reactive power dispatch whereas current market settlements are

suboptimal in comparison.

The results in Table 5.10 show that the introduction of a market mechanism such

as Q-LMP can benefit the storage operator and therefore incentivize the storage oper-

ator to help decrease system costs. For the current market design with nodal pricing

on the real power dispatch only, i.e., the LMP, the marginal profits to a storage oper-

ator without VAr support would be $798.37, which would then decrease to $742.46 if

VAr support were also provided but Q-LMP payments are not included. However with

nodal pricing also on the reactive power dispatch, i.e., Q-LMP, the overall marginal

profits to the storage operator with VAr support would increase to $1, 202.39. This

simple example illustrates that the current market design disincentivizes storage op-

erators from providing VAr support because marginal profits decrease unless the VAr

dispatch is remunerated.
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Energy Services ESS ESS + VAr Support

Revenues ($) 5,304.55 4,798.65

Costs ($) 4,506.17 4,056.19

Profits ($) 798.37 742.46

Reactive Power Compensation

Revenues ($) 0 459.93

Costs ($) 0 0

Profits ($) 0 459.93

Total Marginal Profits ($) 798.37 1,202.39

Table 5.10: The total revenues, costs, and marginal profits to ESS without and with
VAr support; the total Q-LMP payments to the storage operator is $459.93.

Q-LMP NYISO Capability Rate ISO-NE Capability Rate
Bus ($/Day) ($/Day) ($/Day)
1 0 0 0
2 0.04 32.21 18.00
3 0 0 0
4 213.61 290.43 162.30
5 233.06 196.49 109.80

6-13 0 0 0
14 13.22 17.72 9.90

Total 459.93 536.85 300.00

Table 5.11: Q-LMP payments compared to the effective daily reactive power capabil-
ity rates for reactive capability in NYISO and ISO-NE.

Table 5.11 compares the Q-LMP payments to the NYISO and ISO-NE capability

payments. The results show that the NYISO and ISO-NE type VAr capability rates

are inconsistent between the system operators. This inconsistency is also observed

for the other ISOs including MISO, PJM, and CAISO [180]. The disconnect between

these rates and nodal prices can lead to significant over-supply of VAr in some areas

and scarcity in others. This can be thought of as a misalignment of system costs,
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investment and dispatch incentives, and operational needs of the electric power grid.

Through pricing the locational and temporal needs for VAr support on the system,

the Q-LMP mechanism reflects the marginal value of VAr support as a paid service, is

incentive compatible, and revenue adequate at a global optimum to the ACOPF+S.

5.9 Conclusions

The OPF with storage problem, ACOPF+S, is formulated in this study. The corre-

sponding semidefinite relaxation SDR-OPF+S is then solved to determine a global

optimum to the ACOPF+S. Since the ACOPF+S is a nonconvex optimization prob-

lem, the marginal values may not cover the system costs if the KKT point is not a

global optimum; however by leveraging the SDR approach, properties of strong dual-

ity can be exploited to characterize market mechanisms such as the Q-LMP that are

incentive compatible and support revenue adequacy.

The study assesses the potential for ESS to provide VAr support in addition to real

energy and power services. Reactive power compensation is critical to efficient and

reliable operations, and without a proper market mechanism to remunerate resources

for this service, there is a disincentive to provide it. The results show that the Q-

LMP payment provides a more rational means of compensating VAr support than

the capability rate payments common in current U.S. electricity markets because the

Q-LMP reflects the true marginal value for VAr support in the system. Furthermore,

a Q-LMP would provide an additional revenue stream for energy storage, which can
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improve the financial viability of these systems.
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6 The Role of Network Losses in Optimal Storage Allocation

6.1 Prologue

The proposed studies in Chapters 3, 4, and 5 focused on solution methods to solving

the OPF for the simultaneous co-optimization of real and reactive power dispatch.

However in current market design, most ESS installations would not receive remu-

neration for reactive power compensation [180]. Furthermore, the full ACOPF is not

solved in current market software but rather real power losses are incorporated.

This chapter presents an intermediate optimization problem between the DCOPF

and ACOPF to optimal storage integration in order to consider power and energy

services as the main profit drivers for ESS. Since the ACOPF is not currently solved

in the day-ahead and real-time markets, loss factors to approximate the real power

losses are incorporated into the dispatch and market settlements where marginal loss

prices are a component of the marginal pricing and reflect the portion of the change

in cost that is due to a change in real power losses on the network [6, 58]. The total

system costs due to losses can be quite significant; in 2014, PJM accounted $1.5

billion in total costs due to marginal loss payments compared to $1.9 billion in total

197



congestion costs [184]. However inaccurate loss approximation can cause numerous

issues including price divergence between the day-ahead and real-time markets as well

as strategic bidding by market participants [185].

The real power losses can be approximated directly from the ACPF equations.

The resulting real power losses approximation75

p̃ℓk,t =
1

2
gk (θnm,t)

2

is a quadratic equality constraint and, as a result, incorporating this expression into a

DCOPF problem to obtain a DCOPF with losses formulation results in a nonconvex

QCQP. A number of works have dealt with this complexity by applying a piece-

wise linearization to approximate the quadratic losses, which was originally proposed

in [186]. However the number of variables grows as a function of the number of piece-

wise segments introduced to improve the loss approximation and if the dual variable

to the nodal power balance of the DCOPF is negative, then the unordered piece-

wise segments tend to exaggerate the losses in order to lower the cost minimization

objective (i.e., higher demand/losses when LMPs are negative results in decreased

system costs) [187]. Others propose SLP approaches to approximate the DCOPF

with losses formulation, which can converge quickly, but require iterative solves to

obtain optimality and the solution technique may cycle with a poor initialization.

Extending the conference proceeding [27], this chapter proposes a DCOPF with

75see Section 2.6.2
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loss approximation that leverages a global solution method to make this problem

tractable. The following study demonstrates that a DCOPF with real power losses

approximation may adequately capture the main drivers in storage dispatch and al-

location for power and energy services during normal operations.76

6.2 Introduction and Literature Review

The DCOPF problem is a commonly applied linear approximation of the ACOPF

problem that can be solved to optimality in polynomial time for large-scale networks.

Consequently, there are a large number of studies that examine DCOPF-based ESS

integration, e.g., [166,173,174,188–190]. A major limitation of DCOPF with storage

(DCOPF+S) formulations is that these studies implicitly assume that real power

losses are negligible, i.e., that network power transfers are perfectly efficient. This

assumption leads to inaccuracies in the actual system LMPs, which incorporate not

only the marginal unit cost and the congestion costs, but also the additional dispatch

costs to cover network losses. The previous study presented in Chapter 5 illustrates

that LMPs77 play a key role in ACOPF-based storage dispatch, siting and sizing

decisions [26].

This work attempts to bridge the gap between ACOPF+S and DCOPF+S ap-

proaches by proposing a DCOPF+S with losses formulation, which is referred to here

76Emergency operations can require reactive power compensation and voltage control not readily
modeled in DCOPF-based approaches, including the proposed DCOPF with losses framework.

77The previous study also indicates the important role of Q-LMPs, but for the purpose of analyzing
power and energy services only, LMPs were proven and shown to be the key driver for the optimal
integration of ESS without VAr support.
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as the ℓ-DCOPF+S problem. This model has the advantage of being both more

computationally tractable than the ACOPF+S model presented in Chapter 5 and

more accurate than the lossless DCOPF+S formulation. It also has the advantage of

explicitly isolating the role of real power losses in OPF-based ESS integration. Due to

the assumptions of DCOPF-based modeling, reactive power compensation provided

by ESS is not included here.78 Related DCOPF with losses formulations have been

previously studied in generalized market models, e.g., [187, 191–196], but not in the

context of optimal ESS integration.

This work develops the ℓ-DCOPF+S by augmenting the standard DCOPF model

with linear storage charge/discharge dynamics to incorporate the quadratic real power

loss approximations derived from standard ACPF equations. Then the resulting non-

convex QCQP is solved using convex relaxations that result in both SDP and SOCP

formulations. The theoretical result uses arguments based on the results in [197]

and [198] to prove that both of these convex relaxations equivalently provide an ex-

act lower bound to the ℓ-DCOPF+S problem. A case study compares the performance

of the ℓ-DCOPF+S formulation to that of DCOPF+S and ACOPF+S (without VAr

support) formulations. The case study results demonstrate that obtaining accurate

optimal storage allocation, where ACOPF+S results are the benchmark, is tightly

coupled with correctly determining the LMPs.

The remainder of this chapter is organized as follows. Section 6.3 incorporates

78please see Chapter 5 for details on ESS with VAr support
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the linear power flows and quadratic loss approximations presented in Section 2.6.2 in

order to derive the ℓ-DCOPF+S problem. Section 6.4 provides the SDP and SOCP

relaxations for the ℓ-DCOPF+S problem along with proofs that these relaxations

are exact. Subsequently Section 6.5 compares the performance of the ℓ-DCOPF+S,

DCOPF+S and ACOPF+S problems. Concluding remarks are provided in Section

6.6.

6.3 Multi-Period Lossy DCOPF with Storage Dynamics

The linear power flows and quadratic loss approximations presented in Section 2.6.2,

the ACOPF+S formulation presented in Section 5.3.3 can be augmented to formulate

the following multi-period ℓ-DCOPF+S problem as

p∗ := min
pg,pw,θ,rc,rd,s,c

f g (·) + fw (·) + f s (·) (6.1)

subject to

sn,t = sn,t−1 + ηcnr
c
n,t −

(
ηdn
)−1

rdn,t ∀n ∈ N , t ∈ T (6.2)

0 ≤ rcn,t ≤ Rc
n ∀n ∈ N , t ∈ T (6.3)

0 ≤ rdn,t ≤ Rd
n ∀n ∈ N , t ∈ T (6.4)

Cn ≤ sn,t ≤ cn ∀n ∈ N , t ∈ T (6.5)

s̃n,T − sn,T = 0 ∀n ∈ N , t ∈ T (6.6)
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∑
n∈N

cn ≤ h ∀n ∈ N , t ∈ T (6.7)

0 ≤ pwi,t ≤ Cw
i,t ∀i ∈ W , t ∈ T (6.8)

P i ≤ pgi,t ≤ P i ∀i ∈ G, t ∈ T (6.9)

−RRd
i ≤ pgi,t − p

g
i,t−1 ≤ RRu

i ∀i ∈ G, t ∈ {2, . . . , T} (6.10)∑
k(n,·),t

p̂k(n,m),t = rdn,t +
∑

i∈I(n)

(
pgi,t + pwi,t

)
− rcn,t − P d

n,t ∀n ∈ N , t ∈ T (6.11)

p̂k(·),t = p̃k(·),t + p̃ℓk,t ∀k (·) ∈ F , t ∈ T (6.12)

p̃k(n,m),t = −bkθnm,t ∀k (n,m) , k (m,n) ∈ F , t ∈ T (6.13)

p̃ℓk,t =
1

2
gk (θnm,t)

2 ∀k ∈ K, t ∈ T (6.14)

− θnm ≤ θnm,t ≤ θnm ∀ (n,m) ∈ A, t ∈ T (6.15)

− P k ≤ p̂k(·),t ≤ P k ∀k (·) ∈ F , t ∈ T . (6.16)

In the objective (6.1), the multi-period function

f g (·) :=
∑
t∈T

∑
i∈G

Cg,2
i

(
pgi,t
)2

+ Cg,1
i pgi,t (6.17)

is a strictly convex cost function with positive coefficients of the real power generation,

fw (·) :=
∑
t∈T

∑
i∈W

Cw,1
i pwi,t (6.18)
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is a linear cost function of the wind power production, and

f s (·) :=
∑
t∈T

∑
n∈N

Cs,1
n rdn,t (6.19)

is a linear cost function of the storage discharge, which represents variable O&M costs.

The cost of storage charging is not included because the storage operator implicitly

pays the LMP at the bus, where the LMP at bus n is the dual variable λn,t associated

with the power balance constraint in (6.11).

Remark 6.1. The DCOPF+S with storage problem can be recovered from the ℓ-

DCOPF+S problem by setting gk = 0 for p̃ℓk,t in (6.14), which corresponds to assuming

zero resistances, i.e., rk = 0 for all k ∈ K, and therefore no network losses.

6.4 Solution Technique

The ℓ-DCOPF+S problem defined in (6.1)−(6.16) is a nonconvex QCQP, which has a

convex quadratic cost function (6.17) and a nonconvex quadratic equality constraint

(6.14). Although the convex quadratic cost function can be equivalently reformulated

as a LMI,79 the nonconvex constraint (6.14) requires special treatment. The following

proves that under certain conditions this ℓ-DCOPF+S problem can be solved to op-

timality through both SDR and SOCR. Furthermore, by similar arguments presented

by Gayme and Topcu in [25], Slater’s condition80 is satisfied and strong duality holds

79see footnote 67
80see footnote 65
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for both the SDR and SOCR problems presented below.

!!θnm ,t

!!θnm ,t( )2

!!
feasible!region!

for!!Θnm ,t

Figure 6.1: Given the angle difference θnm,t between buses n and m at time t, the
slack variable Θnm,t is bounded by (θnm,t)

2.

First, the losses equation (6.14) is reformulated as

p̃ℓk,t = tr
(
M ℓ

kΘ̃nm,t

)
, (6.20)

where the coefficient matrix for each line k ∈ K is defined as

M ℓ
k :=

⎡⎢⎢⎣ 0 0

0 1
2
gk

⎤⎥⎥⎦ , (6.21)

and Θnm,t ∈ R+ is a slack variable with the following lower bound:

(θnm,t)
2 ≤ Θnm,t, (6.22)

as illustrated in Figure 6.1. The condition in (6.22) is equivalent to the Schur com-
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plement81 of Θnm,t, i.e.,

Θ̃nm,t :=

⎡⎢⎢⎣ 1 θnm,t

θnm,t Θnm,t

⎤⎥⎥⎦ (6.23)

for all (n,m) ∈ A, t ∈ T ; the corresponding variable set is referred to as Θ̃ :=

{Θ̃nm,t}|A|×|T |. The following SDR and SOCR formulations are novel approaches that

employ the losses calculation in (6.20)− (6.23).

6.4.1 Semidefinite Relaxation

The SDR of (6.20) is then obtained by enforcing the following condition

Θ̃nm,t ⪰ 0 (6.24)

for all (n,m) ∈ A, t ∈ T . This SDR relaxation is exact when

Θnm,t = (θnm,t)
2 , (6.25)

which implies that rank{Θ̃nm,t} = 1.

The SDR of the nonconvex QCQP in (6.1)− (6.16) is then given by the following

SDP:

min
pg,pw,Θ̃,rc,rd,s,c

∑
t∈T

∑
i∈G

αg
i,t + fw (·) + f s (·) (6.26)

81see footnote 68
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subject to

(6.1)− (6.13), (6.15), (6.16), (6.20), (6.24) (6.27)⎡⎢⎢⎣ Cg,1
i pgi,t − α

g
i,t

√
Cg,2

i pgi,t√
Cg,2

i pgi,t −1

⎤⎥⎥⎦ ⪯ 0 i ∈ G, t ∈ T . (6.28)

The reformulation introduces the slack variable αg
i,t in order to represent the quadratic

cost function in (6.17) as an equivalent LMI in (6.28).

The relaxed problem (6.26)−(6.28) provides the optimal solution to the ℓ-DCOPF+S

in (6.1) − (6.16) when the condition in (6.25) holds, i.e., the SDP provides an exact

lower bound for the original QCQP.

6.4.2 Second Order Cone Relaxation

The SOCR is obtained by first reformulating the condition in (6.22) as

||θnm,t||22 ≤ Θnm,t (6.29)

using a squared l2-norm.82 Then the following transformation

4||θnm,t||22 ≤ 4Θnm,t, (6.30)

82The l2-norm is defined as ||x||2 :=
(∑n

i=1 |xi|2
)1/2

.

206



4θ2nm,t ≤ (1 + Θnm,t)
2 − (1−Θnm,t)

2 , (6.31)

(1−Θnm,t)
2 + 4θ2nm,t ≤ (1 + Θnm,t)

2 , (6.32)

enables condition (6.22) to be represented as the second-order cone constraint83

⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐⏐⏐
⎛⎜⎜⎝ 1−Θnm,t

2θnm,t

⎞⎟⎟⎠
⏐⏐⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ 1 + Θnm,t (6.33)

for all (n,m) ∈ A, t ∈ T ; note that (6.33) is equivalent to the positive semidefinite

constraint in (6.24). Furthermore, this lower bound is tight, i.e., the SOCR is exact,

when (6.25) holds and therefore (6.33) is an equality.

The corresponding SOCR of the ℓ-DCOPF+S problem (6.1)− (6.16) is then given

by the following SOCP:

min
pg,pw,Θ̃,rc,rd,s,c

∑
t∈T

∑
i∈G

αg
i,t + fw (·) + f s (·) (6.34)

subject to

(6.1)− (6.13), (6.15), (6.16), (6.20), (6.28), (6.33). (6.35)

83A constraint of the form uTu ≤ xy where x ≥ 0, y ≥ 0, w ∈ Rn, x, y ∈ R is equivalent to the
second-order cone constraint [199] ⏐⏐⏐⏐⏐⏐⏐⏐( x− y

2w

)⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ x+ y.
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Given the proposed solution techniques for the ℓ-DCOPF+S problem, the optimal

solution of the SOCR in (6.34) and (6.35) provides a lower bound on the SDR in (6.26)

and (6.27). Furthermore, the SOCR is exact when (6.33) is an equality.

6.4.3 Exactness of the Convex Relaxations

The following analysis proves that the SDR and SOCR in Sections 6.4.1 and 6.4.2 are

exact. The proposed proof for Theorem 6.1 extends [197] and [198] to show that the

optimal solution of the SDP in (6.26)− (6.28) always provides a global optimum for

the ℓ-DCOPF+S problem (6.1)− (6.16). Then Corollary 6.2 shows that the optimal

solution of the SOCP in (6.34) and (6.35) also provides a tight lower bound for the

solution of the nonconvex QCQP in (6.1)− (6.16), a priori to solving the problem.

Theorem 6.1. The optimal solution of the SDP in (6.26) − (6.28) provides a tight

lower bound, i.e., a global optimum, for the nonconvex QCQP in (6.1)− (6.16).

Proof. In order to prove the theorem one need only prove that the losses based on the

optimal value of Θ̃ are equal to the losses p̃ℓk,t =
1
2
gk (θnm,t)

2 in (6.14) at the optimal

value of θ for the QCQP in (6.1) − (6.16), i.e., that rank{Θ̃} = 1. This condition

results in the same optimal values for the power flows −bkθnm,t in (6.13), the power

balance in (6.11), and the cost function in (6.1).

Given Θ̃ := {Θ̃nm,t}|A|×|T | and (6.24), the condition in (6.22) implies

1

2
gk (θnm,t)

2 ≤ 1

2
gkΘnm,t (6.36)
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for all k ∈ K, t ∈ T where (θnm,t)
2 ∈ R+.

Let θ̂nm,t =
√
Θnm,t where θ̂nm,t ∈ R+. Then the matrix

[
1 θ̂nm,t

]T [
1 θ̂nm,t

]
has the same diagonal elements as Θ̃nm,t, but the off-diagonal elements are

√
Θnm,t

instead of θnm,t. From the definition of M ℓ
k in (6.21) all of its off-diagonal elements

are zero and
[
M ℓ

k

]
2,2
> 0. Therefore

p̃ℓk,t=tr
(
M ℓ

kΘ̃nm,t

)
=
[
1 θ̂nm,t

]
M ℓ

k

[
1 θ̂nm,t

]T
,

where

tr
(
M ℓ

kΘ̃nm,t

)
=

2∑
u=1

2∑
v=1

[
M ℓ

k

]
u,v

[
Θ̃nm,t

]
u,v
.

This proves that for every optimal solution to the SDP there exists a θnm,t such

that θnm,t =
√

Θnm,t is a feasible solution to the nonconvex QCQP. Therefore, the

loss approximation in (6.20) is equivalent to that in (6.14), and as such the power

flows, which are linear in θnm,t, and the resulting objective function in the QCQP are

equal to those of the SDP. Since the SDP is a lower bound to the nonconvex QCQP,√
Θnm,t is also an optimal solution to the nonconvex QCQP, and the relaxation is

exact.

Corollary 6.2. Under the conditions of Theorem 6.1 the optimal solution of the

SOCP in (6.34) and (6.35) provides an exact lower bound for a global optimum of the

ℓ-DCOPF+S problem in (6.1)− (6.16).

Proof. Let Θ̃ be the optimal solution of the SOCP in (6.34) and (6.35). The constraint
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(6.33) is equivalent to condition (6.22). Thus without loss of generality, the same

proof as above can be applied to demonstrate that the SOCP in (6.34) and (6.35) is

an exact relaxation of the nonconvex QCQP in (6.1) − (6.16), which is the original

ℓ-DCOPF+S problem.

6.4.4 Other Properties of the Convex Relaxations

The properties related to unimodal storage dynamics, as presented in Theorem 5.1

and Corollary 5.2, extend to both the SDP and SOCP presented here. Without loss of

generality, the power balance pn,t = tr {ΦnWt} in Theorem 5.1 can be replaced with

the power balance pn,t =
∑

k(n,·),t p̂k(n,m),t where p̂k(n,m),t = −bkθnm,t + tr
(
M ℓ

kΘ̃nm,t

)
;

consequently, the results hold for both the SDP in (6.26) − (6.28) and the SOCP in

(6.34) and (6.35).

6.5 Case Studies

This section reports on two case studies of a 14-bus system; one with 15% wind pen-

etration84 and no transmission constraints and a second one that includes binding

transmission constraints, i.e., congestion. In the first case study with no congestion,

optimal storage integration is expected to have the highest reduction on the eco-

nomic value of losses. Whereas in the second case study, congestion relief is also a

84Similar to the case studies in Chapter 5, the overall wind power capacity (MW) is determined

as ω
/
(1− ω)

∑
i∈G P i where ω ∈ (0, 1] denotes the wind penetration as a portion of the overall

generation capacity.
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consideration.

The storage allocation and dispatch strategies for the DCOPF+S, ℓ-DCOPF+S,

and ACOPF+S problems are compared. The SDR-OPF+S85 is solved and provides

a global optimum to the ACOPF+S, and the SOCR of the ℓ-DCOPF+S86 is solved

to determine a global optimum of the ℓ-DCOPF+S. Lastly, the DCOPF+S can be

formulated using Remark 6.1. In order to maintain consistency in comparison to the

ESS power and energy services modeled in the DCOPF+S and ℓ-DCOPF approaches,

the following assumptions are applied to the SDR-OPF+S:

1. Capacity limits are specified on the real power flow (MW) instead of apparent

power flow (MVA) for all flows k (·) ∈ F and all time periods t ∈ T as

− P k ≤ tr
{
Φℓ

k(·)Wt

}
≤ P k,

2. The ESS unit does not provide VAr support, i.e., Zn = Zn = 0, and

3. The individual loads maintain a 0.98 power factor.

The optimization problems are implemented in Matlab [99] and solved with Sedumi

1.21 [179].

Theorem 6.1 holds for all of the results shown, i.e., both the SDR and SOCR

for the ℓ-DCOPF+S are exact. Furthermore, the SDR-OPF+S solutions have zero

85see Section 5.4.1
86see Section 6.4.2
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duality gap. Simultaneous charging and discharging does not occur for any of the

results reported in this study. The respective run times for the ℓ-DCOPF+S (as an

SOCP) and DCOPF formulations are approximately 20 and 30 times faster than that

of the ACOPF+S when solving on a 2.2 GHz Intel Core i7 with 16 GB 1600 MHz

DDR3. For ease of reference, the case study results are designated by the problem

formulation instead of the solution technique, i.e., DCOPF+S, ℓ-DCOPF+S, and

ACOPF+S.

In order to evaluate the case study results, the marginal profits to ESS units is

calculated as

πs,∗
n := πsP ,∗

n ,

:=
∑
t∈T

λ∗n,t

[
rd,∗n,t − r

c,∗
n,t

]
− Cs,1

n rd,∗n,t

(6.37)

for each n ∈ N ; this performance metric is derived directly from Theorem 5.3 for

profit maximizing storage allocation, as presented in Chapter 5. The dual variable λ∗n,t

denotes the market-clearing energy price signal, i.e., the LMP, at a global optimum,

and the primal variables rd∗n,t and rc∗n,t respectively denote the optimal charge and

discharge rates of the ESS. The πs,∗
n is based on the market-clearing outcome of the

optimal solution for each time period and is a function of the revenues and costs to

the storage operator at bus n over the operating cycle. Isolating the terms specific

to the monetization capability of the storage operator, πs,∗
n quantifies the economic

value of the storage at bus n ∈ N in terms of the aggregate marginal profits over the
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operating cycle.

The case study results demonstrate that these storage profits directly relate to the

amount of storage allocated at each bus. In particular, higher values of πs,∗
n are often

associated with a larger storage allocation at bus n and the differences in values of πs,∗
n

amongst buses indicate the differential preference for storage allocation at one bus

versus another. When πs,∗
n = 0 there is no storage placed at that bus. The following

section describes all of the data and parameters used in the case studies.

6.5.1 Case Study Parameters and Data

The case studies are performed using the topology of the 14-bus IEEE benchmark

system [177], originally illustrated in Figure 5.2 with the corresponding dataset sum-

marized in Section 5.7 (excluding the MVA line capacity constraints).

6.5.2 Case I: 15% Wind and No Transmission Constraints

The test grid in Figure 5.2 is simulated for the first case study; in this simulation

there are no transmission constraints as well as a 15% wind penetration, which is

distributed evenly between wind farms at buses 1 and 2. The optimal system costs

are $159,524.05 in the DCOPF+S, $172,044.39 in the ℓ-DCOPF+S, and $170,368.64

in the ACOPF+S results. Table 6.1 summarizes the resulting storage allocation

and πs,∗
n based on the DCOPF+S, ℓ-DCOPF+S, and ACOPF+S storage integration

models. These results show that failing to account for the real power losses can have
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Approximations Full
DCOPF+S ℓ-DCOPF+S OPF+S

Bus cn πs,∗
n cn πs,∗

n cn πs,∗
n

1 7.1 19.73 0.03 0.11 0 0
2 7.1 19.73 1.9 12.42 1 6.45
3 7.1 19.73 37 156.62 37.1 150.96
4 7.1 19.73 10.7 47.82 12.1 52.92
5 7.1 19.73 0.1 0.67 0 0
6 7.1 19.73 0.2 0.78 0 0
7 7.1 19.73 1.5 6.52 0.2 1.10
8 7.1 19.73 1.5 6.44 0.2 1.01
9 7.1 19.73 1.1 4.56 1.1 5.31
10 7.1 19.73 3.6 15.05 4.6 18.24
11 7.1 19.73 0.4 1.58 0.1 0.35
12 7.1 19.73 3.4 13.82 4.0 15.55
13 7.1 19.73 13.0 53.03 13.6 53.25
14 7.1 19.73 25.5 103.99 26.2 102.96

Total 100 276.22 100 423.40 100 408.10

Table 6.1: The per bus ESS capacity cn (in MW/30-min) and marginal profits πs,∗
n

(in $) for the baseline scenario (15% wind and no transmission constraints).

a significant impact on the accuracy of the approximation model. More specifically,

the DCOPF+S strategy equally distributes the ESS units throughout the network,

whereas both the ℓ-DCOPF+S and ACOPF+S solutions place the majority of the

ESS units at buses 3 and 14. Unlike the ℓ-DCOPF+S and ACOPF+S, the linear

constraint set of the DCOPF+S does not capture the nonlinear relationship between

the marginal storage capacity and the marginal profits, i.e., contrary to the linear

DCOPF where πs,∗
n /cn is equivalent for all n ∈ N . Figure 6.2 plots a sensitivity

analysis to demonstrate the affect of decreasing line resistances r (i.e., decreasing

real power losses) on the storage operator profits per bus; the results at 1r resistance

correspond to the ℓ-DCOPF+S baseline reported in Table 6.1 and the results at
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Figure 6.2: The profits per storage capacity at each bus is plotted for various multi-
pliers on the line resistance r on all lines in the ℓ-DCOPF+S. Note that the marginal
profits for the 0.001r results in negligible real power flow losses in the ℓ-DCOPF+S
and therefore are similar to that of the DCOPF+S.

0.001r resistance resemble the DCOPF+S results reported in Table 6.1 because the

losses are negligible. Furthermore, Figure 6.2 illustrates that the marginal profits are

highest at bus 2 for the baseline case in the ℓ-DCOPF+S. However the ℓ-DCOPF+S

does not result in the exact same outcome as the ACOPF+S, which has additional

nonlinear constraints on the nodal voltage limits as well as a coupling between the

real and reactive flows on the network. Figures 6.3 and 6.4 demonstrate that although
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Figure 6.3: For the ℓ-DCOPF+S, the system cost plotted on the left axis and the
total storage profits on the right axis for different storage allocations at bus 2 between
0.1 to 100 MW/30-min; the marker denotes the optimal solution reported where 1.9
MW/30-min of storage capacity are allocated at bus 2. Note that the inlaid graph
illustrates that the highest profits for the storage operator are obtained at 1.9 MW/30-
min at bus 2, which corresponds to the lowest system costs. Furthermore, there
appears to be near optimal solutions, i.e. equivalent costs for allocating approximately
1 to 4 MW/30-min of storage capacity at bus 2 for the system cost rounded to the
first decimal place.

there are nearly optimal solutions to the lowest system costs, the highest total storage

profit occurs at the optimal solution reported here. This numerical result supports the

theoretical findings as presented in equation (6.37) and originally proved in Theorem

5.3 for profit maximizing storage allocation.
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Figure 6.4: For the ℓ-DCOPF+S, the profits per storage capacity (πs,∗
n /cn) at bus

2. Although πs,∗
n /cn is higher when the storage capacity at bus 2 is closer to zero,

the overall profits, as illustrated in the inlay of Figure 6.3, are highest at the optimal
solution (as denoted by the marker) where 1.9 MW/30-min of storage capacity is
allocated at bus 2.

Furthermore, the results of the DCOPF+S greatly underestimate the value of

storage when the cost drivers of the LMP are the marginal unit cost and network

losses, where congestion costs are zero; since the DCOPF+S model does not include

the network losses into its LMP calculation, it fails to account for the additional

power dispatch requirements.
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Figure 6.5: In all panels, the DCOPF+S, ℓ-DCOPF+S and ACOPF+S results are
respectively shown in red, blue and green lines. (a) The real power flows (including
losses) to bus 14, where the solid line denotes flow from bus 9 to 14 and the dashed
line denotes flow from bus 13 to 14. (b) The total losses aggregated across lines 17
and 20. The DCOPF+S model is not plotted because there are no losses. (c) ESS
charging and (d) ESS discharging at bus 14.

For example, Figure 6.5 shows the real power transfers, total real power losses, and

storage charging and discharging observed at bus 14.87 The upper left panel illustrates

that the real power transfers obtained by the ℓ-DCOPF+S (blue lines) and ACOPF+S

87The parameters for line 17 on bus pair (9,14) are g17 = 1.4238 and b17 = −3.0290, and for line
20 on bus pair (13,14) are g20 = 1.1370 and b20 = −2.3152, respectively.
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(green lines) models are similar in form but not exact in magnitude. However, the

real power transfers obtained by the DCOPF+S (red lines) model are overall less

accurate than the ℓ-DCOPF+S. The upper right panel of Figure 6.5 indicates that

the ℓ-DCOPF+S (blue) slightly overestimates the total real power losses as compared

to the ACOPF+S (green) on all of the lines connected to bus 14; the average losses

are 1.05% on line 17 and 0.78% on line 20 in the ℓ-DCOPF+S results and the average

losses are 0.82% on line 17 and 0.74% on line 20 in the ACOPF+S results. The lower

panels plot the real power charge and discharge dynamics of the ESS units at bus 14.

Approximations Full
DCOPF+S ℓ-DCOPF+S OPF+S

Bus cn πs,∗
n cn πs,∗

n cn πs,∗
n

1 34.4 218.53 45.1 246.25 45.1 245.03
2 20.9 177.96 21.6 137.92 21.6 122.48
3 19.7 75.29 9 10.72 1.9 5.11
4 6.3 33.2 5.2 25.70 8.1 29.22
5 0 0 0 0 0 0
6 0 0 1.0 4.81 1.4 5.79
7 5.2 28.76 4.1 16.17 6 22.72
8 5.2 28.76 4.1 16.17 2.5 9.47
9 4.3 25.09 0 0 0 0
10 3 19.87 0.1 0.34 0.1 0.17
11 0 0 0.1 0.40 0.1 0.29
12 0 0 0.7 2.82 0.8 2.88
13 0 0 1.9 7.24 1.9 6.88
14 0.9 6.09 7 19.45 10.5 27.74

Total 100 613.55 100 487.99 100 477.78

Table 6.2: The per bus ESS capacity cn (in MW/30-min) and profit πs,∗
n (in $) for

Case II: a transmission constrained system with 15%-wind penetration.
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Figure 6.6: The aggregate energy storage level for all ESS installations across the
network. In aggregate the ESS units cycle between charging and discharging in order
to meet the demand, which peaks in hours 17 and 22.

6.5.3 Case II: 15% Wind and Binding Transmission Constraints

The second case study uses the same conditions presented as in Case I but also

includes the following transmission line capacity constraints: P k = 50 MW for the

lines between bus pairs (1, 2), (1, 5), (2, 3), and (2, 4); P k = 25 MW for the lines

between bus pairs (6, 13) and (9, 14); and P k = 7 MW for the line between bus pairs

(12, 13). The optimal system costs are $193,350.78 for the DCOPF+S, $201,453.52

for the ℓ-DCOPF+S, and $201,108.43 for the ACOPF+S.

Table 6.2 shows the profits, πs,∗
n and the ESS units allocated at each bus from sim-
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Figure 6.7: The LMP error statistics at each bus, where ACOPF+S is the baseline.
The whisker plot shows the minimum and maximum of the LMP range at each node,
along with the median (square) and mean (circle).

ulations of this system using the three different formulations. In general, the majority

of the storage capacity is optimally integrated at buses 1, 2, and 3, i.e., 75% in the

DCOPF+S solution, 75.7% in the ℓ-DCOPF+S solution, and 68.6% in the ACOPF+S

solution. Again, when compared to the ACOPF+S solution the ℓ-DCOPF+S provides

more accurate ESS allocation and profit estimates than the DCOPF+S. In particular,

the DCOPF+S solution overestimates the marginal profits of storage by 28.4% rela-

tive to the ACOPF+S, whereas the ℓ-DCOPF+S only overestimates this quantity by

2.1%. Figure 6.6 demonstrates that the DCOPF+S solution also overestimates the
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aggregate energy arbitrage potential of the system, which accounts for the increased

profits reported in Table 6.2. The DCOPF+S model appears to significantly overes-

timate the value of energy storage when there are line limits; the DCOPF+S assumes

that there is more line capacity available for real power transfers because network

losses are not modeled (i.e., there is a perceived higher transfer efficiency than the

actual transfer capabilities). This overestimation leads to suboptimal storage siting

and dispatch strategies. Furthermore, the LMP error for bus n ∈ N at time period
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Figure 6.8: The storage level at buses 1, 2, and 3 for the DCOPF+S (red), ℓ-
DCOPF+S (blue), and ACOPF+S (green).
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t ∈ T for the two approximate models is calculated as

(
λ∗,refn,t − λ

∗,ac
n,t

)
/λ∗,acn,t , (6.38)

where λ∗,refn,t refers to the dual variable λ∗n,t from either the DCOPF+S or ℓ-DCOPF+S

solution, respectively, and λ∗,acn,t refers to the ACOPF+S solution. Figure 6.7 illustrates

that the LMP error is higher for the DCOPF+S solution because real power losses

are not accounted for in the physical constraints.

1 4 8 12 16 20 24

−2

0

2

4

6

8

D
C
O
P
F
+
S

L
M
P

E
r
r
o
r
(
%
)

 

 

Bus 1 Bus 2 Bus 3

1 4 8 12 16 20 24
−5

0

5

Time (Hours)

ℓ
-D

C
O
P
F
+
S

L
M
P

E
r
r
o
r
(
%
)

 

 

Bus 1 Bus 2 Bus 3

Figure 6.9: The error in LMP estimates, as calculated in (6.38), at buses 1, 2, and 3
where the ACOPF+S solution is the baseline.

Furthermore, the inaccuracies in optimal storage integration do not simply corre-
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Figure 6.10: The LMP at buses 1, 2, and 3 (top to bottom panel) for the DCOPF+S
(red), ℓ-DCOPF+S (blue), and ACOPF+S (green).

spond to the magnitude of LMP errors. Rather this outcome is amplified by when

and where such LMP errors occur, and whether these LMP errors result in an over-

or underestimation. Figures 6.8 and 6.9 illustrate the storage level and LMP errors

specifically in the subnetwork with high storage integration, i.e., the subnetwork of

buses 1, 2, and 3, for the three solutions. Figure 6.8 demonstrates similar trends

in the storage levels at these three buses except for the ESS unit at bus 3 in the

DCOPF+S solution. Figure 6.9 demonstrates that for the DCOPF+S solution the

LMP values are highly underestimated during the hours that the ESS at bus 3 is

charging, i.e., it is cheaper to charge in the DCOPF+S model than in the other mod-
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els during the off-peak hours 4 to 6. Although the LMP errors at bus 2 are more

persistent than the LMP errors at bus 3 in the DCOPF+S model, as shown in Figure

6.9, the DCOPF+S continually overestimates the LMPs at bus 2 during critical hours

for both charging and discharging, as shown in Figure 6.10; this persistent overesti-

mation does not lead to advantageous increases in the value of energy arbitrage at bus

2. However the underestimation of LMPs at bus 3 that is mainly isolated to hours 4

to 6, as shown in Figure 6.10, creates an advantageous deviation for energy arbitrage

in the DCOPF+S model because of the cheaper prices paid to charge the ESS unit

at bus 3. This energy arbitrage potential is artificial because it is an artifact of the

lossless nature of the DCOPF+S model. Moreover, the outcome in the DCOPF+S is

unrealistic because the real power losses must be accounted for through an increase

in dispatch and adjustment in market settlements.

6.6 Conclusion

This study proposes a novel multi-period ℓ-DCOPF+S model to investigate the role

of real power losses in OPF-based ESS integration. The problem can be solved us-

ing either the SDP or SOCP reformulation to model the quadratic real power loss

approximations derived from the standard ACOPF problem. Although the SOCP is

solved in this study, the theoretical results demonstrate that both of these convex

relaxations provide an exact lower bound to the ℓ-DCOPF+S problem. This analysis

also proves conditions that guarantee unimodal storage operations for a linear storage
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model with round trip efficiencies included.

Case studies using the ℓ-DCOPF+S model indicate that it more accurately ap-

proximates the ACOPF+S results than a DCOPF+S model. In particular, the

DCOPF+S model can significantly overestimate the value of energy storage when

there are line limits because this approach assumes more line capacity available for

real power transfers since network losses are not modeled (i.e., there is a perceived

higher transfer efficiency than the actual transfer capabilities), which leads to sub-

optimal storage siting and dispatch strategies. Furthermore inaccuracies in optimal

storage integration can result from advantageous deviations in the LMP errors. The

improved predictions of the ℓ-DCOPF+S formulation are therefore directly related

to the fact that approximating the correct OPF-based results requires accurate pre-

diction of the actual LMPs.

226



7 Conclusions

This chapter summarizes the work presented in this dissertation including a summary

of the main contributions, limitations of the current work, and future extensions.

7.1 Main Contributions

The alternating current optimal power flow (ACOPF) problem, also referred to as

the optimal power flow (OPF) problem, is at the heart of improvements in electricity

market design. The simultaneous co-optimization of real and reactive power dispatch

improves operating efficiency and incorporates reactive power compensation in order

to provide system voltage control that enables more efficient delivery and utilization

of real power. Unfortunately, solving this problem within the required time limits

for the day-ahead, intra-day, and real-time markets is difficult because the ACOPF

formulation is a nonconvex, nonlinear optimization problem, which is known to be

NP-hard [2,3]. Therefore current security-constrained economic dispatch (SCED) and

security-constrained unit commitment (SCUC) methods applied in practice oversim-

plify the physical problem and require operator intervention to address issues that

are unrepresented in current market software.
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Operator intervention to address reliability issues unnecessarily alters settlement

prices by introducing uplift payments and produces suboptimal solutions [13, 15]. A

report to Congress prepared by the U.S. Department of Energy (DOE) states: “the

technical quality of current economic dispatch tools–software, data, algorithms, and

assumptions–deserves scrutiny. Any enhancements to these tools will improve the

reliability and affordability of the nation’s electricity supplies” [20]. Reports by the

Federal Energy Regulatory Commission (FERC) concluded that since the cost of

upgrading existing independent system operator (ISO) market software is less than

$10 million dollars [6] and small increases in efficiency of dispatch can be measured

in billions of dollars per year, the potential benefit-to-cost ratio of better market

software is at least 100 fold [21]. This dissertation work is motivated by this premise

and the main contributions are briefly summarized as follows.

1. The IV-ACOPF Formulation: The IV-ACOPF formulation has a different

mathematical representation from the canonical ACOPF formulations but is

provably equivalent. The canonical ACOPF formulations compute the nonlin-

ear and nonconvex apparent power flows, whereas the IV-ACOPF computes

linear current flows based on the current injections method and then balances

the nodal power injections and withdrawals through nonconvex constraints that

relate the bilinear terms within each node. This work was originally published

in [22].

2. The Successive Linear Programming (SLP) IV-ACOPF Algorithm: The SLP
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IV-ACOPF algorithm is proposed to solve the IV-ACOPF formulation. This al-

gorithm can be solved with commercial linear programming (LP) solvers, which

are the industry standard for ISO market software. Current ISO market soft-

ware performs an iterative algorithm but only checks for AC feasibility whereas

this approach simultaneously co-optimizes real and reactive power dispatch sub-

ject to the operational and physical constraints of the AC network. The SLP

algorithm can be readily extended and integrated into more complex decision

processes that are more representative of actual practices, especially unit com-

mitment (UC). This work demonstrates an acceptable quality of convergence to

a best-known solution and linear scaling of computational time in proportion to

network size. Moreover, the time complexity of the SLP algorithm outperforms

that of the nonlinear programming (NLP) commercial solvers for the full range

of test networks. As a result, the SLP algorithm is expected to outperform the

NLP solvers tested, i.e., Ipopt and KNITRO, on larger scale networks. Fur-

thermore, the SLP algorithm could be applied in parallel with both Gurobi and

CPLEX from various starting points, which may further improve the reported

linear time complexity. This work was originally published in [22].

3. The Outer Approximation (OA) Algorithm for the UC with ACOPF Problem:

The UC with ACOPF constraints in this problem are solved to simultaneously

co-optimize real and reactive power commitment and dispatch, whereas prior
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research solves the unit commitment with alternating current (AC) feasibility.88

The OA algorithm extends the SLP IV-ACOPF algorithm and leverages com-

mercial MILP solvers that are currently used in the ISO market software. This

work is the first study known to analyze the economic and operational impact

of more accurate ACOPF constraint modeling on the UC problem when com-

pared to copperplate and direct current optimal power flow (DCOPF) constraint

modeling approaches. The results indicate considerable divergence between the

market settlements and the stability and reliability requirements when overly

approximated network models are assumed. The computational speeds for both

the ACOPF and the ACOPF for residual unit commitment (RUC) approaches

are promising: the ACOPF approach is 5–15 times slower than the DCOPF

approach and incorporating the RUC to the DCOPF approach is 1.5–5 times

slower than the DCOPF alone. This work was originally published in [23].

4. Energy Storage for Transmission System VAr Support: Trade-offs Between Grid

Benefits and Storage Operator Profit: This is the first known formulation to

model energy storage system (ESS) integration when distributed energy stor-

age is used to provide VAr support in addition to traditional grid-scale storage

services. The ACOPF with storage model is formulated and then the semidefi-

nite relaxation (SDR) proposed in [24] is applied; the SDR is a convex problem

for which theoretical properties can be derived under strong duality [25]. The-

88excluding the solution technique by Bai and Wei [127] which also considers the ACOPF con-
straints but in a SDP problem with a 0-1 heuristic rounding strategy
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oretical results prove that optimal storage integration in a purely competitive

market maximizes the storage operator’s marginal profit, which is dual to min-

imizing system costs. The storage operator’s marginal profit is demonstrated

to be a function of the services provided and the locational marginal prices in

AC networks. The analysis demonstrates that energy storage can make sub-

stantially higher profits by providing not only power and energy services but

also reactive power compensation. This study also compares payments based on

the nodal prices for reactive power to the remuneration approaches in current

market practice. The results demonstrate that there may be disincentive for

storage operators to provide this service if it is not adequately paid for in the

market; furthermore, most storage technologies would not qualify for reactive

capability rates as specified by current tariffs. The results in this study high-

light a tight yet understated relation between current market design and the

financial viability of large-scale storage integration in AC power systems. This

work is an extension of the conference proceedings [26].

5. Exact Convex Relaxations of an OPF Approximation with Losses: A DCOPF

with losses formulation is proposed in order to analyze how real power losses

improve the DCOPF approach for optimal storage integration in AC networks

when storage is remunerated for power and energy services but not for reactive

power compensation, as is the case for most ESS installations in current market

design. This work incorporates quadratic loss approximations derived from the
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AC power flows (ACPF); the resulting formulation of the DCOPF with losses

and storage model is a nonconvex quadratically constrained quadratic program

(QCQP). Both a SDR and a second-order cone relaxation (SOCR) are proposed

to reformulate the original QCQP as a convex problem. The main theoretical

results prove that both of these relaxations provide an exact lower bound to

the original QCQP. The work demonstrates that costs due to real power losses

are a key component of the locational marginal price (LMP) and therefore are

critical in determining optimal ESS dynamics and allocation. This work can be

extended to model losses exactly for a variety of other applications. This work

is an extension of the conference proceedings [27].

7.2 Publications

The following peer-reviewed journal and conference publications are directly related

to this dissertation:

• A. Castillo, C. Laird, C. A. Silva-Monroy, J.-P. Watson, and R. P. O’Neill,

“The unit commitment problem with AC optimal power flow constraints,” IEEE

Transactions on Power Systems, DOI: 10.1109/TPWRS.2015.2511010, 2016.

(Chapter 4)

• A. Castillo, P. Lipka, J.-P. Watson, S. Oren, and R. P. O’Neill, “A successive

linear programming approach to solving the IV-ACOPF,” IEEE Transactions

on Power Systems, DOI: 10.1109/TPWRS.2015.2487042, 2015. (Chapter 3)
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• A. Castillo and D. F. Gayme, “Grid-scale energy storage applications in renew-

able energy integration: A survey,” Energy Conversion and Management, vol.

87, pp. 885− 894, 2014. (Chapters 5 and 6)

• A. Castillo, X. Jiang, and D. Gayme, “Lossy DCOPF for optimizing congested

grids with renewable energy and storage,” in Proceedings of the 2014 Ameri-

can Control Conference (ACC), Portland, OR, June 2014, pp. 4342 − 4347.

(Chapter 6)

• A. Castillo and D. F. Gayme, “Profit maximizing storage allocation in power

grids,” in Proceedings of the 52nd IEEE Conference on Decision and Control

(CDC), Firenze, Italy, Dec. 2013, pp. 429− 435. (Chapter 5)

7.3 Future Research

The contributions of this dissertation address some of the key challenges in ACOPF

research. Certain limitations in the above contributions as well as future directions

of work can be explored through the following extensions:

• A Successive Linear Programming Approach to Solving the IV-ACOPF : In

terms of algorithm development, investigating alternative merit functions89 or

incorporating a filter method90 can avoid the pitfalls of the current penalty

function approach in order to enforce more robust performance from any ini-

89see footnote 40
90see footnote 41
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tialization. Incorporating such global convergence91 properties could further

improve both the computational performance and the convergence quality of

this algorithm.

• The Unit Commitment Problem with AC Optimal Power Flow Constraints :

Since the proposed OA method spends most of the computational time in the

single iteration of the master problem, further improvements to the MILP and

leveraging decomposition techniques for distributed, parallel optimization could

lead to significant gains. For example, Feizollahi et al. [109] apply alternating

direction method of multipliers92 (ADMM) to the unit commitment problem

whereas Sun et al. [201] apply ADMM to the ACOPF problem to solve meshed

networks. Furthermore, a future study could compare the fidelity and compu-

tational performance of this approach to current market practices. However

this would require access to the data and market software used by the system

operators.

• Energy Storage for Transmission System VAr Support: Trade-offs Between Grid

Benefits and Storage Operator Profit : The proposed framework can be extended

to incorporate other valuable ESS services (e.g., regulation)93 as well as further

investigate market design for reactive power compensation. Another extension

91see footnote 32
92A decomposition-coordination procedure that blends the benefits of dual decomposition and

augmented Lagrangian methods for constrained optimization in which the solutions to small local
subproblems are coordinated to find a solution to a large global problem [200].

93see footnote 15
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would be to perform a stochastic study that builds upon the fundamental results

in this study in order to determine the expected value of ESS services under

uncertainty over several realizations of demand and wind profiles. Given that

incorporating storage has the effect of linking different time periods together,

the dimensionality of the problem can make a stochastic approach more chal-

lenging. A third extension would be to investigate optimal ESS integration on

the distribution level because the direct current power flow (DCPF) assump-

tions do not apply to low voltage networks and the reactive power compensa-

tion and voltage control in addition to the traditional storage services become

increasingly important with significant penetrations of controllable loads and

distributed energy resources.

• The Role of Network Losses in Optimal Storage Allocation: The proposed for-

mulation can be extended to include both investment and operations decisions of

the storage operator. Also, the current framework assumes a perfectly compet-

itive market but a future extension might include strategic behavior of storage

operators.94 This framework could provide insight into optimal control and co-

ordinated scheduling of geographically dispersed ESS units that constitute the

same investment portfolio.

• Market Implications of Optimal Power Flow with Controllable Network Ele-

ments : Currently in review [202], this work incorporates into the IV-ACOPF

94ongoing research with Roderick Go, Sonja Wogrin, and Dennice F. Gayme
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formulation models of variable tap transformers, phase shifters, line switching,

and unified power flow controllers; this formulation is then solved with the SLP

algorithm. This study indicates a substantial economic and operational value

of such devices in the real-time markets especially when stability and reliability

constraints become prohibitive. Furthermore, the study indicates that optimal

placement of such devices is as important as optimal control. However, ap-

propriate incentive structures are not in place and further extensions include

proposing such market mechanisms.

• Running a More Complete Market with the SLP IV-ACOPF : Currently in re-

view [203], in this work the SLP algorithm determines the market settlements

and corresponding services when simultaneously co-optimizing real and reactive

power dispatch. A preliminary result is that current market payments based

on the DCOPF approach may not cover the marginal value of reactive power

compensation or may misrepresent the value of voltage control as congestion

rent. Furthermore, this work demonstrates how to adequately distribute the

market settlements in such a way that the prices support the cost minimization

solution as determined by the SLP algorithm.
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