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Chapter 1

Introduction
1

Deregulation and growing decentralization lead to an increasing complexity of energy systems. Given the
envisaged creation of a common European energy market and the transformation of energy supply towards
sectoral coupling and electricity generation from variable, renewable energy sources, this trend can be ex-
pected to continue.
In this context, new energy policies are often investigated with the help of linear optimization models (Baños
et al., 2011). However, the increasing complexity of the system to be modelled results in energy system op-
timization models (ESOM) that reach their limits in terms of memory demand and reasonable computing
time. For example, very complex models on single servers could achieve or exceed computing times of weeks
to a month with memory consumptions of 100 GB and more. The mathematical optimization problems
formulated in the models reached orders of magnitude that pushed the then most powerful solvers such
as CPLEX, Gurobi, XPress, or SCIP to their limits. Existing and especially future research questions in
the field of energy systems analysis could thus only be addressed to a limited extent. Many energy system
models were then, as they are now, based on the General Algebraic Modeling System (GAMS) modeling
software. Since models with high spatial and temporal resolution can only be parallelized trivially to a
limited extent, the potential of High Performance Computers (HPC) could not be used without consider-
able effort. Accordingly, the solution of temporay and spatial high-resolution ESOM proved to be difficult.
Furthermore, the methodological uncertainties from typically used reduction approaches such as temporal
or spatial aggregation were only insufficiently known and investigated. In addition, the heterogeneity of
applied strategies results in the fact that the comparability of model-based scenario studies is difficult and
the trade-off between implementation costs and achievable performance is often unknown. Since the used
models show similarities in essential characteristics (e. g. with regard to fundamental equations or applied
solver software packages), it can be assumed that effective speed-up strategies for energy system models are
transferable.
In order to address these technical problems in scientific work, the BEAM-ME project (”Realisierung von
Beschleunigungsstrategien der Anwendungsorientierten Mathematik und Informatik fuer Optimierende En-
ergiesystemmodelle”, funded by the German Federal Ministry for Economic Affairs and Energy) has devel-
oped solutions to the following questions:

1. What are useful strategies and approaches for solving highly detailed ESOM?

2. Which requirements for modern energy system model formulations result from solver- and model-based
acceleration methods?

3. How can the transfer of methods and approaches between ESOM and HPC be facilitated? Which

1This chapter is based on the preprint of ”Cao, Karl-Kiên and von Krbek, Kai and Wetzel, Manuel and Cebulla, Felix and
Schreck, Sebastian (2019): Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System
Optimization Models, DOI: 10.3390/en12244656; Journal: Energies; URL: https://www.mdpi.com/1996-1073/12/24/4656”
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guidelines can be formulated?

4. How can methods and approaches be translated into universally applicable algorithms and how can
they be made available to the scientific community?

5. What are the possible contributions of acceleration methods to future research questions in the field
of energy system analysis?

At the beginning of the project, the basic principles were initially developed. On the technical side, an
overview of HPC-enabled solvers available at that time was created with a special focus on open source
availability. On the basis of this research, it was considered whether a completely new development or
building on an existing solver should be pursued in the future. At the same time, a systematic overview of
common model-based performance enhancement methods, e.g. by clever reduction of the model dimensions,
was compiled. These were then examined in detail using the ESOM REMix developed at DLR.
A central element of the project was the Model Experiment (MEXT), whose aim was to ensure the transfer-
ability of the methods investigated in the project to other ESOMs. In three calls for proposals, six partner
institutions were selected to provide their GAMS-based models. These models were used to demonstrate the
transferability of the model-based performance enhancement methods over the course of the project.
This introductory section provides a first overview of ESOM characteristics (1.1), the modeling system
GAMS (1.1.2), solution algoritms for linear optimization problems (1.2) and High Performance Computing
(1.3). It also includes a description of the BEAM-ME model experiment (1.4).
Part I Modeling Based Performance Enhancement of this guide outlines speed-up methods on the
modelling side. It comprises chapter 2 and chapter 3. Chapter 2 describes model based performance en-
hancement methods in the three model dimensions space, time and technology. Chapter 3 presents the
evaluation of selected methods using the ESOM REMix.
Part II Technical Performance Enhancement, deals with technical performance enhancement, i.e. the
combination of high performance computing and parallelized solving of linear ESOMs. This part contains
chapters 4 and 5. Chapter 4 presents the components of the technical performance enhancement approach:
The development of a new solver, high performance computing and the preparation of ESOMs to obtain
a block structure of the coefficient matrix which separates independent blocks from linking equations and
variables. The performance enhancement that can be achieved by this technical approach is evaluated in
chapter 4.
Part III Results of the Model Experiment describes the benchmark comparison between REMix and
six additional models from other institutions in chapter 6. This chapter covers both model-based as well as
technical performance enhancement methods applied in the model experiment part of BEAM-ME.
Part IV Conclusions summarizes the major insights from this best practice guide and lessons learned
from the overall BEAM-ME project.
Part IV Appendices provides three chapters: Appendix A presents the simplified ESOM ”SIMPLE”,
Appendix B provides an instruction how to run SIMPLE on the supercomputer Hazel Hen and Appendix C
provides additional information about node-level HPC architecture.

1.1 Energy system optimization models: characteristics and di-
mensions

In the context of energy systems analysis a broad spectrum of research questions is addressed by ESOM
to support decision making in both energy politics and energy industry. In particular, this concerns the
development of future strategies such as energy scenarios for mitigation of climate change (Paltsev, 2016) or
fundamental analyses of electricity markets (Ventosa, Baillo, Ramos, & Rivier, 2005) and investment plan-
ning by system operators (Kagiannas, Askounis, & Psarras, 2004), (Wu, Zheng, & Wen, 2006). Therefore,
the objective of the associated optimization problems (OPs) is either the optimal operation or the optimal
configuration of the analyzed system which consist of a diverse set of technologies. With regard to electricity
generation, the former is originally known as Unit Commitment (UC) or Economic Dispatch (ED) prob-
lem (Zhu, 2015), while the latter is referred to as Generation Expansion Planning (GEP) (Oree, Hassen, &
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Table 1.1: Characteristics of Energy System Optimizing Models

Dimension Model characteris-
tic

Descriptive charac-
teristic

Example

Short-term (sub-annual operation) /
Long-term (configuration/ investment)

Time Set of time steps Temporal resolution hourly / each 5 years
Planning horizon one year / from 2020 until 2050

Space Set of regions Spatial resolution Administrative regions (e.g. NUTS3
(Eurostat, 2017))

Geographical scope European Union
Technology Variables and con-

straints per technology
Technological detail Consideration of start-up behavior,

minimum downtimes
Set of technologies Technological diversity Power and heat generation, transmis-

sion grids and storage facilities

Fleming, 2017). If these problems are resolved on the spatial scale, the consideration of transport infras-
tructures, such as high voltage transmission grids, and thus modeling of multi-area OPs becomes relevant.
Typical examples are Optimal Power Flow (OPF) problems (Frank, Steponavice, & Rebennack, 2012) on
the operational side and Transmission Expansion Planning (TEP) (Quintero, Zhang, Chakhchoukh, Vittal,
& Heydt, 2014) on the configurational side.
Furthermore, due to the increasing relevance of renewable energy sources in todays and future energy sys-
tems, also the evaluation of strategies which make use of electricity storage facilities to integrate fluctuating
power generation becomes more and more important (Haas et al., 2017).
The problems addressed by energy systems analysis are typically combinations of the above mentioned as-
pects which result in integrated Bottom-Up models that differentiate three major scales: technologies, time
and space. Table 1.1 shows these scales together with their characteristics for exemplary applications. Two
kinds of characteristics are distinguished here. While the descriptive characteristic is related to the descrip-
tion of the underlying real world problem, the model characteristic refers to the way how this problem is
translated into a mathematical model formulation.
Depending on the application, the three dimensions are differently pronounced or resolved in energy system
analysis. For example, on the one hand, ESOMs are strongly spatially resolved with the aim of cost-optimized
network expansion planning by TEP. On the other hand, also the temporal resolution becomes important
as soon as a study tries to capture the variability of power generation from renewable energy sources. How-
ever, formulating a mathematical model with these characteristics usually results in coupling of time, space
and technology among each other. Even more importantly, the need of addressing flexibility demands in
future energy systems (Hendrik Kondziella & Thomas Bruckner, 2016) also leads to couplings within these
dimensions. In particular, these couplings are caused by temporally shifting of generation and consumption
with storage facilities or demand side management measures which links discrete points in time, by power
exchange over transmission grids that results in an interdependency of regions as well as by cross-sectoral
technologies such as combined heat and power (CHP) plants.

1.1.1 Specific characteristics of different energy system model types
One substantial common characteristic of optimization models, we refer to as ESOMs, is the use of a cost-
based objective function (1.1)

Objective function: Minimize:
∑
t∈T

∑
n∈N

∑
u∈U

ct,n,upt,n,u (1.1)

in conjunction with a power balance equation (1.2)
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subject to:
∑
u∈U

pt,n,u = dt,n ∀t ∈ T, ∀n ∈ N

pt,n,u ≥ 0

(1.2)

where p is a variable of power supply, c are specific costs, d is power demand, T is the set of time steps, N
the set of regions and U the set of technologies.

Although different ESOMs consist of a large variety of further constraints, such as capacity- activity, flow
or security constraints, they share another similarity concerning the structure of the coefficient matrix A
of the appropriate linear program (Figure 1.1): The above mentioned interdependencies of time, space and
technologies translate either into linking variables or linking constraints. Both are characterized by the fact
that they prevent the OP from being solved by solving independent sub-problems (indicated by the colored
blocks in Figure 1.1). From an applied point of view, this means, for example, that for a selected time frame
the dispatch of reservoir power plants cannot be determined without the information about the storage level.
However, the storage level of the actual time frame also relies on the dispatch of previous points in time.

Figure 1.1: Non-zero entries (black dots) in an exemplary coefficient matrix A of an integrated ESOM with
linking variables (grey area at the left), linking constraints (grey area at the bottom) and independent blocks
(colored blocks).

In this context, variables that occur simultaneously in several equations are generally referred to as linking
variables (or sometimes complicating variables). Provided that an appropriate permutation is given, as
shown in Figure 1.1, linking variables appear as vertical lines of non-zero entries in the coefficient matrix.
With regard to the temporal scale, representatives of linking variables in ESOMs are used when performing
capacity expansion as the appropriate investment decision variables (e.g. opposed to activity variables) are
not defined for each time step of the operational time horizon. This is illustrated by inequality 1.3

pt,n,u ≤ Pn,u + In,u ∀t ∈ T, ∀n ∈ N, ∀u ∈ U (1.3)

where P is existing capacity and I the variable of capacity expansion. Inequality 1.3 is defined for each
time step t, and I stays the same for each t. In contrast to linking variables, horizontal lines of non-zero
entries in the coefficient matrix indicate linking constraints (Figure 1.1), sometime referred to as complicating
constraints. For example, fuel availability constraints, such as used for modeling biomass fired power plants,
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typically define a temporally non-resolved value as an annual limit. To ensure that the total fuel consumption
within the operation period stays within this limit, a linking constraint (equation 1.4) couples the involved
variables:

Fuel-availability constraint:
∑
t∈T

∑
u∈Ubio

pt,n,u ≤ µuFn ∀n ∈ N (1.4)

where F is the available fuel, µ is the conversion efficiency and Ubio the set of biomass power plants.

1.1.2 The Optimization Environment GAMS
Today, algebraic modeling languages such as the General Algebraic Modeling System (GAMS) are widely
used to represent and solve mathematical programming problems. Their main distinguishing features are the
use of relational algebra and the ability to provide partial derivatives on multidimensional, very large and
sparse structures. The usage of data structures specifically tailored for the purpose of algebraic modeling
make GAMS models easily readable for both, humans and by machines. To achieve its goals to improve
the model builder’s productivity, reduce costs, and improve reliability and overall credibility of the modeling
process, GAMS established the following key principles:

� The problem representation is independent of the solution method.

� The data representation follows the relational data model.

� The problem and data representations are independent of computing platforms.

� The problem and data representations are independent of user interfaces.

The aforemantioned characteristcis make GAMS an efficient modeling tool for the field of energy system
analysis where it is widely used.

1.2 Solution algorithms

Practically successful solving algorithms for linear programs (LPs) predominantly fall into one of the following
two categories: Simplex and interior-point. For either of these methods a wealth of books and research articles
exists, see for instance (Matousek & Gärtner, 2007) Introduction to Linear Optimization. Most state-of-the-
art commercial linear solvers provide both Simplex and interior-point algorithms. This diversity does not
come without reasoning: While for large-scale LPs the interior-point approach usually prevails, the Simplex
algorithm is often faster for smaller problems and is moreover indispensable for the solution of mixed-integer
programs (due to its powerful warm-start capabilities). Although they solve the same problem, Simplex and
interior-point methods pursue fundamentally different approaches. To illustrate this behavior, the reader
is reminded that the set of feasible solutions to a linear program can be mathematically represented as a
polyhedra, a finite intersection of halfspaces. While the Simplex method moves along the surface of this
polyhedra (or more precisely along its vertices) towards an optimal solution, interior-point methods start
inside the polyhedra and make their way towards the surface (but unlike the Simplex method not in general
towards a vertex). As already mentioned, the interior point algorithm has proven to usually be the better
choice for tackling large-scale LPs. It also brings the advantage that the number of its iterations rarely
surpasses 50—an empirical magic number with little theoretical foundation. In contrast, one cannot in
general deduce the total required number of iterations of the Simplex algorithm from its current number
of iterations. Furthermore, for linear programs that come with a block-diagonal structure and both linking
constraints and linking variables (a structure often found in time-parameterized energy system models), the
linear algebra within interior point methods can often be efficiently parallelized. This property allows to
solve problems of a scale intractable for desktop machine on supercomputers. Consequently, for solving large-
scale LPs derived from energy systems, interior-point algorithms are usually the preferred choice, be it for
off-the-shelf solving as provided by commercial software packages or hand-tailored specialized algorithms (as
for instance developed in the BEAM-ME project). Nevertheless, one certainly should test both interior-point
and Simplex algorithms for each particular energy model whenever this is possible.

17



1.3 High performance computing

High-Performance Computing (HPC) provides the resources that allow scientists and engineers to solve
complex problems, which couldn’t be solved before at all or not within an acceptable time frame. The high
performance of supercomputers comes from a lot of identical servers, so-called

”
compute nodes“, which use

a high performance interconnect to synchronize their work. While there is no strict, commonly accepted
definition of what constitutes a supercomputer, in practical terms, the top 500 of them mark out the boundary
of HPC systems. The TOP500 list shows the known most powerful computer systems2 around the world
(TOP500.org, 2018). What is needed to be among them?

Above all, the system has to solve a dense n by n system of linear equations A = bx with a certain
aggregated performance, which is measured in units Flops (Floating-point operations per second). The
TOP500 Benchmark HPL (High-performance linpack benchmar) (ICL, 2018) used for this purpose solves
a random dense system of linear equations in double precision using LU decomposition with partial row
pivoting. A supercomputer needs to perform O(n3) floating point operations to find the solution on that

way. Due to the nature of the HPL, the Byte/Flop ratio is small ≈ 8×n2[Byte]
n3[Flop] and it is therefore compute-

bound and to the fact that, a performance of one CPU chip is limited by the power consumption, size
constraints and memory capacity, HPC systems grow substantially through the use of more processor units,
especially the so-called CPU cores3.

However, if the performance of memory and interconnect are not scaled accordingly, it makes the machine
unattractive for most of the real-world applications: The higher the Byte/Flop ratio of an application,
the more the HPC system loses its efficiency. The increasing number of processors and their aggregated
performance results in increasing requirements on the interconnect connections, which became one of the
bottle necks in HPC: The performance (latency and the bandwidth) of the high speed interconnect is by one
to two orders of magnitude lower than those of the memory.

Figure 1 shows the trend of supercomputer performance in the top 500 lists of the past 26 years. The results
are based on the sum of the performance of all supercomputers and the performance of the slowest one and
the fastest one in each year of the time frame considered. The performance-optimized HPL shows almost
identical behavior as a dense matrix-matrix multiplication and achieves around 90% of the theoretical peak
performance on a small cluster and between 70% and 80% on the top supercomputers. Last several years
dominate China and the U.S. the TOP500 list: while two fastest supercomputers are from the U.S. (2019),
the third one is from China. Its name is

”
Sunway TaihuLight“4. Although still in 2017,

”
Sunway TaihuLight“

was the world’s largest supercomputer. Another distinctive property is that the Sunway TaihuLight has no
accelerators compared to Summit (rank 1) and Sierra (rank 2).

As one can see, the growth rate of performance has slowed down after 2011. The primary reason for this is
the difficulty for Moore’s Law to make the same advances as during the early stages of the development (see
section 4.2.1).

Unfortantly, HPL doesn’t reflect many challenges of HPC, so the HPL results are not representative of the
performance of real-world applications. Real-world applications usually don’t have such expensive compute-
bound kernels as HPL. Those compute kernels are mostly memory-bound, which leads to a drop in perfor-
mance to few percent of peak.

The new Benchmark
”
High Performance Conjugate Gradients“ (HPCG) has been developed with these

discussions in mind. The HPCG benchmark assembles a distributed sparse linear system using a 27-point
stencil at each grid point in a 3D computational domain, which has to be solved with a conjugate gradient

2
”
Powerfull“ is to be taken quite literally here, because the largest of the supercomputers consumes dozens of megawatt, 24

hours a day throughout the whole year.
3We are talking about CPUs here. Although accelerators such as GPUs are widely used in TOP500, the application of GPUs

in scalable scientific HPC applications is much more limited than that of CPUs.
4Sunway TaihuLight is a Chinese supercomputer located at the National Supercomputing Center in Wuxi. It uses a total of

40,960 Chinese-designed SW26010 manycore 64-bit RISC processors with 256 cores.
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Figure 1.2: 26 years of TOP500 trend

solver, where the pre-conditioner is a three level hierarchical multi-grid (MG) method with Gauss-Seidel.
The kernel of HPCG has a Byte/Flop ratio bigger than 4, which shows, in opposite to HPL, memory-bound
behavior for all current processors, which limits the overall performance approximately proportional to the
effective memory bandwidth of a single processor. On the other hand, HPCG as well as HPL do not specify
the size of the sparse linear systems, which makes it possible to hide the communication costs. Nevertheless:
in the year 2017, the world’s largest supercomputer is capable of 480.85 TFlops but only occupies the fifth
place in the ranking list of HPCG.

1.3.1 High performance computing in Germany
The Gauss Centre for Supercomputing (GCS, 2019) was founded in 2007 as a joint initiative between fed-
eral and state government and combines the three national supercomputing centers: the High Performance
Computing Center Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), and Leibniz Supercomputing
Centre, Garching (LRZ). The three national supercomputing centers operate germany’s most powerful su-
percomputers, providing the largest and most powerful supercomputing infrastructure in all of Europe. GCS
enables access to HPC resources and training opportunities for German and European researchers. The HPC
users and the developers are offered more than 60 courses addressing different aspects of HPC, which are
conducted at HLRS, JSC and LRZ and are focusing on scientific simulations on HPC. Additionally, the
centers offer HPC workshops and coordinate other activities to attract attendees from broad areas including
industry, for example

”
Supercomputing-Akademie“ at HLRS (Supercomputing-Akademie, 2019).

Another important task of GSC is the distribution of computation time on the Tier-0/Tier-15 systems of
these centers. The regular

”
Large Scale Projects“ calls enable applying for computing time on one or more

5Tier-0 and Tier-1 refer to the largest systems on european (Tier-0) and national (Tier-1) levels.
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GCS’s Systems6. For testing before submitting a proposal one can get a test account directly at one of the
centers.

Following a consistent German HPC strategy to complement GCS, Germany’s medium sized supercomputing
centers founded the Gauß-Allianz (GA) (GA, 2019) in 2008. GA brings together 21 HPC centers with total
40 HPC systems (status for 2019).

1.4 The model experiment in BEAM-ME
A key objective of the project BEAM-ME was to ensure the transferability of the project results. A

”
model

experiment“ was integrated into the project with the aim to apply the developed methods and solvers to
state of the art energy system models currently used by six renowned research institutions.

1.4.1 Participating models and partner institutions
The model experiment partners were selected through a series of competitive open tenders during the project.
Important criteria in the selection process included the excellence in scientific work in energy system mod-
elling especially with regard to research projects for the federal government, as well as complexity and
scalability of the models contributed to the project BEAM-ME.

Outside of BEAM-ME, the models are used on a day to day basis to provide technology/market analyses
and policy recommendations for the German, Swiss and European government and industry. The tenders
were designed to select different types of energy system models allowing to benchmark the newly developed
solver for a broad array of applications. The models distinguish the following modelling approaches:

� One model examines energy trading in particular and considers the technical requirements of many
individual power plants in detail (EWL).

� Other models optimise the use of power plants in the electricity market for individual scenario years,
partly coupled with the modelling of other sectors (heat, transport) (TUD, KIT).

� A third type of model examines the long-term development and transformation paths of the energy
system. Besides the annual use of power plants, this type also models investments in different generation
technologies for a period of 30-50 years. (EWI, DTU, PSI)

1.4.2 Aim of the model experiment
With regard to high performance computing, the models were adapted in order to be able to use the new
methods developed in this project. In order to decompose the energy system models for parallel computing,
the models had to be annotated in order to structure the problem into different blocks/sub problems suitable
for calculation on the distributed nodes. Model annotation is a feature in the modelling language developed
by the project partner GAMS. Members of the model experiment had to learn to develop models with a
high number of blocks (to be distributed on a high number of cores) and at the same time not to increase
complexity of the sub problems and the number of linking variables between the sub problems in order to
allow the new algorithm to still be able to solve these problems.

The second goal of the model experiment, apart from running energy models on HPC, was to investigate
different model based speed-up methods. Based on the results from experiences with REMix and experience
on performance improvements by the partners, five methods for improving computational speed-up of energy
system models were selected. In small groups these different speed-up methods were investigated and a
comparison of current implementations took place. The group of modelers developed best practice methods
and implementations.

1.4.3 Structure of the model experiment
The model experiment consisted of different parts as shown in figure 1.4.

6Projects are classified as
”
Large Scale“ if they require in total more than 35 million core-hours in one year on a GCS member
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1. Training
The aim of several training sessions was to pass on the knowledge acquired in the project to the
partners and to exchange information among themselves. A central part of the training was the use of
the possibility to annotate GAMS models with respect to certain block structures and thus to create
the basis for parallel solving with PIPS-IPM++. A second component of the training was the usage
of the supercomputers in Jülich (JSC) and Stuttgart (HLRS).

2. Runs on the fat nodes (JSC)
All partners provided model instances of different sizes in the second phase. These were calculated on
individual nodes with particularly large memory (

”
fat nodes“) on JUWELS (JSC) to enable compara-

bility. Model instances of different sizes could be tested with different existing commercial solvers. The
runs also represented the reference runs for the comparison with the distributed computations using
the PIPS solver developed in this project.

3. Annotation and PIPS runs on HPC
An important part of the project was the annotation of the individual models of the MEXT partners.
Only by assigning variables and restrictions to blocks could the participating models be upgraded to
allow decentralized computing on the high-performance computers. The partners jointly applied the
annotation methods developed by GAMS. Different tools were made available to them by GAMS and
DLR. Since this method had not been used before, this part of the project consisted of a committed
exchange of experience and the development of suitable methods and processes for annotating the
models. On this basis the model runs on HPC were carried out. This was done by the BEAM-ME
consortium or the MEXT partners received assistance in starting and evaluating their own instances
on the HPCs. The benchmark runs and lessons learned from the model experiment are presented in
chapter 6.

4. Development and comparison of model-based acceleration mechanisms
Besides the HPC calculations, the investigation of model-based performance enhancement methods
was an important part of the model experiment. The partners agreed on five methods which were to
be implemented and in some cases further developed by the partners within the framework of MEXT.
The methods could then be compared and suitable methods identified.

centre’s HPC systems.
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Figure 1.3: Models and research institutions contributing to the model experiment
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Figure 1.4: Models and research institutions contributing to the model experiment
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Part I

Modeling Based Performance
Enhancement
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Chapter 2

Overview of modeling based
performance enhancement methods

1

Modeling based strategies for ESOM performance enhancement are related to the content and formulation of
the model. Energy system modelers can implement and apply these strategies using their usual computing
capacities. Modeling based strategies comprise heuristics (model reduction, stepwise or nested solving) and
exact methods (different types of decomposition). We use the term “modeling based” interchangeably with
the term “conceptual”.

Despite the existence of a large number of modeling based speed-up approaches for ESOMs, it is not clear
which methods are the most promising ones to improve the performance of ESOMs that are used in the field
of applied energy system analysis. A majority of these models shares two characteristics (Zerrahn & Schill,
2017):

� Due to the assessment of high shares of power generation from vRES the time set that represents the
sub-annual time horizon shows the largest size (typically 8760 time steps)

� To be able to increase the descriptive complexity of the models, the mathematical complexity is sim-
plified. This means often the formulation of large monolithic LPs which are solved on shared memory
machines.

The aim of this report is therefore to systematically assess the effectiveness of different performance en-
hancement approaches for such ESOMs. Rather than the comparison of models that deliver exactly the
same results, we explore possible improvements in terms of needed computing time that can be achieved by
implementing different conceptual speed-up techniques into an ESOM while staying within a defined range
of accuracy.

2.1 Model reduction
Model reduction approaches are very common since they are effective due to the simply reduction of the
size of the appropriate OP (less variables and constraints). Furthermore, they are also implicitly applied to
ESOMs, for instance, due to limited input data access. Thus, these approaches usually manipulate input
data in a pre-processing step, instead of changing the way how an ESOM is solved. Based on the treatment
of available data we distinguish two forms of model reduction techniques: i) slicing and ii) aggregation.

1This chapter is based on the preprint of ”Cao, Karl-Kiên and von Krbek, Kai and Wetzel, Manuel and Cebulla, Felix and
Schreck, Sebastian (2019): Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System
Optimization Models, DOI: 10.3390/en12244656; Journal: Energies; URL: https://www.mdpi.com/1996-1073/12/24/4656”
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2.1.1 Slicing
Slicing approaches translate into focusing to a specific sub-problem by ignoring existing interdependencies,
and therefore only a part of the input data that could be analyzed is used. This means, for example, excluding
technologies such as CHP plants from a model (Brouwer, van den Broek, Zappa, Turkenburg, & Faaij, 2016)
or ignoring power exchange beyond neighboring regions on the spatial side (Weigt, Jeske, Leuthold, & von
Hirschhausen, 2010). Regarding the temporal dimension, analyses are conducted only for a specific target
year (Bussar et al., 2015) or time-slices are selected (Loulou & Labriet, 2008). These sub-sets represent
either critical situations, such as the peak load hour, or typical time periods are defined which are supposed
to be characteristic for the entire set of operational time steps. By this means, it needs to be noted that
slicing approaches can lead to significant deviations of results compared to the global optimum of the full
OP as they do not ensure that the relevant information within the available data is captured. However, if for
the selection of specific slices a pre-analysis is conducted, we refer to this process as part of an aggregation
as this approaches aim to take into account all input data. Therefore, they reduce the input data set in a
way that relevant information is maintained as far as possible. In the context of ESOMs, aggregation can
also be described as coarsening of resolutions for each of the characteristic model dimensions.

2.1.2 Spatial Aggregation
The treatment of large, spatially explicit data sets is a common challenge in the context of power network
analysis. However, corresponding to the area of responsibility of system operators, methods for power
networks were developed to study certain slices of the entire interconnected network. The objective of these
classical network reduction techniques is therefore to simplify the neighborhood of the area of interest by the
derivation of network equivalents based on given power flows. These equivalents, such as derived by Ward
or REI methods, represent the external area which is required to show the same electrical behavior as the
original network (Deckmann, Pizzolante, Monticelli, Stott, & Alsac, 1980). In the case of Ward equivalents,
the networks’ nodal admittance matrix is reduced by Kron’s reduction (Dorfler & Bullo, 2013). In contrast,
however, the REI procedure applies a Gaussian elimination to external buses. Power injections are preserved
by aggregating them to artificial generators which are connected to a representative, radial network which
is referred to as REI.

The principle of creating network equivalents is also applicable to ESOMs, although their scope is rather
the interaction of different technologies than the exclusive assessment of stability or reliability of electrical
networks. Recently, (Shayesteh, Hamon, Amelin, & Söder, 2014) adapted the REI approach to use-cases
with high vRES penetration. However, this step of creating aggregated regions for a multi-area ESOM needs
to be preceded by a partitioning procedure which allows for defining of regional clusters. In general, the
appropriate clustering algorithms, such as k-means, group regions or buses with similar attributes together.
In (Shayesteh et al., 2014) the admittance between two buses is used to account for strongly connected regions.
Opposed to this, (Shi & Tylavsky, 2015) as well as (HyungSeon Oh, 2011) derive network equivalents based
on reduced power transfer distribution factor (PTDF-) matrices which rely on the linearization of certain
system operating points.

Despite the availability of a broad spectrum of sophisticated aggregation techniques, in the context of energy
system analysis, the applied literature is governed by simple spatial aggregation approaches. In particular,
they are usually characterized by a summation of demand and generation capacities, whereas intra-regional
flows are neglected and regions are grouped based on administrative areas, such as market or country
borders (Bethany A. Corcoran, Nick Jenkins, & Mark Z. Jacobson, 2012), (Katrin Schaber, Florian Steinke,
& Thomas Hamacher, 2012), (Christian Bussar et al., 2016). Reasons therefore are, on the one hand side, the
availability of required, large data sets of spatially explicit data for the broad diversity of technologies, such
as potentials or existing infrastructure. On the other hand, the majority of network equivalents is based on
pre-computed system states of the spatially highly resolved model, for example, a solved power flow study.
This in turn requires the application of nested approaches (see section 2.2), where first simplifications to
other scales of an ESOM are required in order to obtain the power flows of the entire network. By this means,
reasonable simplifications are the use of time-slices in form of operational snapshots and the summation of
power supply from all generation technologies.
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Nevertheless, concerning scenarios of the European energy system (Thomas Anderski et al., 2014), as well
as (Hörsch & Brown, 2017) take a step towards improved methodologies regarding aggregation of spatially
highly resolved data sets. Both use power demand as well as installed generation capacities as attributes
for state-of-the art clustering algorithms. However, while in (Thomas Anderski et al., 2014) PTDF-based
equivalents are built, the authors in (Hörsch & Brown, 2017) apply a more or less straight forward process
for creating spatially aggregated regions.

2.1.3 Temporal Aggregation
Temporal aggregation refers to representative time periods or the process of data down sampling derived
from a highly resolved initial data set.

Down sampling is a method where time series based input data is coarsen to a lower temporal resolution
(e.g. by averaging from 1-hourly to 6-hourly). In ESOM, down sampling typically affects demand profiles
(e.g. electric or heat load) or the feed-in from vRES power. Although the approach is an effective way
to reduce computing times – (Stefan Pfenninger, 2017) for example shows a reduction of CPU time up to
80% (scenario 90% 2014)–the method is rarely applied. This is due to the claim to capture the dynamics
of variable power provision from renewable energy technologies. By this means, ESOMs typically rely on
their highest resolved data and often use hourly input (Zerrahn & Schill, 2017). Exceptions can be found
in studies that analyze the impact of different temporal resolutions in unit commitment approaches, e.g.
in (Deane, Drayton, & Gallachóir, 2014) (5 min, 15 min, 30 min, 60 min) or in (O’Dwyer & Flynn, 2015)
as well as in (Pandzzic, Dvorkin, Yishen Wang, Ting Qiu, & Kirschen, 2014) who both compare a 15 min
resolution with hourly modeling.

More common is the combination of down sampling and the selection of representative time periods, such
as applied in (Sylvie Ludig, Markus Haller, Eva Schmid, & Nico Bauer, 2011) or (Leuthold, Weigt, & von
Hirschhausen, 2012). Representative time periods are intended to illustrate typical or extreme periods of
time. These time intervals are then stacked up to derive the overall time horizon, e.g. one year. Moreover,
also challenges exist to account for the chronological relationship between hours which in particular becomes
important if time-linking constraints are incorporated in an ESOM. One approach to tackle this issue is
presented by (Wogrin, Dueñas, Delgadillo, & Reneses, 2014) who define transitions between system states
derived by applying a k-means-like clustering algorithm to wind and demand profiles. As stated in (Stefan
Pfenninger, 2017), the selection of time-slices is either based on a clustering algorithm, such as k-means
(Green, Staffell, & Vasilakos, 2014) or hierarchical clustering (Paul Nahmmacher, Eva Schmid, Lion Hirth,
& Brigitte Knopf, 2016), or simple heuristics (Spiecker, Vogel, & Weber, 2013).

While temporal aggregation is an effective method to reduce computing times, it is not always clear which
error is introduced by it. This issue has been tackled by a number of recent papers, such as (Stefan Pfenninger,
2017), (Haydt, Leal, Pina, & Silva, 2011) or (Sylvie Ludig et al., 2011). The studies unanimously highlight
the rising importance of high temporal resolution with increasing vRES share. The authors also state
that there exists no best practice temporal aggregation and emphasize that it strongly depends on the
modeling setup. For instance, (James H. Merrick, 2016) recommends ten representative hours for robust
scenarios when only variable demand is considered. This number, however, increases significantly when vRES
and especially several profiles per technology are taken into account. With regard to representative days,
necessary to avoid errors by aggregation, he finds that the number of 300 is appropriate. This represents a
clear difference compared to the sufficient number of six representative days resulting in (Paul Nahmmacher
et al., 2016). (Paul Nahmmacher et al., 2016) use the same clustering technique, but assess model outputs,
such as total system costs, rather than the variance of clustered hours of the input time series.

2.1.4 Technological Aggregation
We define technology resolution as the abstraction level in a modeling approach to characterize the tech-
nologies relevant for the analysis. In this context, it can be stated that the higher the abstraction level, the
better the performance of an ESOM. This applies to both the aggregation of input data and the mathematical
model of a particular technology. The former, for example, refers to the representation of generation units
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(electricity, heat, fuels) or flexibility options (e.g. grid, storage). More precisely, classifications of power plant
types can be based on several attributes such as rated power, conversion efficiency, fuel or resources type.
Technological resolutions therefore range from very detailed modeling of individual generation units (Mitra,
Sun, & Grossmann, 2013) to general distinctions based on fuel consumption and resource (Bethany A. Frew,
Sarah Becker, Michael J. Dvorak, Gorm B. Andresen, & Mark Z. Jacobson, 2016). However, the methods for
deriving appropriate classifications or aggregations are rather based on simple grouping of attributes than
on specific clustering algorithms.

Moreover, the classification of technologies is strongly connected to the mathematical description since phys-
ically more accurate models typically require more detailed data. In this regard, a broad body of literature
investigates the necessary technological detail for power plant modeling. Often, these analyses compare
simplified linear programming approaches (ED) with more detailed mixed integer linear programming (UC)
models for least cost power plant dispatch. As a result, such studies assess differences in power plant dis-
patch (e.g. in (Bryan Stephen Palmintier, 2013), (Raichur, Callaway, & Skerlos, 2016), (Brady Stoll, Gregory
Brinkman, Aaron Townsend, & Aaron Bloom, 2016), (Kris Poncelet, Erik Delarue, Daan Six, Jan Duerinck,
& William D’haeseleer, 2016)) and, additionally, highlight effects on resulting metrics (e.g. storage require-
ments in (Cebulla & Fichter, 2017) or marginal prices of electricity generation in (Jan Abrell, Friedrich
Kunz, & Hannes Weigt, 2008), (Langrene, van Ackooij, & Breant, 2011).

The same applies to transmission technologies where (Munoz, Sauma, & Hobbs, 2013) for instance, study
modeling approaches (discrete vs. continuous grid capacity expansion) and their effects on the total system
costs. Also technological classifications can be made for different voltage levels or objectives of grid opera-
tion (e.g. transmission or distribution). Regarding mathematical models, resolutions range from detailed,
nonlinear AC-power flow over decoupled and linear DC-power flow to simple transshipment or transport
models (Nolden, Schönfelder, Eßer Frey, Bertsch, & Fichtner, 2013).

2.2 Heuristics: Nested Approaches

Even though also mathematical exact decomposition techniques (see section 2.3) could be interpreted as
nested approaches, in this section, we explicitly refer to methods that usually find near-optimal solutions
rather than a theoretically guaranteed exact optimum. In this context, nested approaches are used as a
synonym for heuristics. In contrast to meta-heuristics, this concerns methods that imply modifications
of the ESOM regarding the conceptual layer and thus base on the same mathematical solver algorithm. In
general, nested approaches are built on model reduction techniques (see section 2.1). Therefore, combinations
of several reduced instances of the same initial ESOM (original problem) are usually solved sequentially. This
means, that after the solution of the first reduced model is obtained, certain outputs are used as boundary
conditions (e.g. in the form of additional constraints) for the following model(s) to be solved.

As mentioned above, ESOMs have linking constraints or variables that globally link points of one dimension.
These characteristics are crucial for the decomposition of an OP into smaller instances of the same problem,
regardless of whether it should be solved by an exact decomposition (see section 2.3) or heuristic approach.
Often this is intuitively done by the application of a nested performance enhancement method where linking
variables, such as power flows or endogenously added capacities are used to interface between the different
reduced models.

In the literature, a wide range of examples for the applications of nested performance enhancement ap-
proaches exists. For instance, (Romero & Monticelli, 1994) propose an approach for TEP where they
gradually increase the technological detail starting with a simple transport model, and finally taking into
account Kirchhoff Voltage Law constraints as in a DC-power flow model.

With regard to the spatial scale, one obvious methodology can be described as “spatial zooming”, which
is similar to the classical methodology applied for power network analysis (see section 2.1.2). Possible
implementations can look like as follows: First a large geographical coverage is considered in a coarse
spatial resolution to study macroscopic interdependencies. In a second step, these interdependencies, such
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as transnational power flows, can be fixed in order to conduct a detailed analysis of the region of interest
(Gils, 2015). In (Haikarainen, Pettersson, & Saxen, 2016) the spatial dimension is simplified by the derivation
of network clusters, while for the solution of the original problem a selection of binary variables related to
pipelines and suppliers is restricted.

Comparing the different reduced models used in a nested approach, typically, a decrease of resolution on one
scale is often accompanied by an increase on another. In this regard, one common approach is decoupling
of investment decisions by “temporal zooming”. Therefore, first, a power plant portfolio is developed over
the analyzed planning horizon using a simplified dispatch model and pre-defined time-slices to simulate the
operation. In order to check whether the derived power plant portfolio performs well for a selected target
year, UC constraints are added and capacities are fixed in the subsequent model run(s) (Kris Poncelet et al.,
2016), (Scholz, Sandau, & Pape, 2016), (Brouwer et al., 2016). A similar method call (Babrowski, Heffels,
Jochem, & Fichtner, 2013) al “myopic approach” . In this case, for each year of the planning horizon a
model run is performed, whereas the resulting generation expansion is taken as an offset of installed power
generation for the subsequently analyzed target year.

In terms of size, rather than high resolutions on the technological or spatial scale, in applied energy system
analysis, ESOMs often need to consider large sets that represent the temporal scale (i.e. time series of 8760
hours) in order to capture the variability of vRES (Pfenninger, Hawkes, & Keirstead, 2014). In the following,
we therefore introduce two heuristic methods for this particular dimension in detail.

2.2.1 Rolling Horizon
The general idea behind rolling horizon methods is to split up the temporal scale (temporal slicing) into
smaller intervals to obtain multiple reduced ESOMs to be solved sequentially. In particular, this method is
used for two reasons. One is to account for uncertainties by frequently updating limited knowledge concerning
the future. This applies, for instance, to forecasts of load or electricity production from renewable energy
sources. Although the main principles of a rolling horizon approach apply to both operational and investment
planning, in the following we mainly refer to the former, the rolling horizon dispatch. Therefore, a typical
application is short-term scheduling of power systems with a high penetration of renewables (Tuohy, Denny,
& O’Malley, 2007), (Barth, Brand, Meibom, & Weber, 2006), (Silvente, Kopanos, Pistikopoulos, & Espuña,
2015).

The other purpose of implementing a rolling horizon approach to an ESOM is the premise that the total
computing time for solving individual reduced problems stays below the one for obtaining a solution for the
original problem.(Marquant, Evins, & Carmeliet, 2015) report of a wide variety of speed-up achievements
ranging from 15 up to 100 times. Depending on the model size there usually exists an optimal number of
time windows in terms of computing time, since the computational overhead for creating reduced models
increases with the number of intervals. Furthermore, the planning horizon of an individual time window
usually includes more time steps than necessary for the partial solution. In the context of energy system
analysis, this overlap is important to emulate the continuing global planning horizon. Especially the dispatch
of seasonal storage units is strongly affected by this as, without any countermeasures, it is more cost-
efficient to fully discharge the storage until the end of an operational period. Also time-linking variables
and constraints, such as annual limits on emissions, can only barely be considered in this way since global
information regarding the temporal scale can only be roughly estimated for each time window. For this
reason, inter alia indicated by a trend to overestimate the total system costs (Marquant et al., 2015), the
aggregation of interval solutions does not necessarily end up at the global optimum of the original problem.

2.2.2 Temporal Zooming
Concerning their capability to improve the performance of an ESOM, rolling horizon approaches have one
particular disadvantage. Since each partial solution is updated by a subsequent one, the reduced ESOM
instances are sequentially coupled. This prevents parallel solving.

The heuristic, we refer to as temporal zooming, overcomes this issue and allows for solutions closer to the
exact optimum of the original problem. Therefore, the rolling horizon approach is adapted in the following
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way. In a first step, time-linking information is gathered from the solution of an additional ESOM instance
which is reduced on the temporal scale. But, in contrast to the reduced ESOMs which consider specific
intervals within the full operational horizon, the temporal resolution is down sampled. This in turn allows
optimizing the dispatch of the original problem for the full planning period. Values of variables from this first
model run can subsequently be used to tune the consideration of global time-linking variables and constraints
within the intervals. Despite the need for an additional model run, total computing times for obtaining a
final solution can be expected to be at least competitive compared to rolling horizon approaches. This is
due to the fact that, on the one hand side, overlaps are not required and, on the other hand, the temporally
sliced ESOMs can be solved in parallel.

2.3 Mathematically exact decomposition techniques
Decomposition approaches are a well-known instrument for reducing the computing time in OPs. In this
case, an OP is broken down into a master and sub-problem(s). With regard to the structure of the OP’s
coefficient matrix, the decomposition can be exploited for the creation of individual blocks. Ideally, block
structures with globally linking variables or constraints can be isolated from the sub-problems, making them
solvable independently of each other, i.e. in parallel.

Despite this similarity to nested approaches, such as temporal zooming, the crucial difference concerning
exact decomposition techniques is the theoretically proven guarantee to find the optimal solution of the
original problem (Conejo, Castillo, Mı́nguez, & Garćıa Bertrand, 2006). However, this requires an iterative
solution of a master and sub-problems. Therefore, it can be stated, that compared to nested approaches,
decomposition techniques provide the best accuracy possible, but at the expense of additional computing
time.

2.3.1 Dantzig-Wolfe Decomposition
In particular, approaches that can treat linking constraints are Dantzig-Wolfe decomposition and Lagrangian
relaxation. The general idea behind both is to remove the linking constraints from the original problem to
observe a relaxed problem that decomposes into sub-problems. In the case of Dantzig-Wolfe decomposition
the objective function of the appropriate master problem consists of a linear combination of solutions of
the relaxed problem. Starting with an initial feasible solution, this function is extended with each iteration
if the new solution of the relaxed problem verifiably reduces the objective value (i.e. costs). Accordingly,
this process is called column generation since each iteration literally creates also new columns in the master
problems’ coefficient matrix. (Angela Flores Quiroz, Rodrigo Palma Behnke, Golbon Zakeri, & Rodrigo
Moreno, 2016) use this approach in order to decouple discrete investment decisions from dispatch optimization
for a GEP with UC-constraints. Although performance enhancements are examined for realistic applications
of different sizes, due to memory issues of not-decomposed benchmark models, these improvements are only
quantified for small model instances (ca. 3 times faster, 95 % less memory usage).

2.3.2 Lagrange Relaxation
The Lagrangian relaxation is derived from the common mathematical technique of using Lagrange multipliers
to solve constrained OPs where linking constraints are considered in the form of penalty terms in the objective
function of the master problem. In the applied literature, Lagrangian relaxation is used by (Virmani, Adrian,
Imhof, & Mukherjee, 1989) to treat the linking constraints, that couple individual generation units in the
UC problem. More recently, (Q. Wang, McCalley, Zheng, & Litvinov, 2016) applied Lagrangian relaxation
on a security-constrained OPF problem in order to decouple a security constraint that links variables of two
scales, contingencies and circuits. However, as the treated problem consists of both linking constraints and
linking variables, also Benders decomposition is applied.

2.3.3 Benders Decomposition
Opposed to the previously described decomposition approaches, Benders decomposition can be applied to
OPs with linking variables. The general concept of splitting an OP by this approach is based on fixing the
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linking variables in the sub-problem(s) using their values from the master problem’s solution. To improve
the solution of the master, the sub-problems are approximated by additional constraints. These so called
Benders cuts in turn rely on the dual variables of the obtained solutions in the sub-problems. As ESOMs are
often formulated as linear programs, due to duality of these problems, a translation of linking constraints into
linking variables is possible and thus Benders decomposition can be applied to almost all kinds of ESOMs.
Accordingly, it is a frequently exploited decomposition technique in the applied literature. Table 2.1 lists a
number of publications that apply decomposition techniques to ESOMs that are at least partially formulated
as linear programs (LPs) or mixed-integer linear programs (MILP). However, due to the non-linearity of AC-
power flow constraints, also non-linear programs (NLPs) are considered.
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2.3.4 Further Aspects
Besides the already presented decomposition techniques that rely on iteratively solving a master and sub-
problem(s), also mathematically exact approaches exist that are based on individual information exchange
between sub-problems rather than on the coordination provided by a master.(Zhao, Litvinov, & Zheng, 2014),
for instance, use this marginal based approach for independent scheduling in a multi-area OPF problem.
Compared to the heuristics presented above, this can be interpreted as the spatially decomposed counterpart
to the (temporally decomposed) rolling horizon approach.

Although decomposition approaches provide the capability to improve the performance of solving indepen-
dent sub-problems of an ESOM in parallel, these techniques are mostly applied for another purpose which
results in the iterative solution of a master and one sub-problem. A complicated mathematical problem,
such as a large NLP, is simplified by splitting it up into two problems, a smaller NLP on the one hand and a
less complicated problem, such as a MIP, on the other. This applies especially to the examples in table 2.1
for which nothing is listed in the column “Decomposed model scale”. And even though the most frequently
identified, decomposed model scale is found to be the temporal dimension, this usually refers to the sepa-
ration of sub-annual operation scheduling and long-term investment planning in GEP or TEP. According
to table 2.1, the other typical application of exact decomposition techniques is decoupling of power-flow or
security constraints from an UC model which generally refers to a spatial decomposition.

The computational benefits of parallel computing are especially exploited in the context of stochastic OPs.
Here the temporal scale is extended by almost independent branches which are referred to as scenarios. These
scenarios represent different possible futures which can be determined in parallel (sub-problems) while the
assessment of these several alternatives is done by the master problem. Besides the classical decoupling of
investment and operation decisions, this approach is also suitable in the context of short-term scheduling.
For example, (Papavasiliou, Oren, & Rountree, 2015) apply Lagrangian relaxation to decompose by scenarios
for a stochastic unit commitment model with dc-power flow constraints. Opposed to most ESOMs, they solve
their model on a high performance computer with distributed memory architecture. As can be expected,
(Papavasiliou et al., 2015) find a significant speed-up due to parallelization. This performance increase,
however, poorly scales with the number of cores (e.g. speed-up factor 7 for a hundred times the number of
cores). Nevertheless, the main goal of the presented approach is to stay below a threshold of computing time
that is suitable for day-ahead operation planning.
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Chapter 3

Performance analyses of modeling
based strategies in REMix

1

This chapter describes the performance analysis for a selection of modelling based strategies. From the
modeling based methods introduced in the previous chapter, five approaches for complexity reduction have
been identified for a detailed benchmark analysis. In the first part we introduce these methods and outline
the model setup as well as essential model characteristics of the REMix energy system model (Section 3.1.2).
The following section 3.1.3 outlines the approaches for model reduction and describes how to implement
the selected methods for (1) temporal and spatial aggregation, (2) rolling horizon dispatch, as well as (3)
sub-annual temporal zooming approaches. The second part of this chapter describes in depth the results
of the benchmark analysis for the modeling based strategies and outlines lessons learned for future model
development: Different ways of model formulation are evaluated. The results in section 3.2 provide a
systematic benchmark of the different speed-up approaches. It comprises of (1) an evaluation of pre-analyses
methods, (2) spatial and temporal aggregation methods as well as (3) heuristic decomposition methods.
The chapter concludes in section 3.3 with a summary of the main findings including a critical discussion of
limitations and methodological improvements.

Despite the existence of a large number of speed-up approaches for Energy System Optimization Methods
(ESOMs), it is not clear which methods are the most promising ones to improve the performance of ESOMs
that are used in the field of applied energy system analysis. In addition to the arrow-head structure of the
coefficient matrix (presence of linking constraints and linking variables, see section 1), a majority of these
models shares three characteristics (Zerrahn & Schill, 2017):

1. To be able to increase the descriptive complexity of the models, the mathematical complexity is often
simplified. This frequently means the formulation of large monolithic linear programs (LPs) which are
then solved

”
as one block” on shared memory machines.

2. Due to the assessment of high shares of power generation from variable renewable energy sources
(vRES) the set that represents the sub-annual time horizon shows the largest size (typically 8760 time
steps)

3. A great number of applied ESOMs are based on mathematical programming languages such as GAMS
or AMPL rather than on classical programming languages. Those languages enable model formulations
which are close to the mathematical problem description and take the task of translation into a format
that is readable for solver software. For this reason, the execution time of the appropriate ESOMs can

1This chapter is based on the preprint of ”Cao, Karl-Kiên and von Krbek, Kai and Wetzel, Manuel and Cebulla, Felix and
Schreck, Sebastian (2019): Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System
Optimization Models, DOI: 10.3390/en12244656; Journal: Energies; URL: https://www.mdpi.com/1996-1073/12/24/4656”
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by roughly divided into two parts, the compilation and generation of the model structure requested by
the solver and the solver time.

For the following analyses, we also use GAMS which is, according to a review conducted by (Zerrahn &
Schill, 2017), a very popular modelling language in the field of energy systems analysis. We focus on large
GAMS models for which total computing time is mainly dominated by solver time.
The general aim of this report is to systematically assess the effectiveness of different performance enhance-
ment approaches for ESOMs that share the above mentioned characteristics. Rather than the comparison of
models that deliver exact the same results, we explore possible improvements in terms of required computing
time that can be achieved by implementing different conceptual speed-up techniques into an ESOM while
staying within a sufficient accuracy range.
By this means, our aim is not to compare all above presented speed-up approaches, but those which are
able to achieve the comparatively best performance enhancement. In this context, our hypothesis for the
selection of model-based speed-up approaches to be systematically evaluated relies on three basic premises:

1. We focus on very large LPs that have a sufficiently large size (therefore allowing the computing time to
be dominated by the solver time) and still maintaining the possibility to be solved on a single shared
memory computer.
If we implement an approach that allows for reduction or parallelization of the initial ESOM by treating
a particular dimension, the highest potential therefore can be explored by applying such an approach
to the largest dimension (generally the time set). Accordingly:

2. We place emphasize on speed-up strategies that work along the temporal scale of an ESOM.
A high potential for performance enhancement still lies in parallelization, even though, for this study, it
is limited to parallel threads on shared memory architectures. Exact decomposition techniques have the
advantage to enable parallel solving of sub-problems. We claim that each exact decomposition technique
can be replaced by a heuristic, where the iterative solution algorithm is terminated early. In this way,
the highest possible performance should be explored, because further iterations only improve the model
accuracy; however they require more resources in terms of computing time. In addition, according to
the literature in Table 2.1, it can be observed, that mathematically exact decomposition techniques
are applied less often with the objective of parallel model execution, but instead the separation of a
more complicated optimization problem (e.g. MIPs from non-linear programms) from an easy-to-solve
one. Even though for very large linear programming problems this is not necessary. For these reasons:

3. We only analyze model reduction by aggregation and heuristic decomposition approaches.

3.1 Materials and methods

3.1.1 Overview
Our evaluation approach should provide an assessment of model-based performance enhancement approaches
for a very large ESOM that is intended to produce results for real life use-cases. However, this implies a
couple of challenges. A proper adaptation of a large applied ESOM for the comparison of a broad set of
speed-up strategies is very time-consuming. Accordingly, we limit the evaluation to the following performance
enhancement approaches:

� model reduction by spatial and temporal aggregation

� rolling horizon

� temporal zooming

Moreover, to meet the requirement for an assessment of very large ESOM instances, we want to prevent the
implementation of speed-up strategies into a model that is easily solvable by a commercial solver. Never-
theless, for having references for benchmarking solving the problem must still be possible. Hence, we select
an existing ESOM for which we know from experience that obtaining a solution is time consuming but not
impossible.
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Besides, for fair benchmarking, it must be ensured that the reference model already performs well, e.g.
with regard to solver parameterization. To meet this requirement our first methodological step is to con-
duct a source code review for the applied ESOM and follow recommendations by GAMS developers and
(B. A. McCarl, 2000). Although most of the corresponding suggestions for improvements by GAMS aim at
the reduction of the GAMS execution time, the main objective of this review step is the identification of
source code snippets that cause the creation of redundant constraints. In practical terms, this means an ex-
plicit exclusion of unnecessary cases by broadly applying conditional statements ($-conditions). Otherwise,
unnecessary large models would be passed to the solver.
Finally, it is essential that all model instances that should be compared are executed on identical hardware
which should be exclusively available for the ESOM-related computing processes. Ensuring this across the
whole evaluation exercise would require a large number of computers with comparatively large memory (>200
GB) to conduct the analysis within practical time spans. Due to a limited access to such equally equipped
computers, we guarantee this only for benchmarks across each particular performance enhancement strategy.
The remainder of this section is structured as follows: The modeling setup consisting of a description of the
applied ESOM and its characteristics and data, as well as the used solver and its basic parameterization, are
described in section 3.1.2. The implementations of speed-up approaches to be evaluated are then presented
in sub-chapter 3.1.3. Finally, we set up an evaluation framework that ensures at least a fair comparison of
model performance and accuracy across different parametrizations of a particular speed-up approach.

3.1.2 Modeling setup
We use the ESOM REMix for the benchmark analysis. As there exist several parameterizations of the model
which, on the one hand, share the same source code but, on the other hand, focus on various research
questions and thus have different scopes in terms of available technologies, geographical study area and time
horizon, REMix can also be regarded as a modeling framework. The benchmark in this study was conducted
with two model setups which were partially extended during the time of the project. Although most of our
analyses are performed for both of them, the results presented in section 3.2 build on the REMix instance
presented in (Cao, Metzdorf, & Birbalta, 2018). The corresponding LP represents the German power system
for an energy scenario of the year 2030. In its basic configuration it is a CO2-emission-constrained DC-OPF
problem that considers renewable and fossil power generators, electricity transport within the high voltage
transmission grid as well as storage facilities such as pumped hydro power plants and lithium-ion batteries.
In addition, no generation capacities are optimized but capacities of both transmission lines and energy
storage are optionally considered for expansion planning. To be able to observe a significant expansion of
these technologies, their initial values for installed capacities represent the state of 2015. Hence, the installed
capacity of lithium-ion batteries is zero. It needs to be noted that this configuration can lead to loss of load
situations if capacity expansion is omitted. This is due to the fact that the power plant portfolio of the
underlying scenario relies on the assumption that suitable load balancing capability of the power system can
be provided by lithium-ion batteries and additional power transmission capacities.
A fact sheet of the appropriate REMix model setup is shown in Table 3.1 which also provides information
about the input and output data.
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Table 3.1: Model fact sheet of the applied configuration of REMix based on (Cao et al., 2018).

Model name REMix
Author/Institution German Aerospace Center (DLR), Institute of Engineering Thermodynamics
Model type Linear programming

Minimization of total costs for system operation and expansion
Economic dispatch
Optimal dc power flow with expansion of storage and transmission capacities

Sectoral focus Electricity
Geographical focus Germany
Spatial resolution 488 nodes
Scenario year 2030
Temporal resolution 8760 time steps (hourly)
Input parameters Dependencies
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em
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Conversion efficiencies (Teruel, 2015) x
Operational costs (Teruel, 2015) x
Fuel prices and emission allowances (Egerer et al., 2014) x
Electricity load profiles (Open Power System Data Data
Package Time series, 2017)

x x

Power generation, storage and grid transfer capacities and
annual electricity demand (Rippel, Preuß, Meinecke, &
König, 2017), (Wiegmans, 2016), (Hofmann, Hörsch, &
Gotzens, 2018)

x x

Renewable energy resources feed-in profiles x x x
Import and export cross-border power flow time series
(ENTSO-E, 2012)

x x

Evaluated output
parameters

System costs (objective value)
Generated power x x
Added storage/transmission capacities x
Storage levels x x x

3.1.2.1 Essential model constraints
The majority of the mathematical formulations of REMix is presented in (Gils, Scholz, Pregger, de Tena, &
Heide, 2017). As discussed in section 1.1 and 1.1.1, the coefficient matrix structure of the corresponding LPs
contains linking variables and constraints. Besides variables that are induced by enabling capacity expansion
(equation 1.1), a great number of linking elements result from modeling power transmission using the dc
approximation (spatially linking) or storage facilities (temporally linking). Furthermore, constraints that
reflect normative targets, e.g. necessary for modeling greenhouse gas mitigation scenarios, cause interdepen-
dencies between large sets of variables (spatially and temporally linking). For a better comprehensibility
equation 3.1 to 3.4 describe these constraints in a simplified manner, i.e. without conditional statements,
additional index sets or scaling factors (as implemented in REMix).

40



Storage energy balance:

ps+(t, n, us)− ps−(t, n, us)− pls(t, n, us) =
Es(t, n, us)− Es(t− 1, n, us)

∆t
∀t ∈ T, n ∈ N, ∀u ∈ U,Us ⊂ U

ps+/ps− : storage charge/discharge power

pls : storage self-discharge (losses)

Es : stored energy

(3.1)

DC power flow:

pim(t, n)− pex(t, n)− plt(t, n) =
∑
n′

B(n, n′)Θ(n′, t)

∀t ∈ T, ∀n ∈ N
(3.2)

pf+(t, l)− pf−(t, l) =
∑
l

∑
n′

Bdiag(l, l
′)KT (l, n)Θ(n, t)

∀t ∈ T, ∀l ∈ L
pim/pex : power import/export

plt : transmission losses

pf+/pf− : active power flow along/against line direction

Θ : voltage angle

B : susceptances between regions

Bdiag : diagonal matrix of branch susceptances

K : incidence matrix

L : set of links (e.g. transmission lines)

(3.3)

Emission cap: ∑
t

∑
n

∑
u

p(t, n, u)ηe(u) 6 m

ηe : fuel specific emissions

m : maximal emissions

(3.4)

3.1.2.2 Solver parametrization and hardware environment
In preliminary experiments resulting from a broad spectrum of REMix applications, ranging from country
specific cross-sectoral energy systems ((Gils & Simon, 2017), (Gils, Simon, & Soria, 2017)) to multi-regional
((Gils, Scholz, et al., 2017), (Cao, Gleixner, & Miltenberger, 2016), (Scholz, Gils, & Pietzcker, 2017), (Gils,
Bothor, Genoese, & Cao, 2018)) and spatially highly resolved power systems (Cao et al., 2018), for monolithic
LPs, we observed the best performance in terms of computing time and RAM requirements with the following
solver parameters when using CPLEX:

1. LP-method: barrier

2. Cross-Over: disabled

3. Multi-threading: enabled (16 if not otherwise stated)
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4. Barrier tolerance (barepcomp)

� 1e-5 for spatial aggregation with capacity expansion

� default (1e-8) for the remaining approaches

5. Automatic passing of the presolved dual LP to the solver (predual): disabled

6. Aggressive scaling (scaind): enabled

Especially in the case of the first three solver options, LPs that previously could not be solved within time
spans of multiple days, turned out to be solvable in less than 24h. With regard to the solver parameter 5, the
amount of required RAM could be significantly decreased. For example, model instances that showed a peak
memory demand of 230 GBs when setting predual to -1, otherwise exceeded the available RAM of 300 GBs.
For these reasons, all of the following analyses are conducted with GAMS release 25.1.3 using CPLEX 12.8.0
with the above listed solver parameters. In addition, for all implementations of heuristic decomposition ap-
proaches either the GAMS option solvelink=5 (rolling horizon, temporal zooming) or solvelink=6 (temporal
zooming with grid computing) are used to avoid delay times due to frequent read and write operations on
the hard disk.
With regard to available hardware, computers with the following specifications (see Table 3.2) are available:

Table 3.2: Specifications of available computers for solving model instances.

# Processor Available Threads Available memory
1 Dual Intel Xeon Platinum 8168 2x 24 @ 2.7 GHz 192 GB
2 Intel Xeon Gold 6148 2x 40 @ 2.4 GHz 368 GB

3.1.2.3 Original REMix instances and their size
As indicated in Table 3.1 the applied REMix model performs a DC-OPF which is optionally extendable by
capacity expansion planning for storage and transmission infrastructures. Depending on this optional setting,
two original model instances can be distinguished. We refer to them as

”
REMix Dispatch“ and

”
REMix

Expansion“. Due to the different purposes of the decomposition heuristics to be evaluated, the two original
models are only investigated for a sub-set of speed-up approaches. The rolling horizon approach is only
sufficiently applicable to dispatch problems since investment decisions for especially short time intervals lead
to a significant overestimation of required capacity expansion. In contrast, temporal zooming is explicitly
suited for problems that account for capacity expansion.
To get an impression of model size, we measure the number of constraints, variables and non-zero elements of
the coefficient matrix reported by the solver after performing the pre-solve routines. The appropriate values
are indicated in Table 3.3. They show that enabling expansion planning is costly, especially with regard to
the number of constraints. Compared to the number of variables which is increased by approximately 30%,
the number of constraints is more than tripled. Nevertheless, this results in a coefficient matrix with lower
density - since the number of non-zeros is only doubled.

Table 3.3: Specifications of initial REMix model instances.

Original model
instance name

Applied speed-up
approaches

Number of
variables

Number of
constraints

Number of
non-zeros

REMix Dispatch spatial aggregation
temporal aggregation 30,579,396 9,214,488 69,752,951
rolling horizon dispatch

REMix Expansion spatial aggregation
temporal aggregation 43,169,135 32,805,201 137,967,269
sub-annual temporal zooming

42



3.1.3 Implementations

3.1.3.1 Approaches for model reduction by aggregation
The implemented aggregation approaches either treat the temporal or spatial scale. In case of the temporal
scale, simple down-sampling is applied to load and feed-in profiles from vRES. Those parameters are avail-
able as hourly time series (temporally resolved). For down-sampling they are averaged to achieve a data
aggregation and accordingly a reduction of the model size by factor M. For instance, when transforming
a demand time series and, for reasons of simplicity, index sets of the other dimensions are ignored, the
appropriate calculation rule is (equation 3.5):

dagg(tM ) =
∑
t

Πt(tM , t)d(t)

∀tM ∈ TM ,M ∈ N
TM : set of merged (down-sampled) time steps

Πt : map that assigns time steps to merged time steps

dagg : temporally aggregated power demand time-series

(3.5)

Setting M=4 thus results in input time series that have a 4-hourly resolution. In other words, instead of
t=1, ..., 8760 only tM=1, ..., 8760

4 consecutive data points need to be considered in a REMix instance which
we refer to be “temporally aggregated”.
With regard to the spatial aggregation methodology, we apply the following data processing: First a network
partitioning is performed to define which regions of the original model parameterization must be merged.
Therefore, an agglomerative clustering is used by applying the implementation of this algorithm from scikit
learn (Pedregosa et al., 2011) to the adjacency matrix of the original model’s network. We chose this clus-
tering methodology as it ensures that merged regions are only built from neighboring regions. In addition,
the clustering algorithm itself scales well with regard to various numbers of clusters.
Secondly, we create “network equivalents”. The applied data aggregation relies on the premise that regions
represent so called “copper plates” which means that transmission constraints are ignored within these areas.
As a consequence, most nodal properties, such as installed power generation capacity or expansion potentials
as well as power demand are spatially aggregated by simple summation. A special case is the aggregation of
feed-in time series. Here a case distinction is applied, where the profiles of renewable power generation are
aggregated by weighted averaging. The weights are taken from the installed power generation capacities of
the respective regions, normalized by the sum over the installed capacities within the aggregated region. If
there are no capacities installed (e.g. in the case of green-field expansion planning), the maximum capacities
resulting from a renewable energy potential analysis are used.
Data that is related to links between regions, such as power transmission lines, is also specially treated:
Transmission lines that would lie within an aggregated region are ignored. The transmission capacities of
parallel cross-border links are summed up, while link lengths, used for approximation of losses and suscep-
tances of parallel lines, are combined as it is common for parallel circuits, for instance:

Bagg(lM ) =
1∑

l Πl(lM , l)
1

B(l)

∀lM ∈ LM

LM : set of merged links

Πl : map that assigns links to merged links

Bagg : susceptances of merged links

(3.6)
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3.1.3.2 Rolling horizon dispatch
Apart from the previously described aggregation method, we also implement a rolling horizon dispatch
approach into REMix. This method uses a decomposition of the original model with regard to time, where
the full time horizon of 8760 time steps is divided into a number of overlapping time periods (intervals). For
each of these time intervals only the hourly system operation is optimized. Accordingly, capacity expansion
is not considered in the appropriate model instances. This is due to the fact that variables that are related to
capacity expansion are not resolved on the temporal scale. These temporally linking elements would prevent
an easy decomposition in time and thus limit the application of rolling horizon approaches to dispatch
optimization problems.
The emission cap (equation 3.4) is also temporally linking and therefore requires changes compared to the
native implementation of REMix. A straightforward approach is the distribution of the annual emission
budget to the time intervals. In the simplest case the corresponding distribution factors are constant and
calculated from the reciprocal of the number of intervals. More sophisticated distributions may take into
account input data such as load and feed-in time series to define sub-annual emission caps that correspond
to the residual load. However, such a distribution still does not account for regional differences. For reasons
of simplicity we use the constant distribution for our implementation of the rolling horizon dispatch.
Storage facilities are only weakly temporally linking as the appropriate energy balance constraint (equation
3.1) only couples neighboring time steps. The error induced by decomposing in time is small as long as
the length of time intervals is much greater than the typical energy-to-power ratio of a particular storage
technology. Importantly, the overlap prevents that energy storage facilities are always fully discharged at
the end of the evaluated part of a time interval to save costs. In the full time-horizon implementation of
REMix this undesired effect is addressed by coupling the very last time step to the initial time step. In other
words, it is enforced that the storage levels of the first and the last hour of the year are equal. However, this
circular coupling is not suitable with regard to the boundaries of sub-annual time intervals.
For the rolling horizon approach this means that full discharging still appears by the end of a computed time
interval, but the effect decreases the longer the overlap. However, there is a trade-off to be made with regard
to the length of overlaps since they imply dispatch optimization of redundant model parts and therefore lead
to greater overall computing times. Another drawback of using overlaps is also that only sequentially solving
of multiple model instances is possible.
The discussed characteristics of the rolling horizon approach require a couple of modifications and extensions
of the REMix source code especially with regard to the execution phases. In Figure 3.1 required adaptions
are visualized.
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(a) A new set Ti that represents the time intervals
is defined.

(b) The number of overlapping time steps between
two intervals as well as a map that assigns the
time steps t to the corresponding intervals (with
or without overlap) are defined. The larger the
overlap the greater the number of subsequent
time steps that are redundantly assigned to both
the end of the ith and the beginning of the
(i+ 1)th interval.

(c) It must be ensured that all time dependent el-
ements (variables and constraints) are declared
over the whole set of time steps, whereas their
definitions are limited to a subset of time steps
that depends on the current time interval.

(d) A surrounding loop is added that iterates over
the time intervals

(e) With each iteration a solve statement is exe-
cuted.

(f) The values of all time dependent variables are
fixed for all time steps of the current interval
but not for those that belong to the overlap.

(g) To easily obtain the objective value of the full-
time horizon model, a final solve is executed that
considers only cost relevant equations. As all
variable levels are already fixed at this stage, this
final solve is not costly in terms of performance.

Figure 3.1: Flow chart of implementation of rolling horizon.

The chosen source code adjustments require a manageable amount of effort and can be seen as a processing
friendly implementation since all input data is read in the beginning, whereas data is processed slice by slice.
Also partial results are held in memory which facilitates an easy creation of a single output file. Established
post-processing routines do not have to be changed. Nevertheless, for memory constrained ESOMs, memory
friendly implementations are preferable. Data would accordingly be loaded and written to disc slice by slice.
The downside of this solution is the fact that these processes must be executed multiple times which results
in additional processing costs. Furthermore, the aggregation of output from different files requires further
post-processing and is characterized by multiple read routines of the partial result files.

3.1.3.3 Sub-annual temporal zooming
Our implementation of the temporal zooming heuristic is an extension of the previously described rolling
horizon approach that enables capacity expansion planning. For this reason, also other temporally linking
elements can be treated differently. In particular, each time interval represents a sub-problem where - from a
global model perspective - missing information is gathered from a temporally down-sampled full time-horizon
model run.
In the case of the energy storage equation, at the boundaries of each time interval, the variables for the
storage level are fixed to the resulting values of the corresponding variables of the down-sampled model.
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Furthermore, for each time interval, factors that define the share of allowed annual emissions are determined
with respect to the resulting emissions in the down-sampled model run. This allows a much better distribu-
tion of these actually time independent parameter values than an equal distribution as in the implementation
of the rolling horizon dispatch.
Even though solving a simplified model instance causes additional costs in terms of computing time, the
advantage of this approach is the independence of partial models where overlaps are no more necessary.
However, as the number of parallel threads is limited on shared memory architectures, this parallelization on
the conceptual layer comes at the expense of less parallelization on the technical layer, i.e. parallel threads
when using the barrier algorithm. For this reason, we implement two versions of the temporal zooming
approach (where I corresponds to the variable of capacity expansion introduced in equation 1.3 ):

1. A sequential version that is executed in the same chronological manner as the rolling horizon approach
where parallelization only takes place on the solve side (Figure 3.2).

2. A parallel version that uses the grid computing facility of GAMS where a defined number of time
intervals is solved in parallel. Parallelization takes place on both the model side and the solver side
(Figure 3.3).
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Figure 3.2: Flow chart of sequential implementation
of temporal zooming.

Figure 3.3: Flow chart of grid computing implementa-
tion of temporal zooming, exemplarily shown for two
parallel runs.

Besides the different ways of parallelization, the two implementations also differ in the treatment of capacity
expansion variables.In both cases an initial lower bound is defined with regard to the outcome of the simplified
model run, in the sequential implementation, however this lower bound is raised based on the results of a
particular interval and then shifted to the next interval. On the contrary, the parallel implementation
determines the final values of expansion planning variables by selecting the maximum across their interval
dependent counterparts.

3.1.4 Evaluation framework

3.1.4.1 Parameterization of speed-up approaches
Each of the implemented model-based speed-up approaches is characterized by parameters that influence
the model performance. We refer to these parameters as SAR-parameters (speed-up approach related pa-
rameters). In this context, the challenge is to identify SAR-parameter settings that provide both an effective
performance enhancement and a sufficient accuracy. We tackle this issue by performing parameter studies.
The evaluated parameter value ranges are shown in Table 3.4.

In the case of aggregation the SAR-parameters are more or less equivalent to the degree of aggregation. It
can be expected that there is a continuous interdependency between these parameters for aggregation and
the achievable performance as well as accuracy: Increasing the degree of aggregation will reduce the required
computing resources at the expense of less accuracy.
However, the implemented rolling horizon as well as the temporal zooming approaches can be tuned by
changing a set of SAR-parameters (Table 3.4). Thus, the relation between speed-up approach parameteri-
zation and the evaluated indicators becomes more complex. For instance, with regard to total computing
time, one can expect that there is always an optimal number of intervals since increasing the appropriate
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Table 3.4: Overview of speed-up approach related parameters and value ranges to be evaluated.

Speed-up approach Parameter
Name Evaluated range

Spatial aggregation number of regions (clusters) {1, 5, 18, 50, 100, 150,
200, 250, 300, 350, 400,
450, 488}

Down-sampling temporal resolution {1, 2, 3, 4, 6, 8, 12, 24,
48, 168, 1095, 4380}

Rolling horizon
dispatch

number of intervals {4, 16, 52,365}
overlap size {1%, 2%, 4%, 10%}

Temporal zooming
(sequential)

number of intervals {4, 16, 52}
temporal resolution of down-sampled run {4, 8, 24}

Temporal zooming
(grid computing)

number of intervals {4, 16, 52}
number barrier threads {2, 4, 8, 16}
number of parallel runs {2, 4, 8, 16}
temporal resolution of down-sampled run {8, 24}

value allows faster solving of sub-models, but at the same time the computational burden for GAMS code
compilation will grow.

3.1.4.2 Computational indicators
When referring to performance we always mean the computing time composed of time spent for model
building and solving (solver time). The internal profiling options of GAMS are activated using the command-
line option stepsum=1. All relevant information is then extracted from the logging and listing files of GAMS.
The elapsed seconds listed in the last step summary represent the total wall-clock time needed for executing
all processes. As in our analyses the CPLEX solver is used exclusively, the solver time represents the
time consumed by CPLEX. This quantity is usually listed above the solver’s report summary which also
provides the information whether an optimal solution was found. As the CPLEX time reported in seconds
can vary depending on the load of the computer system as well as on the used combination of software
and hardware, we primarily use the deterministic number of ticks (a computer independent measure) as
indicator for required computing time by the solver (IBM, 2013). The quantity we refer to as GAMS time
is accordingly calculated by subtracting solver time from total wall-clock time.
An approximation for peak memory usage is also partially taken from the step summary denoted as Max
heap size which represents the memory used by GAMS. An indicator for the memory use on the solver
side—in the case of CPLEX’s barrier algorithm—is provided by the number of equations and the logging
information of the integer space required (Corporation, 2017).

3.1.4.3 Accuracy indicators
To measure the accuracy of an ESOM one could argue that all variable levels of a model instance treated by
a particular speed-up approach should be compared to their counterparts of the original model. However,
especially in the case of aggregation approaches the direct counterparts do not always exist. Besides the
fact that the computational effort for such a comparison would be great due to the number of variables, an
aggregation of the resulting differences would still be necessary to give an indication of accuracy by only a
hand-full of comprehensible values. We therefore use only a selection of partially aggregated variable levels
for comparison. Nevertheless, we emphasize indicators which are of practical relevance. As indicated in
Table 3.1 these indicators are:
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1. the objective value of the optimization problem,

2. the technology specific, temporally and spatially summed, annual power supply of generators, storage
and electricity transmission,

3. the spatially summed values of added capacity for storage and electricity transmission and

4. the temporally resolved, but spatially summed storage levels of certain technologies.

3.2 Results

3.2.1 Pre-analyses and qualitative findings

3.2.1.1 Order of sets
Concerning an efficient execution of GAMS, in addition to the suggestions mentioned in section 3.1, we
observed that it is always advisable to use a consistent order of sets. An illustrative example considering
this issue is provided by Ramos in (Ramos, 2018). We also investigated the hypothesis that ordering the
index sets from the largest cardinality to the smallest would reduce the time for the model generation. In
summary, reductions of up to 40% of the GAMS generation time are observed in some cases. However, the
results strongly vary between different model instances. Furthermore, the time spent for model generation
can also increase depending on the used version of GAMS. From this experience we conclude that tuning
the source code by using particular index orders cannot be considered as a generally effective improvement
of model performance.

3.2.1.2 Sparse vs. dense
Especially with regard to the way of implementing the equations for storage energy balance and DC power
flow, constraint formulations are conceivable that differ from the ones implemented in REMix (equations 3.1
to 3.3). These formulations make use of fewer variables and constraints and therefore lead to a smaller but
denser coefficient matrix. Equations 3.7 and 3.8 give an impression of how such dense formulations can look
like.
On the one hand, in the case of the storage energy balance equation, the alternative formulation allows that
the storage level variables are no more required. On the other hand, instead of an interdependency of con-
secutive time steps, the power generation or consumption of each time step is linked with all of its previous
pendants. This leads to strong linkages across the temporal scale especially for the balance equations that
address the elements at the end of the time set. Concerning the DC power flow, 3.8 can be derived from
substitution of the voltage angle and merging of equations 3.2 and 3.3. However, the resulting PTDF matrix
requires a matrix inversion that leads to a dense matrix structure.

Storage energy balance (dense):

t′=t∑
t′=t0

ps+(t′, n, us)− ps−(t′, n, us)− pls(t′, n, us)

= ps+(t, n, us)− ps−(t, n, us)

∀t ∈ T, n ∈ N, ∀u ∈ Us, Us ⊂ U

(3.7)

DC power flow (dense):

pf+(t, l)− pf−(t, l) =
∑
n

PTDF (l, n)(pim(t, n)− (pex(t, n)− (plt(t, n)

∀t ∈ T, ∀l ∈ L
PTDF : power transfer distribution factors

(3.8)
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The results of our experiments with these alternative model formulations showed that, for REMix, sparse
implementations are usually better in terms of model performance. While already small model instances
with the dense storage balance equation are nearly unsolvable, the application of PTDF matrices for the DC
power flow turns out to be useable but still less performant compared to the implementation that uses the
voltage angle.
In this context, on its left y-axis, Figure 3.4 shows the computing times for two exemplary scenarios (A
and B), where, transmission capacity expansion is either enabled or disabled. The size of underlying model
instances ranges between 20 to 38 million variables and 9 to 24 million constraints. To give an indication
of the population density of the corresponding coefficient matrices, the number of non-zeros relative to the
product of the number of constraints and the number of variables is plotted on the right y-axis. Each of
the resulting four model instances is solved using either the dense (triangles) or sparse (circles) DC power
flow formulation. As it can be deduced from comparing the blue markers, the computing times for the
PTDF-based instances are 15 to 60% greater than in the case of their sparse counterparts.

Figure 3.4: Solver time (blue) and non-zero density of the coefficient matrix (orange) for different DC power
flow implementations, circles: sparse (with voltage angle), triangles: dense (with PTDF).

Due to the results of these preliminary experiments the following analyses are exclusively based on model
implementations which aim for sparse constraint formulations.

3.2.1.3 Slack variables and punishment costs
A common approach to ensure the solvability of REMix, even for scenarios where the power balance equation
1.2 would be violated (e.g. by providing too small power generation potentials), is the use of slack generators.
These generators do not have a technological equivalent in the reality and represent the last option to be used
in the model for covering a given demand. The associated costs for power supply can be seen as the value of
loss of load and thus are considerably high compared to costs caused by real technologies. However, even if
very high cost values could be particularly justified by macroeconomic damage, from a model performance
perspective it is advisable to set these costs in the same order of magnitude as their real counterparts.

Figure 3.5: Computing time for different values for power generation by slack power generators.

Figure 3.5 therefore shows exemplary computing times of identical model instances of a relatively small size
(3 Mio. variables, 2 Mio. constraints). We deliberately analyze small models to prevent the model to run
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into numerical issues. The differences in the resulting solver time are exclusively caused by changing the
model parameter that concerns the costs associated with slack power generation. The increasing computing
time with increasing values of this parameter are due to inefficient model scaling.
Despite the fact that scaling is also automatically applied by the solver, it is advisable that in the coefficient
matrix of the resulting LP, coefficients stay within a certain range of order of magnitudes. As described by
(B. McCarl, 2017) the factor between the smallest and largest values should ideally be less than 1e5. Since
ESOMs such as REMix consider both operational costs of almost zero (e.g. for photovoltaics) and annuities
for investments into new infrastructures of several millions (e.g. large thermal units), the corresponding cost
ratios are already out of the ideal range. For this reason, the cost factors for slack power generation should
not expand this range. Otherwise, especially for large models, the bad scaling leads to numerical issues of
the solver and at least extended computing times.

3.2.1.4 Coefficient scaling and variable bounds
Processing of input data during the generation of equations can pose problems concerning the aforementioned
maximum range of coefficients. For example, this is relevant when calculating the fuel consumption based
on the power generation divided by the fuel efficiency. Moreover, it is advisable to bound variables to
restrict the space of possible solutions which may also lead to a better solver performance. However, finding
appropriate bounds for future states of the energy system and claiming to analyze a broad range of conceivable
developments implies possible contradictions.
To get a more systematic picture, in Figure 3.6, we compare a selection of model instances in three spatial
resolutions with two different solver precisions. The solver precisions are labelled as “1e-5” and “Default”
(1e-8) while further measures such as explicit rounding of parameters and conscious bounding of variables
are varied. The idea behind rounding of input time series and efficiencies is to avoid implicit coefficients
with more than five decimals. As a further step in the instance denominated as “bounded variables” we
add upper bounds on most variables according to model heuristics. For instance, the power production from
slack generators is limited to 10% of the exogenously given electricity demand profile. Additionally, we set
upper bounds on decision variables for investments into storage and transmission capacities based on the
maximum peak load and annual energy demand of the corresponding regions.

Figure 3.6: Comparison of solver times as a function of numerical properties and solver accuracy.

In Figure 3.6 the conducted comparison is shown for three differently sized instances of both the “REMix
Expansion” and the “REMix Dispatch” model. The solver time is depicted relative against the number of
ticks required to solve the appropriate model with default settings as presented in 3.1.2. In this context, the
black circles represent the reference values at y=1.0. While for the small instances with 30 and 120 regions the
gains from coefficient rounding (blue markers) seem to indicate better performance, in large scale instances
the effect is inverse. For the 488 region instance there is an increase in ticks for the barrier algorithm with the
presumably improved numerical properties. In contrast, the additional bounds on variables (orange markers)
have a rather little impact on the small-sized instances with only a few regions, while the performance gains
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for the large scale instances are significant by effectively bringing down the solver time to less than 50%
compared to instances with default settings.
From the comparison of triangle and circle markers in Figure 3.6, it can be furthermore concluded, that the
observed effects are independent of the solver precision. However, the possible speed-up highly depends on
the general model formulation and may not apply for other solution algorithms than interior point.

3.2.2 Aggregation of individual dimensions
This section presents the behavior of performance and accuracy indicators for scaling experiments. This
means that the original REMix instances (“REMix Dispatch” and “REMix Expansion”) are either reduced
by spatial or temporal aggregation whereas the degree of aggregation is varied. The number of aggregated
regions or time steps of a respective model instance are depicted on the x-axes of the following benchmark
figures (3.7 to 3.14). In this context, the degree of aggregation is simply defined by:

Degree of aggregation:

a(x, v) = (1− x(v)

xREF (v)
) · 100%

∀v ∈ {spatial, temporal}
xREF : x-value (number of regions/time steps) of the original model instance

(3.9)

In the figures 3.7 and 3.8, the curves show computing and accuracy indicators relative to their counterparts
of the original model instances. For each indicator, the reference is indicated at the greatest x-value (xREF
(spatial)=488 regions or xREF (temporal)=8760 time steps). Accordingly, the figures are usually read from
right to left. The associated absolute y-values are provided in the caption of the respective figure.

3.2.2.1 Spatial aggregation
The results for the spatial aggregation of the

”
REMix Dispatch“ model are shown in Figure 3.7 and Figure

3.8. In the former, the computational indicators are depicted by colored curves that represent total wall-
clock time, solver time, the number of constraints (equations), the number of non-zeros, and the memory
consumed by GAMS as well as an approximation of the memory demand of the solver. On the right hand
side, Figure 3.8 shows the accuracy indicators. Besides the objective value, the annual power generation
of selected power generator groups, gas-fired and coal-fired power plants, and wind turbines, are drawn.
Even though the REMix model instances consider a broader spectrum of technologies such as photovoltaics,
biomass or run-of-river power plants, these technologies are omitted for the sake of clarity.

With regard to accuracy indicators, up to a degree of aggregation of about 80% (100 regions) most of the
curves in Figure 3.8 show minor deviations within a range of ±5% compared to the reference at y=1.0. While
the annual power generation from coal is slightly increasing with stronger aggregation, the opposite can be
observed in the case of the objective value and power generation from gas turbines. Wind power and storage
utilization are almost constant up to this point. However, for model instances that spatially aggregate to a
degree below 100 regions, the use of storage facilities strongly increases. Compared to the reference model,
deviations of more than 40% for storage are observable for highly aggregated model instances.
Considering that the number of transmission lines taken into account becomes smaller for more aggregated
model instances, it can be expected that most of the effects that come with spatial aggregation stem from
unconstrained power transmission. Thus, the strongest influence of this model reduction technique can be
observed for the power transmission indicator where deviations greater than 25% already occur for degrees
of aggregation > 40% (300 regions).
That said, the results can be interpreted as follows: The absence of power flow constraints affects the
model accuracy especially when the number of aggregated regions is low and their geographical extent is
comparatively large. This facilitates large central power generation units such as pumped hydro storage
and coal fired power plants to extensively distribute their electricity in wide areas to the cost of less power
generation from probably better sited but more expensive gas turbines.
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Figure 3.7: Computational indicators for spatial ag-
gregation of the “REMix Dispatch” model. Reference
model: CPLEX ticks 16.3 Mio.; Total memory 79 GB;
GAMS time 0.6 h; Total wall-clock time 3.6 h.

Figure 3.8: Accuracy indicators for spatial aggregation
of the “REMix Dispatch” model. Reference model:
Objective value 29.7 Bio ¿; Objective value (cleaned)
21.9 Bio ¿; Wind 162 TWh; Gas 174 TWh; Coal 105
TWh; Storage 4.1 TWh; Transmission 434 TWh.

If the accuracy error for 100 regions is considered to be acceptable for answering a particular research
question, the reachable speed-up factor can be determined from Figure 3.7. For both the solver time (CPLEX
ticks) and the total wall-clock time relative to the maximum model time of about 0.2 is observable which
corresponds to a speed-up factor of nearly 5. A smaller reduction can be observed for the model size which
is characterized by the number of equations as well as the RAM required by the solver (y≈0.4) and the
GAMS (y≈0.3). In terms of reachable speed-up, a linear reduction of the model size by spatial aggregation
usually leads to a more than linear reduction of computing time (e.g. solver time), particularly for weak
aggregations. However, especially for these model instances an oscillation of the solver time can be observed
which makes the estimation of reachable speed-up more uncertain.
For understanding this oscillation better, we analyzed further indicators provided in the logging and listing
files as well as more content-related accuracy indicators such as the number of transmission line congestion
events or slack power generation. We found that the number of non-zeros appearing within the Choleksy
factorization of the barrier algorithm (reported as “total non-zeros in factor”) shows a similar behavior.
Nevertheless, no correlation between any of the content-related indicators and the solver time was observed.
In addition, we cross-checked our results shown in Figure 3.7 and Figure 3.8 by performing the scaling
experiment with different solver parameters (barrier tolerance 10−5) as well as based on slightly different
clustering algorithm parameters. Both led again to an oscillation of the solver time curve. Thus, we conclude
that even if the accuracy indicators scale in a stable manner, especially the solver time depends on how specific
nodes are assigned to clusters. Solving of the DC-OPF problem can turn out to be harder for the solver
even if the number of regions is smaller than in a less spatially aggregated model instance.
As mentioned in section 3.1.2, the initial power plant portfolio of the German power system scenario for
the year 2030 is slightly under-dimensioned since storage and power transmission capacities represent the
state of the year 2015 ignoring planned expansion of these technologies. In addition, historical weather data
of the year 2012 is used which is below the long-time average in terms of renewable power generation. As
a consequence the slack power generators are active especially in the “REMix Dispatch” model instances
(between 565 and 773 GWh). Total power supply derived from the objective value can thus become more
expensive than in the case of “REMix Expansion” depending on the selected specific punishment costs. For
this reason, we report two objective values in the caption of the figures of accuracy indictors. Firstly, the
objective value of the mathematical optimization problem including costs of punishment terms. Secondly,
the cleaned objective value (representing costs for total power supply) derived from assuming the same costs
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for slack power generation as for operating fictitious gas turbines.
Figure 3.9 and Figure 3.10 show the performance and accuracy indicators for spatial scaling of the “REMix
Expansion” model instances. Here, storage (i.e. stationary lithium-ion batteries) and transmission capacities
(AC and DC lines) can be added to the system to balance power demand and generation with the installed
generation capacities. In accordance to this, the accuracy indicators are extended by storage and transmission
expansion. Exceptionally, only the results in this experiment are computed with extensive logging in GAMS’s
listing files is enabled which automatically leads to an increase of GAMS time.

Figure 3.9: Computational indicators for spatial ag-
gregation of the “REMix Expansion” model. Refer-
ence model (only in this experiment): CPLEX ticks
381.3 Mio.; Total memory <256 GB; GAMS time 6.6 h;
Total computing time 50.9 h.

Figure 3.10: Accuracy indicators for spatial aggre-
gation of the “REMix Expansion” model. Reference
model (only in this experiment): Objective value 23.7
Bio ¿; Objective value (cleaned) 23.2 Bio ¿; Wind
175 TWh; Gas 153 TWh; Coal 115 TWh; Storage ex-
pansion 123 GWh; Transmission expansion 28.8 GW.

As reported in the caption of Figure 3.7 and Figure 3.9, enabling capacity expansion leads to a significant
increase in total computing time from about 3 hours to almost 50 hours. Nevertheless, compared to the
“REMix Dispatch” model instances, similarities concerning the over- or underestimation as well as the scaling
behavior of the technology specific errors can be observed. For instance, capacity factors of energy storage
are increasing for higher degrees of aggregation. This directly affects storage expansion which decreases with
the smaller spatial resolution.
One exception are power transmission-related indicators where more significant deviations from the reference
values occur, especially for degrees of aggregation > 50% (< 200 regions). On the one hand, model instances
with such an aggregation even reach reductions in computing time of more than 80%. On the other hand,
transmission capacity expansion already experiences significant deviations (> 10% compared to the values of
the original model) for degrees of aggregation that go below 400 regions. Remarkably, this has only a minor
impact on both the objective value and the generation-related accuracy indicators which is observable from
the almost horizontal course of the wind, gas, coal, and storage expansion indicators in Figure 3.10.
A further similarity to the “REMix Dispatch” model is the linear scaling behavior of computational indicators
corresponding to the model size as well as the super-linear scaling of the solver time. However, in Figure 3.9,
the solver ticks resemble a rather exponential curve and no superposed oscillation occurs. This means that
enabling the expansion of transmission (and storage) capacities leads to a rather expectable scaling behavior
of the computing time: The fewer regions in a spatially aggregated model instance, the smaller the time
required to solve the optimization problem. If the slope of the solver time curve is regarded as a measure of
effectiveness in terms of model acceleration, it can be concluded that spatial aggregation is mainly effective
for degrees up to 40%.
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3.2.2.2 Temporal aggregation
The results for temporal aggregation of the

”
REMix Dispatch“ model are shown in Figure 3.11 and Figure

3.12. As in the case of spatial aggregation computational indicators are depicted in the figures on the left
while accuracy indicators are illustrated on the right. The reference model is the same as in the spatial
scenario.

Figure 3.11: Computational indicators for temporal
aggregation of the “REMix Dispatch” model.

Figure 3.12: Accuracy indicators for temporal aggre-
gation of the “REMix Dispatch” model.

In contrast to spatial aggregation, in Figure 3.12, the slope of the cost curve (objective value) appears much
flatter. However, it should be noted that temporal aggregation representing two-hourly time steps already
results in an aggregation factor of 50%. For this reason, all of the observed data points in Figure 3.11 and
Figure 3.12 are located in the half closer to the y-axis. Concerning the solver time this already leads to
speed-ups greater than factor 2. Nevertheless, it is not guaranteed that the total computing time (GAMS
time + solver time) can be reduced in the same manner. This is due to the additional computing effort for
aggregating hourly input data. Compared to such model instances, the greater GAMS time, e.g. in the case
of 4380 time steps, results from this additional input data processing. This effect becomes significant for
small model instances where the total computing time is not necessarily dominated by solver time. However,
for those model instances total computing time is only a few minutes and thus represents no bottleneck.
Opposed to this, for the non-aggregated “REMix Dispatch” model the ratio between solver time and GAMS
time is still about factor 10.
While the objective value as well as most of the technological specific power generation indicators show an
absolute error below 5% even for daily averaged time steps (365 time slices; corresponding speed-up factor:
40), significant deviations can be observed for the storage use. For this technology (i.e. pumped storage
power plants) the underestimation of power generation compared to the original model is already 5% in
the case of diurnal time steps. Also open cycle gas turbines (OCGT) are affected at degrees of aggregation
greater than 70% (e.g. three-hourly time steps). But due to their small electricity production compared to
combined cycle gas turbines (CCGT) they have only a minor impact on the slope of the corresponding curve
in Figure 3.12.
Remarkably, power generation from photovoltaics (PV) is almost independent from the degree of temporal
aggregation. Because its deviation is less than 0.1� across all analyzed model instances, the corresponding
curve is not depicted in all figures concerning accuracy indicators. In other words, ignoring day-night periods
has no effect on the dispatch of photovoltaics but rather on the need for storage. However, given that in the
analyzed model parameterizations the amount of electricity from photovoltaics is only 10% of the annual
power generation it becomes clear that PV-integration is possible at almost each point in time. Significant
deviations due to temporal aggregation would therefore rather be expected in scenarios with high shares of
renewables.
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The results for temporal scaling behavior if expansion of storage and transmission capacities is possible can
be seen in Figure 3.13 and Figure 3.14. For both figures the reference values of the original instance of
“REMix Expansion” are denoted a second time. They stay the same for all following analysis with this
model.
A difference compared to temporal aggregation of the “REMix Dispatch” model instances is the lager area
between the green curve that represents the solver time and the blue and violet curves representing the size
of a particular model instance. According to this, the reachable speed-up in terms of solver time is greater
for instances with two-hourly (factor 3) or three-hourly (factor 7) time steps. On the other hand, in Figure
3.13, the slope of the solver ticks is much flatter in its lower part. By this means, going beyond degrees of
aggregation of 90% (twelve-hourly time steps) appears to be less effective regarding the reachable speed-up.

Figure 3.13: Computational indicators for temporal
aggregation of the “REMix Expansion” model. Refer-
ence model: CPLEX ticks 534.3 Mio.; Total memory
> 256 GB; GAMS time 0.6 h; Total computing time
62.3 h.

Figure 3.14: Accuracy indicators for temporal aggre-
gation of the “REMix Expansion” model. Reference
model: Objective value 22.8 Bio ¿; Objective value
(cleaned) 22.3 Bio ¿; Wind 180 TWh; Gas 146 TWh;
Coal 117 TWh; Storage expansion 122 GWh; Trans-
mission expansion 29.2 GW.

Concerning the scaling behavior of model accuracy, significant errors occur for storage-related indicators.
Similar to “REMix Dispatch” the annual power generation from storage facilities already decreases by 10%
for two-hourly time steps. However, the storage expansion indicator stays below an error of 5% up to an
aggregation factor of 75% (four-hourly time steps) while the transmission expansion indicator falls below
this value at 730 time slices (twelve-hourly time steps). Therefore, it can be concluded that for observing
widely accurate results for capacity expansion of transmission lines and lithium-ion batteries, four-hourly
time steps appear to be sufficient, especially assessed against the background of an approximate reduction
of computing time by a factor of 13.

3.2.3 Heuristic decomposition
This section presents the behavior of computational and accuracy indicators for model-based speed-up ap-
proaches that make use of heuristic decomposition techniques applied to the temporal scale of both the
“REMix Dispatch” and the “REMix Expansion” model. Since the corresponding benchmark experiments
vary over different parameters the appropriate figures are built up on hierarchical indices on the x-axes.
However, still the relative deviations compared to the monolithically solved instances of “REMix Dispatch”
and “REMix Expansion” are depicted for each of the analyzed indicators.
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3.2.3.1 Rolling horizon dispatch without grid computing
The “REMix Dispatch” model is executed with the rolling horizon approach presented in section 3.1.3.2
while the interval size and the number of intervals are varied. The resulting computational and accuracy
indicators are shown in Figure 3.15 and Figure 3.16. Both the settings for the overlap size and the number
of intervals occur on the x-axis.
With regard to the first, it is striking that the intended behavior of total computing time is achieved –
compared to the original model instance speed-up factors between two and three can be observed especially
for model instances that decompose the temporal scale into more than four intervals.
In particular, with increasing numbers of time intervals the total time consumed by the solver decreases
(down to less than 5% of the monolithic model) as well as the maximal memory required by the solver. On
the contrary, memory required and time elapsed for executing GAMS increase by factors around 1.6 and 3.5,
respectively. This is due to the additional need for generating smaller but multiple sub-model instances to be
solved one after another. Even though the ratio between GAMS time and solver time is around factor four
in the original model instance, when the rolling horizon approach is used, the GAMS time already dominates
all model instances but those with four intervals. The total wall-clock time accordingly barely scales with
the number of intervals, especially for those with more than 16 intervals.

Figure 3.15: Computational indicators for rolling hori-
zon dispatch applied to the “REMix Dispatch” model.

Figure 3.16: Accuracy indicators for rolling horizon
dispatch applied to the “REMix Dispatch” model.

The overlap size is determined relative to the absolute length of a particular time interval. Compared to the
number of intervals, it has only a minor impact on the computational indicators: As it can be expected, the
greater the overlap, the more computing resources are required. This is due to the fact that all model parts
that lie within the overlap are redundantly considered and thus, the total amount of equations to be solved
as well as the number of non-zeros (and variables) increases for greater overlap sizes. However, even if these
model size measures increase by 10% (overlap size: 0.1), the resulting total wall-clock time only experiences
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changes within a range of 2% (4 intervals) to 5% (365 intervals).
Different observations can be made for the accuracy indicators where comparatively large overlaps mostly
improve the accuracy of the corresponding model instances. The objective value as well as the indicators for
power transport and electricity production by wind turbines have errors smaller than 3% across all inves-
tigated model instances. In this context it needs to be considered that we do not observe lower total costs
than for the original model instance. Objective values smaller than 1.0 occur since slack generator costs are
not considered.
The dispatch of fossil fired power plants and pumped hydro storage units shows stronger deviations. Re-
markably for the latter, first overestimations of around 10% are observable for intervals numbers of four, 16
and 52. However, for intervals on a daily level, the storage accuracy indicator shows an underestimation of
more than 10%.
These deviations occur, on the one hand, due to the missing circular restriction for the storage level balance
that is omitted when the rolling horizon approach is applied. The appropriate constraint enforces the equal-
ity of storage levels at the beginning and at the end of the analyzed time period and thus prevents a total
discharge for monolithic model instances with perfect foresight. Opposed to that, without this constraint
and due to the limited foresight, (even for large overlap sizes in model instances with rolling time horizons)
storage levels still tend to zero at the end of an interval (“discharge effect”) and thus, average storage levels
are smaller than when comparatively long time spans are considered. For example, the mean storage level of
4.6 GWh in the model instance with 365 intervals and 10% overlap is significantly smaller than in the case
of four intervals with the same overlap size (20.7 GWh).
In particular, when time interval lengths are in the range of typical storage cycling periods (in the presented
case daily periods for pumped hydro storage), storage charging over several energy surplus periods is not
cost-efficient for an individual time interval and, in addition, the overlap size cannot be large enough to
compensate the “discharge effect”. Such a tipping point can be seen in Figure 3.16 for the 16-interval model
instances where storage utilization first increases but decreases as soon as the overlap size changes from 4%
overlap (21 hours) to 10% (55 hours).
On the other hand, the overutilization of energy storage in model instances with less than 365 time intervals
stems from another effect. As shown in the upper part of Figure 3.17, significant deviations between the
storage levels of the original (solid black line) and the model instance with seasonal rolling horizon time
intervals (solid green line) occur mainly in the middle of the observed scenario year. Furthermore, in the
case of weekly intervals (solid grey line), differences from the shape of the black curve appear over the whole
time period.

Figure 3.17: Weekly rolling average of spatially cumulated storage levels (top) and greenhouse gas emission
(bottom) for two model instances with four and 52 time intervals, computed with the rolling horizon approach,
compared to the corresponding results of the original “REMix Dispatch” model instance (reference).

The described behavior shows that the deviations in storage dispatch also occur independent of the inter-
section areas of time intervals. The reason for this is related to the treatment of the annual greenhouse gas
emission budget. In the current rolling horizon implementation the annual emission budget is simply equally
distributed to the individual time intervals:
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Proportional emission budgets:

mi(i) =
m

|Ti|+ |T0(i)| · 100%

∀i ∈ Ti
T0 : Set of time steps that belong to overlaps

(3.10)

According to equation 3.10, the resulting cumulated proportional emission budget can be greater than its
annual counterpart. However, this especially applies when the absolute size of overlaps becomes large. The
reason therefore is the following: Although emission produced within the overlaps are not considered for the
final result, model setups exist where the proportional emission budget (that considers also emissions for
the time steps within the overlap) is almost fully utilized within the time steps before the overlap begins
and thus the total emission may be higher than intended. In Figure 3.16 this can be observed for the model
instance with 4 intervals and 10% overlap. With regard to emissions we call this “negative overlap effect”
in the following.
Apart from that, the equal distribution of allowed greenhouse gas emissions rather leads to less total emissions
than in the original model instance as they are caused by fossil-fired power plants which are usually in
operation in time periods with less electricity feed-in from renewable energies. Such time periods with high
residual load are naturally not equally distributed. Consequently, according to the blue lines in Figure 3.16
and the grey line in the lower part of Figure 3.17, the more time intervals are considered the more restrictive
the proportional emission budget. This also leads to the decrease in dispatch of coal-fired power plants
observable for an increasing number of intervals in Figure 3.16.
Moreover, also the over-utilization of energy storage can be traced back to this effect: In the case of seasonal
time intervals, in time spans with low residual load, the slightly higher emission potential allows a technology
shift from flexible gas-fired turbines to less cost-intensive coal-fired power plants where the missing flexibility
of that latter is provided by energy storage facilities (“negative interval effect”). This finally results in
the deviating storage levels and higher emissions for the seasonally sliced model instance in Figure 3.17
observable in the middle of the analyzed scenario year. The opposite of this technology shift takes place
when the emission limit is binding for time periods with high residual load (“positive interval effect”). In
this case emission-intensive power generation of coal-fired power plants needs to be replaced by electricity
production based on gas. Energy storage then comes into play to increase the capacity factor of CCGT and
OCGT plants. However, as it can be seen especially for weekly time intervals in Figure 3.16, this “positive
interval effect” is compensated by the “negative overlap effect”.

3.2.3.2 Temporal zooming
This subsection presents the results for the sequential implementation of the temporal zooming approach
applied to “REMix Expansion” model. In this regard, sequential means that multi-threading is only used
on the solver level. For a better understanding, we refer to the execution of the temporally down-sampled
model instance as “first execution phase” while post-sequent solving of multiple temporally decomposed
models is denoted as “second execution phase”. In Figure 3.18 and Figure 3.19 the resulting performance
and accuracy are shown where the parameterization of these two execution phases (temporal resolution of
the down-sampled model instance and the number of intervals) is varied. As for the visualization of compu-
tational indicators in case of the rolling horizon approach, the x-axes in Figure 3.18 are hierarchically labeled
for the variation of two SAR-parameters (see 3.1.4.1). In this figure, computing times represent cumulative
quantities while for the GAMS memory the maximum value is shown. Opposed to that, the indicators that
concern the number of non-zeros, the number of equations and the memory demand by the solver show
average values reported when solving each sub-model.
Given that all computational indicators scale with temporal aggregation (see section 3.2.2.2), it can be ex-
pected that the stronger the temporal aggregation of the down-sampled model instance, the less memory
and computing time is required. This expectation matches the results shown in Figure 3.18. Furthermore,
obvious similarities compared to the computational behavior of the rolling horizon dispatch (see 3.2.3.1) can
be observed for the GAMS related indicators. Both the GAMS time and the required memory significantly
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increase compared to the monolithic reference model. Nevertheless, opposed to the observations made for
rolling horizon, GAMS execution times are slightly reduced for an increasing number of time intervals. The
total wall-clock time, however, is significantly dominated by the solver performance as the ratio between
solver time and GAMS time is greater than factor 100 for the original model and never below 1 for the
model instances computed with temporal zooming. Therefore, in Figure 3.18, the shape of the black curve
mirrors the shape of the dark-blue curve that depicts the solver time.
Concerning the solver time, it is striking that there is a significant minimum observable for 16 intervals. This
means, even though the solver time can be reduced due to creation of smaller partial models for shorter time
intervals, a tipping point exists, when this reduction cannot anymore compensate the additional computing
effort for solving multiple sub-models. It becomes clearer when the super-linear scaling behavior for model
instances with different numbers of time steps is taken into account. As discussed for Figure 3.11 in section
??, the slope of the curve that represents the scaling of solver time vs. model size, is much flatter for small
models (between one and 168 aggregated time steps) than for large models (between 1095 and 8760 time
steps). In a temporally decomposed model with four time intervals, the length of an individual interval lies
at 2190 time steps and therefore, a more than linear reduction of solver time can be expected. Opposed to
that, for 52 time intervals, the time span that is covered by a single sub-model is 168 time steps. In this
area of the scaling curve in Figure 3.13, a reduction of model size by factor two only causes a reduction of
total computing time of less than 0.1%.

Figure 3.18: Computational indicators for sequential
temporal zooming applied to the “REMix Expansion”
model.

Figure 3.19: Accuracy indicators for sequential tempo-
ral zooming applied to the “REMix Expansion” model.
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This decreasing effectiveness of model reduction is also the reason for the less significant increase of speed-up
when comparing the total wall-clock time for different temporal resolutions in the “first execution phase”.
Although the model size between the instances with an eight-hourly and a 24-hourly down-sampled basis
is reduced by factor three, the reduction in total computing time is around 1-3%. In contrast, when the
instances with 4-hourly and 8-hourly down-sampled bases are compared, the model size is only halved, while
the total wall-clock time shows a reduction of 2-6%.
In summary, it can be concluded that speed-ups around factor eight to nine can be achieved. However it
needs to be considered that, due to the super-linear scaling behavior, saturation takes place in terms of
further performance enhancements.
The error of accuracy indicators of the model instances that are treated by the temporal zooming approach
is especially small if a temporally down-sampled model instance with four-hourly resolution is used. It stays
below 3% for all accuracy indicators whereas, compared to the outcome of the original model, the largest
deviation is observable for transmission expansion when more than seasonal time intervals are considered.
For stronger temporal aggregations in the “first execution phase”, significant underestimations of storage
expansion as well as of storage utilization occur in Figure 3.19. However, while in case of an eight-hourly
resolution the impact of different interval sizes is rather negligible, down-sampling on daily level results in
large errors across interval sizes especially for storage expansion.
Given that the storage capacity expansion concerns lithium-ion-batteries that are usually used to smooth
the daily feed-in pattern of PV plants, it becomes clear that those energy storage facilities are no longer
necessary in the 24-hourly down-sampled model instance. The sudden decrease of the storage expansion for
greater numbers of intervals can be accordingly explained as follows: As for the “second execution phase”
lower bounds for investments into new capacities are taken from the results of the “first execution phase”,
this lower bound is obviously binding for models based on the eight-hourly down-sampled model instance,
regardless of the number of intervals in the “second execution phase”. For this reason, the storage expansion
indicator is at approximately y=0.7 (light-green line). Opposed to that, in the 24-hourly case (right section
of Figure 3.19), the lower bound gathered from the “first execution phase” is considerably smaller as it
is depicted in the case of weekly time intervals (y=0.22). However, additional storage expansion appears
particularly for seasonal time intervals (y=0.69). It can therefore be concluded that the shorter the observed
time periods of a sub-model, the less attractive are investments into storage capacities.
The objective value accordingly decreases the less storage capacities are built. In this context, it is necessary
to have in mind that the effective objective value still includes additional costs for slack power generation
and, opposed to the cleaned costs in Figure 3.19, total costs for power supply are not automatically lower
than in the original model.

3.2.3.3 Temporal zooming with grid computing
When we apply the GAMS grid computing facility to the temporal zooming approach, an additional SAR-
parameter is to be considered. Although the total number of parallel threads is limited by the available
processors on a shared memory machine (in the current study we use 16 threads), their utilization is variable
in the grid computing case. While in the previous analyses all 16 threads are used for parallelization of the
barrier algorithm, in this section, also the capability to run several GAMS models in parallel is examined.
Therefore, the variation parameter ”Threads”, indicated on the x-axes of Figure 3.20 and Figure 3.21, dis-
tinguishes the number of runs times the number of parallel barrier threads accessible for the solver.
Opposed to the sequential implementation of temporal zooming, we do not show results for a variation of
the temporal resolution used in the “first execution phase” but only for model runs based on an eight-hourly
down-sampled instance. This is due to the fact that for the relation between this SAR-parameter and ac-
curacy, it can be expected that the findings from section 3.2.3.2 also hold for benchmark experiments with
temporal zooming and grid computing. Using a down-sampled model instance with eight-hourly resolution
represents a compromise between desired high speed-up and acceptable loss in accuracy.
Furthermore, for efficient in-memory communication between GAMS and the solver the current analysis is
conducted with the GAMS option solvelink=6. This implies that the sub-models that represent the different
time intervals are solved in parallel in an asynchronous manner while partial results are hold in memory.
Depending on the combined settings of the number of intervals and the number of parallel threads, the ma-
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jority of model instances cannot completely be solved in parallel. For example, in the case of 16 intervals and
eight threads (and presuming almost equal solver times) it is likely that two sets of sub-models are treated
after each other. First, time interval one to eight is solved within eight parallel threads and afterwards time
interval nine to 16. In the following we refer to this as “serial part”. However, due to the asynchronous
solution process and non-equal solver times, it is not guaranteed that each thread processes exactly two
sub-models.
Given that the machine independent, total solver time (reported in ticks) is not provided by the GAMS
logging files, but for each time interval, we post-process the solver time indicator for the performance eval-
uation. For this reason, solver time is depicted in two forms in Figure 3.20: The dark blue line, denoted as
”solver time single thread”, represents the median calculated over the solver times of all time interval-specific
sub-models. To account for the “serial part” we multiply this indicator by a factor α

Serial solve factor:

α =
|Ti|
ng

ng : Number of threads for parallel runs when using grid computing

(3.11)

to determine an approximation for the effective “solver time” (light-blue line).
In this context, a clear distinction between solver time and GAMS time is also difficult since generation (part
of the GAMS time) and solving of particular sub-models are executed in parallel. Deriving an approxima-
tion for the GAMS time and normalizing it with respect to its counterpart of the original model appears
accordingly less useful. The appropriate computational indicator is therefore not depicted in Figure 3.20.

Looking at the results for the total wall-clock time, a similar relation between computing time and the num-
ber of intervals can be observed as for sequential temporal zooming. Independent of the settings regarding
the distribution of threads, the best performance occurs for 16 intervals. On the one hand, this is due to the
decreasing effectiveness of model reduction as explained in section 3.2.3.2. On the other hand, considering
the number of parallel runs ng=2,4,8, it becomes clear, that especially instances that are decomposed into
a number of intervals that represents an integer multiple of ng are candidates for high speed-ups. In these
cases the available resources (threads) can be equally utilized. This applies to all model instances with 16
time intervals but only occasionally for seasonally and weekly decomposed model instances.
The most important outcome shown in Figure 3.20 is the achievable speed-up compared to the sequential
temporal-zooming approach. For 16 time intervals and 4x4 threads the resulting total wall-clock times go
down to values of 10% of computing time of the original model. This additional speed-up appears due to
the following effects: In contrast to a pure parallelization on the solver level, grid computing also allows to
execute the model generation at least partially in parallel. Furthermore, it can be shown that computing
times for implementations of the barrier algorithm in commercial solvers scale only up to 16 parallel threads
(Breuer, 2019). A further reduction of computing time by stronger parallelization (> 16 threads) is accord-
ingly only beneficial if it is applied elsewhere within the computing process. Logically, the application of
grid computing is especially useful, if more than 16 threads are available in total.
However, the current benchmark analysis shows that parallelization by grid computing is similarly effective
as solver parallelization for comparably small numbers of threads. As depicted in Figure 3.20, different
distributions of the number of parallel model runs and the number of barrier have a rather small impact
on resulting solver and total wall-clock times. Also for more than 16 threads the additional value of grid
competing can only poorly be demonstrated: Taking into account the results for the model instance labelled
with 2x16 threads, it can be stated that despite the total number of threads is doubled, only slight improve-
ments concerning the computing speed are achieved (speed-up factor < 10.8).
Apart from that, Figure 3.21 shows the accuracy for temporal zooming with grid computing relative to the
original model instance but also against the outcome of the eight hourly down-sampled model instance used
computed in the “first execution phase”. For storage utilization significant improvements are observable:
While in the down-sampled model instance the accuracy is only 55%, it reaches levels around 82%. This
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Figure 3.20: Computational indicators for temporal
zooming with grid computing and eight-hourly down-
sampled basis applied to the “REMix Expansion”
model.

Figure 3.21: Accuracy indicators for temporal zooming
with grid computing and eight-hourly down-sampled
basis applied to the “REMix Expansion” model.
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increase in accuracy, however, comes with the costs of less performance (for pure down-sampling on an eight-
hourly basis the speed-up is around factor 37). Nevertheless, as discussed in section 3.2.2.2, the strongest
errors occur with regard to storage utilization and storage capacity expansion. Other accuracy indicators,
such transmission expansion, deviate less than 6% from the solution of the original model instance. If only
dispatch-related indicators, such as capacity factors of wind, gas-fired or coal-fired power plants are assessed,
the appropriate error is smaller than 1%. This outcome is only slightly affected when the number of intervals
differs. As discussed in section 3.2.3.2 for Figure 3.19, this SAR-parameter only plays role if the “second
execution phase” is based on down-sampled model instances that show stronger temporal aggregations than
eight hourly time steps.

3.3 Discussion

3.3.1 Summary
With this report, we provide systematic evaluations of different approaches to improve the computing per-
formance of applied ESOMs. Besides a number of preliminary measures such as source code reviewing and
solver parameterization based on experiences gathered from former model applications, we implemented two
kinds of commonly used speed-up approaches to the ESOM REMix. These are, on the one hand, spatial
and temporal aggregation methods that showed effective speed-ups up to factor 10 if expansion of storage
and transmission capacities is to be considered.
We showed that the majority of analyzed accuracy indicators stay within an error range of about 5 % reach-
ing computing time reductions of 60-90% for spatial and temporal aggregation, respectively. Moreover, if
particularly affected technologies such as either power transmission or storage are of secondary interest, for
dispatch models speed-up factors between 4 and 20 are possible. In this context, it is important to select an
appropriate aggregation approach based on the model outputs to be evaluated in particular. For example, if
the competition between technologies that provide spatial or temporal flexibility to the energy system is to
be examined, the presented aggregation techniques are not suited for this purpose. For model instances that
consider capacity expansion, we also observed that significant speed-ups are particularly reached for low to
intermediate degrees of aggregation. In contrast, strong aggregations (beyond 90 %) showed only relatively
small additional improvements in computing performance.
Based on these findings, we conclude that model reduction by aggregation offers the possibility to effectively
speeding-up ESOMs by at least factor two without the implication of significant losses in accuracy. In con-
trast, strong degrees of aggregation are less useful because speed-up gains are comparatively small while
accuracy errors reach inacceptable levels (“effectiveness of model reduction”).
On the other hand, we applied nested model heuristics that aim at the decomposition of the temporal scale
of an ESOM. As these speed-up concepts imply manipulations on the temporal scale of an ESOM, they affect
accuracy indicators that are related to modeling energy storage. The benchmark analyses of the rolling hori-
zon approach for pure dispatch-models revealed that large overlap sizes and interval periods that cover full
storage cycles are recommendable. Their additional costs with regard to computing effort are low, but may
increase accuracy significantly. For the computational performance of the rolling horizon dispatch the ratio
between GAMS time and solver time is crucial since only for dominating solver times, significant speed-ups
around factor 2.5 could be observed for “REMix Dispatch”. In this regard, it needs to be considered that
“REMix Dispatch” is still a quite easy-to-solve model instance (total wall-clock time < 4h). Based on our
knowledge about “effectiveness of model reduction” we assume that this performance enhancement approach
will be even faster for larger dispatch models.
Considerably higher speed-ups were observed for the lager “REMix Expansion” model that was treated by
the temporal zooming approach. We showed that within the limited capabilities for parallelization on shared
memory hardware, speed-ups of more than factor 10 were possible, especially if grid computing was used.
However, besides the limitation imposed by hardware resources, the reachable performance enhancement
is also restricted due to scaling behavior of very small models. This means, that additionally to the ratio
between GAMS time and solver time, it needs to be considered that as soon as sub-models are reduced to
a certain size, further size reductions only slightly decrease solver time (downside of “effectiveness of model
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reduction”). Hence, with regard to speed-up by parallelization, it is remarkable that at first glance, many
intervals appear to be more effective. However, according to the results in 3.2.3.2 and 3.2.3.3, medium sized
intervals performed best.

3.3.2 Into context
Our findings, especially concerning temporal aggregation, are also in-line with those of (Stefan Pfenninger,
2017) who reports reductions of CPU time of more than 80% at three-hourly time resolution for scenarios of
the ESOM Calliope applied to scenarios for the UK. With regard to accuracy, Pfenninger reports the values
for capacity expansion of wind energy converters. His results show that the higher the wind penetration
of a particular scenario is, the stronger the errors that occur due to temporal aggregation. However, the
availability of storage technologies puts the effect of strong deviations compared to an hourly-resolved model
instance into perspective.
This indicates that the scaling behavior of computing time rather depends on the model characteristics
than on the composition of input parameters. Opposed to this, the scaling behavior of accuracy measures
indicates a strong dependency on the parameter setup.
In contrast to the here applied “REMix Expansion” model, Calliope also considers the expansion of genera-
tion capacities. In (Stefan Pfenninger, 2017), for a scenario with extensive capacity expansion of renewables,
the steep decrease of the curve of computing time for low degrees of aggregation is more pronounced than
in our model instances which rather show a smooth transition to the area with a flatter slope (“effectiveness
of model reduction”).
For the examined heuristic decomposition techniques, our observations concerning accuracy are in-line with
expectations derivable from known strengths and weaknesses occurring when differently treating the tempo-
ral scale: The down-sampled model instance allows a better approximation of capacity expansion indicators
due to the consideration of the full time-horizon to be analyzed. In contrast, solving model instances with the
best temporal discretization enables an accurate dispatch of available power generators (and storage units).
However, as results for accuracy gains by the latter show, running a temporally decomposed model instance
- when the solution for its down-sampled counterpart is known – was only beneficial for a more accurate
dispatch of storage units or when the temporal resolution in the “first execution phase” was poor. In this
case it needs to be considered, that for sufficient accuracy enhancements the selection of an appropriate
number of intervals is crucial since errors of accuracy indicators only decrease for comparably large interval
sizes.
Given that the “effectiveness of model reduction” becomes more significant when going from the compara-
tively easy-to-solve “REMix Dispatch” to the more complicated “REMix Expansion” model and that it is
also observable for different scenarios analyzed by Pfenninger, it can be generally concluded, that already
low degrees of aggregation with small accuracy errors become the more valuable the harder it is to solve
a particular monolithic ESOM. This makes model speed-up approaches that are based on model reduction
techniques even more attractive for application to ESOMs programed with mixed-integer variables.

3.3.3 Limitations
The claim of conducting analyses for comparably large model instances implies several challenges that only
partially could be addressed. As mentioned in section 3.1, the whole benchmarking should ideally be carried
out on the same computer hardware ensuring no influence on the solving process by parallel processes of
other applications. However, due to a limited access to equally equipped computers, the instances of the

”
REMix Dispatch“ model with rolling horizon were solved on the JUWELS cluster of the Juelich Supercom-

puting Center (first row in Table 3.2). For all of the other benchmark experiments other hardware was used
(second row in Table 3.2).
Also minor bug-fixes were applied to REMix between the different benchmark experiments. One remark-
able change is the indicated reduction of solver precision from 1e-8 to 1e-5 to reduce total computing times
for experiments related to spatial aggregation with capacity expansion (see section 3.1.2.2) while extensive
logging in GAMS’s listing files was enabled. This obviously changed the ratio between GAMS time and
solver time and probably led to smaller speed-ups observed for spatial aggregation with instances of “REMix
Expansion”.
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For these reasons, speed-ups found for the individual performance enhancement approaches are not fully
comparable with each other. Despite this circumstance, it can be expected that ideal conditions are also
hardly achievable if speed-up approaches are used in applied studies. And still, for large models, the relation
between achievable speed-up by a particular performance enhancement approach and impact on the com-
puting time by parallel third-party processes should be negligible.
Moreover, the two selected REMix models that were used for this evaluation of speed-up approaches share
many similarities with other applied ESOMs, especially if these are formulated in GAMS. However, we do
not claim to provide general findings - such as the specific number of intervals to use for a rolling horizon
method - that are representative for all of these models. For instance, because our results are only based
on a single model parameterization, the impact of different data sets especially on accuracy indicators could
not be assessed which limits the general transferability of our findings. Nevertheless, the outcome of this
study provides a clear indication which speed-approaches show the highest potential for significantly reduc-
ing computing times. Furthermore, we mainly used straight-forward implementations that can still be tuned
towards greater accuracy if required. This is particularly necessary if other indicators than the ones that
were used in this study (mainly on an annual basis) are of interest; e.g. shadow prices.

3.3.4 Methodological improvements
In this report, we mainly focused on reachable improvements concerning the computational indicators, i.e.
the required total wall-clock time. However, as all of the presented methodological approaches do not provide
exact solutions of the original model instances, improvements regarding the accuracy can be considered if
necessary. In the case of model reduction, a broad variety of conceivable methods to increase the accuracy
of particular model outputs exists (see section 2.1). As methods such as representative time slices or more
sophisticated network equivalences are more or less related to smart treatment or preprocessing of input
data, the total time consumption for the overall modeling exercise will not significantly increase.
With regard to the applied rolling horizon dispatch approach, similar improvements are conceivable by using
temporally aggregated data for the time steps within the overlap. The idea behind is an extension of the
foresight horizon while keeping the number of redundant time steps to be considered low. For instance, for
the operation of long-term storage, down-sampling of the residual load for the next annual period would be
valuable to avoid the undesired effect of full discharging towards the end of an interval.
Moreover, improved estimations for emission budgets for each interval are conceivable. In the actual imple-
mentation the annual emission budget is simply equally distributed which, on the one hand, prevents the
dispatch of thermal power plants particularly in points in time with high residual load. On the other hand,
time intervals where sufficient renewable energy resources are available may require a smaller emission limit
instead. To address this issue, it could be considered to shift unused emissions from one time interval to the
next and to select a summer date as starting point for an annual model run.
Heuristic decomposition approaches such as the presented temporal zooming method offer a starting point
for improvements that could go into two directions:

� Improved performance can be gained by running the independent model parts (such as the time intervals
in case of grid computing presented in 0) on different computers. By this means, the drawback of being
limited to memory and CPU resources of shared memory machines could be overcome. In this context,
for a better coordination and utilization of available computing resources the application of workload
managers such as (Slurm Workload Manager , 2019) would be beneficial.

� Improved accuracy can be reached by an extension to an exact decomposition approach that decom-
poses the temporal scale. However, this requires additional source code adaptions. For instance, in
case of Benders decomposition, the distribution of emission budgets to the respective intervals needs
to be realized by interval specific variables necessary to create benders cuts. Additionally, it can be
expected that due to the need of an iterative execution of master and sub-problems the total computing
time would significantly increase. Taking into account the best achievable speed-up of 10 of temporal
zooming compared to simply solving the monolithic model, there is only a little room for improvements
which may be disproportionate to the implantation effort required.
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Finally, the combination of both improved performance and maintaining the accuracy requires iterative
methods as well as the utilization of distributed memory computing hardware. However, effective implemen-
tations of such performance enhancement approaches require efficient communication between the processes
that are executed in different computing nodes. Parallelization should therefore not only be thought at the
conceptual level but also on the technical layer. This goes hand in hand with the parallelization of solvers
which is realized with the PIPS-IPM++ solver (Breuer et al., 2018). This solver provides a HPC-compatible
implementation of the interior point method for LPs that are characterized by linking variables and linking
constraints.

3.4 Conclusions
Energy systems analysis highly depends on modeling tools such as Energy System Optimization models
(ESOMs). To fulfill their purpose to provide insights into complex energy systems for decision support they
need to be solvable within acceptable time spans.
For the broad spectrum of existing measures to improve the performance of ESOMs, we provided a detailed
classification of conceivable approaches. Furthermore, we gave examples on easy-to-use adaptions that
already improve computing performance, especially for ESOMs formulated in GAMS. These measures were
accompanied by comprehensive benchmark analyses for a set of frequently applied speed-up techniques. The
conducted examination included model aggregation approaches on different scales as well as strategies for
heuristic decomposition. Both were applied to a spatially (488 regions) and temporally (8760 time steps)
highly resolved ESOM of Germany for an energy scenario of the year 2030. While conventional computing
with commercial solver software required more than two days for optimal solutions of certain model instances,
selected speed-up approaches obtained sufficient solutions after less than six hours.
In particular, the novelty of this report is the systematic evaluation of a broad set of approaches assessed for
an applied ESOM focusing on achievable performance improvements. This allowed statements concerning
possible speed-up factors and implied accuracy losses that went far beyond existing, methodologically focused
assessments of single approaches with generic model setups.
In this context, 3.5 shows the final overview of the deeply analyzed speed-up approaches of the current study.
Here, the “sufficient speed-up” indicates how many times faster a model instance could be solved compared to
the total time required to solve the same model in the conventional way. As our analyses emphasized model
reduction and heuristic decomposition, “accuracy” was quantified by using a set of pre-defined accuracy
indicators (see 3.1.4.3). In 3.5, the deviation from 100% accuracy is listed for both, the average over all
assessed accuracy indicators and the accuracy indicator that showed the greatest error.

According to Table 3.5, within our evaluation framework, temporal down-sampling turned out to be the
most efficient speed-up approach. The usefulness of this approach is strongly related to the “effectiveness
of model reduction”. In other words, the larger and more difficult to solve a particular ESOM becomes, the
greater the achievable speed-up by already minor model reductions is. Taking into account that solving of
linear ESOMs with mixed-integer variables is more complicated than for the model instances considered in
this study, we suppose that the presented speed-up approaches are especially effective for such use cases.
As far as only specific model outcomes such as additional transmission capacities are of interest and extensive
multi-threading is possible, the presented heuristic decomposition approaches with grid computing (temporal
zooming) are also promising as they allow additional speed-ups without increasing loss of accuracy. More-
over, they offer the possibility for executing an ESOM on multiple shared memory computers even though
parallelization is only applied to the conceptual layer of the optimization model.
Nevertheless, we showed that the appropriate gains in performance are limited depending on the size of a
certain model. In this case, the down-side of “effectiveness of model reduction” comes into play: Since the
idea behind decomposition is based on solving multiple reduced sub-models, such approaches reach their
speed-up limit when the decrease of computing time by model reduction becomes negligible for very small
sub-models.
Restrictively, the examined speed-up approaches were implemented and evaluated for a single ESOM frame-
work. In this regard, further systematic evaluations are conceivable where variations of both input data
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Table 3.5: Overview of analyzed performance enhancement approaches: observed speed-up and accuracy.

Speed-up approach Sufficient speed-up Accuracy
(model instance) Average Worst (indicator)

Spatial aggregation
“REMix Dispatch” >4 (100 regions) >95% >70% (power expansion)
“REMix Expansion” >8 (150 regions) >95% >70% (transmission expansion)

Down-sampling
“REMix Dispatch” >6 (2190 time steps) >97% >81% (storage utilization)
“REMix Expansion” >10 (2190 time steps) >97% >87% (storage utilization)

Rolling horizon dis-
patch

≈ 2.5 (16 intervals) >96% >87% (storage utilization)

Temporal zooming
(sequential)

>8 (1095 time steps/16 inter-
vals)

>93% >69% (storage expansion)

Temporal zooming
(grid computing)

>10 (1095 time steps/16 in-
tervals)

>92% >68% (storage expansion)

and model specific source code need to be done. This especially applies to the latter because, based on our
findings, we suppose that differing input data affect the accuracy of an ESOM rather than the computing
performance.
In conclusion, the capability to solve very large ESOMs much faster is a pre-condition for best-practice
studies in the field of energy systems analysis. Rather than spending time on solving models only for a
hand full of scenarios and parameter sets, broad parameter scans become possible for which plenty of model
solutions are required. In this manner, the application of effective speed-up approaches highly contributes
to the generation of robust and well-founded model-based analyses for the development of decarbonization
strategies of the energy system.
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Part II

Technical Performance Enhancement
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Chapter 4

Overview of technical performance
enhancement

Technical energy system performance enhancement refers to massively parallel computing power, either on
institute-level clusters or in high performance computing centers. The architectures of high-performance com-
puters require the models to be as highly parallelized as possible, i.e. structured in individual, independent
sub-problems. Therefore, this performance enhancement strategy requires not only the high-performance
computing hardware but a specialized solution algorithm and an adapted model formulation at the same
time. These three components of technical performance enhancement are described in this chapter.

4.1 A hand-tailored parallel algorithm

While commercial generic LP and MIP solvers are often extremely powerful, they usually cannot run (effi-
ciently) on distributed systems. Moreover, for special problems (such as perhaps most famously the traveling
salesman problem (Cook, 2018)), hand-tailored solvers may significantly outperform general-purpose com-
mercial MIP software. As large ESM instances of the BEAM-ME project have proven to be intractable within
a time frame of several hours for commercial solvers, much effort has been spent on developing specialized
parallel algorithms that exploit the structure of the ESM instances at hand.

4.1.1 Exploiting the problem structure within an interior-point algorithm
Since interior-point methods usually prove to be more successful for large problems, in particular for ESM, see
Section 1.2, this method was chosen for the LPs in the BEAM-ME project. Mathematically, a salient char-
acteristic of these LPs is their block-diagonal structure with both linking constraints and linking variables,
as depicted below:

min cTx

s.t. T0x0 = h0

T1x0 + W1x1 = h1

T2x0 + W2x2 = h2

...
. . .

... (4.1)

TNx0 + WNxN = hN

F0x0 + F1x1 + F2x2 · · · FNxN = hN+1,
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with x = (x0, x1, ..., xN ). The linking variables are represented by the vector x0, whereas the linking
constraints are described by the matrices F0, ..., FN , and the vector hN+1. The approach to solve this LP is
based on the parallel interior-point solver PIPS-IPM (Petra, Schenk, & Anitescu, 2014), that was developed
for solving stochastic linear programs. It has already successfully been applied to solve large-scale problems
in massively parallel environments. The form of its designated problem class also exhibits block-diagonal
structures, although only with linking variables and without linking constraints. In this way, PIPS-IPM in
its original form cannot handle problems of the form shown above. Within the BEAM-ME project PIPS-IPM
has been extended in order to handle LPs with both linking constraints and linking variables. The resulting
solver is called PIPS-IPM++ or short PIPS++. The exact mathematical details are beyond the scope of
this guide, but the pivotal ingredient of the algorithm is the parallelization of the linear system that has to
be solved in each iteration of an interior point algorithm. Below, a short overview over the most impactful
extensions and their schematic mathematical description are given.

PIPS-IPM and its new extension make use of the Message Passing Interface (MPI) for communication
between their (parallel) processes, which in the following will be referred to as MPI-processes. Without
going into too much technical detail, an important feature is that the whole LP can be distributed among
the MPI-processes, with no process needing to store the entire problem. This allows tackling problems that
are too large to even be stored in the main memory of a single desktop machine. The main principle is that
for each index i ∈ {0, 1, ..., N} all xi, hi, Ti, and Wi (for i > 0) need to be directly available to only one MPI-
process; hN+1 needs to be assigned to the MPI-process handling i = 0. Moreover, each MPI-process needs
access to the current value of x0. Below, the distribution is exemplified for the case where the information
to both i = 0 and i = 1 is being assigned to the same MPI-process (in gray). The vectors and matrices that
need to be processed together are marked in gray, black, and bold, respectively.

min cT0 x0 + cT1 x1 + cT2 x2 + · · · cTNxN

s.t. T0x0 = h0

T1x0 + W1x1 = h1

T2x0 + W2x2 = h2

...
. . .

...

TNx0 + WNxN = hN

F0x0 + F1x1 + F2x2 · · · FNxN = hN+1

The maximum of MPI-processes that can be used is N ; in the opposite border case the whole LP is assigned
to a single MPI-process.

4.1.2 Improving performance and scalability
The prototype of PIPS++ showed deficits in both, convergence and run time: While it was possible to solve
some ESMs to optimality, for others the algorithm could not find an optimal solution—it also could not
outperform the interior point algorithm of the commercial solver CPLEX, which was used as the reference
(ran with the empirically most profitable number of threads on a large shared-memory machine). Several
steps have been taken to improve performance and convergence.

4.1.2.1 Solving the Schur complement
To begin with, interior point algorithms rely on the successive solution of LPs. In the extended solver, these
systems have the form


K1 B1

. . .
...

KN BN
BT1 · · · BTN K0




∆z1
...

∆zN
∆z0

 =


b1
...
bN
b0

 , (4.2)
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with matrices Ki, Bi, and some right-hand side vector. These matrices each are composed out of the sub-
matrices shown in 4.1 and we do not go into detail about their structure here. The distribution of system
4.2 follows the one described earlier and thus the solving of the LP can be done (mostly) in parallel. The
solver applies a Schur complement approach to the system which decomposes into the following procedure:

1. Multiply each row i = 1, ..., N of (4.2) by −BTi K−1i .

2. Sum up all rows.

3. Solve
(
K0 −

N∑
i=1

BTi K
−1
i Bi

)
∆z0 = b0 −

N∑
i=1

BTi K
−1
i bi.

4. For each row i = 1, ..., N insert ∆z0 and compute ∆zi.

The matrix

C = K0 −
N∑
i=1

BTi K
−1
i Bi, (4.3)

is called the Schur complement of the above system and its computation, or rather, the solution of the
associated linear system is most crucial to the interior point algorithm. While most of the steps can be
done locally on each MPI-process, the formation of the actual Schur complement and the solution of the
resulting linear system would require storing the matrix on a single process. This poses a problem, since
for many energy system models there are more than 300 000 linking constraints and variables, making it
intractable to compute and store the Schur complement as a dense matrix, the common procedure for the
depicted algorithm. However, in many linear energy system models, the majority of linking constraints and
variables are local, meaning, they only connect two different building blocks i, j of the original problem.
These structures lead to an increased sparsity of the resulting global Schur complement. One of the major
improvements implemented is the exploitation of these local linking structures. Knowing beforehand about
the locality of certain linking constraints and variables allows the prediction of the non-zero pattern in the
resulting Schur complement. This reduces the amount of storage needed for the matrix and also enables one
to use sparse LP solvers for the solution of the Schur complement. Both advantages increase the performance
of the original version of PIPS greatly allowing it to efficiently solve systems with larger linking parts. For
a detailed description of the (actually, even more sophisticated) implemented mechanisms for exploiting the
locality of linking constraints and variables in the extended solver refer to (Rehfeldt et al., 2019).

Despite the previously mentioned improvements, a high number of linking constraints and variables can still
slow down the solution process of the algorithms significantly. This is because factorization and solution of the
global Schur complement can still be prohibitively time-consuming. One possible remedy is to not compute
the Schur complement explicitly but to use an iterative approach, e.g. a Krylov subspace method (Saad,
2003). These methods only require matrix-vector products with the system matrix but often depend highly
on the effective preconditioning of the linear system. For this purpose, PIPS-IPM has been extended by a
distributed preconditioner, details of which can be found in (Rehfeldt et al., 2019). The implementation of
such a preconditioner in the context of interior-point methods being quite a novelty, one achieved significant
performance improvements.

4.1.2.2 Improving the solution algorithm
Most of the algorithmic efforts described above have concentrated on efficiently solving the linear system
arising from an interior-point algorithm. However, also the interior point algorithm itself is of high impor-
tance to achieve fast and robust convergence. To improve robustness, the originally implemented predictor-
corrector algorithm of Mehrotra has been replaced by the multiple centrality correctors scheme of Colombo
and Gondzio (Colombo & Gondzio, 2008). Moreover, since PIPS-IPM has been developed to solve quadratic
problems, the same step length (central part of an interior-point algorithm) for primal and dual variables
has been used originally. As the project is only concerned with LPs, different primal and dual step lengths,
see e.g. (Wright, 1997), have been implemented into PIPS++ to achieve faster convergence.
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4.1.2.3 Preconditioning
Two additional points in implementing robust interior-point algorithms that are not directly tied to the
algorithm itself are scaling and presolving. Both preconditioning techniques modify the original system
matrix in a way that makes the application of an interior point method to solving it more reliable. For
the next paragraphs we consider the LP in a slightly different and simplified form than (4.1), namely with
explicit variable bounds:

min{cTx : Ax = b, ` ≤ x ≤ u}. (4.4)

This notation allows for a better demonstration of the following scaling and presolving techniques. Scaling
of (4.4) can be described by means of two diagonal matrices R = (ri,j) and C = (ci,j) with positive diagonal
elements. The diagonals correspond to the row and column scaling factors respectively. Defining

Ã = RAC, b̃ = Rb, c̃ = Cc, ˜̀= C−1`, and ũ = C−1u

one obtains the scaled linear program

min{c̃Tx : Ãx = b̃, ˜̀≤ x ≤ ũ}. (4.5)

Each solution x̃ to (4.5) corresponds to a solution x = Cx̃ to (4.4) with the same objective value. PIPS-IPM
has been extended by geometric scaling, equilibrium scaling, and a combination of both (Elble & Sahinidis,
2012). While equilibrium scaling divides all coefficients in each nonzero row and column of the constraint
matrix by the absolute largest entry within this vector, geometric scaling uses a simplified geometric mean
of the absolute vector entries as divisor: For each column Aj of the constraint matrix A the divisor is√

maxi:aij 6=0 |aij | ·mini:aij 6=0 |aij |, for each row ai· it is
√

maxj:aij 6=0 |aij | ·minj:aij 6=0 |aij |. Geometric scaling
is computationally more expensive than equilibrium scaling, since it is applied iteratively (up to 10 times
in the extended solver); equilibrium scaling on the other hand always converges in one step. However, the
arrowhead structure allows to perform all scaling methods efficiently in parallel. Therefore, the scaling run
times are neglectable, and geometric scaling is used as default.

4.1.2.4 Presolving the problem
As mentioned, another important ingredient of state-of-the-art linear programming solvers is presolving (Achter-
berg, Bixby, Gu, Rothberg, & Weninger, 2019). LPs resulting from a modeled application often contain
redundant information. Thus it is advisable to apply presolving routines to the LP to eliminate redundant
parts. Presolving techniques for LPs aim to reduce the number of variables, constraints, and non-zeroes
while keeping the presolved and original problem equivalent (similar to 4.5 and the unscaled problem 4.4).
Currently, PIPS++ newly implements four different presolving methods. Each incorporates one or more of
the techniques described in (Achterberg et al., 2016; Andersen & Andersen, 1995; Gondzio, 1997): singleton
row elimination, bound tightening, parallel and nearly parallel row detection, and a few methods summarized
under the term model cleanup. The latter includes the detection of redundant rows as well as the elimination
of negligibly small entries from the constraint matrix.

The presolving methods are executed consecutively in the order listed above. Model cleanup is additionally
called at the beginning of the presolving. A presolving routine can apply certain reductions to the LP:
deletion of a row or column, deletion of a system entry, modification of variable bounds and the left-
and right-hand side, and modification of objective function coefficients. These reductions are applied as
equivalence operations not changing the means of the linear program. This allows it to recover an original
solution (a solution of the original system matrix) from the solution computed by the solver in a so-called
postsolve step. It is important to note, that none of the presolving techniques described above are allowed to
alter the general block structure of the system since this would lead to the non-applicability of the structure-
specific solution method. Thus, the set of implemented methods is highly tailored to the general structure
of the problem (Gleixner, Kempke, Koch, Rehfeldt, & Uslu, 2019).

4.1.3 Further improvements
While the work described above already yields notable computational improvements, there are several paths
for further development of PIPS-IPM++. A natural one is the implementation of additional presolving
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methods. Promising candidates are substitution of variables and elimination of linearly dependent rows. To
improve robustness, also more aggressive scaling methods could be implemented, as well as the homogeneous
self-dual interior-point method (Vanderbei, 2008).

Yet another extension, that is currently being implemented, is a hierarchical approach, which splits the Schur
complement decomposition (and thus also the Schur complement) into several layers to handle energy system
models with even stronger linkage.
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4.2 High Performance Computing
The first part of this chapter will give a brief overview of common HPC architectures. A detailed overview
of HPC is provided, for example, by Hager et al. (Hager & Wellein, 2016) and Sterling et al. (Sterling,
Anderson, & Brodowicz, 2018). Further sources with additional information are referenced in the following
sections. The second part will briefly describe the supercomputers at HLRS ans JSC that were used during
the BEAM-ME project.

4.2.1 High performance computing architectures
The theoretical concept of modern computers has been developed by Turing in 1936 (Turing, n.d.) and the
implementation of this concept was named a stored-program digital computer (see figure 4.1). The program
is a stream of instructions and is stored together with the data in the same memory. The control unit
reads the instructions and the arithmetic logic unit reads the data from memory and performs the actual
computations. A well know bottleneck of this concept, the von Neumann bottleneck, is the influence of the
memory interface speed on the computational performance. If the instructions and data cannot be transfered
fast enough to the Central Processing Unit (CPU), the CPU cannot continue with the computations. This
inherently sequential workflow can only process one instruction on one data element in one cycle. According
to Flynn’s taxonomy, this architectural design belongs to the group ”Single Instruction Single Data” (SISD).
The following section lists several modifications and extension to improve the performance of this architecture
and to enable parallelism.

Figure 4.1: stored-program digital computer

Around 1970 Gordon Moore postulated that the number of transistors on a chip doubles every two years
(see figure 4.2). As it turned out that concomitant with doubling of the number of transistors the compute
performance has been growing equivalently, this was called Moore’s law and is still valid. Along with this
development, the clock frequency increased as well. This engineering progress has led to further innovations
which includes among others:

� Pipelining: Instruction Level Parallelism (ILP)

� Superscalarity

� Hyper-Threading / Simultaneous Multithreading (SMT)

� Out-of-oder execution

� Single Instruction Multiple Data (SIMD); Multiple Instruction Multiple Data (MIMD)

� Memory hierarchy - Caches: Registers, prefetching, coherence

In the early 2000s there was a change in the hardware development because the increase of transistors and
clock frequency have resulted in higher temperatures and power consumptions so that cooling became a
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major issue. This was the motivation to design multicore CPUs with multiple cores in a CPU instead of
increasing the frequency while keeping the same power envelope as before (see figure 4.2).

Figure 4.2: 42 years processor trend

Modern supercomputers are usually equipped with two or more multicore CPUs per compute node. One
compute node is a shared memory system. But the strength of an HPC system is coming from the fast network
which connects the different compute nodes so that applications are able to communicate and synchronize
their workflow. The most important performance indicators of such an interconnect are bandwidth and
latency.

A supercomputer is a distributed-shared memory system. To use such a hardware efficiently, parallel pro-
gramming languages like the widely used MPI and OpenMP (OMP) are neccessary. Apart from the described
processor archictures, other computing hardware exists, e.g. GPUs (graphics processing units), FPGAs (field-
programmable gate arrays) and vector processors. Specialized parallel file systems are available to deal with
huge demand on storage capacity and to reduce the influence of the Input and Output (I/O) bottleneck.

Although the following section Distributed-Shared-Memory achitecture and Message Passing Interface is not
mandatory for the users who want to solve linear optimization models on an HPC system using the strategy
developed in BEAM-ME, we believe that they serve the general understanding of the HPC architecture and
its advantages, disadvantages and future development. It also helps readers to understand terms in HPC
that may appear in other areas of science but with a different meaning, such as a ”node” or ”load balancing”.

4.2.2 Distributed-Shared-Memory achitecture and Message Passing Interface
The strength of HPC lies in the connection of numerous computing nodes via a high-performance connec-
tion. Therefore, it is not surprising that algorihm parallelisation and network performance are the keys to
application efficiency on HPC systems. In the following, the most important features of distributed systems
and their interrelationship to parallel applications are described.

A process is a serial program in execution on one core and has its own virtual address space, which is mapped
to the physical main memory of a compute node. If one wants to use multiple cores for a computation,
threads are used. The only difference to a process is that multiple threads of same process have the same
virtual address space. OMP is an application program interface (API) that automatically implements shared
memory parallelism.1 It has become a successfull parallelization model and is the de facto standard for

1OMP is used to fork additional threads to carry out the work enclosed in a OMP construct in parallel.
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shared-memory parallel programming (OpenMP, 2018).

In addition to threads, one also uses Message Passing Interface (MPI) processes to code and run a parallel
application on multiple cores. The additional effort compared to OpenMP is that the data must be distributed
accross the processes, because each of MPI processes has its own address space. This method is called domain
decomposition. The advantage is that an application can run on multiple compute nodes. If two processes
are running on two different compute nodes, the data is copied over a network. If two processes are running
on the same compute node, the data is copied inside the processor or via QPI links. In both cases, the
same MPI API are used. Only the performance can differ greatly. Although this enables distributed parallel
programs to be written exclusively with MPI, the Hybrid Programming Paradigm is becoming more and more
important. The reason for this is that the number of cores per computer node is constantly increasing and
thus memory interfaces and QPI links becomes a bootleneck. The hybrid programming model MPI/OpenMP
is also used in PIPS-IPM++.

The domain decomposition consists of splitting the overall computational domain into as many tasks as
desired, and assigning each subdomain to an MPI process, which can then be solved at the same time.
Figure 4.3 shows a distribution of a two dimensional domain to four MPI processes. If the parallel algorithm
needs the data from the neighboring subdomains to be exchanged, the halo data is sent via the so-called MPI
messages. The MPI standard (MPI-Forum, 2015) defines an interface for the message exchange between the
processes. The standardization in this case is very important because the high performance networks can be
equipped very differently depending on the model and manufacturer.

Figure 4.3: Domain decomposition in distributed memory

In the example shown, the amount of work is evenly distributed between the MPI processes. This makes
load balancing ideal. An MPI/OpenMP program differs from a pure MPI program in that each subdomain
can be processed with several threads instead of one.2

4.2.2.0.1 Load balancing: In real world applications it is often almost impossible to divide the area
into exactly the same subdomains. Since the parallel solvers are often iterative algorithms, the parallel
processes must wait in each iteration until all processes have completed their calculation on the subdomain.
If the decomposition is inappropriate, all processes must wait for one that has been assigned to the largest
subdomain. In addition, not all serial algorithms can be ideally parallelized. A part of the processing has to
be done with a single process, while the other MPI processes are waiting.

4.2.2.0.2 Amdahl’s law: Amdahl’s law shows how much a computation can be sped up by running
part of it in parallel. The speedup Speedup(p) is defined as the ratio of the serial runtime of a sequential
algorithm for solving a problem to the time taken by a parallel algorithm to solve the same problem with p

2In HPC one starts one thread per core.
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processes. Since the parallel algorithms need the communication between the processes, Amdahl’s Law can
be further extended with the communication time Tcomm. If we assume that the communications portion γ
increases linearly with the number of processors, equation 4.6 predicts the theoretical maximum speedup for
a parallel program.

Ttot = Tser + Tcomm + Tpar;

Speedup(p) = Ttot

Tser+γ∗p+Tpar
p

;

Ttot - Total time to solve a problem;
Tser - Time of not parallizable serial part of algorithmus;
Tcomm - Communication time;
Tpar - Time of paralliezable part of algorithmus;
p - Number of parallel processes;
comm - Communication share per process;

(4.6)

Figure 4.4 on the left side illustrates the limitation of the speedup without taking communication into
account. The figure on the right side shows the speedup considering the communication time. As you can
be see, If too many processes are used, the solution time may even increase.
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Figure 4.4: Amdahl’s law without (left) and with consideration of the communication (right)

4.2.2.0.3 PIPS-IPM++ and Amdahl’s law: Figure 4.5 illustrates a timeline for three of 512 MPI
processes for two iterations of the interior-point method, which is implemented in PIPS-IPM++. The
diagram shows the exclusive time per function group, namely MPI and USER (labeled as Application in
the figure). The red color shows the MPI part and the green color represents the rest of the computation
(USER). The yellow color indicates a particular function that is not MPI parallelized and is a part of the
USER group. The corresponding function solves the schur complement of the LP system (see section 5
for more details). The MPI part contains not only the communication time, but also the waiting time if
load balancing is not perfect, because the essential part of communication can begin only when all involved
processes are ready to send and receive the messages. If more than 512 parallel processes are used for the
computation, the duration of the sequential part will even increase due to the block structure of the LP task.
It will lead to the reduction of parallel efficiency and, consequently, of speedup.
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Figure 4.5: Timeline diagram (Top) and exclusive time per function group (Bottom) of a PIPS-IPM++ run
with 512 MPI processes

4.2.3 Computers used at HLRS

Figure 4.6: Supercomputer
”
Hazel Hen“ (Cray XC40) at HLRS und its blade with four compute nodes

HLRS offers a variety of supercomputing systems reflecting the different needs of its scientific and industrial
customers (HLRS-Systems, 2019). However, PIPS-IPM++ was mostly started on Hazel Hen. Supercomputer
Hazel Hen (see Figure 4.6), a Cray XC40 system, is at the heart of the high performance computing system
infrastructure at HLRS. With a peak performance of 7.42 Petaflops (quadrillion floating point operations
per second), Hazel Hen is one of the most powerful HPC systems in the world (11/2018 rank 30 in the
TOP500, 11/2017 rank 19, 11/2016 rank 14, 11/2015 rank 8). Hazel Hen entered operation in October
2015, is based on the Intel Haswell Processors and the Cray Aries network technologies, and is designed for
sustained application performance and high scalability (11/2018 rank 20 in HPCG List, 11/2017 rank 14,
11/2016 rank 12, 11/2015 rank 6). Figure 4.6 on the right side shows one of the 1928 blades of Hazel Hen
with four compute nodes and its shared Aries network chip.

80



Table 4.1: Main components of Supercomputer
”
Hazel Hen“ (Cray XC40)

Components Quantity

Cray Cascade Cabinets 41
Dual socket compute node 7712
Processors E5-2680v3 (Haswell) 2× 7712 = 15424
Compute cores 12× 15424 = 185088
DDR4 memory per CPU 64 GB
DDR4 memory in total 15424× 64 GB= 964 TB
Disk capacity 10 PB
Interconnect Aries
Operating system Cray Linux Environment
Power consumption ∼ 3.2 MW

The upcoming system, which HLRS has named Hawk, will have very probable the world’s highest sustained
performance for science and industrial applications in the fields of energy, climate, mobility, and health.
Hawk, based on the Hewlett Packard Enterprise next-generation HPC platform running a next generation
AMD EPYC processor code named Rome (Shilov, 2018), will have a theoretical peak performance of 24
petaFLOPs, and consist of a 5,000-node cluster. Hawk is expected to go into full service in the beginning of
the year 2020.
Even if the present machine Hazel Hen will be replaced in the year 2020 with a new one, the steps of the
below described workflow remain mostly unchanged. Appendix B provides step-by-step configuration guide
of PIPS and GAMS software on Hazel Hen. In the following, the key issues for using HLRS resources and
their impact on the GAMS/PIPS-IPM WorkFlow are addressed.

4.2.4 Use of Supercomputer at HLRS
Once the proposal for compute time is approved, the new users will receive their login data (username and
password). For security reasons3, the HPC resources of HLRS (inclusive Hazel Hen) are accesible withhin
internal HWW network, protected by a firewall and other security measures (see Figure 4.7). To enter this
network from public internet, the users have two alternatives:

� Access to HLRS compute platforms requieres a registration of the clients static public IP address in
the firewall. If this requirement is met, one can directly login to one of the login nodes of Hazel Hen.

� The second alternative is the usage of VPN service at HLRS. For more information, see HLRS’s
Knowledge Base section about VPN (HLRS-VPN, 2019).

After an HLRS account has been created and, if required, a VPN connection is established, the user can
open a Secure Shell (SSH) connection to one of the login nodes of Hazel Hen4. A detailed description of
Secure Shell at HLRS can be found in Knowledge Base section about SSH (HLRS-SSH, 2019).

4.2.4.1 File Systems at HLRS
In HLRS we distinguish the file systems in their purpose, performance, capacity and durability. There are
four main storage systems: HOME, OPT, WORKSPACE and High Performance Storage System (named as
HPSS Archive in the following):

3HLRS offers a variety of HPC services to industry and Small and Medium-sized Enterprises (HLRS-SICOS, 2019), which
have especially high demands for security.

4SSH is the exclusive way to get into the secure environment of HWW. If you are on Linux or Mac open terminal and type
the command

”
ssh username@hazelhen.hww.hlrs.de and if you are on windows computer use PuTTY SSH client (putty.org,

2019) or another suitable terminal emulator. After the password prompt you are on front end of Hazel Hen. The best practice
to avoid the password query on every connection is use of SSH Key Pair. Most likely the ssh host address for the new machine
will be

”
hawk.hww.hlrs.de“.
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HWW network

Hazel Hen

Login servers

Portable Batch System

Aries interconnect

MOM nodes

Compute nodes

Workspace

VPN server

Gateway

File server
/home

. . .

File server
/opt

� Hazel Hen is in HWW network.

� Login nodes are used for login, compiling, edit
and serial execution of the scripts and submis-
sion of the computational jobs (PBS-jobs).

� Home-directory is suitable for serial access (e.g.
from Login nodes): File system is not parallel.

� Aries network is a high performance network.

� Workspase is a parallel file system.

� A PBS-job script is executed on one of MOM
nodes (serial).

� aprun is the ALPS (Application Level Place-
ment Scheduler) application launcher. aprun
is started on a MOM node and distribute the
application between reserved compute nodes.

Figure 4.7: HWW network for HPC resources at HLRS

� Home Directory : Each time you log in, your current directory is set to home. This storage type is
available on all compute resources within HWW network5 Users should store e.g. profiles, script files
for workflow tasks, sources for program development in home. The filesystem space of home directory is
limited by a small quota in the order of less dozen of GiB and several hundreds thousands of files. This
file system is not parallel and its resources are shared between all users in HWW network. Therefore,
do not use the home directory to crack numbers (especially for large parallel jobs) - it can paralyze the
work of all users on the system.

� Opt Directory: The
”
/opt“ directory is for reading only. Although this directory is available on all HPC

resources, the content may be different. It collects the software libraries and the tools, for example
compilers and profiler: Unlike standard PC, only a minimal system is installed in standard directories
(for example

”
/usr“). Because of a large number of software packages it may take some time to find

specific items in this file system using standard tools such as
”
find“. Therefore, the software packages

are categorized with the Environment Module tool (see section 4.2.4.2).

� Workspace: For large files and fast I/O Lustre (Lustre, 2019) based file system are available which
make use of the high speed network infrastructure (Aries). Workspace directories are accessible on all
compute and login nodes via the workspace mechanism, which allows you to keep data outside your
home not only during a run, but also after a run. The idea is to allocate disk space for a number
of days, and giving it a name, which allows you to identify a workspace, and to distinguish several
workspaces. To get the best performance on parallel file systems, such as Lustre, its always advisible to
use MPI-IO or other Higher-level I/O libraries, such as HDF5. The Knowledge Base at HLRS contains
more details in section about Workspace (HLRS-WORKSPACE, 2019). If you consider to produce
and temporally store more than hundreds of gigabytes or even of terabytes of data its better to make
mention of this in the application for compute time due to the quota limit mechanism on HLRS’s HPC
systems.

5Users’ HOME directories are mounted via NFS on all login and compute nodes.
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� HPSS Archive: As mentioned above, the workspaces doesn’t provide the storage space for a long period
of time and the home directory is essentially limited by the available space. HPSS is a Hierarchical
Storage Management System (HSM) and it is designed to manage petabytes of data stored on disks
and in tape libraries. HLRS provides more than 20 Petabytes of storage (one tape storage capacity is
currently 16 TB). The storaged data are mirrowed on the second tape storage facility in the dedicated
server room. This ensures that the data is securely available for many years. It is also recommended
to make mention in the application form for computing time the requirements on HPSS Archive.

4.2.4.2 Module Environment at HLRS
All HPC systems at HLRS (incl. Hazel Hen) use the Module Environment tool. With some simple com-
mands of it the user can change the current software development environment (SDE) and load the re-
quired external libraries. The tool fulfills its purpose by setting environment variables, such as

”
$PATH“,

”
$LD LIBRARY PATH“ and others6. This ensures that the required software can be found by the Operating

System (OS). A detailed description of Module commands can be found in Knowledge Base section about
Module Environment (HLRS-MODULE, 2019).

4.2.4.3 Batch system on Hazel Hen
Also certain well-scalable applications require the entire HPC system, in most cases the users execute their
programs on a part of the machine. They will be required to define a job script for a fair and efficient
distribution of the available hardware resources. The job script can be submitted to one of the queues of
Portable Batch System (PBS)7 (see example on slide 21 in appedix B and example 2 in section 4.3.5.4).
PBS performs the job scheduling by allocating the required number of the compute nodes for each of the
submitted jobs. Figure 4.8 shows the working principle of PBS.

Figure 4.8: Distribution of Compute Jobs in a Supercomputer @Diagram by Philipp Offenhäuser (HLRS)

As a PBS job placed in one of the queues receives at its disposal the computing resources, the script will
be executed on the HPC system. A Cray system differs from many other systems on one key point, namely
that, the job script is executed not on the first of the allocated compute nodes but on the particular

”
MOM“

node. Thus one must use in the script the command
”
aprun“ 8 to start the parallel program on the allocated

compute nodes. The
”
aprun“ comand is very flexible and lets you run the program with almost any topology

of pinning the processes and threads to the cores of the allocated nodes. In addition, you can set the frequency

6The $PATH variable specifies a list of directories separated by colon (:). During the execution of a bash command, the bash
interpretator searches those directories (from left to right) for the first occurrence of the appropriated file and tries to execute
it. The $LD LIBRARY PATH variable specifies the directories, which are searched by OS for the files with shared libraries
needed by execution of the programs.

7PBS script is an extension of Linux bash script with a PBS header.
8This is analogous to mpirun or srun on JURECA supercomputer.
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of the processors for the time of the job execution. Unfortunately, the frequency is then fixed for the entire
time of execution, so you can use this property rather only for performance optimization: For example, to
determine if your program is memory or compute-bound. A detailed description of Batch system at HLRS
can be found in Knowledge Base section about PBS (HLRS-PBS, 2019).

4.2.5 Computers used at JSC

4.2.5.1 JURECA
During the first phase of the BEAM-ME project the supercomputer JURECA (figure 4.9) at the Jülich
Supercomputing Centre (JSC) has been used as the primary test platform for the development of PIPS.
JURECA has been installed in 2015 and is currently (June 2019) listed on the 52th rank in the Top500 list
with a peak performance of 6.56 PFLOPS. The compute nodes are based on 1872 Intel Haswell CPUs. 75
of these node are equipped with two NVIDIA K80 GPUs. Due to the different node memory demand of
the applications 1605 of the computes nodes are equipped with 128 GiB DDR4 memory, 128 nodes with 256
GiB and 64 with 512 GiB. Those are connected via a Mellanox EDR InfiniBand high-speed network with
non-blocking fat tree topology. For special visualization requirements JURECA has additional 12 nodes
dedecated to those purposes. In 2017 JURECA has been extended with a Booster module. It contains 1640
compute nodes with one Intel Xeon Phi 7250-F Knights Landing CPUs per node which are connected via
a Intel Omni-Path Architecture high-speed network with non-blocking fat tree topology. As a workload
mangement system Slurm is used. Futher information about the hardware configuration and usage can be
found here: http://www.fz-juelich.de/ias/jsc/jureca.

Figure 4.9: Supercomputer JURECA (left) and its Booster module (right) at JSC. Copyright: Forschungszen-
trum Jülich

4.2.5.2 JUWELS
JUWELS (figure 4.10) has entered operation in July 2018 and is currently (June 2019) listed on the 30th rank
in the Top500 list with a peak performance 10.4 PFLOPS on CPUs plus 1.6 PFLOPS on GPUs. This system
became the main production and development platform for the BEAM-ME project and MEXT participants
since November 2018. JUWELS is based on 2271 Intel Skylake CPUs with 96GB memory. In addition there
are 240 Skylake node with 192GB memory and 56 Intel Xeon Gold nodes accelerated with 4 NVIDIA V100
GPUs. Those are connected via a Mellanox EDR InfiniBand high-speed network. For special visualization
requirements JUWELS has additional 4 nodes dedecated to those purposes. As a workload mangement
system Slurm is used. Futher information about the hardware configuration and usage can be found here:
http://www.fz-juelich.de/ias/jsc/juwels.

4.2.5.3 JUST
The configuration of the Jülich Storage Cluster (JUST) (figure 4.11) is continuously under movement and
expansion to integrate newly available storage technology in order to fulfill the evergrowing capacity and
I/O bandwidth demands of the data-intense simulations and learning applications on the supercomputers.
Currently the 5th generation of JUST consists of 22 Lenovo DSS systems (Lenovo Distributed Storage
Solution) and three older IBM GSS systems (GPFS Storage Server). The software layer of the storage
cluster is based on the Spectrum Scale (GPFS) from IBM. JUST provides in total a gross capacity of 75
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Figure 4.10: Supercomputer JUWELS at JSC. Copyright: Forschungszentrum Jülich / R.-U. Limbach

PB and a theoretical bandwidth of 400 GB/sec. Additionally in Mid-2018 the storage cluster JUST-DATA
started production which realized a large disk based capacity (52 PB gross) and a moderate bandwidth of
20 GB/s. To match the growing data requirements yearly 12-28 PB will be added.

At the lowest level in our hierarchical storage approach there are tape libraries installed with an actual
capacity of around 281PB. They are the most cost-efficient technology in terms of TCO and capacity, but
with the drawback of a very high latency. It’s designation is to store cold data, which will be read very
seldom or may be never and is used in the storage hierarchy for three central services: backup and Restore
of data, long term archival of data and migration of active (online) data to less expensive storage media.
Futher information about the hardware configuration can be found here: http://www.fz-juelich.de/ias/
jsc/just.

4.3 Preparing Energy System Models for High Performance Com-
puting with GAMS

To be able to use novel solution approaches like PIPS-IPM that exploit certain problem structures, a pro-
cessable representation of a model’s block structure is required. This section outlines how users can annotate
their GAMS models to provide such block structure information to the solution algorithm and how to run
PIPS-IPM on model instances generated by GAMS.

4.3.1 Motivation
Many algorithms, as for example the parallel interior point method implemented in PIPS-IPM, exploit
certain problem characteristics like e.g. block-diagonal structures. Automatic detection of block structures
in models has its limitations and hence a processable block structure information based on the user’s deep
understanding of the model is often preferable. It is important to note that there is no unique block structure
in a model but there are many of them, depending on how rows and columns of the corresponding matrix
are permuted. For ESMs blocks may for example be formed by regions and/or time steps.

4.3.2 Model Annotation
For a model with linking variables and linking constraints that has n blocks of non-linking variables the
annotation scheme can be summarized as follows (see also figure 4.12).
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Figure 4.11: Filesystem JUST at JSC. Copyright: Forschungszentrum Jülich

Variables:

� Linking variables go into block 1 (i.e. <variable name>.stage = 1)

� Other variables go into blocks 2, ..., n+1 (i.e. <variable name>.stage = 2, ..., n+1)

Equations/Constraints:

� Constraints that contain only linking variables go into block 1 (i.e. <equation name>.stage = 1)

� Linking constraints go into block n+2 (i.e. <equation name>.stage = 2)

� Other constraints that contain only variables out of one of the blocks 2, ..., n+1 go into blocks 2, ...,
n+1 (i.e. <variable name>.stage = 2, ..., n+1)

Note that one of the known limitations of the current (as of June 2019) GAMS/PIPS-IPM-Link is that model
annotation via the .stage attribute does not work in combination with GAMS’ Model Scaling Facility.

4.3.3 Model Generation and Solution Reporting
Once a model has been annotated, a corresponding model instance can be generated in a format that fits the
requirements of the PIPS-IPM API and is understood by the GAMS/PIPS-IPM solver link. That process
is called model generation.
A model with n blocks of non-linking variables is represented by n+1 gdx files that hold all the required
information about the block structured problem. The details of the model generation are explained below.
Note that the following instructions require GAMS version 25.1.1 or newer. The latest GAMS
version is available at https://www.gams.com/download/. A model can be generated either

a) all at once

or

b) in a distributed block-wise fashion.
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Figure 4.12: Block structure required by the PIPS-IPM API and annotation scheme in GAMS

Note that currently (as of June 2019) the GAMS/PIPS-IPM Link in combination with all-at-once model
generation has some known limitations (see section 4.3.3.5).

4.3.3.1 All-at-Once Model Generation
If an entire model is generated at once, we first obtain one large gdx file that contains the entire problem
information including the user’s annotation of the block structure. That file can be split into the required
n+1 gdx files with a tailor-made tool called gmschk. To generate such an all-in-one gdx file, let’s call it
blockAll.gdx, the following steps need to be taken:

� Complete annotation of the model as described in 4.3.1.

� For LPs the LP solver must be set to convertd, e.g. via a statement

option lp=convertd;

which must be placed prior to the solve statement.

� A convertd option file with the instruction to create the desired gdx file must be created, e.g. via

$echo jacobian blockAll.gdx > convertd.opt

� convertd has to be instructed to actually use the option file, e.g. via statement

<modelName>.optfile = 1;

which must be placed prior to the solve statement.

� convertd is a utility which can transform a GAMS model instance to various formats, however, it is
invoked just like a solver, e.g. via

solve <modelName> use lp min <objVariableName>;

If the gdx file blockAll.gdx has been created successfully, it needs to be split into several block files. The tool
gmschk checks for consistency of the annotation and can also be used to split such a file. Details on how to
compile and run that tool are given in section 4.3.5.1. To split blockAll.gdx into n+1 gdx files as required
by PIPS-IPM, run gmschk for example as follows
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<path/to/gmschk>/gmsschk -T <n+1> blockAll.gdx

Note that <n+1> must be replaced by the proper number that represents the number of (variable) blocks of
the model instance at hand. As a result, n+1 gdx files called blockall0.gdx, blockall1.gdx, ..., blockall<n>.gdx
are created.

4.3.3.2 Speeding up All-at-Once Model Generation
For large-scale instances, all-at-once model generation can require significant resources regarding both, time
and memory. This section provides a brief summary of the recommended steps to increase the efficiency of
all-at-once model generation. Note that even if these steps are entirely followed, there are known limitations
that can currently (as of June 2019) not be surpassed with all-at-once model generation.
In addition to the steps described in 4.3.3.1, efficiency of all-at-once model generation can be improved as
follows:

� As usual, the solver option file should contain the instruction to write a GDX version of the Jacobian
Matrix. If the string ”noVEnames” is added to the filename, original equation and variable names are
suppressed. This is extremely useful for the further processing of the gdx files, especially for large-
scale model instances. Having the original equation and variable names can be useful for debugging
purposes but can make the GDX file significantly larger and slow to write and read. The solver option
file convertd.opt could for example look as follows:

jacobian fileName_noVEnames.gdx

� To further reduce the size of the GDX file and to improve performance of writing the GDX file, the
string ”noUELs” can be added to the file name. This results in unique elements (UELs) not being
written to the GDX file. In GAMS jargon, a ”UEL”, also known as ”label”, refers to the elements
of one-dimensional sets, a fundamental data structure in GAMS. The solver option file convertd.opt

could for example look as follows:

jacobian fileName_noVEnames_noUELs.gdx

Model instances captured in GDX files created without UELs can be split with gmschk and solved
with PIPS-IPM++. The solution reportingworks as well. However, it should be noted that the
tools introduced in section 4.3.4 cannot be applied on that type of reduced GDX file.

� When splitting the gdx file (e.g. fileName noVEnames.gdx), the choice of gmschk options can have a
significant impact on the time it takes to split. For large-scale instances, it is recommended to split
with option

-T split GDX file into multiple GDX files without uels and strings

A gmschk call could for example look as follows:

<path/to/gmschk>/gmsschk -T <n+1> fileName_noVEnames.gdx

4.3.3.3 Distributed Model Generation
While in the previous chapter a large gdx file containing the entire model has been created first and then
sliced into smaller block gdx file, distributed model generation aims to generate these small block gdx files
immediatey in a distributed way. The main challenge with distributed model generation is that all linking
variables must always be registered in the same order in every block, even though the corresponding variable
may not appear in any of the constraints of the block. Similar logic applies for the linking constraints. This
is crucial for the GAMS/PIPS-IPM interface since the information what joins different blocks is retrieved
under the assumption that all linking variables and constraints are registered in every block in the same
order. // Distributed model generation for the stochastic SIMPLE version without linking constraints has
been implemented and is explained in Example 1: SIMPLE-SP without linking constraints. Distributed
model generation for model instances with linking constraints is available via simple v2/simple4pips.gms

and is explained in Example 2: SIMPLE4PIPS with linking constraints and distributed model generation.
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4.3.3.4 Solution Reporting
Note that the solution can only be reported if the model is generated via all-at-once model generation. To
import the solution from PIPS-IPM back to GAMS, the following steps are required.

� After generating the model, a dictionary file that holds information about the variable and equation
names of the GAMS Model needs to be saved. By default this dictionary file is created in the process
directory (225a, 225b,...) of the current GAMS run. The process directory is temporary and by default
it gets deleted after a (successful) GAMS run. Hence, it is recommended to retrieve the dictionary file
via system call

execute ’mv -f \%gams.scrdir\%gamsdict.dat <filename>_dict.gdx’;

which moves the dictionary out of the process directory into the working directory. Note that <filename>
has to correspond to the name of the gdx file created via all-at-once model generation.

� To instruct PIPS-IPM to return the solution gmspips has be started with option printsol.

� The solution provided by PIPS-IPM is mapped back to the original GAMS namespace (which is why
the dictionary is needed) and stored in a gdx file called <filename> sol.gdx which can be loaded back
into GAMS via

...

execute_loadpoint ’<filename>_sol.gdx’;

...

The entire GAMS/PIPS-IPM WorkFlow with solution reporting is visualized in figure 4.13

Figure 4.13: Overview of GAMS/PIPS-IPM WorkFlow with Solution Reporting

The workflow is also summarized in the following code snippet where the number of tasks and the number
of blocks is assumed to be computed and stored in compile time variables %NBTASKS% and %NBBLOCKS%.
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...

option lp=convertd;

$echo jacobian allblocks_noVEnames.gdx > convertd.opt

solve simple min OBJ use lp;

execute ’mv -f %gams.scrdir%gamsdict.dat allblocks_noVEnames_dict.gdx’;

execute ’gmschk -T -g "%gams.sysdir%" %NBBLOCKS% allblocks_noVEnames.gdx’;

execute ’srun -n %NBTASKS% gmspips %NBBLOCKS% allblocks_noVEnames "%gams.sysdir%" printsol’;

execute_loadpoint ’allblocks_noVEnames_sol’;

display ’### OBJECTIVE FUNCTION VALUE:’, OBJ.l;

...

4.3.3.5 Known Limitations
The GAMS/PIPS-IPM-Link has initially been implemented with the research project BEAM-ME and with
the end of that project, it still has a few limitations worthwhile to mention.

1. There is a hard maximum of 2,147,483,647 non-zeroes that can be contained in a model instance
generated by GAMS. The same limitations exists in many solver APIs. Reason is that the array of
non-zeroes is indexed with a 32 bit signed integer. This limitation can be surpassed with distributed
model generation.

2. All-at-once model generation does not benefit from multiple cores. Currently (as of June 2019), dis-
tributed model generation has to be implemented by the user which is challenging. For models where
the solution process can be sped up dramatically by hundreds or thousands of cores, model generation
can become a bottleneck. Note that there are plans to implement generic and user friendly block sharp
model generation in a potential follow-up project.

3. The .stage attribute used for the model annotation overloads another variable attribute, namely the
.scale attribute. Hence, if displayed or looked at in a gdx file, the annotation defined via .stage will
be shown as .scale. Note that this prevents usage of the Model Scaling Feature for annotated models
that should be solved with PIPS-IPM.

4.3.3.6 Using Different Platforms for Model Generation and Solution Process
HPC Systems are usually Linux based while many energy system modelers rely on Windows as an operating
system. While GAMS code is in general platform independent, ESMs frequently pull data out of various
sources (e.g. MS Excel) or use system calls to execute external programs and scripts that tie the ESM to a
particular platform.
This section discusses ways to handle such platform dependencies and to carry out certain steps of the
GAMS/PIPS-IPM work flow on different machines.

1. Generate model locally and upload to HPC: If the modeler has a local machine available that has
sufficient resources to generate the model, all-at-once model generation can be carried out on that
machine and the resulting gdx file can be transferred to the HPC where it is splitted and PIPS-IPM
is called. If needed, the solution file can be transferred back to the local machine once gmspips has
terminated.

2. If resources on the locally available machine are insufficient to execute the GAMS program, the so-called
dump file is an convenient way to capture an instance with its associated data and algebraic model
representation on the local machine but to generate the actual LP instance on a different machine.
To do so, add dumpopt=11 to the list of command line parameters when running GAMS. To create
the dump file it suffices to compile but not execute a GAMS program. This can be accomplished by
instructing GAMS to compile only via command line parameter action=c. An exemplary command
line call of GAMS to create a dump file in compile only mode looks as follows:

gams model.gms action=c dumpopt=11

That would create a file model.dmp. That file can then be transferred to a suitable machine and can
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Figure 4.14: GAMS/PIPS-IPM: Generate Locally and solve on HPC

be executed by GAMS via

gams model.dmp

Sometimes, the execution of dump files may not work right away, for example because output files
(e.g. when the put writing facility or commands like execute unload are used) should be created in
particular folders , assuming a certain folder structure which only existed on the local machine that
was used to create the dump file. Those errors can usually be fixed or ignored easily.

4.3.4 Useful Tools
Several useful tools that support the process of annotating and generating model instances for PIPS-IPM
are available. Note: The following tools can be found in the BEAM-ME repository.

4.3.4.1 checkanno
With checkanno.gms the equation annotation can be computed from the variable annotation. If the equation
annotation already exists, it will be checked for consistency and if errors are detected they will be fixed. The
program can be executed via

gams checkanno --jacfilename=<filename.gdx>

The resulting file will be named filename novenames.gdx.

4.3.4.2 stripjac
With stripjac.gms variable and equation names can be removed from jacobian GDX files that have been
created without string ”novenames” in their filename The program can be executed via

gams stripjac.gms --jacfilename=<filename.gdx>

The resulting file will be named filename novenames.gdx.
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Figure 4.15: GAMS/PIPS-IPM: Create dump file locally, generate and solve on HPC

4.3.4.3 solveJacobian
With solveJacobian.gms, model instances stored in a single gdx file can be solved with all LP solvers linked
with GAMS. The program can be executed via

gams solveJacobian --jacfile=<filename.gdx>

If no other options are set, the model instance will be solved with the default LP solver with default settings.
If double dash parameter --TARGET=<string> is set, the model instance is not solved but converted into
another file format. Possible options are

LP Pass the model to CONVERT to convert it to the CplexLP format.

MPS Pass the model to CONVERT to convert it to the CplexMPS format.

SOPLEXLP Pass the model to SOPLEX and let SOPLEX convert it to the lp format.

CPLEXLP Pass the model to CLEX and let CPLEX convert it to the lp format.

4.3.5 Solving a GAMS Model Instance using the GAMS/PIPS-IPM Solver Link
The main purpose of the model annotation is to produce input files for PIPS-IPM. Currently, the model
generation and running PIPS-IPM on the generated model are two separate processes.

For the following explanations we assume that a suitable branch (e.g. ”linking-zib” or ”linkin-zib-pardiso”)
from the git repository 9 has been cloned. For the sake of simplicity we assume the clone is located in
$HOME/PIPS.

9gitlab.version.fz-juelich.de/breuer1/PIPS beamme
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4.3.5.1 Compiling gmschk and gmspips
To compile gmspips and gmschk the lines for compilation instructions have been added to CMakeList.txt
in the $HOME/PIPS/PIPS-IPM folder. Now change the directory to the $HOME/PIPS/build folder and run
cmake .. -DBUILD ALL=OFF -DBUILD PIPS IPM=ON && make. This should produce an executable gmspips
and gmschk in the build folder.

4.3.5.2 Running gmschk
For a brief summary on how to use gmschk run

<path/to/gmschk>/gmschk -h

The following should be written to output:

Usage: [-dhtTwWx] [-b actBlock] [-g GAMSSysDir] [-o n] numBlocks file[Stem]

-h print usage

Splitting operation:

-t split GDX file into multiple GDX files

-T split GDX file into multiple GDX files without uels and strings

-g specify GAMS system directory

-b specify single block

-o specify stage offset (default 1)

numblocks total number of blocks

file GDX file

Analysis operation:

-d debugging mode (unmatched vars, equs, and matrix elements with good names)

-w output of block structure counts to stdout

-W output of block structure to stdout

-x fileStem is GDX file stem

-g specify GAMS system directory

-b specify single block

-o specify stage offset (default 1)

numblocks total number of blocks

fileStem GDX file or file stem

gmschk provides several options and has two general modes of operation, splitting and analysis. When used
in splitting mode (i.e. with -t or -T), options that are for analysis only (like -d, -w, -W and -x are ignored.
To split a file, e.g. blockAll novenames.gdx into n+1 gdx files as required by PIPS-IPM run

<path/to/gmschk>/gmsschk -T <n+1> blockAll_novenames.gdx

Note that <n+1> must be replaced by the proper number that represents the number of (variable) blocks of the
model instance at hand. As a result, n+1 gdx files called blockall novenames0.gdx, blockall novenames1.gdx,
. . . , blockall novenames<n+1>.gdx are created.
Also note that in an earlier gmschk version, the option -X had to be used to tell gmschk that the input is
a GDX file. At an early stage of development, this was a necessary option to distinguish between different
input formats. Other input formats have vanished in the meantime, such that this option has become
redundant. While it is not necessary to specify -X anymore, the option is still accepted but does not cause
any non-default behavior.

4.3.5.3 Running gmspips
Assuming that the n+1 gdx block files (blockall0.gdx, blockall1.gdx, ..., blockall<n+1>.gdx) that
serve as PIPS-IPM input have been created successfully and gmspips has been compiled as explained in
Compiling gmschk and gmspips, we can run PIPS-IPM via the driver gmspips as follows:
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mpirun -n <n> $HOME/PIPS/build/gmspips <n+1> </path/to/gdx>/blockAll $GAMSSYSDIR

Please note that the first argument of mpirun <n> determines the number of parallel MPI tasks while the
first argument of gmspips <n+1> is the total number of block files. If we generate for example the stochastic
problem version with 5 scenarios (--NBSCEN=5) we obtain an instance with 6 blocks in total. However, the
maximum number of MPI tasks is the total number of blocks minus 1. For 5 scenarios this would again
correspond to 5 as in mpirun -n 5 [...]. The environment variable $GAMSSYSDIR points to the GAMS
system directory location. You can start gmspips in any directory. If the GDX files are not located in your
current directory, you need to specify the location to the GDX file as part of the file name stem.

4.3.5.4 Examples
The purpose of the following examples is to guide the reader through the process of generating input files
from different variants of the SIMPLE model to run the GAMS/PIPS-IPM solver link. For the experiments,
it might be best to add the GAMS system directory to the PATH environment variable or to remember
it in a corresponding environment variable, e.g GAMSSYSDIR. All experiments are done from the command
line/shell.
Note:

� Some examples make use of recent developments and require GAMS version 25.1.1 or newer!

� The SIMPLE model(s) used in the examples can be found in folder simple v2 which is contained in
the repositories PIPS beamme and best practice guide.

Example 1: SIMPLE-SP without linking constraints

1. Clone a suitable branch (e.g. ”linking-zib” or ”linking-zib-pardiso” from the git repository10. For sake
of simplicity we assume the clone is located in $HOME/PIPS. The relevant folders for the GAMS/PIPS-
IPM link are in $HOME/PIPS/PIPS-IPM/Drivers. You will find the sub-directories: simple, simple v2,
gmspips, and gams. simple v2 has all the GAMS and data files required to run GAMS to produce
input files for GAMS/PIPS. gmspips contains the custom source for the GAMS/PIPS link while gams
contains some C header and source files that are required to build the GAMS/PIPS link but are also
shipped with every GAMS distribution.

2. The first experiment is to run a small simple model and solve with Cplex. For this and all other
experiments change directory to $HOME/PIPS/PIPS-IPM/Drivers/simple v2

cd $HOME/PIPS/PIPS-IPM/Drivers/simple_v2

and run

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=999

This will terminate with

Optimal solution found.

Objective : 8.897090

and some more GAMS lines.

3. Second experiment is to create a single GDX file that contains the entire simple model. Run

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=-2

This produces a file called blockall.gdx. Check for the existence and contents of blockall.gdx by running

gdxdump blockall.gdx

This command should also list the different block numbers. Run

gdxdump blockall.gdx symb=x | grep SCALE

10gitlab.version.fz-juelich.de/breuer1/PIPS beamme
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and you should see a couple of lines with SCALE 2 to SCALE 6 in the output.

4. Third experiment to run simple with sequential block model generation. Run

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=0

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=1

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=2

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=3

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=4

gams simple --TO=0.0003 --nbregions=5 --method=spexplicitde --nbscen=5 --CPLEXBENDERS=0 --SCENBLOCK=5

This produces files called block0.gdx to block5.gdx. Check for the existence of these files and that the
SCALE field has the appropriate values.

5. On a HPC (Linux) machine with mpirun prepare a submission script for the parallel block model
generation (generateSimpleBlock.sh):

#!/bin/bash

mkdir blk$PMI_RANK

SIMPLEPATH=$HOME/PIPS/PIPS-IPM/Drivers/simple_v2

ARGS="--TO=0.0003 --NBREGIONS=5 --nbscen=5 --CPLEXBENDERS=0 "

ARGS+="fileStem=simple$PMI_RANK lo=2 sd=blk$PMI_RANK optdir=blk$PMI_RANK"

echo Generating block $PMI_RANK

gams $SIMPLEPATH/simple $ARGS --METHOD=spexplicitde --SCENBLOCK=$PMI_RANK

if [ $? != 0 ] ; then

echo Error generating block $PMI_RANK

else

echo Done generating block $PMI_RANK

fi

rm -rf blk$PMI_RANK

Execute the generation script (from anywhere):

mpirun -n 6 $HOME/PIPS/PIPS-IPM/Drivers/simple_v2/generateSimpleBlock.sh

After the run make sure that the files block0.gdx to block5.gdx exist. The run can be done from
any directory and it will deposit the GDX block files in this directory. All temporary and permanent
files will be written in this directory. The generateSimpleBlock.sh script knows about the location of
simple.gms and other files via the SIMPLEDIR shell variable.

6. Generating bigger instances: The GAMS SIMPLE model is highly parameterized. The decomposition
in the examples above is done by price scenarios for generation cost (not by regions or time as discussed
previously). This decomposition has the advantage to have equal block sizes plus the ability to produce
any number of blocks. You can increase the number of blocks by increasing the number after --nbscen.
This number corresponds to the number of blocks. You can also increase the size of the individual
bock by

a. increasing the time horizon. For this, one needs to increase the number after the --TO. The
maximum number is 1 corresponding to a time horizon of 8760 hours. 0.5 means e.g. 4380 hours.

b. increasing the number of regions. For this, one needs to increase the number after --nbregions.

7. When generating bigger instances, it may be useful to have in mind how to organize the solution process
with GAMS/PIPS. An instance with n scenarios (meaning n+1 blocks) can be solved with at most n
MPI processes. We can also solve with fewer MPI processes, e.g. m < n. The distribution of blocks
to MPI processes follows a strict logic in PIPS. MPI process 0 to m-2 gets floor(n/m) scenario blocks
plus block 0. The last MPI process m-1 gets the remaining (n-floor(n/m)*(m-1)) scenario blocks plus
block 0. Here is an example with n=100 and m=30:

MPI rank 0: blk: 0,1,2,3
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MPI rank 1: blk: 0,4,5,6

MPI rank 2: blk: 0,7,8,9

...

MPI rank 28: blk: 0,85,86,87

MPI rank 29: blk: 0,88,89,90,...,100

Knowing the distribution, we can already generate the blocks in a parallel fashion in appropriate
subdirectories using the following script (gensub.sh):

#!/bin/bash

if [ x$1 = x ]; then

echo "Usage gensub.sh nScenarios"

else

mkdir rank$PMI_RANK

pushd rank$PMI_RANK

SIMPLEPATH=$HOME/PIPS/PIPS-IPM/Drivers/simple_v2

ARGS="--TO=0.0003 --NBREGIONS=5 --nbscen=$1 --CPLEXBENDERS=0 "

ARGS+="lo=2 --SCENBLOCK=0 --METHOD=spexplicitde"

rankp1=$(($PMI_RANK + 1))

nSize=$(($1 / $PMI_SIZE))

nStart=$((($nSize * PMI_RANK) + 1))

if [ $rankp1 -eq $PMI_SIZE ] ; then # last process

nEnd=$1

else

nEnd=$(($nSize * (PMI_RANK + 1)))

fi

echo Generating blocks $nStart to $nEnd for $PMI_RANK

gams $SIMPLEPATH/simple $ARGS --SCENLISTSTART=$nStart --SCENLISTEND=$nEnd

if [ $? != 0 ] ; then

echo Error generating blocks for $PMI_RANK

else

echo Done generating blocks for $PMI_RANK

fi

popd

fi

This script creates permanent directories ranki that contain the GDX files of the blocks required by
PIPS MPI process i:

mpirun -n 30 $HOME/PIPS/PIPS-IPM/Drivers/simple_v2/gensub.sh 100

Again, the script can be run from anywhere and creates the ranki directories in the current directory.
With the example from above (n=100 and m=30) we get:

[beamme@anton tmp]$ ls

rank0 rank11 rank14 rank17 rank2 rank22 rank25 rank28 rank4 rank7

rank1 rank12 rank15 rank18 rank20 rank23 rank26 rank29 rank5 rank8

rank10 rank13 rank16 rank19 rank21 rank24 rank27 rank3 rank6 rank9

[beamme@anton tmp]$ ls rank0 rank1 rank2 rank28 rank29

rank0:

block0.gdx block2.gdx convertd.opt simple.lst

block1.gdx block3.gdx simple.log

rank1:

block0.gdx block5.gdx convertd.opt simple.lst
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block4.gdx block6.gdx simple.log

rank2:

block0.gdx block8.gdx convertd.opt simple.lst

block7.gdx block9.gdx simple.log

rank28:

block0.gdx block86.gdx convertd.opt simple.lst

block85.gdx block87.gdx simple.log

rank29:

block0.gdx block89.gdx block92.gdx block95.gdx block98.gdx simple.log

block100.gdx block90.gdx block93.gdx block96.gdx block99.gdx simple.lst

block88.gdx block91.gdx block94.gdx block97.gdx convertd.opt

8. To run gmspips in the folder where we have placed all GDX block files we can enter the following
command:

mpirun -n <n> $HOME/PIPS/build/gmspips <n+1> /path/to/gdx/block $GAMSSYSDIR

In the more complicated setup where the block GDX files are placed in the ranki directories gmspips
needs to be started by a script (runsub.sh) because the location of the GDX files depends on the
PMI RANK variable:

#!/bin/bash

if [ x$1 = x ]; then

echo "Usage runsub.sh nScenarios"

else

if [ x$GAMSSYSDIR = x ]; then

GAMSSYSDIR=$HOME/PIPS/PIPS-IPM/Drivers/gams25.0_linux_x64_64_sfx

fi

echo $GAMSSYSDIR

pushd rank$PMI_RANK

nScenp1=$(( $1 + 1 ))

$HOME/PIPS/build/gmspips $nScenp1 block $GAMSSYSDIR

popd

fi

This script runsub.sh needs to be started in the directory that contains all ranki directories, eg:

mpirun -n 30 $HOME/PIPS/PIPS-IPM/Drivers/simple_v2/tmp/runsub.sh 100

Example 2: SIMPLE4PIPS with linking constraints and distributed model generation

1. Clone a suitable branch (e.g. ”linking-zib-pardiso”) from the git repository11. For sake of simplicity
we assume the clone is located in $HOME/PIPS and that environment variable $GAMSSYSDIR points
to the GAMS system directory location. The relevant folders for the GAMS/PIPS-IPM link are in
$HOME/PIPS/PIPS-IPM/Drivers. There, you will find the subdirectories: simple, simple v2, gmspips,
and gams. simple v2 has all the GAMS and data files required to run GAMS to produce input files
for GAMS/PIPS. gmspips contains the custom source for the GAMS/PIPS link while gams contains
some C header and source files that are required to build the GAMS/PIPS link but are also shipped
with every GAMS distribution.

11gitlab.version.fz-juelich.de/breuer1/PIPS beamme

97



2. The first experiment is to run a small simple model and solve with CPLEX. For this and all other
experiments change directory to $HOME/PIPS/PIPS-IPM/Drivers/simple v2

cd $HOME/PIPS/PIPS-IPM/Drivers/simple_v2

and run

$GAMSSYSDIR/gams simple4pips --NBREGIONS=5 --TO=0.0191 lp=cplex

This will terminate with

Optimal solution found.

Objective : 2071.650401

and some more GAMS lines.

3. Second experiment is to create a single GDX file that contains the entire simple model with annotation:

$GAMSSYSDIR/gams simple4pips --NBREGIONS=5 --TO=0.0191 --METHOD=PIPS --TBSIZE=24

The instance created via parameters --NBREGIONS=5 --TO=0.0191 contains 5 regions and 168 hours
(=1 week). Parameter --TBSIZE=24 (default) means that 24 time steps form a time block, i.e. we
obtain 7 time blocks plus the block of linking variables. If TBSIZE is no divisor of the number of
time steps the last time block will be smaller than TBSIZE time steps. The call above produces a file
called allblocks noVEnames.gdx. Check for the existence and contents of allblocks noVEnames.gdx by
running

$GAMSSYSDIR/gdxdump allblocks_noVEnames.gdx noData

The following command should also list the different block numbers. Run

$GAMSSYSDIR/gdxdump allblocks_noVEnames.gdx symb=x | grep SCALE

and you should see a couple of lines with SCALE 2 to SCALE 8 in the output that indicate the block
membership of the variables.

4. The next experiment is to split allblocks noVEnames.gdx into several block files. The tool gmschk
checks for consistency of the annotation and can also be used to split such a file. How to compile that
tool is explained in section 4.3.5.1. The following command splits the gdx file created in the previous
step:

$HOME/PIPS/build/gmschk -T -g $GAMSSYSDIR 8 allblocks_noVEnames.gdx

This produces files called allblocks noVEnames0.gdx to allblocks noVEnames7.gdx. Check for the
existence of these files and that the SCALE field has the appropriate values. For example, with

$GAMSSYSDIR/gdxdump allblocks_noVEnames3.gdx FilterDef=N symb=x | grep SCALE

you should see only variables with SCALE=4 and SCALE=1 (linking variables).

5. Generating bigger instances: The GAMS model simple4pips is highly parameterized. The decom-
position in the examples above is done by time blocks. However, simple4pips also supports regional
decomposition as well as a combination of regional and time decomposition. As regional decomposition
does not appear to be very promising, the default is to decompose (annotate) by time blocks only. By
default, a time block contains 24 time steps. The size can be varied via parameter --TBSIZE. The
number of time blocks can be increased by

a. increasing the time horizon. For this, one needs to increase the number after the --TO. The
maximum number is 1 corresponding to a time horizon of 8760 hours. 0.5 means e.g. 4380 hours.

b. decreasing the resolution. For this, one needs to set the number after optional parameter --RESOLUTION
to a smaller value. Default is 1 which corresponds to a time discretization of 1 hour. Setting
--RESOLUTION=0.5 results in 30 minutes steps etc.
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c. decreasing the time block size. For this, one needs to set the number after --TBSIZE to a smaller
value.

To increase the size entire model one could also increase the number of regions. For this, one needs to
increase the number after --NBREGIONS.

6. To run gmspips in the folder where we have placed the GDX block files we can enter the following
command:

mpirun -n <n> $HOME/PIPS/build/gmspips <n+1> /path/to/gdx/filename $GAMSSYSDIR

where n determines the number of MPI processes and n+1 is the number of block files.
The following command will do this for our running example with 7 MPI processes:

mpirun -n 7 $HOME/PIPS/build/gmspips 8 allblocks_noVEnames $GAMSSYSDIR

7. To generate the block files of our running example in parallel (with sliced data reading), prepare the
following submission script (genSimple4pipsBlocks.sh).

#!/bin/bash

mkdir blk_$PMI_RANK

ARGS="--TO=0.0191 --NBREGIONS=5 --METHOD=PIPS --SLICE=2 gdxcompress=1 lo=2 "

ARGS+="fileStem=simple4pips$PMI_RANK procdir=blk_$PMI_RANK optdir=blk_$PMI_RANK keep 1"

echo Generating block $PMI_RANK

/home/beamme/PIPS/PIPS-IPM/Drivers/gams25.0_linux_x64_64_sfx/gams simple4pips $ARGS --BLOCK=$PMI_RANK

if [ $? != 0 ] ; then

echo Error generating block $PMI_RANK

else

echo Done generating block $PMI_RANK

fi

rm -rf blk_$PMI_RANK

Note that in this script we also use parameter --SLICE=2 which activates sliced data reading and
requires the input data to be pregenerated once and stored in a gdx files via command

$GAMSSYSDIR/gams simple_data_gen --NBREGIONS=5 --WRITEGDX=1

After this has been done, parallel model generation can be started with the following command:

mpirun -n 8 genSimple4pipsBlocks.sh

This should create files block noVEnames0.gdx to block noVEnames7.gdx. Afterwards the correspond-
ing model instance can be solved with PIPS-IPM via the following command:

mpirun -n 7 $HOME/PIPS/build/gmspips 8 block_noVEnames $GAMSSYSDIR

8. In general, the distributed model generation works from any location and does not need to be run
from the simple v2 directory. This example illustrates how to generate a large scale model instance in
parallel from a different location. For this example we want to create a large-scale model instance with

� 20 regions
� a 30 minute time resolution (i.e. 8750 · 2 = 17520 time steps)
� a block size of 50 (i.e. every block contains 50 time steps, i.e. there will be 351 time blocks plus

block 0 for the linking variables).

First, we navigate to our home directory and create a folder parGen with a sub directory
nbreg20 res30minutes blocksize50 blocks351 where we will run this experiment.

cd $HOME

mkdir parGen

cd parGen

mkdir nbreg20_res30minutes_blocksize50_blocks351

cd mkdir nbreg20_res30minutes_blocksize50_blocks351
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similar to the previous example 2.7, we create a submission script genSimple4pipsBlocks.sh.

#!/bin/bash

mkdir blk_$PMI_RANK

GAMSSYSDIR=$HOME/PIPS/PIPS-IPM/Drivers/gams25.0_linux_x64_64_sfx

SIMPLEPATH=$HOME/PIPS/PIPS-IPM/Drivers/simple_v2

ARGS="--NBREGIONS=20 --TO=1 --RESOLUTION=0.5 --TBSIZE=50 --METHOD=PIPS "

ARGS+="lo=2 gdxcompress=1 --SLICE=2 keep 1 "

ARGS+="fileStem=simple4pips$PMI_RANK procdir=blk_$PMI_RANK optdir=blk_$PMI_RANK "

echo Generating block $PMI_RANK

$GAMSSYSDIR/gams $SIMPLEPATH/simple4pips $ARGS --BLOCK=$PMI_RANK

if [ $? != 0 ] ; then

echo Error generating block $PMI_RANK

else

echo Done generating block $PMI_RANK

fi

rm -rf blk_$PMI_RANK

Note that this time we set environment variables GAMSSYSDIR and SIMPLEPATH in the submission script.
If your GAMS system directory and/or the simple v2 folder are stored in a different location, these
lines have to be adjusted accordingly Again, this script also activates sliced data reading via parameter
--SLICE=2 and requires the input data to be pregenerated once and stored in a gdx files via commands

SIMPLEPATH=$HOME/PIPS/PIPS-IPM/Drivers/simple_v2/

$GAMSSYSDIR/gams $SIMPLEPATH/simple_data_gen --NBREGIONS=20 --WRITEGDX=1

Afterwards, we can create the block files block noVEnames0.gdx to block noVEnames351.gdx. via the
following command:

mpirun -n 352 genSimple4pipsBlocks.sh

9. In this example we show how to submit the job(s) from the previous example 2.7 for parallel model
generation to the JURECA Supercomputer at the Juelich Supercomputing Centre (JSC). For the
submussion we use 2 files. jobscript.sh, which is similar to the genSimple4pipsBlocks.sh scripts
used before. In addition, we use submissionscript.sh to request particular computing resources and
also to pregenerate the GDX input data file.
submissionscript.sh:

#!/bin/bash -x

#SBATCH --output=mpi-out.%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=01:00:00

#SBATCH --mail-user=name@mail.com

#SBATCH --mail-type=ALL

#SBATCH --partition=batch

#SBATCH --nodes=15

#SBATCH --ntasks=352

SIMPLEPATH=$HOME/simple_v2

GAMSSYSDIR=$HOME/gams/gams25.1_linux_x64_64_sfx

$GAMSSYSDIR/gams $SIMPLEPATH/simple_data_gen --NBREGIONS=20 --WRITEGDX=1

srun jobscript.sh

jobscript.sh:

#!/bin/bash
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mkdir blk_$PMI_RANK

SIMPLEPATH=$HOME/simple_v2

GAMSSYSDIR=$HOME/gams/gams25.1_linux_x64_64_sfx

ARGS="--NBREGIONS=20 --TO=1 --RESOLUTION=0.5 --TBSIZE=50 --METHOD=PIPS "

ARGS+="lo=2 gdxcompress=1 --SLICE=2 keep 1 "

ARGS+="fileStem=simple4pips$PMI_RANK procdir=blk_$PMI_RANK optdir=blk_$PMI_RANK "

echo Generating block $PMI_RANK

$GAMSSYSDIR/gams $SIMPLEPATH/simple4pips $ARGS --BLOCK=$PMI_RANK

if [ $? != 0 ] ; then

echo Error generating block $PMI_RANK

else

echo Done generating block $PMI_RANK

fi

rm -rf blk_$PMI_RANK

to execute the parallel model generation, we type the following command:

sbatch submissionscript.sh

The parallel model generation creates the files block noVEnames0 to block noVEnames351.

101



102



Chapter 5

Performance analysis of technical
performance enhancement

During the duration of the project, PIPS-IPM++ has been continuously tested and debugged on the two
HPC platforms at HLRS and JSC (section 4.2). The goal was to achieve better performance than any of
the leading commercial solvers, both with respect to shorter run times and the ability to solve large-scale
energy system LPs. Specialized tools for large-scale computational systems have been used to perform an
in-depth analysis of the code. For instance, they can identify bugs like data races or memory leaks in the
code or indicate potential performance and I/O bottlenecks which are limiting the scalability of the code.
Those tools are being developed at the HPC centers itself or provided by companies like, among others, Intel
or Cray. Due to the high complexity of the supercomputers and the parallel source code, the HPC experts
and code developers had to work closely together to use the performance tools in a pertinent way and to
interpret the output of the measurements.

Hereinafter it will be described exemplarily how Scalasca (Geimer et al., 2010) and Vampir (https://
vampir.eu/) have been used to identify a performance bottleneck in PIPS-IPM++.

5.1 Performance and Scalability of PIPS-IPM++
For simplicity, this section only reports on results obtained on the JUWELS supercomputer at JSC; see
Section 4.2.5.2 for details on this system.

To demonstrate the scalability of PIPS-IPM++, a (relatively) small-scale SIMPLE instance with 5.6 million
variables, 5.1 million constraints, 20.4 million non-zeroes, and 512 diagonal blocks is used. This instance can
be handled with a single MPI process in a reasonable time by PIPS-IPM++. Also, the instance allows for
a customary power of 2 scaling plot. To achieve good load-balancing, the number of MPI processes should
divide the number of blocks—in this way each MPI process is assigned the same number of blocks. The
scaling behavior of the commercial LP solvers and PIPS-IPM++ is shown in Figure 5.1. Furthermore, the
figure shows the scaling behavior of a reduced version of PIPS-IPM++ using only the Schur complement
decomposition, but none of the algorithms additionally implemented and described in Section 4.1.2. For
each MPI configuration of PIPS-IPM++, including the reduced version, 2 OpenMP threads were used.
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Figure 5.1: Scaling results of leading commercial LP solvers and PIPS-IPM++ on a SIMPLE instance.
PIPS-IPM++ was run with 2 OpenMP threads per MPI process.

In the following, some results for large-scale SIMPLE instances as well as for the energy system models
REMix and ELMOD are given. The ELMOD instances are used to analyze the impact of growing shares
of renewable energies on the operation of the European transmission grid and the dispatch of conventional
power plants. The first two ELMOD instances (CWE ) comprise the entire transmission grid of the Central
Western European region. For the other two instances (EU ) this configuration was further extended to a set
of 19 European countries with detailed transmission grid representation. This is the largest configuration
currently possible for the ELMOD model and no instance of this configuration could previously be solved.
For comparison we use the state-of-the-art (commercial) LP solvers CPLEX 12.81, Gurobi 8.12, MOSEK
8.13 , and Xpress 8.4.74. We use 16 threads for each of the commercial solvers—more threads usually lead
to performance degradation. Note that none of the commercial solvers allows for the distributed parallel
solution of LPs. Table 5.1 shows results on JUWELS of the new solver (with 2 OpenMP threads per MPI
process) and the respective best commercial solver. The measured times include I/O. OOM signifies that
the commercial solvers ran out of memory, even on the large nodes of JUWELS. Some of the instances
intractable on JUWELS could be solved by two of the four commercial solvers on a large shared-memory
machine at ZIB with 2 TB RAM and 88 cores. However, the solution required more than one day and incurs

1https://www.ibm.com/products/ilog-cplex-optimization-studio
2https://www.gurobi.com
3https://www.mosek.com/
4https://www.fico.com/en/products/fico-xpress-optimization
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Table 5.1: Computational results for large-scale instances.

Size PIPS-IPM++ resources Run time (seconds)

Instance Variables Constraints Non-zeroes MPI processes Nodes PIPS-IPM++ Best commercial

SIMPLE1 336 385 255 304 849 086 1 210 195 025 1024 64 959 OOM
SIMPLE2 1 150 014 619 1 044 894 025 4 174 953 472 1024 128 13 170 –
YSSP exp 107 555 441 93 902 968 286 477 612 250 25 2311 OOM
YSSP disp 94 965 730 81 314 846 225 032 421 350 35 931 OOM
ELMOD CWE15 85 646 554 98 646 274 271 875 064 438 19 181 6 201
ELMOD CWE16 85 883 074 98 909 074 272 602 144 438 19 216 6 111
ELMOD EU15 224 677 686 254 304 961 712 452 541 876 38 1 245 OOM
ELMOD EU16 226 061 766 256 284 723 717 436 984 876 38 1 119 OOM

even far longer waiting times due to limited availability of the machine. The larger SIMPLE instance could
not even be generated sequentially due to its size. Thus there was no comparison with any commercial solver
possible (since they cannot read in LPs in a distributed way). As to the instances solvable on JUWELS,
one notes that the run time per computing resources of the new solver is better than the best result of the
commercial solvers (19 compute nodes versus 1 compute node.

5.2 Systematic testing of PIPS++ with REMix instances
For a comparison between the enhanced PIPS-IPM++ solver versus the solvers used prior to the BEAM-ME
project for solving the energy system models, a systematic comparison was performed for a large number
of different REMix instances. These computations were performed on the hardware acquired within the
BEAM-ME project, which is representative for smaller computing clusters at scientific institutions.

There are several factors impacting the performance of the parallel solver PIPS++. To address the different
elements in the systematic comparison several instances were chosen for the benchmark runs. These instances
can be distinguished in four model dimensions: the spatial scale, the mathematical complexity of investment
decisions, the modelling approach for electrical grids and interconnectedness via electrical energy storages.

With respect to the spatial scope of the study we consider three different instances of the same energy system
model containing 30, 120 and 488 model regions, which are derived on the basis of the spatial aggregation
of the high-resolution input data.

Investment decisions in new grid capacities as well as in new electrical energy storage systems represent an
additional degree of freedom. While this additional degree of freedom has little influence on the structure
of the underlying mathematical optimization problem, the effort for the optimization algorithm increases
significantly. This can be explained by the influence of the investment variables on the development of the
company. corresponding hourly deployment decisions.

For the consideration of spatial networking, two different model formulations for electrical transmission
networks are compared: A DC transport model (DC-trans) with symmetrical line capacities and losses
based on line lengths as well as a DC optimal power flow (DC-OPF) formulation, which takes into account
the node-specific feed-in or withdrawal as well as the system-wide voltage angles at each model node. The
OPF formulation tends to significantly increase the wall-clock times for the solver due to the very high
spatial interconnectedness.

The consideration of tear-and-wear (TaW) of conventional power plants represents the last considered com-
plexity factor for the problem structure. The calculation of the costs associated with TaW requires the hourly
difference of the generation variables compared to their previous time step, which leads to significantly more
linking constraints in the model.

The results of this systematic evaluation are currently incomplete due to ongoing
publication in academic journals. These passages will subsequently included after

their corresponding publications are completed.
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5.3 Performance Analysis of PIPS-IPM++ with HPC tools

This section describes exemplarily how Scalasca (Geimer et al., 2010) and Vampir (https://vampir.eu/)
have been used to identify a performance bottleneck in PIPS-IPM++ and how the performance has improved
after the distributed preconditioner for the Schur complement has been implemented (see Section 4.1.2).

Test scenario:

� HPC system: JUWELS

� #nodes: 19

� #tasks per node: 16

� #threads per task: 2

� input data: ELMOD CWE15

� code: version 14th Oct 2019; WITH DIST PRECOND (distributed preconditioning) set to OFF or
ON

� compile software: GCC/8.3.0, ParaStationMPI/5.2.2-1, Boost/1.69.0-Python-3.6.8, imkl/2019.3.199,
MUMPS/5.1.2

Before the actual measurement runs could be executed on the HPC system JUWELS the source code had
to be instrumented by Score-P (Knüpfer et al., 2012) in the compilation process. To reduce the runtime
overhead and the disk space necessary to store the collected data a filter file has been used to filter out
functions irrelevant for the analysis.

The GUI Cube (Saviankou, Knobloch, Visser, & Mohr, 2015), which is developed at, among others, JSC,
has been used to display the performance data retrieved by Scalasca. Identifying the main bottleneck of
PIPS-IPM++ at this stage of the development has been an easy task.

Collective communication operations that send data from all processes to all processes (i.e., n-to-n) exhibit
an inherent synchronization among all participants, that is, no process can finish the operation until the last
process has started it. The first column in Figure 5.2 shows that around 75% of the total runtime was spent
in n-to-n MPI collective operations waiting for other processes to reach the synchronization point. 95% of
the waiting time could be traced back to one MPI Allreduce call (second column in Figure 5.2).
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Figure 5.2: Left and middle column of the Cube GUI showing that 75% of the total runtime can be ascribed
to 95% to a MPI Allreduce function call.

Besides, there was a massive imbalance in the time the individual process spent within that function call as
it can bee seen in the violin plot in Figure 5.3. Switching the view from the violin plot to the system tree
view it became obvious that all processes apart from process 0 were having that problem. This means that
all processes were waiting for process 0 at this point.

Figure 5.3: Third column of the Cube GUI which belongs to Figure 5.2. The violin plot (left) shows the
time distribution of the MPI Allreduce function call among all processes. The system tree view on the right
shows all ranks apart from rank 0 experiencing the problem.

The delay costs metric highlights the root causes of wait states. Whereas short-term costs reflect the direct
effect of load or communication imbalance on wait states in MPI n-to-n collective communication operations
(first column in Figure 5.4). The second column in Figure 5.4 shows that the function factorize(), which
solves the Schur complement of the LP system, was almost exclusively responsible for the above described
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massive imbalance. Looking at the computation time for this function (Figure 5.5) it was is called on MPI
rank 0.

Figure 5.4: The delay costs metric to analyze the imbalance shows the function factorize() is the root
cause.

Figure 5.5: Function factorize() shows computation time on rank 0 exclusively.

Furthermore the visit count confirms that this function is exclusively called on rank 0 at a total count of
33 (Figure 5.6). PIPS-IPM++ solved this instance within 34 iterations. The first iteration is required to
calculate a starting point for the interior point method so that the function factorize() is called once in
each of the remaining iterations.
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Figure 5.6: Function factorize() is called for 33 times (middle column) exclusively on rank 0 (right column).

Last but not least the critical path metric highlights parallel performance bottlenecks. In essence, the critical-
path imbalance is the positive difference of the time a call path occupies on the critical path and the call
path’s average runtime across all CPUs. Thus, a high critical-path imbalance identifies call paths that spend
a disproportionate amount of time on the critical path. The function factorize() appears significantly on
the critical path indicating an imbalance (Figure 5.7).

Figure 5.7: The critical path metric indicates that the function factorize() contributes significantly to the
imbalance.

Summarizing it can be noted that the function factorize(), which is called exclusively on rank 0, was
causing a big imbalance because all other processes were waiting in a MPI Allreduce call until rank 0 had
reached this synchronization point as well. In that, it could be concluded that any optimization applied to
this function or any algorithmic change to prevent the described behavior would have an immediate positive
effect on the total runtime of the code.
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5.3.1 Performance Analysis after optimization
After implementing the distributed preconditioner for the Schur complement the performance of PIPS-
IPM++ has improved a lot so that the runtime reduced from 415 to 203 seconds.

The time spent waiting in MPI collective functions has decreased to around 44% of the total runtime
(first column in Figure 5.8). As can be seen in the middle column of the same figure it is still the same
MPI Allreduce call that is responsible for this delay. It appears again on all ranks apart from rank 0.

Figure 5.8: Left and middle column showing that around 44% of the total runtime after the optimization
can be ascribed to 85% to a MPI Allreduce function call. The system tree view on the right shows that all
ranks apart from rank 0 are waiting in this function call.

The critical path imbalance metric indicates that the function factorize() is still the dominating part of
the code that reduces the overall parallel efficiency, and therefore the speedup (see Amdahl’s Law 4.2.2.0.2),
of PIPS-IPM++ (Figure 5.9).

Figure 5.9: The critical path metrics after code optimization still indicates that the function factorize()

contributes significantly to the imbalance.
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5.3.1.0.1 Performance comparison using Vampir

To finalize the analysis Vampir has been used to compare both measurements. In the following plots, the
white background shows the data of the optimized version and the grey background the code version without
the distributed preconditioner for the Schur complement. On the x-axis, time is plotted. A clustering of the
processes with respect to the time spent per function is shown in Figure 5.10. Most of the clusters are quite
similarly spending most of their time in a MPI Allreduce function call. Just one process shows a completely
different behavior: Little time spend in the MPI Allreduce call and most of the time spend in function
factorize().

Figure 5.10: Using Vampir clustering the processes with respect to the time spent per function. White
background shows the optimized code version. Grey shows the code without the distributed preconditioner
for the Schur complement.

Representatively visualizing the first 9 MPI ranks out of 438 MPI ranks in total it can be confirmed that
rank 0 is the process that spends most of its time in calling the function factorize() while all the processes
are waiting for rank 0 to reach the MPI Allreduce function call. This finding applies to both versions of the
code under the observation that the runtime of the optimized code version has reduced by a factor of more
than 2 (Figure 5.11).

In addition, the ratio between time spent in MPI functions and computation time spent in the application
function calls has drastically improved in the optimized version (Figure 5.12). Thus the parallel efficiency
has improved as well such that better scalability of PIPS-IPM++ can be expected.
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Figure 5.11: Comparing the time line of the optimized code version (white background) against the code
version without distributed preconditioner (grey) for the Schur complement representatively for the first 9
ranks.

Figure 5.12: Comparing the runtime spent in the functions of the application (green) against the time spent
in MPI calls (red).

5.3.1.0.2 Energy efficiency of PIPS-IPM++

As the size of high-performance computing systems continues to grow, energy consumption becomes a serious
limitation problem. This challenge is becoming more and more demanding in HPC: Already now costs over
lifetime of an HPC facility often exceed acquisition costs. The efficient planning and operation of such large-
scale systems depends crucially on the HPC software developers and HPC users developing an understanding
of it.
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This section shows how the choosing of execution parameters for PIPS-IPM++ affects the energy efficiency of
the HPC systems. Unlike the previous scaling experiment, the instance is distributed to the MPI processors
so that each process receives only one block. For this, the block size must be varied. We performed this
kind of scaling experiment on HPC System

”
Hazel Hen“.

”
Hazel Hen“ provides the power consumption of

used compute nodes. Hence, in addition to the solution time, the energy costs are shown in Figure 5.13.
As you can see, the considered instance is solved with 240 MPI processors and 2 OMP threads (480 cores,
20 compute nodes) in almost the same time as with 522 MPI processes and 2 OMP threads (1044 cores, 44
compute nodes). However, the solution with 522 MPI processes consumes twice as much resources (number
of compute nodes and energy).

Figure 5.13: Solution Time and energy costs of the simple4pips problem with parameters –TO=0.992 (–
TBSIZE=51) –NBREGIONS=20 –RESOLUTION=0.33333 OMP THREADS=1 and 2. Im contrast to
Figure 5.1 each of the processes owns only one block. The problem was solved on HPC System

”
Hazel

Hen“.

5.3.1.0.3 Conclusion of performance comparison

With the assistance of different HPC performance measurement tools, the HPC experts and code developers
gained an in-depth understanding of the runtime behavior of PIPS-IPM++ so that the functionality and
the parallel performance of the application could be improved at the same time.

It is also necessary for users to spend time for scaling experiments with their ESOM to find the optimal
executing configuration for their models. Using the optimal configuration will help to save expensive HPC
resources, which can be used by the user for further modeling and finding the optimal solutions, as well as
by other users to solve their problems.

Depending on the performance of the supercomputer network and compute nodes, we recommend that users
use a minimum number of blocks per process, such as one as shown in this section. It is also important to find
the optimal block size and number of OMP threads. Unfortunately, we don’t have any equation that could
provide these parameters, because it depends on too many factors, from ESOM properties to supercomputer
performance. However, we believe that the information contained in the Best Practice Guide will help the
users of PIPS-IPM++ to overcome this challenge.
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Part III

Results of the model experiment
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Chapter 6

Performance analyses in the model
experiment

The chapter of the performance analysis of model experiment is currently incomplete
due to ongoing publication in academic journals. These passages will be subsequently

included after their corresponding publications are completed.

6.1 Concept of the model experiment
A key objective of the project BEAM-ME was to ensure the transferability of the project results. A

”
model

experiment “was set-up to meet this objective. The methods and solvers developed in this project were tested
on REMix and six state of the art energy system models currently used by renowned research institutions.
The models differ in scope and focus and are applied to various different research questions: Models by
some partners focus on single scenario years, investigate the operation and dispatch. These models have a
strong emphasis on grid as well as power plant operation. Other models focus on long term investments
in the energy system, with a focal point on the transition path and the long term development of different
technologies. The model experiment partners contributed their models and know-how to the project in two
fields. On the one hand they helped to develop best practice on model based speed-up methods. Different
ways to reduce the complexity of the model on the modeler’s side were compared. On the other hand the
models adapted their models for application on distributed computing systems. The group learned to apply
the concept of “model annotation”. All models were successfully annotated. Then models and respective
scenarios were then solved on the high performance computing facility in Juelich (JURECA). Some models
showed significant speed-up when solved on an HPC machine. Some models however could not be used with
the newly developed PIPS IPM++ solver, due to the inherent structure of the models.

6.2 Lessons learned from annotation
Model annotation was introduced as a new feature in the modeling language developed by the project partner
GAMS. In the annotation phase all model experiment partners were able to use the new methods developed
in this project. In order to decompose the power system models for parallel computing, the models had to
be annotated in a ways the resulting different blocks/sub-problems were suitable for computation on the
distributed nodes. The six participants had to learn to develop models with a high number of blocks (to
be distributed on a high number of cores) and at the same time not to increase the complexity of the sub-
problems as well as the number of linking variables between the sub-problems, so that the new algorithms
can still solve these problems. The annotation phase showed that annotating a model itself is not a complex
task. Within a short time frame of a few days complex energy system models could be annotated. It turned
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out that the partners were able to perform a first annotation of the models after a short training. While the
implementation of the annotation is rather straight forward, finding a good structure for HPC is a difficult
task. Structuring the model in a way it can be divided in numerous subproblems is not yet automated.
To perform this task it requires a lot of knowhow by the modeler about the model itself. In this project it
took months to eliminate the errors and to make the annotation generic enough to allow a variation of the
annotated block structure. At first problems arose from identifying equations and variables that were not
properly annotated. Further it was difficult to split the model in ways such that all resulting blocks would
be of similar size. The tools developed within this project, the graphical representation and the CheckAnnot
tool, proofed to be of great help when developing and testing the annotation. Especially the graphical
representation provided a good intuitive understanding of the model structure and allowed to easily find
errors in the annotation of the models. The lessons learned from the annotation phase in Chapter xx aim
to facilitate the future work of fellow modelers, when adopting their models for HPC.

6.3 Solving energy system models on HPC
Overall, the model experiment showed that energy system models in general tend to be ”very interconnected”
and showed a large number of linkage variables between the divided blocks. Further the partners learned,
that slicing the model into different timesteps seems to be the best way forward and is much easier, then
dividing the model by regions or by technologies. Some partners were successfully able to divide the model
both by time and regions. The model experiment partners provided different instances of their models to
the project. The instances differed in size and structure. Model instances were executed on a fat node
on the JSC computer JURECA to provide a basis for model comparison and benchmark analysis with
distributed computation (based on PIPS) and conceptual acceleration methods. Model runs on fat nodes
showed significant problems in scaling the model variables, which varied over several decades. This had a
negative impact on the numerical stability. This led to long computing times for solving the models and
limited validity of the results. With an improved formulation the solver was able to find faster and more
reliable solutions. These scaling problems had a significant impact on distributed computing runs with the
PIPS solver. Therefore, the model experiment partners undertook considerable efforts to analyze all variables
in their energy system models and to adapt them if necessary. The high number of linking constraints in the
model and to some extend scaling issues prevented some models from successful model runs on HPC. PIPS
IPM++ still faces difficulties coping with these problems for some model instances. Other partners showed
however significant improvements of computation time. For the large EU instances ELMOD model runs with
PIPS-IPM++ could be solved in less than 20 minutes. Three out of four solvers could not solve these model
instance on large memory machines. Other conventional solvers required between 18 and 24 hours to solve the
problem. All in all acceleration of speed-up by a factor of 50-70 could be observed. This is the case already
for considerable small number of computing nodes (38). Further it could be observed that the problem scales
well. By increasing the number of computing run time of pips does not increase significantly for more complex
problems. The model runs on ELMOD showed that the models scale very well on HPC. The size of the model
instances can increase significantly. By increasing the blocks and distributing the individual subproblems
to more nodes, they can also be calculated comparatively quickly. However, the model runs also showed
that large instances are very time-consuming to create. The considerations of a distributed generation of
model instances, which were previously presented in the report, can make an important contribution in the
follow-up to the project to further accelerate the overall process of solving energy system models on HPC
computers. The investment model EUSTEM was able to reduce the computation time by a magnitude of
2.5 for their model runs.

6.4 Performance analyses of modeling based strategies in the model
experiment

Intensive effort has been done by the modelling community to bridge the gap between model complexity,
computational effort and model accuracy. All in all the model experiment shows that for model based speed-
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up methods – concepts to reduce number of time steps in the model or concepts to divide (rolling horizon
and rolling planning approaches) seem to be very suitable for application in energy system models. The
developed methods aim to reduce the drawbacks of reducing complexity with regard to model accuracy to
a large extend. If no HPC is available for detailed simulation time based methods for reduction of model
complexity seem to be a promising compromise.

6.5 Conclusions of the model experiment
The BEAM-ME project and the model experiment aimed to improve future energy system models, by helping
to reduce computation time and allow for more complex energy system models, facilitating and improving
the work of energy system modelers. A series of tools and methodologies were developed and existing
methods refined with the aim to reduce the computation time and simplify the work required for energy
system modelers. The project gained significant insights and skills from the model experiment partners.
Continuous feedback on the developed solvers, methods and tools helped to refine and improve the results
of the project. The model experiment allowed conducting the praxis-test right during the project time. By
including the six MEXT partners knowledge could be disseminated at an early stage. One feedback from
the model experiment partners presented at the EURO 2019 in Dublin states: “Solving the model with
PIPS-IPM needs a high degree of parallelization but the expected reduction in the solution time is worth
the effort of annotation”.
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Part IV

Conclusion
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Chapter 7

Overall Conclusions from the
BEAM-ME Project

Energy systems analysis highly depends on modeling tools such as Energy System Optimization models
(ESOMs). To fulfill their purpose to provide insights into complex energy systems for decision support
they need to be solvable within acceptable time spans. Against this background, the central goal of the
BEAM-ME project was the significant reduction of solution times for energy system models formulated as
linear optimization problems in GAMS (General Algebraic Modeling System) and the solution of previously
unsolvable such problems. To achieve this goal, different methods were evaluated and their effects were
compared in a model experiment for differently formulated and focused models.
The two central pillars of model acceleration are on the one hand the application of modelling based methods
and on the other hand the use of solution algorithm based methods. The modelling methods essentially com-
prise different approaches of spatial and temporal aggregation, as well as heuristic and mathematically exact
problem decomposition. They represent the main part of the acceleration strategies used so far for energy
system optimization models and offer the advantage that they can usually be developed and implemented
by model users themselves by adapting source codes or pre-processing input data. Within BEAM-ME they
were implemented and evaluated mainly in the energy system model REMix, but also in other models. These
measures were accompanied by comprehensive benchmark analyses for a set of frequently applied speed-up
techniques. The conducted examination included model aggregation approaches on different scales as well
as strategies for heuristic decomposition. In addition to the reduction of the solution time, the effect on the
accuracy of the results was of essential importance. As a central result of the evaluation of model-based
methods it could be shown that with reasonable restrictions regarding the accuracy, heuristics can reduce
the computing time of large models up to a factor of 10. Within our evaluation framework, temporal down-
sampling turned out to be the most efficient speed-up approach. The usefulness of this approach is strongly
related to the “effectiveness of model reduction”. In other words, the larger and more difficult to solve a
particular ESOM becomes, the greater the achievable speed-up by already minor model reductions is. Taking
into account that solving of linear ESOMs with mixed-integer variables is more complicated than for the
model instances considered in this study, we suppose that the presented speed-up approaches are especially
effective for such use cases.
As far as only specific model outcomes such as additional transmission capacities are of interest and extensive
multi-threading is possible, the presented heuristic decomposition approaches with grid computing (temporal
zooming) are also promising as they allow additional speed-ups without increasing loss of accuracy. More-
over, they offer the possibility for executing an ESOM on multiple shared memory computers even though
parallelization is only applied to the conceptual layer of the optimization model.
Nevertheless, we showed that the appropriate gains in performance are limited depending on the size of a
certain model. In this case, the down-side of “effectiveness of model reduction” comes into play: Since the
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idea behind decomposition is based on solving multiple reduced sub-models, such approaches reach their
speed-up limit when the decrease of computing time by model reduction becomes negligible for very small
sub-models.
The core of the investigation of algorithm based methods was the development of the solver PIPS-IPM++,
which allows the parallel solution of linear optimization problems on high performance computer architec-
tures. It is based on the open-source solver PIPS-IPM and has been extensively developed within BEAM-ME
to enable its use for typical problems of power system optimization. This problem category is characterized
by many so-called linking constraints, which are necessary for modeling networks, storage and CO2 emission
constraints. For this purpose, the solver has been adapted in such a way that it can process not only linking
variables but also a large number of linking constraints in parallel. For a better integration an interface
between GAMS and PIPS-IPM++ was developed within the project. The basis for this is the also newly
created possibility of annotating block structures in GAMS models, which allows a decomposition of very
large problems into many small blocks, which in turn is indispensable for a parallel application of the solution
algorithms. With the development of PIPS-IPM++ and the adaptation of the energy system models, the
use of High Performance Computers (HPC) for energy system analysis was opened up.

Figure 7.1: Relationship between accuracy and computing time for different acceleration approaches inves-
tigated

The progress achieved within BEAM-ME allows a reduction of the solution time of linear optimization
problems of energy system analysis up to a factor of 26. Furthermore, previously unsolvable problems have
become solvable by efficient problem decomposition and the use of PIPS-IPM++. The achieved progress on
the technical side can be illustrated by a typical scientific computing cluster. On such systems a reduction of
the runtime by 76% and a reduction of the required memory per node by 96% could be achieved by extending
PIPS. In comparison, on the HPC mainframe Juwels at FZJ the runtime was reduced by 96% for one of
the largest REMix models. These advances allow a significant expansion of the analysis depth of energy
system models. For REMix, the accessible spatial resolution was increased from about 50 to more than 1000
model nodes, the optimization of transformation paths instead of individual reference years was realized,
the consideration of further technologies and sectors was made possible, and the possibility of large-scale
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parameter space analyses was created. In this manner, the application of effective speed-up approaches
highly contributes to the generation of robust and well-founded model-based analyses for the development
of decarbonization strategies of the energy system.
The BEAM-ME project met with broad interest in the scientific community, which was manifested in partic-
ular by a great interest in participating in the model experiment, manifold inquiries and lively participation
in the final workshop.
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Bussar, C., Stöcker, P., Cai, Z., Luiz, M., Leuthold, M., Sauer, D., . . . Moser, A. (2015, 03). Large-scale
integration of renewable energies and impact on storage demand in a european renewable power system
of 2050. In (Vol. 73). doi: 10.1016/j.egypro.2015.07.662

Cao, K.-K., Gleixner, A., & Miltenberger, M. (2016). Methoden zur reduktion der rechenzeit linearer opti-
mierungsmodelle in der energiewirtschaft - eine performance-analyse. In Eninnov 2016: 14. symposium
energieinnovation 2016.

Cao, K.-K., Metzdorf, J., & Birbalta, S. (2018, Juni). Incorporating power transmission bottlenecks into
aggregated energy system models. Sustainability , 10 (6). Retrieved from https://elib.dlr.de/

120656/

Cebulla, F., & Fichter, T. (2017, May). Merit order or unit-commitment: How does thermal power plant
modeling affect storage demand in energy system models? Renewable Energy , 105 , 117 - 132. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0960148116310990 doi: http://dx
.doi.org/10.1016/j.renene.2016.12.043

Cerebras. (2019, August). The wse is the largest chip ever built. Cerebras Systems. Retrieved from
https://www.cerebras.net/ (Accessed: 2018-08-20)

Chandrakasan, A. P., Sheng, S., & Brodersen, R. W. (1995). Low power cmos digital design. IEEE
JOURNAL OF SOLID STATE CIRCUITS , 27 , 473–484.
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Knüpfer, A., Rössel, C., Mey, D. a., Biersdorff, S., Diethelm, K., Eschweiler, D., . . . Wolf, F. (2012). Score-p:

A joint performance measurement run-time infrastructure for periscope,scalasca, tau, and vampir. In
H. Brunst, M. S. Müller, W. E. Nagel, & M. M. Resch (Eds.), Tools for high performance computing
2011 (pp. 79–91). Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-642-31476-6 7

Kris Poncelet, Erik Delarue, Daan Six, Jan Duerinck, & William D’haeseleer. (2016). Impact of the level
of temporal and operational detail in energy-system planning models. Applied Energy , 162 , 631 - 643.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0306261915013276 doi:

131

http://ieeexplore.ieee.org/document/7982024/
http://ieeexplore.ieee.org/document/7982024/
http://ieeexplore.ieee.org/document/7982024/
http://www.netlib.org/benchmark/hpl/
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-scalable-spec-update.pdf
http://www.sciencedirect.com/science/article/pii/S0140988316302018
http://www.sciencedirect.com/science/article/pii/S0140988316302018
https://mpra.ub.uni-muenchen.de/65661/1/wp_em_28_Abrell_Kunz_Weigt_Startup.pdf
http://dx.doi.org/10.1109/TPWRS.2008.926719
http://www.sciencedirect.com/science/article/pii/S0378779606001532
http://dx.doi.org/10.17815/jlsrf-5-171
http://dx.doi.org/10.17815/jlsrf-5-171
http://www.sciencedirect.com/science/article/pii/S0142061503001315
http://www.sciencedirect.com/science/article/pii/S0301421511010469
http://dx.doi.org/10.1109/TPWRS.2009.2039946
http://dx.doi.org/10.1109/TPWRS.2009.2039946
http://www.sciencedirect.com/science/article/pii/S0306261915013276


http://dx.doi.org/10.1016/j.apenergy.2015.10.100
Langrene, N., van Ackooij, W., & Breant, F. (2011, Aug). Dynamic Constraints for Aggregated Units:

Formulation and Application. Power Systems, IEEE Transactions on, 26 (3), 1349-1356. doi: 10.1109/
TPWRS.2010.2089539

Leuthold, F. U., Weigt, H., & von Hirschhausen, C. (2012, Mar 01). A large-scale spatial optimization model
of the european electricity market. Networks and Spatial Economics, 12 (1), 75–107. Retrieved from
https://doi.org/10.1007/s11067-010-9148-1 doi: 10.1007/s11067-010-9148-1

Linderoth, J., & Wright, S. J. (2003). Decomposition algorithms for stochastic programming on a compu-
tational grid. Comp. Opt. and Appl., 24 (2-3), 207–250. Retrieved from https://doi.org/10.1023/

A:1021858008222 doi: 10.1023/A:1021858008222
Loulou, R., & Labriet, M. (2008, 02). Etsap-tiam: the times integrated assessment model part i: Model

structure. Computational Management Science, 5 , 7-40. doi: 10.1007/s10287-007-0046-z
Lustre. (2019). Lustre filesystem. Retrieved from http://lustre.org/

Marquant, J., Evins, R., & Carmeliet, J. (2015, 12). Reducing computation time with a rolling horizon
approach applied to a milp formulation of multiple urban energy hub system. Procedia Computer
Science, 51 , 2137-2146. doi: 10.1016/j.procs.2015.05.486
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Appendix A

The SIMPLE Model - A Simplified
ESM

SIMPLE is a simplified energy system model that has multiple variants. This chapter introduces a basic
version of SIMPLE as well as many variants plus different decomposition approaches, heuristics and stochastic
extensions that were built on top of SIMPLE.

A.1 Motivation
State-of-the-art Energy System Models are often very complex. Many have been developed over years or
even decades by multiple people. Novel solution approaches usually involve complex algorithms from the
field of Mathematical Programming. Apparently, implementing complex algorithms for complex models is
a very challenging and time consuming task. That motivates the need for a simplified ESM that maintains
relevant parts of the model structure that can be found in many ESMs but is at the same time compact and
comprehensive. Apparently such a simplified model lacks many details that are considered in ”‘real”’ ESMs.
However, it allows for rapid prototyping of different solution approaches that would be very time consuming
to implement for ”‘real”’ ESMs. SIMPLE was developed to allow convenient preliminary evaluation of
complex methods to identify promising solution approaches.

A.2 Automated Input Data Generation
A core concept of SIMPLE is the convenient and automatic generation of input data. The SIMPLE models
come with a data generator simple data gen.gms that can be parametrized to generate data instances
of different size. The data generator is called automatically from all SIMPLE models and takes only one
argument, the number of regions. The basic principle of the data generator is to create all the data that
goes into the model like for example demand per region and hour, available power plants and their capacity,
or the amount of available renewable energy per region and hour. All the data is computed by randomizing
standard basic time series that provide the corresponding data for a ”‘standard”’ region. In addition, a
simple algorithm will place the regions on a 1000x1000 km grid and compute a network of transmission links
that connects different regions under consideration of distances between the regions. Note that even though
there is a lot of randomization involved in the automated data generation, the process is deterministic.

A.2.1 Input Data vs. Model Data
The data generator always produces data instances that cover an entire year in hourly resolution, ergo 8760
hours. What comes out of the data generator is denoted input data.
In Addition, the SIMPLE models allow the user to work with further customized model data. This includes
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the opportunity to change the time resolution which means that hourly time steps from the input data can
be aggregated or disaggregated for the actual model data. Furthermore, the time horizon to be considered
can be controlled via parameters --FROM and --TO.
The following example illustrates how to solve the basic SIMPLE model with 12 regions for the first half of
a year with a time resolution of 6 hours.

gams simpleBase.gms --NBREGIONS=12 --FROM=0 --TO=0.5 --RESOLUTION=6

A.3 The SIMPLE Models - How to run?
The following sections introduce different versions of the SIMPLE model:

� Basic SIMPLE Model: simpleBase.gms

� Extensions to the SIMPLE Model: simple.gms

� SIMPLE Model for PIPS-IPM: simple4pips.gms

In Addition, to run the SIMPLE models the data generator simple data gen.gms is required. Assuming
that GAMS has been properly installed, the SIMPLE models can be run from the command line as follows:

gams <modelname>.gms [list of parameters]

A.3.1 Generic Parameters
The different SIMPLE Models share several parameters which are summarized in this section. Other model
or even method specific parameters are explained in the following sections about the different model versions.
The SIMPLE parameters can be set as so called Double Dash Parameters:

gams <modelname>.gms --parameter1=value --parameter2=value ...

Generic parameters are:

Parameter Type Range Default Description
FROM float [0, 1] 0 This parameter determines the start of the time

horizon that should be considered in the model
data

TO float [0, 1] 1 This parameter determines the end of the time
horizon that should be considered in the model
data

RESOLUTION float [0, 8760] 1 This parameter determines the resolution in hours
for the model data

NBREGIONS integer {1, 2, ..., inf} 4 This parameter determines the number of regions

Table A.1: Generic SIMPLE Parameters

A.4 Basic SIMPLE Model - simpleBase.gms

A.4.1 Symbols

A.4.1.1 Sets

Name Domains Description
rr, rr1, rr2 * regions
p * plants
s * storages
e * emissions
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Name Domains Description
type * plant type
rp rr, p region to plant mapping
ptype rr, p, type plant type mapping
rs rr, s region to storage mapping
net rr1, rr2 transmission links
tt * time steps
r rr active region
t tt subset of active time steps

A.4.1.2 Parameters

Name Domains Description
plant emission rr, p, e plant emission [tons/GWh]
cost power generation rr, p electricity production cost [MEUR/GWh]
cost emission e emission costs [MEUR/ton]
storage cap rr, s storage capacity [GWh]
storage efficiency rr, s efficiency factor of storage
storage efficiency in rr, s efficiency factor of storage inflow
storage efficiency out rr, s efficiency factor of storage outflow
cost plant add rr, p cost for additional plant capacity [MEUR/GW]
cost storage add rr, s cost for additional storage capacity [MEUR/GWh]
cost link add rr1, rr2 cost for additional link capacity [MEUR/GWh]
plant cap tt, rr, p plant capacity in time step t [GWh]
total plant cap rr, p plant capacity over total time span [GWh]
total emission cap e emission cap for total time span [tons]
cost unserved demand tt price for unserved demand [MEUR/GWh]
link cap tt, rr1, rr2 transmission link capacity per time step[GWh]
link efficiency tt, rr1, rr2 transmission link efficiency factor
demand tt, rr demand for region per time step [GWh]
avail tt, rr, p
resolution model resolution in hours. 1 means that a model time step corre-

sponds to one hour, 3 means it correspnds to 3 hours etc

A.4.1.3 Variables

Name Domains Description
POWER tt, rr, p power production [GWh]
FLOW tt, rr1, rr2 power flow [GWh]
LINK ADD CAP rr1, rr2 arc capacity expansion [GWh]
SLACK tt, rr uncovered demand [GWh]
STORAGE LEVEL tt, rr, s storage level [GWh]
STORAGE INFLOW tt, rr, s power entering storage [GWh]
STORAGE OUTFLOW tt, rr, s power taken from storage [GWh]
PLANT ADD CAP rr, p plant capacity expansion [GW]
STORAGE ADD CAP rr, s storage capacity expansion [GWh]
EMISSION SPLIT rr, e emission allowance split [fraction]
EMISSION COST rr, e emission cost [MEUR]
ROBJ rr total region cost [MEUR]
OBJ total [MEUR]
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A.4.1.4 Equations

Name Domains Description
eq robj rr total cost in region
eq power balance tt, rr power balance
eq plant capacity tt, rr, p respect plant capacity
eq total plant capacity rr, p respect total plant capacity
eq storage balance tt, rr, s storage balance
eq storage capacity tt, rr, s respect storage capacity
eq emission region rr, e calculate regional emissions
eq emission cost rr, e calculate regional emission costs
eq emission cap e respect emission cap
eq link capacity tt, rr1, rr2 respect link capacity
eq obj total cost

A.4.2 Equation Definitions

eq obj - objective function

OBJ =
∑
r

ROBJr +
∑

rr1,rr2,netrr1,rr2

(LINK ADD CAPrr1,rr2 · cost link addrr1,rr2)

The objective function sums over the regional objectives plus inter-regional costs for network expansion.

eq robjr - total cost in region

ROBJr =
∑

t,p,type,ptyper,p,type,rpr,p

(POWERt,r,p · cost power generationr,p)

+
∑
t

(SLACKt,r · cost unserved demandt)

+
∑
p,rpr,p

(PLANT ADD CAPr,p · cost plant addr,p)

+
∑
s,rsr,s

(STORAGE ADD CAPr,s · cost storage addr,s)

+
∑
e

EMISSION COSTr,e ∀r

Total costs per region are computed as the sum of power generation costs, penalty for unserved demand,
plant expansion costs, storage expansion costs and emission costs.

eq power balancet,r - power balance constraint

∑
p,rpr,p

POWERt,r,p

+
∑

rr2,netrr2,r

(FLOWt,rr2,r · link efficiencyt,rr2,r)−
∑

rr2,netr,rr2

FLOWt,r,rr2

+
∑
s,rsr,s

(STORAGE OUTFLOWt,r,s − STORAGE INFLOWt,r,s)

+SLACKt,r ≥ demandt,r ∀t, r

142



The power balance constraint ensures for every time step and every region that the demand is satisfied by
the sum of:

� generated power

� inbound power flow minus outbound power flow

� withdrawal from storage minus filling up of storage

� unsatisfied demand

eq plant capacityt,rpr,p

POWERt,r,p ≤(plant capt,r,p + PLANT ADD CAPr,p · resolution) · availt,r,p ∀t, rpr,p

In every time step for every plant the power generation has to be less than the initially installed capacity
[GWh per time step] plus the additionally installed capacity [GW] multiplied with the resolution [hours per
time step].

eq total plant capacityrpr,p

∑
t

POWERt,r,p ≤total plant capr,p ∀rpr,p

Over the entire time horizon, a power plant’s maximum production is limited to a fixed value. This constraints
mimics the scarceness of fuel types required to operate certain plant types.

eq storage balancettt,rsr,s

STORAGE LEVELtt,r,s = STORAGE LEVELtt−−1,r,s · storage efficiencyr,s

+ STORAGE INFLOWtt,r,s · storage efficiency inr,s

− STORAGE OUTFLOWtt,r,s ·
1

storage efficiency outr,s
∀ttt, rsr,s

The storage balance constraint ensures for every time step and every storage that the current storage level
is equal to:

� the storage level from the previous time step minus some factor that mimics for example evaporation
in water reservoirs of pump storages

� plus storage inflow in the current period scaled with a corresponding efficiency factor

� minus withdrawal from the storage in the current period scaled with a corresponding efficiency factor

eq storage capacityt,rsr,s

STORAGE LEVELt,r,s ≤storage capr,s + STORAGE ADD CAPr,s ∀t, rsr,s

In every time step, the storage level cannot exceed the initial storage capacity plus the additionally installed
storage capacity.
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eq emission regionr,e

∑
p,t,rpr,p

(POWERt,r,p · plant emissionr,p,e) ≤total emission cape · EMISSION SPLITr,e ∀r, e

For every emission type and region, the emissions produced by the plants in that region have to be less than
or equal to an emission cap.

eq emission costr,e

∑
p,t,rpr,p

(POWERt,r,p · plant emissionr,p,e) · cost emissione =EMISSION COSTr,e ∀r, e

For every emission type and region, the emission costs are computed.

eq emission cape

∑
rr

EMISSION SPLITrr,e ≤1 ∀e

For every emission type, the emission has to be split between the different regions.

eq link capacityt,net

FLOWt,net ≤link capt,net + LINK ADD CAPnet · resolution ∀t, net

In every time step, the amount of power flow transferred on a particular link of the power grid, cannot exceed
the initial capacity of that link [GWh per time step] plus the additionally installed capacity [GW] multiplied
with the resolution [hours per time step].

POWERtt,rr,p ≥ 0 ∀tt, rr, p
SLACKtt,rr ≥ 0 ∀tt, rr

PLANT ADD CAPrr,p ≥ 0 ∀rr, p
STORAGE ADD CAPrr,s ≥ 0 ∀rr, s

FLOWtt,rr1,rr2 ≥ 0 ∀tt, rr1, rr2
STORAGE OUTFLOWtt,rr,s ≥ 0 ∀tt, rr, s

STORAGE INFLOWtt,rr,s ≥ 0 ∀tt, rr, s
STORAGE LEVELtt,rr,s ≥ 0 ∀tt, rr, s

EMISSION SPLITrr,e ≥ 0 ∀rr, e
LINK ADD CAPrr1,rr2 ≥ 0 ∀rr1, rr2

A.4.3 Model Overview

OBJ =
∑
r

ROBJr
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+
∑

rr1,rr2,netrr1,rr2

(LINK ADD CAPrr1,rr2 · cost link addrr1,rr2)

ROBJr =
∑

t,p,type,ptyper,p,type,rpr,p

(POWERt,r,p · cost power generationr,p)

+
∑
t

(SLACKt,r · cost unserved demandt)

+
∑

p,rpr,p

(PLANT ADD CAPr,p · cost plant addr,p)

+
∑

s,rsr,s

(STORAGE ADD CAPr,s · cost storage addr,s)

+
∑
e

EMISSION COSTr,e ∀r

demandt,r ≤
∑

p,rpr,p

POWERt,r,p

+
∑

rr2,netrr2,r

(FLOWt,rr2,r · link efficiencyt,rr2,r)

−
∑

rr2,netr,rr2

FLOWt,r,rr2

+
∑

s,rsr,s

(STORAGE OUTFLOWt,r,s

− STORAGE INFLOWt,r,s)

+ SLACKt,r ∀t, r

POWERt,r,p ≤ (plant capt,r,p + PLANT ADD CAPr,p · resolution) · availt,r,p ∀t, rpr,p

∑
t

POWERt,r,p ≤ total plant capr,p ∀rpr,p

STORAGE LEVELtt,r,s = STORAGE LEVELtt−−1,r,s · storage efficiencyr,s

+ STORAGE INFLOWtt,r,s · storage efficiency inr,s

− STORAGE OUTFLOWtt,r,s ·
1

storage efficiency outr,s
∀ttt, rsr,s

STORAGE LEVELt,r,s ≤ storage capr,s + STORAGE ADD CAPr,s ∀t, rsr,s

∑
p,t,rpr,p

(POWERt,r,p · plant emissionr,p,e) ≤ total emission cape · EMISSION SPLITr,e ∀r, e

EMISSION COSTr,e =
∑

p,t,rpr,p

(POWERt,r,p · plant emissionr,p,e) · cost emissione ∀r, e

∑
rr

EMISSION SPLITrr,e ≤1 ∀e

POWERtt,rr,p ≥0 ∀tt, rr, p
SLACKtt,rr ≥0 ∀tt, rr

PLANT ADD CAPrr,p ≥0 ∀rr, p
STORAGE ADD CAPrr,s ≥0 ∀rr, s
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FLOWtt,rr1,rr2 ≥0 ∀tt, rr1, rr2
STORAGE OUTFLOWtt,rr,s ≥0 ∀tt, rr, s

STORAGE INFLOWtt,rr,s ≥0 ∀tt, rr, s
STORAGE LEVELtt,rr,s ≥0 ∀tt, rr, s

EMISSION SPLITrr,e ≥0 ∀rr, e
LINK ADD CAPrr1,rr2 ≥0 ∀rr1, rr2

A.5 Extensions to the Basic SIMPLE Model - simple.gms

As mentioned in the motivation above, SIMPLE was designed as a compact and comprehensive simplification that
allows for rapid prototyping of decomposition methods and extensions. The following sections provide an overview
of solution approaches that have been implemented on top of the basic SIMPLE model.

In Addition to the generic parameters, there are some parameters that are dedicated to the extended SIMPLE version.

Parameter Type Range Default Description

METHOD string standard lp This parameter specifies the method/extension to apply. Pos-
sible values are:

� standard lp

� rolling horizon

� lagrange relaxation

� spExplicitDE

� stochasticEMP

� spBendersSeq

� spBendersAsync

� spBendersMPI

SCALING binary {0, 1} 0 This parameter determines if a scaled version of the model with
better numerical properties should be generated (1) or not (0)

NOSLACK binary {0, 1} 0 This parameter determines whether the SLACK variables
should be removed from the model (1) or not (0)

Table A.6: Parameters for SIMPLE Extensions

A.5.1 Rolling Horizon
If simple.gms is called with parameter --METHOD=rolling horizon, the model will be partitioned into (overlapping)
time horizons that are solved sequentially. Additional Double Dash Parameters can be set:

Parameter Type Range Default Description

NBINTERVALSRH integer {1, 2, ..., n} 4 This parameter specifies the number of time horizons.
The number of time steps n can be at most the number
of model time steps

OVERLAPSIZERH float [0, inf] 0.1 This parameter determines the relative overlap of one
time horizon with the subsequent time horizon.

Table A.7: Parameters for the Rolling Horizon Approach

The Rolling Horizon approach is implemented in rolling horizon.gms.
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A.5.2 Benders Decomposition
If simple.gms is called with parameter --METHOD=benders), the SIMPLE model will be solve via BENDERS Decom-
position . Additional Double Dash Parameters can be set:

Parameter Type Range Default Description

BENDERSMAXITER integer [0, inf] 5000 This parameter specifies the maximum number of Ben-
ders iterations

Table A.8: Parameters for the Benders Decomposition Approach

The Benders Decomposition approach is implemented in benders.gms.

A.5.3 Lagrangian Relaxation
If simple.gms is called with parameter --METHOD=lagrange relaxation), the SIMPLE model will be solved by
Lagrangian Relaxation . Additional Double Dash Parameters can be set:

Parameter Type Range Default Description

ITERLIM float [0, 1e6] 10 This parameter specifies the maximum number of iterations

RESLIM float [0, inf] 20 This parameter specifies the time limit

RGAP float [0, inf] 0.1 This parameter specifies the relative termination tolereance

Table A.9: Parameters for the Lagrangian Relaxation Approach

The Lagrangian Relaxation approach is implemented in lg.gms.

A.5.4 Stochastic Program - Explicit Deterministic Equivalent
If simple.gms is called with parameter --METHOD=spExplicitDE, the deterministic equivalent of a stochastic problem
version will be generated explicitly. The stochasticity arises from uncertainty in the power generation costs. Additional
Double Dash Parameters can be set:

Parameter Type Range Default Description

NBSCEN integer [1, inf] 5 This parameter specifies the number of scenarios

CPLEXBENDERS integer {0, 1, ..., 999} 1 This parameter specifies the CPLEX algorithm to
solve the model. Possible options are

0 Do not use CPLEX at all. Instead use the
conversion tool CONVERTD to create a gdx
file that contains (one block of) a represen-
tation of the problem that is understood by
parallel interior point solver PIPS-IPM. (see
also option SCENBLOCK)

1 CPLEX will use its internal implementation
of Benders Decomposition. The partition
into master and subproblems is done via dot
option BendersPartition

999 CPLEX will use the barrier algorith without
crossover

N CPLEX will look for a solver option file
cplex.opN (or cplex.oNN or cplex.NNN if N
has 2 or 3 digits). If there is no such CPLEX
option file, CPLEX will solve the problem
with default settings.
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Parameter Type Range Default Description

SCENBLOCK integer [−2, NBSCEN + 1] -2 This parameter is only relevant if parameter
CPLEXBENDERS is equal to 0. In that case a
gdx file with a block structured representation of
(one block of) the problem is created. options for
this parameter are:

-2 generate one large gdx file with the entire
model

-1 generate NBSCEN+1 block files sequentially

n for 0 ≤ n ≤ NBSCEN the corresponding block
file will be created

Table A.10: Parameters for the Explicit Deterministic Equivalent Approach

The Explicit Deterministic Equivalent approach is implemented in spexplicitde.gms.

A.5.5 Stochastic Program - Extended Mathematical Programming Framework
The Extended Mathematical Programming (EMP) framework is an extension to GAMS that facilitates the automatic
reformulation of new model types as models in more established mathematical programming classes, allowing them to
be solved by mature solver algorithms. If simple.gms is called with parameter --METHOD=stochasticEMP, the EMP
framework will be used to create a two-stage Stochastic Problem version via some annotation file and the deterministic
SIMPLE model. The stochasticity arises from uncertainty in the power generation costs. The annotation is provided
in the EMP Info File and specifies a partition of variables and equations into first and second stage. Additional
Double Dash Parameters can be set:

Parameter Type Range Default Description

EMPMETHOD string DE This parameter specifies the EMP Method that should be used
to create/solve the two-stage Stochastic Problem. Possible op-
tions are:

DE The tool DE is used to build the Deterministic Equivalent
of the Stochastic Program which can then be solved with
any LP Solver.

LINDO The deterministic model plus the EMP Info file are passed
to the solver LINDO which forms and solves the Deter-
minstic Equivalent of the Stochastic problem internally.

LINDOBENDERS The deterministic model plus the EMP Info file are passed
to the solver LINDO which forms the Determinstic Equiv-
alent of the Stochastic problem internally and solves it
with LINDO’s internal implementation of Benders De-
composition.

Table A.11: Parameters for the EMP Approach of Extended SIMPLE Model

The EMP approach is implemented in stochasticEMP.gms.

A.5.6 Stochastic Program - Benders Decomposition (Sequential)
If simple.gms is called with parameter --METHOD=SpBendersSeq, a two-stage Stochastic Problem with uncertain
power generation costs will be solved with a Benders Decomposition approach. In this approach, the sub-problems
are solved sequentially. Note that this approach is the basis for the more sophisticated parallel implementation of
the Additional Double Dash Parameters can be set:
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Parameter Type Range Default Description

USESTARTINGPOINT binary {0, 1} 1 If set to 1, the deterministic problem is solved to
obtain a starting point

USETRUSTREG binary {0, 1} 1 If set to 1, trust region approach will be used

DYNAMICTRUSTREG binary {0, 1} 1 If set to 1, dynamic trust region approach will
be used

NBSCEN integer {1,∞} 5 This parameter specifies the number of scenarios

NBCLUSTER integer {1,∞} %NBSCEN%1 Number of cluster cuts

BENDERSITERLIM integer {1,∞} 300 Benders iteration limit

CONVERGENCECRIT float [0,∞] 10−5 Convergence criterion (difference between best
found solution and best bound)

Table A.12: Parameters for the sequential stochastic Benders Decomposition approach for the extended
SIMPLE Model

The sequential stochastic Benders Decomposition approach that is implemented in spBendersSeq.gms.//

A.5.7 Stochastic Program - Benders Decomposition (Asynchronous)
If simple.gms is called with parameter --METHOD=spBendersAsync, a two-stage Stochastic Problem with uncertain
power generation costs will be solved with a Benders Decomposition approach based on the asyncronous trust region
method for stochastic programming by (Linderoth & Wright, 2003). Additional Double Dash Parameters can be set:

Parameter Type Range Default Description

USESTARTINGPOINT binary {0, 1} 1 If set to 1, the deterministic problem is solved
to obtain a starting point

USESCENARIOCUTS binary {0, 1} 1 If set to 1, scenario cuts will be used

USETRUSTREG binary {0, 1} 1 If set to 1, trust regions will be used

DYNAMICTRUSTREG binary {0, 1} 1 If set to 1, dynamic trust regions will be used

NBSCEN integer {1,∞} 5 This parameter specifies the number of scenar-
ios

NBCLUSTER integer {1,∞} %NBSCEN% Number of cluster cuts

BENDERSITERLIM integer {1,∞} 300 Benders iteration limit

REQUIREDSCENSHARE float [0, 1] 1 Share of evaluated clusters to start subsequent
iteration

CONVERGENCECRIT float [0,∞] 10−5 Convergence criterion (difference between best
found solution and best bound)

Table A.13: Parameters for asynchronous stochastic Benders Decomposition approach for the extended
SIMPLE model

The asynchronous stochastic Benders Decomposition approach is implemented in spBendersAsync.gms.

A.5.8 Stochastic Program - Benders Decomposition (parallel using MPI)
If simple.gms is called with parameter --METHOD=SpBendersMPI, a two-stage Stochastic Problem with uncertain
power generation costs will be solved with a Benders Decomposition approach. The solution Process is parallelized
via MPI. Note that in this approach, simple.gms has to be used like an MPI program, i.e. for n scenarios, we have to
run n+1 GAMS jobs of simple.gms in parallel. Each of the n+1 knows its rank where the rank goes from 0 to n. The
GAMS job with rank 0 solves the master problem while the GAMS jobs with rank 1, 2, ..., n solve the subproblems
that belong to the different scenarios. That means data exchange between master ans sub-problems does require
inter process communication which is implemented via MPI. To be precise, The Embedded Code facility to convert
the GAMS data structures that need to be exchanged into Python data structures which are then communicated via
Python package mpi4py and its broadcast and gather commands. Additional Double Dash Parameters can be set:
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Parameter Type Range Default Description

USESTARTINGPOINT binary {0, 1} 1 If set to 1, the deterministic problem is solved to
obtain a starting point

USETRUSTREG binary {0, 1} 1 If set to 1, trust region approach will be used

DYNAMICTRUSTREG binary {0, 1} 1 If set to 1, dynamic trust region approach will
be used

NBSCEN integer {1,∞} 5 This parameter specifies the number of scenarios

NBCLUSTER integer {1,∞} %NBSCEN%1 Number of cluster cuts

BENDERSITERLIM integer {1,∞} 300 Benders iteration limit

CONVERGENCECRIT float [0,∞] 10−5 Convergence criterion (difference between best
found solution and best bound)

Table A.14: Parameters for Stochastic Benders Decomposition Approach for the extended SIMPLE Model

The Stochastic Benders Decomposition approach that uses MPI is implemented in spBendersMPI.gms.// Below we
show an exemplary submission script to solve a 2-stage Stochastic Problem version of SIMPLE with 100 Scenarios
on the JURECA Supercomputer at the Juelich Supercomputing Centre (JSC). Note that this example results in 101
tasks where we can (and do) use multiple threads (4) for the solution of every single LP. The number of threads
to use by the LP Solver (CPLEX) is for this example hard coded in an automatically generated solver option file.
Altogether, the example runs 101 GAMS Jobs and uses 17 nodes, 404 cores, and 4 cores per solve statement.

#!/bin/bash -x

#SBATCH --nodes=17

#SBATCH --ntasks=101

#SBATCH --cpus-per-task=4

#SBATCH --output=mpi-out.%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=01:00:00

#SBATCH --mail-user=<name>@<mail>.com

#SBATCH --mail-type=ALL

#SBATCH --partition=batch

module purge

module load Python/3.6.5

module load GCC/5.5.0 ParaStationMPI/5.2.1-1

module load GCC/7.3.0 ParaStationMPI/5.2.1-1

module load Intel/2018.2.199-GCC-5.5.0 IntelMPI/2018.2.199

module load Intel/2018.2.199-GCC-5.5.0 ParaStationMPI/5.2.1-1

module load mpi4py/3.0.0-Python-3.6.5

srun gams simple --to=0.25 --method=SPBENDERSMPI --NBREGIONS=10 --NBSCEN=100

fileStem=SPBENDERS_MPI_ fileStemApFromEnv=PMI_RANK lo=2 reslim 999999

A.6 SIMPLE Model for PIPS-IPM - simple4pips.gms

simple4pips.gms is another standalone version of the SIMPLE model, specifically tailored for the usage with parallel
interior point solver PIPS-IPM. In addition to minor changes in the model structure compared to simpleBase.gms

, it implements various model annotations and several ways to generate the model in a format readable by the
GAMS/PIPS-IPM-Link. In addition, load shifting can be activated and parameterized for simple4pips. With load
shifting activated, a certain portion of the demand in a particular time step does not have to be satisfied in this time
step but demand satisfaction can be shifted to subsequent time steps. Since load shifting links different time steps,
it results in additional (sparse) linking constraints.
In Addition to the generic parameters, there are some parameters that are dedicated to simple4pips.gms.
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Parameter Type Range Default Description

NBSHIFTS integer {0, 1, ..., n} 0 The number of target time periods to which
demand satisfaction can be shifted. If for ex-
ample --NBSHIFTS=2 --SHIFTSTEPSIZE=1 are
set, demand that is not satisfied in time step
t can be satisfied in t + 1 and/or t + 2. If
--NBSHIFTS=0 (default), no load shifting is al-
lowed and the value of SHIFTSTEPSIZE is irrel-
evant.

SHIFTSTEPSIZE integer {1, 2, ..., n} 2 The number of time periods demand satis-
faction is shifted per shift step. If for ex-
ample --NBSHIFTS=2 --SHIFTSTEPSIZE=3 are
set, demand that is not satisfied in time step
t can be satisfied in t+ 2 and/or t+ 4 and/or
t+6. If --NBSHIFTS=0 (default), no load shift-
ing is allowed and the value of this parameter
is irrelevant.

METHOD string standard lp This parameter specifies the method to apply.
Possible options are:

standard lp The model is solved with CPLEX’ bar-
rier algorithm without crossover.

PIPS The model is generated in PIPS-IPM
input format. Note that depending on
parameter BLOCK, one or more gdx files
will be created which changes the pro-
cess of passing the model instance to
PIPS-IPM).

BLOCK integer {−2,−1, 0, 1, ..., n} -2 This parameter is only relevant if
--METHOD=PIPS is set. It controls the
generation of block files. Possible options are:

-2 Generation of a single gdx files that con-
tains the entire (annotated) model in-
stance.

-1 Sequential generation of all the small
block files.

0,1,2,...,n Generation of a single small block file.
This is mainly of interest for distributed
model generation.

SCALING binary {0, 1} 0 This parameter determines if a scaled version
of the model with better numerical properties
should be generated (1) or not (0)

NOSLACK binary {0, 1} 0 This parameter determines whether the
SLACK variables should be removed from the
model (1) or not (0)
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Parameter Type Range Default Description

KEEPVENAMES binary {0, 1} 0 This parameter determines whether the block
gdx files are generated with full variable and
equation names (1) or if those names are
squeezed out (0). Squeezing out the names
leads to significant speedups (and reduction in
file size) in the further process of passing on a
model instance to PIPS-IPM. GDX files with
squeezed out names contain the string ”noVE-
names” in their file name. In fact, adding this
string to the filename of the Jacobian created
by ConvertD is what triggers the variable and
equation names to be squeezed out.

KEEPUELS binary {0, 1} 1 This parameter determines whether the block
gdx files are generated with GAMS UELs (1)
or not (0). This further increase the effi-
ciency of the GAMS/PIPS-IPM-Link but is
currently turned off by default. Model in-
stances stored without UELs can only be
solved via GAMS/PIPS-IPM but not via
solveJacobian.gms. GDX files with squeezed
out UELs contain the string ”noUELs” in
their file name. In fact, adding this string
to the filename of the Jacobian created by
ConvertD is what triggers the UELs to be
squeezed out.

SUPPRESSDM binary {0, 1} 1 This parameter determines whether at cre-
ation of gdx files an additional dictionary gdx
file is created which allows to map original
GAMS variale and equation names to vari-
ables and equations in the gdx file(s). This
is mainly useful for debugging purposes

SLICE integer {0, 1, 2} 0 This parameter is only relevant in the context
of distributed model generation when BLOCK ≥
0. It controls the degree of sliced data reading
and sliced model annotation. Possible options
are:

0 The entire data is read, the entire model
is annotated, single block is generated.

1 The entire data is read, relevant model
slices (time steps) are identified and an-
notated, single block is generated.

2 For time indexed data, only the rel-
evant slices are read, relevant model
slices (time steps) are identified and
annotated, single block is generated.
Note that for this approach, the input
data must be pregenerated once and
stored in a gdx file. This can be done
by running gams simple data gen.gms

--NBREGIONS=n --WRITEGDX=1.

Table A.15: Parameters for simple4pips
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Appendix B

Installation and Solving of SIMPLE
Model on Hazel Hen

This appendix describes the installation steps for PIPS-IPM and GAMS software on Hazel Hen. You can also
find instructions about how to write a job script for SIMPLE Model and submit it for execution on Hazel Hen.
The quick start quide can be also found in the branch

”
hazelhen“ of PIPS-IPM Git repository under the directory

”
CRAYXC40/docs“.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Hww Network and Hazel Hen

HWW network

Hazel Hen

Login servers

Portable Batch System

Aries interconnect

MOM nodes

Compute nodes

Workspace

VPN server

Gateway

File server
/home

. . .

File server
/opt

← HWW network
◮ Hazel Hen is in hww network.
◮ Login nodes are used for login, compiling, edit

and serial execution of the scripts and submitting
of the computational jobs (PBS-jobs).

◮ Home-directory is suitable for serial an access
(e.g. from Login nodes): File system is not
parallel (NFS).

◮ Aries network is a high performance network.
◮ Workspases are managed by a parallel file

system (Lustre).
◮ A PBS-job script is executed on a MOM node

(serial);
◮ aprun is the ALPS (Application Level Placement

Scheduler) application launcher. aprun is started
on a MOM node and distribute the application
between reserved compute nodes. For details
about ALPS see the link wiki.hlrs.de .
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Installation Requirements of GAMS-PIPS on Cray XC40 Hazel Hen

◮ User account on gitlab.version.fz-juelich.de at JSC and get an access to the
repository ”PIPS beamme“;

◮ User account on Cray XC40 Hazel Hen at HLRS;
◮ Acces to hww.hlrs.de:

◮ Static IP Address;
◮ Fortivpn Connection;
◮ ssh client ($ssh -l username hazelhen.hww.hlrs.de -X);

◮ The ”GAMS“ package and it’s license are installed globally for the users of the group
zib440881 (project BEAM-ME).

◮ Third Party Software Licenses for used libraries:

◮ The Academic Licence for the ”Paradiso“ library can be required under Pardiso homepage .

1see related bash command: man groups; man newgrp
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Third-Party Components an Module Environments

GAMSPIPS makes use of third-party components:
◮ Pardiso ASL,CBC,ConicBundle,Metis,MA27,MA57,HSL . . .

◮ BEAM-ME project partners have read acces to the global installation containing the
third-party libraries:
/opt/hlrs/numlib/beam-me/;

◮ cray-libsci (BLAS, LAPACK, SCALAPACK, . . . )
◮ Avalaible among others on Hazel Hen through Environment Modules package wickie.hlrs.de

◮ $module av -S keyword #search available modules for a keyword, e.g. libsci

◮ $module load module name #load module

◮ $module show module name #print parameters of module

◮ $module list #print current loaded modules

◮ $module swap PrgEnv-cray PrgEnv-gnu # change Cray programming environment
(compiler, std-libraries . . . ) to GNU programming environment

Note:No actions are required on this slides due to the global installation of third party
libraries. If you want to use your own installation, the appropriate actions will be explained
below.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Adaptation of Bash environment on Hazel Hen (Cray XC40)

To work more efficiently, you need to make the bash environment on the login node more user friendly.
The bash environment is set by the bash script ”${HOME}/.bashrc“ at the start phase of each login.
You can also force the new changes with the command ”source“(details are in a man: man source). 2

Activity 1: Customize your bashrc on the login node ”esloginXXX“to your requirements and
taste. For example:
@eslogin:~$ vim ~/.bashrc
# for setting history length see HISTSIZE and HISTFILESIZE in man pages of bash
export HISTSIZE=-1
export HISTCONTROL=ignoredups:ignorespace
...
# check the window size after each command
shopt -s checkwinsize
:wq
@eslogin:~$ source ~/.bashrc

Note: Bashrc example matching the Hazel Hen can be found under the link
https://gitlab.version.fz-juelich.de/breuer1/PIPS_beamme/blob/hazelhen/CRAYXC40/
scripts/hazelhen_bashrc. Among other things, the title of the command line is adapted to the format

”user@host:dir$ usercommand“.

2Bash properties are not to be confused with the terminal program configuration on your local pc (e.g. ”MobaXterm “
for Windows OS or “Xfce Terminal Emulator“ for Linux OS).
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Bypassing HWW-Firewall for Git
In order to check out the sources of the GAMS-PIPS, you must go throuh the firewall of hww network.
This can be done with SSH port forwarding. The example below shows how port forwarding can be
done if the client is a linux pc. For more details about the port forwarding see the link wickie.hlrs.de

Activity 2: Open SSH Tunnel on your local pc.
@localpc:~$ ssh -N -D 1080 localhost

Activity 3: Open the second terminal and connect to Hazel Hen.
@localpc:~$ ssh -R 7777:localhost:1080 hazelhen.hww.de -X
@eslogin:~$ module load tools/git/2.8.0

Activity 4: Setup .gitconfig file in your home directory on Hazel Hen. Alternatively, the special command
line parameters can be used for the git.
@eslogin:~$ vim ~/.gitconfig
[http]

proxy = socks5://localhost:7777
[https]

proxy = socks5://localhost:7777
[user]

name = NAME
email = EMAIL

:wq
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Clone Repository with source code

All scripts and sources of ”GAMS-PIPS“ (not the third-party components) are available in a
Git repository:

Activity 5: Clone the PIPS beamme repository and check out the branch ”hazelhen“

@eslogin:~$ module load tools/git/2.8.0

@eslogin:~$ mkdir BEAM-ME #create project directory

@eslogin:~$ cd BEAM-ME #change into the project directory

@eslogin:~/BEAM-ME/$ module load tools/git/ #load the newest av. git

@eslogin:~/BEAM-ME$ git clone \

https://gitlab.version.fz-juelich.de/breuer1/PIPS_beamme.git

@eslogin:~/BEAM-ME$ cd PIPS_beamme/

@eslogin:~/BEAM-ME/PIPS_beamme$ git checkout hazelhen

@eslogin:~/BEAM-ME/PIPS_beamme$ git branch

* hazelhen

master

@eslogin:~/BEAM-ME/PIPS_beamme$ cd .. #back to the project directory
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

GAMS-PIPS Setup (1/2)

There are predefined setups to compile the ”GAMS-PIPS“ sources.
◮ HAZELHEN CRAY: Production version of ”GAMS-PIPS“
◮ HAZELHEN CRAY CRAYPAT: Developer version (can be unstable). ”GAMS-PIPS“

will be automaticaly instrumented by CRAY-PAT. The compiler is cray;
Note: Not to be confused with the ”GAMS“ package. The ”GAMS“ package and all needed
additional third parties libraries are installed globally for the users of the group
zib440883(project BEAM-ME). ”GAMS“ can also be downloaded from the Internet

GAMS Wiki and installed in the user’s home or a workspace directory.

3see related man pages: man groups; man newgrp
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

GAMS-PIPS Setup (2/2)

The setup scripts offer several options to adjust the installation to fulfil the user
requirements. For example, the user can change

◮ source directories: the path to the sources (clone directory) and to the third parties
libraries.

◮ build directories: the path to the installation directory of ”GAMS-PIPS“.
◮ compiler directives: the compiler directives, so called macros, which switch the

various components of the software (e.g. used solvers).
◮ debug/production mode: the level of compiler optimizations.

Activity 6: Change to the top directory of the BEAM-ME project and view or edit if needed
the installation script.

@eslogin:~$ vim PIPS_beamme/CRAYXC40/install_HAZELHEN_CRAY.sh

1 #!/bin/sh

2 #Project BEAM-ME (see details on http://www.beam-me-projekt.de)

...

17 export PROJECT_PATH=$HOME/BEAM-ME/PIPS_beamme #Directory with the sources

...

21 export OPT_LEVEL=3 #0(debug) or 1(release) optimization level;

:wq
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

GAMS-PIPS Compiling

Activity 7: Grant the execution right to the installation script and execute it.

#change premission of the installation script:

@eslogin:~/BEAM-ME$ chmod 755 PIPS_beamme/CRAYXC40/install_HAZELHEN_CRAY.sh

@eslogin:~/BEAM-ME$ PIPS_beamme/CRAYXC40/install_HAZELHEN_CRAY.sh

...

~ 30 seconds

INSTALLATION(PRODUCTION) DONE!!!

#verify if you compilation was successful:

@eslogin:~/BEAM-ME$ ls ./PIPS_beamme_HAZELHEN_NEW/

... ... gmspipschk ... gmspips ...

Note:A quick reference to the parameters of the bash command ”chmod“ can be found in
the man pages and under https://ss64.com/bash/chmod.html.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Data Structure for SIMPLE model on Hazel Hen (1/3)
The GAMS-PIPS computational jobs will be submited from the workspace MODELJOB.

/lustre/cray/ws8/ws/$USER-MODELJOB

simple v2

job simple v2.sh

job simple v2 template.sh

cmd aprun simple lc

start scale exp.sh

job scripts

..

messages

..

MODELJOB - Workspace for GAMS-PIPS.

simple v2 - Top directory for the SIMPLE
model.

job simple v2.sh - Bash script to generate the
PBSa job scripts for SIMPLE with various
parameters.

job simple v2 template.sh - Template of PBS
job scripts for SIMPLE.

cmd aprun simple lc - Support utility used in

”job simple v2.sh“ (compute arguments of
aprun command).

start scale exp.sh - Bash script utility to start
a parameter study for various sizes of time
blocks of the SIMPLE model.

job scripts - Subdirectory for the generated
PBS job scripts.

messages - Subdirectory for the standard and
error output of the executed PBS jobs.

aPBS - Portable Batch System is a job scheduler mechanism to allocate needed computing resources
job scripts on the allocated compute nodes.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Data Structure for SIMPLE model on Hazel Hen (2/3)
The global schared directory under ”/opt/ “ contains, among others, various librtaries of the GAMS
package and the model’s data.
/opt/hlrs/numlib/beam-me/

extlibs

pardiso

gams

gams25.1 linux x64 64 sfx

gams

...

PIPS beamme

HPC Workshop 2018

gmspips

gmspipschk

...

models

simple v2

extlibs - Global installation of the third parties
libraries.

gams - Global installation of the GAMS
package.

PIPS beamme - Global installation of the
GAMS-PIPS (version HPC-Workshop2018).

models - Global subdirectory with the SIMPLE
model.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Data Structure for SIMPLE model on Hazel Hen (3/3)

The second workspace ”data“ contains the data, which will be generated during the execution of the
PBS job scripts for the SIMPLE models.
/lustre/cray/ws8/ws/$USER-data

data

..

performance

PERFORMANCE REG 10

max performance rank.dat

...

tmp

...

data - The subdirectories with the output of
GAMS-PIPS.

performance - The subdirectories with the
performance data of GAMS-PIPS.

tmp - The subdirectories to store the
generated blocks of the models.

Note: The name of the subdirectory containing the solution and performance data depends on the
parameters of the SIMPLE model, which was solved with GAMS-PIPS.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Prepare Workspaces for GAMS-PIPS (1/3)

Activity 8: Create your personal workspaces on Hazel Hen (case sensitive) :

@eslogin:~/BEAM-ME/PIPS_beamme/$ ws_allocate MODELJOB 31 #case sensitive

@eslogin:~/BEAM-ME/PIPS_beamme/$ ws_allocate data 31 #case sensitive

@eslogin:~/BEAM-ME/PIPS_beamme/$ ws_list #output is reformatted

Filesystem: default #for a better overview

Workspace ID Workspace location Filesystem Remaining time

-------------------------------------------------------------------------

id: MODELJOB /lustre/cray/ws8/ws/... ws8 30 days 23 hours

...

id: data /lustre/cray/ws8/ws/... ws8 30 days 23 hours

available extensions:3

#E-mail with a cal. entry reminder about expiration of the remaining time

@eslogin:~/BEAM-ME/PIPS_beamme/$ s_send_ical MODELJOB -m your_email

Note: Both the output and the input of a parallel program should basically done in parallel
file system. This also applies to GAMS-PIPS.
Hazel Hen uses a parallel file system called ”Lutre“4. That filesystem saves files into the
so-called “workspaces“. The workspace ”ws8“ has been assigned to the group ”zib44088“.
For details about the workspace mechanism on Hazel Hen see the link wickie.hlrs.de

4http://lustre.org/
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Prepare Workspaces for GAMS-PIPS (2/3)

Activity 9: Create the subdirectories in the assigned workspaces necessary to run ”GAMS-
PIPS“. The subdirectories names are case sensitive.

@eslogin:~/BEAM-ME/$ mkdir /lustre/cray/ws8/ws/${USER}-data/data

@eslogin:~/BEAM-ME/$ mkdir /lustre/cray/ws8/ws/${USER}-MODELJOB/simple_v2

@eslogin:~/BEAM-ME/$ cd /lustre/cray/ws8/ws/${USER}-MODELJOB/simple_v2

#copy dirs with the support tools from the sources into the workspace

@eslogin:../simple_v2$\

cp -r ~/BEAM-ME/PIPS_beamme/CRAYXC40/workspace/simple_v2 ./

#grant execution premission to the tools

@eslogin:../simple_v2$ chmod 755 cmd_aprun_simple_lc

@eslogin:../simple_v2$ chmod 755 job_simple_v2.sh

#create a sub-directory for the standard output of GAMS-PIPS

@eslogin:../simple_v2$ mkdir messages

#copy the compiled GAMS-PIPS files into the workspace

@eslogin:../simple_v2$ cp ~/BEAM-ME/PIPS_beamme_HAZELHEN_NEW/gmspips ./

@eslogin:../simple_v2$ cp ~/BEAM-ME/PIPS_beamme_HAZELHEN_NEW/gmspipschk ./

Note: The bash environment variable ”$USER“ stores the username of the user. This can
of course be replaced by your certain username.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Prepare Workspaces for GAMS-PIPS (3/3)
If you are going to use the global installation of GAMS-PIPS software, you must adjust the
environment variable ”GAMSPIPS BIN PATH“ in ”job simple v2.sh“ or copy the
executables ”gmspips“ and ”gmspipschk“ into the workspace directory.
If you are going to use the self compiled GAMS-PIPS software, you must copy the
executable files from your own GAMS-PIPS installation directory.
Also, you must create the license file for your pardiso license.

Activity 10: Copy the compiled GAMS-PIPS files and create the license file.
#copy the compiled GAMS-PIPS files into the workspace

#not needed if you are going to use the global version of GAMS-PIPS

@eslogin:../simple_v2$ cp ~/BEAM-ME/PIPS_beamme_HAZELHEN_NEW/gmspips ./

@eslogin:../simple_v2$ cp ~/BEAM-ME/PIPS_beamme_HAZELHEN_NEW/gmspipschk ./

#Set the execution permision

@eslogin:../simple_v2$ chmod 755 ./job_simple_v2.sh

@eslogin:../simple_v2$ chmod 755 ./cmd_aprun_simple_lc

#Create a new file for the pardiso license

#and paste your license key matching your username.

#Prevent any additional symbols in the file.

@eslogin:../simple_v2$ vim pardiso.lic

186ED67575582D93...

:wq
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Generate a Job Scripts for the SIMPLE Model (1/2)

The bash script ”job simple v2.sh“ will generate the correct PBS job script for a
parameterized SIMPLE model. The script must be called with certain parameters.
The parameters and their sequence can be looked up in the script or listed in the terminal
by executing the script without parameters.

Activity 11: View the bash script “job simple v2.sh“ or print out the help message.

@eslogin:../simple_v2$ vim job_simple_v2.sh

1 #!/bin/sh -f

2 #SOLVE SIMPLE MODEL WITH GAMS AND PIPS

...

16 echo "=="

17 echo "Usage: ./job_simple_v2.sh NUM_NBREGIONS ..."

...

:q!

#print out the help message

@eslogin:../simple_v2$ ./job_simple_v2.sh

========

Usage: ./job_simple_v2.sh NUM_NBREGIONS ...

...
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Generate a Job Script for the SIMPLE Model (2/2)

The execution of the script ”job simple v2.sh“ will generate a new PBS job script for
solving a SIMPLE model mapping the specified parameters.
The last command in the script is to issue the PBS job script submission command.

Activity 12: View the bash script “job simple v2.sh“ or print out the help message.

@eslogin:../simple_v2$ ./job_simple_v2.sh 15 1.0 381 1.0 0 1 scaleGeo you_email

....

===SUBMIT COMMAND===

qsub /lustre/...PROCS_23_NODE_1.sh

Note: The global installation of the SIMPLE Model contains the data for the models with
10, 15 and 20 regions.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Submitting the Job Script for the SIMPLE Model (1/2)

The generated job script is configured to execute GAMS-PIPS on one node and will be
submitted into the queue ”test“. The maximal walltime of the job is 25 minutes. If you need
more times or more than 16 nodes, you must change the queue or let the field empty. This
can be done also in the file ”job simple v2.sh” for all further generated job scripts.

Activity 13: Open the job script and check the parameters

@eslogin:/lustre/../simple_v2$ vim job_scripts/job_simple_v2...23_NODE_1.sh

#!/bin/sh -f

#PBS -o /lustre/cray/../messages/$PBS_JOBID.out

#PBS -e /lustre/cray/../messages/$PBS_JOBID.err

#PBS -m bea #mail alert at start, end and abortion of execution

#PBS -M youremail #send mail to this address

#PBS -l walltime=00:25:00

#PBS -l nodes=1:ppn=24

#PBS -q test

...

export PARDISO_LIC_PATH=...

...
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Submitting a Job Script for SIMPLE Model (2/2)

Activity 14: Submit the job script to the queue of Haezel Hen:

@eslogin:/lustre/../simple_v2$ qsub job_scripts/job_simple_v2_.._NODE_1.sh

@eslogin:..-PIPS-JOBS/PRODUCTION$ qstat -u $USER

hornet-batch.hww.de:

Job ID Username Queue Jobname SessID NDS TSK S ...

-----------------------

922175.hazelhen-batch.hww.hlrs.de username small job.pbs -- 1 24 Q ...

The standard and error output of the job will be saved in the sub-directory ”messages“.
The command -u $USER“ chekcs the state of the job:

◮ Q - The job is in the queue.
◮ R - The job is running.
◮ C - The job is completed.
◮ H - The job is halted (if the job were submitted with a dependency on another job)

For details about the batch system see the link wickie.hlrs.de ;

22/28 :: BEAM-ME:Installation and Solving of SIMPLE models on Hazel Hen with GAMS-PIPS :: 7. Juni 2019 ::

:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Data Output of GAMS-PIPS on Hazel Hen

The solution of the SIMPLE models will be stored in the subdirectories of ”data“. The
temporal files of the SIMPLE models are stored in the subdirectories of ”tmp“(see slide 15).
Please, delete these subdirectories if not needed:
@eslogin:.. vs2$ rm /lustre/cray/ws8/ws/$USER-data/tmp/* -rf
Note: The GAMS-PIPS version ”HPC-Workshop2018“ doesn’t support the data output.
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:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

Performance Counters of GAMS-PIPS on Hazel Hen (1/2)

There are performance files ”max performance rank.dat“ in the sub-diretories of

”performance“. Each of the files stores the csv spreadsheet with the performance statics.
The statistics for the SIMPLE models parameterized with different number of regions are
saved in the separated subdirectories. The most important counters are

◮ JOBID - PBS job id is the unique number assigned before job execution by PBS
system.

◮ NUM NBREGIONS,TIME HORIZONT,NUM NBSCEN,NUM BLOCKS,. . . - Used
SIMPLE model parameters.

◮ NUM THREADS - Current version of ”GAMS-PIPS“ on Hazel Hen uses 1 Thread.
◮ MPI SIZE - Number of MPI-Processes used by GAMS-PIPS. One block is assigned

to each of the mpi processes. Block 0 contains the linking constrains und is shared.
◮ NUM NODES - Number of compute nodes used by execution of GAMS-PIPS.
◮ CREATE GDX TIME - Time in seconds to generate a parameterized SIMPLE model

with ”gams“.
◮ GDX SPLIT TIME - Time in seconds to split the model into the blocks in parallel with

”gams“.
◮ TOTAL GMSPIPS TIME - Time in seconds to find and store the solution of the model

with ”GAMS-PIPS“.
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Performance Counters of GAMS-PIPS on Hazel Hen (2/2)

◮ MKDIR TIME - Time to prepare the structure of the directories at the beginning of the
job script.

◮ PIPSINTERFACE TIME - ”GAMS-PIPS“ Time to read in the blocks of the matrix.
◮ 0-LINK VARIABLES, 2-LINKS EQUALITY, . . . , LINKED RATIO - Properties of the

model’s linear system.
◮ SUCCESSFUL - ”GAMS-PIPS“ status, 0 -success.
◮ DUALITY GAP,OBJECTIVE,MU,RESIDUAL NOR - Properties of the solution.
◮ TOTAL IPM SOLVER NUM ITER - Number of iteration in interior point method.
◮ TOTAL SCHUR INDEF SOLVER TIME - Time in seconds to solve the schur

complement.
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Command line arguments of GAMS-PIPS (1/2)

”The parallel ”GAMS-PIPS“ processes will be distributed and launched on the compute
nodes by ALPS with a command ”aprun“(See a job script for SIMPLE model).
The number of needed mpi processes and other parameters will be calculated in the script

”job simple v2.sh“(line 120) and used wenn assembling the command line of
GAMS-PIPS(line 262).
The main arguments:

◮ −j < int >: PBS Job-ID;
◮ −n < int >: number of blocks;
◮ −f < string >: GDX filename;
◮ −d < string >: GDX dirname;
◮ −o < string >: Output filename;
◮ −a < string >: Output dirname;
◮ −s < 0/1 >: Use scale property in solver (scale,scaleEqui,scaleGeo,scaleGeoEqui);
◮ −l < 0/1 >: Use stepDiffLp property in solver (default:1);
◮ −i < 0/1 >: Use Presolver (default:1);
◮ −w < 0/1 >: Write out the solution (default:0);
◮ −c < int >: Maximum number of iterations (default: 200);
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Command line arguments of GAMS-PIPS (2/2)

The further parameters are optional and used to gather the statistics of the entire workflow
in a single performance file ”max performance rank.dat“.
Profiling arguments :

◮ −t < float >: time horizont;
◮ −r < int >: number of regions;
◮ −z < string >: How many scenarios has the instance;
◮ −k < int >: Number of omp threads (fixed to one);
◮ −1 < int >: number of nodes (optional);
◮ −2 < float >: time of mkdir (optional);
◮ −3 < float >: time of GAMS (optional);
◮ −4 < float >: number of produced GAMS files (optional);
◮ −5 < float >: size produced GAMS files in Bytes (optional);
◮ −6 < string >: directory for the performance statistic;
◮ −7 < float >: time of GAMSPIPSCHK (optional);
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Outlook

The presented procedure can also be applied to other modles than SIMPLE.
The corresponding filenames and other parameters can easily be replaced in the script

”job simple v2.sh“.
However, if your model can not be splited into the blocks in parallel with ”gams“, you’ll
need to comment this step in the job script (or job template). The blocks must be
generated separately.
The reason for this is that running GAMS PIPS need more than one compute node. On
the other hand, generating the blocks with gamspipschk can only be done with one
process. Thus, many nodes would be empty during block generation, which is very
inefficient. For small models you can generate the blocks on a login node and use the

”tmp“ subdirectory in the workspace ”data“ to save the data.
If you are going to split the large models, use an additional PBS job script and split the
models also on a compute node.
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The End
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Appendix C

HPC Node-Level Architecture

The following section describes the operating principles of CPU components (incl. main memory) and its mikroarchi-
tecture limitations. To demonstrate the potential bottlenecks of an HPC system, two processor models are considered,
namely

”
Haswell Extrem Platform“ and

”
Skylake Scalable Performance“ (hereinafter referred to as Haswell and Sky-

lake).

C.1 Semiconductor Technology and its Limitations
A modern processor consists mostly of several hundred million to billions of tiny switches realized with two types of
transistors: N-channel and P-channel MOS field effect transistors (MOSFET). These transistors, wired in groups,
are used as building blocks for the Metal-Oxide-Semiconductor Elements (CMOS), which form the basis for the
construction of all the logical gates of a processor. Thus, a processor can also be considered as an integrated circuit.
An integrated circuit, often mentioned as chip or die, is built up on a substrate of semiconductor, so-called wafer.
Photolithography, the key of the production process, projects the patterns with the processor’s circuits throught the
masks on a piece of the substrate.

The size in nanometers (nm) indicates the smallest edge length of the mask pattern. The smaller the mask details,
the more transistors can be integrated into the same chip area. However, the maximum size of a chip is strongly
limited by the high error rate during the manufacturing process, as otherwise the manufacturing costs would increase
significantly. In addition, a larger chip must be clocked lower, since the maximum permissible temperature of a larger
chip is generally lower than that of a smaller chip due to material fluctuations.1 It is generally true to say that
the larger the area of a chip is, the more likely errors in manufacturing are to occur and the slower the supported
operating frequency of the chip is.

Figure C.1 shows a simple CMOS inventor with two transistors that implements a non-logic gate. Because the
electrical components are unable to use the logic values, these are represented by two voltage levels in digital binary
coded signals: the high level and the low level. The high level almost corresponds to the operating voltage (Vdd

+
−)

and the low level is close to 0 volts (Vss
+
−).

C.2 CPU Frequency and Power consumption
To execute a machine command, certain CMOS elements of the processor must be concatenated and synchronized.
A clock signal is used for the synchronization purpose.

Such synchronization prolongs the latency time of the machine commands. A higher operating voltage Vdd can be
used to shorten the response time of the transistors and thus the latency time of the machine commands: The
higher the operating voltage, the faster the transistors switch over. But it also means a much higher electrical power

1During the writing of this document, a new world largest processor chip of 2.1 trillion transistors was reported (Cerebras,
2019). The chip is more than 100 times larger than all previous processor chips and 56 times larger than the largest GPU. The
price and other technical details are not during the writing of this document.
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Figure C.1: Logisches Gatter
”
Inverter“ aus zwei MOSFETs

In figure C.2 that synchronization signal is marked with
”
Clk“.

If, for example, the output signal Vout is used as an input signal
for another, much more complex CMOS element, this second el-
ement should only be active on the rising slope in the following
cycle. Otherwise it may happen that the resulting output signal
is in an undefined state at the beginning of the next cycle (see
red area in Figure on the left). Thus the bits - in the form of high
and low signals - travel through the signal lines from one CMOS
element to another and are transformed accordingly. Such chains
of CMOS elements are dynamically linked according to the ex-
ecuting micro-operations. Unlike a processor, the corresponding
chains of CMOS elements are mostly fixed in FPGA boards or
ASICs. This may higly improve both latency and power dissipa-
tion of the computational units.

Vin

Vout

Clk

cycle
Low

undef

High

Figure C.2: Clock, input and output sig-
nals of a CMOS inverter

consumption of the processor. This can be critical as all the electrical power is converted into heat. The heat must
be dissipated to avoid damaging the processor.

Equation (C.1) shows an approximation of power comsumption for a CMOS (Chandrakasan, Sheng, & Brodersen,
1995).The power approximation consist of three components: static, dynamic and short-circuit.

Pcmos = Pstatic + Pdynamic + Pshortcircuit;
Pstatic = Ileakage × Vdd;
Pdynamic = α× CL × Vdd

2 × fclk;
Pshortcircuit = Isc × Vdd;
Ileakage, Isc : Leakage and short-circuit current;

fclk : Operating frequency of the integrated circuit;

Vdd : Operating voltage;

α : Probability of change of state;

CL : Load capacity of the CMOS element;

(C.1)

The static parts refers to the leakage current, which flows within the closed transistors. The strength of the current
increases exponentially as the distance between the drain and the source of the transistors decreases (Fallah &
Pedram, 2005). Introduced in 2011, Tri-gate transistors reduced the leakage compared to planar transistors. This
and the improvement of the substrate properties allow further refinement of the Semiconductor Technology. It should
be mentioned here that the corresponding resistance properties of the substrat material degrades with the increase
of the operating temperature. This raises the question of an optimal temperature of the cooling.

The state-switching of the CMOS element causes a short circuit between the line of Vdd and the ground line of Vss

during the short period when both transistors are opened (see Figure C.2): the higher the voltage, the steeper the
pulse edge and the shorter the short circuit.
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The dynamic part refers to the power which must be applied to change the state of the transistors. Pdynamic increases
quadratically with the operating voltage and linearly with the operating frequency. To manage the rapidly increasing
dynamic part of power consumption, many CPU manufacturers add a DVFS extension to the processor architecture.
DVFS stands for Dynamic Voltage and Frequency Scaling. Figure C.3 indicates the dependency between the core
voltage and core frequency during execution of a simple stream kernel Add ((a[i] = b[i] + c[i], see section C for
details) on all cores of Haswell processor E5-2680v32. The CPU frequency was set from user space for each of the
measurement points.
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Figure C.3: Dependence between the core voltage Vcc and the CPU frequency during the execution of the
kernel Add (a[i] = b[i] + c[i]) on the processor Haswell E5-2680v3

As the measurements show, the electrical power of an active processor Pcpu(f) increases approximately with the
power between 2.0 and 2.5 of the CPU frequency.

C.3 Peak Performance and Vectorization
As suggested in the introduction section about High Performance Computing 1.3, HPC addresses various kinds of
algorithms. The so-called General-purpose CPU is particularly efficient for the computation with a low Byte/F lop
rate. The peak performance is achived at the rate where Byte = 0. This shall be the case if all operands and results
of the floating point operatons are stored in the particular vector registers and no data dependencies exist.

The width of the vector registers in x86 architecture has not grown significantly in the past 20 years. Intel’s first
streaming SIMD extension (SSE) introduced in 1999 supports vector registers with two 64-bit double-precision
floating-point numbers (doubles). The Advanced Vector Extensions (AVX) introduced in 2008 by Intel and 2011
by AMD support four doubles. Figure C.4 shows a schematic representation of one of the two operand AXV instruc-
tions, namely addition (vadd). The next AVX2 extension was extended with a three operands Fused-Multiply-Add
(FMA) instruction set, which can be used to perform two operations, namely addition and multiplication, in one
turn.

One Haswell processor of supercomputer Hazel Hen at HLRS (see section 4.2.3) supports AVX2 and can execute up
to two FMA instructions simultaneously. Consequently, the Haswell with 12 cores and base frequency of 2.5GHz3

has a peak performance of 12× 2× 2× 4[Flop]× 2.5[GHz] = 480[GFlops].

The next generation server processors Skylake support Intel Advanced Vector Extensions 512 (AVX-512), whose
vector registers can store up to 8 doubles. Thus, one processor of supercomputer JUWELS (Jülich Supercomputing
Centre, 2019) at JSC has a peak performance of 28× 2× 2× 8[Flop]× 2.7[GHz] = 2.074[TFlops].

2These processors are installed in HLRS supercomputer Hazel Hen. In the production of Haswell processors, the 22 nm
lithography are used.

3Sometimes one uses a manufacturer-specified maximum turbo frequency, for example here (Intel, 2019c), although many
core processors work at such high frequency for a short time. The main reason for it is a high power consumption, which results
in a high temperature impact on the chip and the need to lower the frequency.

169



a0 a1 a2 a3

+ + + +

c0 c1 c2 c3

b0 b1 b2 b3

%YMM0

%YMMX

V ADD

%YMM2

Figure C.4: Execution of a Single-Instruction-Multiple-Data (SIMD) addition on AVX regesters

Not for nothing such a performance is also called theoretical. It is not so easy to find any algorithm with such
properties that is useful for real-world applications. The problem must also be large enough to hide the latencies of
the floating point operations through pipelining.

For example, an instruction that has a latency of 5 processor clocks will have its data available for another instruction
after so many cycles from the beginning of the execution. The throughput of an instruction is the number of cycles
required to execute a instruction. For this many cycles it is also prevented that the execution unit, e.g. FMA, is
used for one of the next instructions in the pipeline. According to Agner’s CPU blog (Agner, 2017), the latency of
an FMA on Haswell is 5 cycles and only 4 cycles on Skylake. The throughput of Fused-Multiply-Add instruction is
one cycle per instruction for both processors.

Vectorization is a parallel hardware-assisted paradigm, whose approach is automatically supported by the compiler.
However, not every loop can be vectorized and many loops cannot be recognized as vectorizable. Except general rules,
such as no recursive dependencies in a loop, every compiler and every language has its features, which a developer
must consider in order to write a vectorizable code. For example, a vectorization guide for GCC compiler kann be
found in (MogonWiki, 2017) and information for Intel Compiler on Intel machines is here (ColfaxInternational, 2017).
Attention should also be paid to the compiler options, which are partly dependent on the version of the compiler and
processor architecture.

C.4 Core Mikroarchitecture
Each core of a modern General-purposed server processsors is equipped with more than one hundred of the vector
registers.4 These registers are part of the Execution Engine. In addition to the registers, the execution engine
consists of pipeline, instruction scheduler, branch prediction and other units for the control of both instruction and
data streams within the core and the entire CPU.

Execution of a program consists of many instructions – so-called micro-operations that are processed one after the
other in the pipeline. In Out-of-Order unit of the pipeline a micro-operation is divided into the suboperations, which
are then executed step by step. If the code to be executed consists of repeating and partially independent micro-
operations, as is often the case in loops, then the corresponding suboperations can overlap each other. This increases
the overall throughput compared to instruction execution without pipelining. The longest delays in the pipeline,
known as bubbles, arise due to loading and store commands.

The available number of the registers is far from sufficient for solving even small problems without storing the data in
the memory. In fact, most data is stored outside of the CPU in the main memory (often referred to simply as RAM),
which is based on synchronous dynamic random access memory (SDRAM) technology. Due to the low performance of
this type of memory compared to the performance of the execution engine, the memory hierarchy has been introduced
with different types and sizes of cache levels.

C.5 Cache Mikroarchitecture
A chunk of data handled by the cache is called cache line. This is applied even if only one byte of the data needs
to be accessed, the entire cache line must be stored and transfered between the caches and the memory. 64 byte is

4A Vector Physical Register File of Skylake and Haswell have 168 registers.
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usually the size of a cache line.

The private cache consists mostly of L1 and L2 caches. If the data requested by CPU core is not in the L1 cache,
it must be transported from L2 to L1. After that it can be loaded into the registers in the cores. The cache lines
associated with the private cache can only be processed by the nearest core.

The static random access cache (SRAM) takes up a significant area of a CPU chip, although even the size of the
cache is much smaller than the main memory.5 The reason for this is that a flip-flop SRAM cell has quite a high
fixed cost and occupies a lot more space than an SDRAM cell (see section C.8). What matters is that SRAM is much
better in performance than SDRAM.

For the reduction of cache fixed costs one is also forced to introduce
”
set associative cache“. Fully associative cache

means any 64 byte, for example eight consecutively stored doubles from memory, can be copied to any cache line.
While such cache microarchitecture is highly flexible in terms of the cache reusing, the costs to lookup for a particular
cache line are very high. For this, the entire lookup table of the cache must be searched. For example, the lookup
table of 32-KByte fully associative cache has 512 entries. The opposite is 1-way associative cache which means a
memory address can be mapped to only a single cache line. That is easier to implement and would make the search
in the lookup table fast (e.g. with a simple hash function), but the hit rate would be very low due to the cache
thrashing. The reason for that is multiple main memory locations competing for the same cache line.

The L1 and L2 caches of Haswell are 8-way set associative. The L2 cache of Skylake is 16-way.6 The fastest latency
of the L1 cache of both processors Haswell and Skylake is 4 cycles. The fastest latency of the Haswell’s L2 cache is
11 [cycles] and of the Skylake’s L2 cache between 14 [cycles] and 22 [cycles] (Intel, 2019a).

Figure C.5 shows a simplified scheme of Haswell Processor (E5-280v3) and its memory hierarchy. As can be seen, the
interfaces between L1 caches and their cores has a width of 96 byte. At once the data can be read for eight doubles
and written for four doubles into and out from the registers. This corresponds to one and a half AVX registers and a
bandwidth of 96 byte/cycle. However, a number of additional conditions needs to be met, which we will not address
here. The L1 cache interface of Skylake was doubled according to the length of AVX-512 registers. This also means
that an FMA operation can be performed without delay only if at least one AVX register is reused as an operand.
Otherwise, the FMA operation can not be performed in each clock.

C.6 Last Level Cache
Unlike the private cache, the Last Level Cache (LLC, pictured as L3 cache) is shared between all cores and is used
for the data transfer between the local caches and the memory. The entire L3 cache is divided into L3 segments, the
so-called multiple cache slices, between all processor cores. A cache line is stored in one of the L3 segments depending
on its memory address, associativity of the cache and possibly other parameters. The corresponding unknown relation
is called a hash function. According to

”
Intel 64 and IA-32 Architectures Optimization Reference Manual“ (Intel,

2016), the address space is distributed uniformly between the segments. If a processor core didn’t find a requested
cache line in L1 and L2 caches, the request will be processed by the local and home cache agents (CA and HA). If
the cache line is not present in the nearest L3 segment but in one other, it will be pushed to the recipient via the
so-called ring bus. If the data is not stored in any of the cache lines of the L3 cache, the data is loaded from the
main memory into one of the L3 segments via the internal memory controllers (IMC).

All this is done while preserving cache coherency through CA and HA. The cache coherence protocol prevents the
individual caches from returning different (inconsistent) data for the same memory address. More details about the
cache and ring bus can be found, for example, in the paper ”Cache Coherence Protocol and Memory Performance of
the Intel Haswell-EP Architecture” (Daniel Molka, Daniel Hackenberg, Robert Schöne, & Wolfgang E. Nagel, 2015).

The Skylake processors increased their L2 cache from 256 KB to 1 MB. This comes at the expense of the L3 cache,
which is reduced from ∼ 2.5MB to 1.375MB per core. Due to the higher core count, Intel has replaced also the ring
bus with a mesh interconnect. A detailed description of Skylake architecture can be found in (Wikichip, 2018). Not

5There are processors that consist of several chips. In such a case, the chips are tightly interconnected and placed in a
package. However, the execution engine and the private cache should be in the same chip for performance reasons.

6If the memory access pattern includes long jumps of power two, caution should be exercised to ensure than no cache
thrashing occurs.
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Figure C.5: Haswell Processor (E5-280v3) and its memory hierarchy

only L3 segments and IMC are connected to the mesh and ring bus, but also the other controllers, such as QuickPath
Interconnect (QPI)7 and PCIe.

The next section provides an example of the performance of LLC.

C.7 Cache Performance
Let us consider an example: compute kernel Add. The kernel operation ”Add” calculates the sum of two fields b[]
and c[] and writes the result in the third field a[]:

a[i] = b[i] + c[i]; 0 6 i < n; (C.2)

The computation is started first on one core then on two and so on. The length of the arrays grows linearly with the
number of cores, so each core always has the same amount of work to be done. Such experiments are called

”
weak

scaling“. In contrast to weak scaling, strong scaling means that the problem size does not increase with the number
of active cores. In addition, the CPU frequency is varied for each configuration-number of cores and CPU frequency
of the experiment.

The experiment was performed on Skylake SP 6148 with 20 cores and the array length per core was 131072. Accord-
ingly, a core needs enought memory to store 3×131072×8[B]

1024×1024
= 3MB.8 This is considerably more than what could be

stored in an L3 segment: the processor needs as much cache as two full L3 segments and a little more.

To perform one plus operation two times 8 bytes must be read and 8 bytes must be written. In total, 24 bytes have
to be transported between the memory and the registers. However, the caches and memory of Haswell and Skylake
SP feature a wire-back policy. When a core writes data to a memory location with a write back policy, the processor
first ensures that it has the cache line containing this memory location in the L1 cache (Intel, 2019b). This means
that 8 bytes must be loaded additionaly. Since we know that 32 bytes must be transported to and from the AVX
registers for one plus operation, we can calculate the average bandwidth of the kernel Add.

Figure C.6 shows the results. As expected, performance and therefore the bandwidth increase linearly with the
number of cores and CPU frequency until the data fits in theL3 cache. However, when some of the data needs to be

7The Intel QuickPath Interconnect is a point-to-point processor interconnect. This allows the multiple processes to share
their memory between each other. AMD uses Infinity Fabric to support multi sockets systems.

8The hard disk manufacturers calculate 1 KB with 1000 bytes. In HPC the conversion with 1024 bytes is widespread.
Accordingly, one megabyte has 220 and one gigabyte 230bytes.
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written to the main memory or read from it, performance degrades rapidly. In addition, the bandwidth for the lowest
frequency (drawn in red color) scales linearly for ∼ 14 cores while the bandwidth for Turbo frequency scales linearly
only up to 10 cores. If only a small part of the data has to be transported between L3 and the main memory, the
interface between IMC and the main memory DIMMs (see figure C.5) fulfills the requirements of the cores for the
data. This means that the fewer cores and the smaller the frequency, the easier it is for the memory interface to meet
the requirements. Unlike the ring and core frequencies, the frequency of the IMC and RAM does not vary (according
additional test results). It should be noted that the CPU frequency of Haswell’s ring bus as well as Skylake’s mesh
depend on the load. This reduces the electric power and slightly increases the energy efficiency of the processors
when few cores are active.
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Figure C.6: Bandwidth of Kernel
”
Add“ on Skylake SP 6148 if the data for the arrays a[],b[] und c[] are

stored in the L3 cache and partly in the main memory if more than 12 threads are used.

C.8 Main Memory
While semiconductor technology and processor architecture have advanced very rapidly, main memory performance
hasn’t. Figure C.5 shows four memory channels connecting two IMCs of the processor with four main memory
modules (DIMMs). The width of a memory channel is 8 bytes. The memory frequency is 2.133GHz (2133MHz).
Thus, the theoretical memory bandwidth of the Haswell processor is ∼ 64 GB/s:

BMEM [B/s] = Nmem channel ×Wbus[B]× fclock mem[MHz];

Nmem channel = 4 (Number of memory channels);
Wbus = 8 B (Memory channel bus width);
fclock mem = 2133 MHz (Memory interface frequency);

(C.3)

The Skylake processors have six memory channels clocked with 2.666GHz, which increases the bandwidth up to ∼
119 GB/s. If Skylake has an even better rate per core with 20 cores, from 24 cores upwards a Skylake core has less
bandwidth than a Haswell core.

The Execution-Cache-Memory (ECM) performance model (Georg Hager, Jan Treibig, Johannes Habich, & Gerhard
Wellein, 2012) makes very clear why the theoretical memory bandwidth couldn’t be achieved in most cases. The
model is described by equation C.4. Even though no prefetcher9 is modeled, the model has a high prediction accuracy
for performance of different computational kernels, particulary when many cores are active and higher CPU frequency

9Prefetching is used to
”
boost“ the performance. A prefetcher tries to preload the data for the future requests. The decision

which data to load is made by looking up the history of the last several requsted addresses.

173



is set.
TECM = max(TOL, TnOL + TL1↔L2 + TL2↔L3 + TL3↔MEM );

TECM - Execution time of a kernel;
TOL - Execution time in the core with the overlap for data transfer;
TnOL - Execution time in the core without the overlap for data transfer;
TA↔B - Execution time of the data transfer between the memory levels A and B;

(C.4)

The next section C.9 shows the results of the kernel Add. During execution the data must be transfered between
cores and memory.

It should be noted that SDRAM main memory architecture is optimized to delivery the data in the streams. As a rule,
in HPC, the mapping between the memory address space and the memory modules (DIMMs) is set to interleaving
mode. In this mode, a cache line is evenly distributed over the DIMMs and can be read in parallel from the memory
channels. The successive cache lines can be read in streams without any noticeable interruption in boost mode.
However, if the code is not vectorized, IMC may read the data piece by piece. Due to the high latencies of the
memory access ∼ 100ns the bandwidth drops rapidly in such a case. You can find out more about the memory
architecture and in particular about the SDRAM technology, for example, in the book

”
High-Bandwidth Memory

Interface“ (Chulwoo Kim, Hyun-Woo Lee, & Junyoung Song, 2014).

C.9 Memory Wall
The kernel Add was executed on Skylake SP 6148 with 20 cores and the array length per core was 42949664.
Accordingly, a core needs enought memory to store 3×42949664)×8[B]

20
= 0.96GB. The size of a Last Level Caches of

Haswell and Skylake SP is significantly smaller. Since we know that 32 bytes must be transported between AVX
registers and the main memory for one plus operation, we can calculate the average bandwidth of the kernel Add
processing the data in main memory.

Figure C.7 on the left shows the bandwidth of Add, if the array length per core was set to 42949664. In this case,
the data has to be stored in the main memory even if only one core is active. Each byte of data must be transported
between the main memory and AVX registers across all cache levels, and the data transport between all hierarchical
levels of memory can not overlap. The execution of the compute instruction, when the data is already in the register,
can be executed in parallel (overlapped) with the further data transport. Figure C.7 on the rigth shows the energy
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Figure C.7: Bandwidth of Kernel
”
Add “ on Haswell E5-5680v3 (left) and dependency between the energy

costs and the performance (right) if the data for the arrays a[],b[] und c[] are stored in the main memory

costs of the processor depending on the performance of the kernel Add-how many joules was spent by CPU to execute
109 floating point operations. This is equivalent to the transport of 109 × 32 bytes between the main memory and a
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core. The energy costs are defined by equation C.5.

W

Flop/s
=

Joule

Flop
(C.5)

A you can see in figure C.7 on the right, increasing the CPU frequency increases the performance only if few cores
are active. As soon as the memory bandwidth is fully utilized, there is no advantage to use more cores or to increase
the CPU frequency. On the contrary, the power dissipation continues without increasing the performance. Equation
C.6 shows a power approximation of the Haswell processor with 64 GB main memory during the execution of Add if
data is stored in the main memory. The reason for different coefficients in the approximation is that during the kernel
execution with one or two active cores, the frequency of the ring bus (see figure C.5) is noticeably lower compared
to the execution with more cores. In addition, the power consumption of memory increases rapidly when more than
two cores are active and more data is transferred from and to the memory modules.

Add on Haswell E5-2680v3 (data in RAM); Approximation for power of CPU+RAM(64GB):

P(f, p ∈ (1, 2))ADD,RAM [W] = (25.46588 + 8.26171× p) + (0.49423 + 2.39527× p)× f1.91;

P(f, p ∈ (3.., 12))ADD,RAM [W] = (65.52072 + 2.02131× p) + (2.02131 + 0.32525× p)× f2.11;

P - Power of CPU and main memory;

p - Number of active cores;

f - CPU frequency;

εrel < 0.077;

(C.6)

For completeness, figure C.8 shows the bandwith of the Skylake SP processor for the same experiment.

kkkk
kkkkkkkk
kkkk

kk
kkk
kkkk
kkkkkk
k

kk
kk
kkk
kkk
kkkkk
k

k
kk
kk
kk
kkk
kkkk
k
k

k
kk
kk
kkk
kkkk
kkk
k

k
kk
kk
kkk
kkkkk
kkk

kk
kk
kkk
kkkkkk
kkk

kk
kkk
kkkkk
kkkkkk

kk
kkkk
kkkkkkk
kkk

kkk
kkkkk
kkkkkkkk kkk

kkkkkkk
kkkkkk kkkk

kkkkkkkkkkkk kkkkkkk
kkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkk

CPU cores

B
a

n
d

w
id

th
 (

G
B

/s
)

0 5 10 15 20

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

k

k

k

k

Skylake−X 6148−Bandwidth (1FLOP=32Byte) ADD (length/core= 42949664 )

CPU frequency 1 GHz
CPU frequency 1.1 GHz
...
CPU frequency Turbo (3.5 GHz− 2.2 GHz)
Peak/Theor. Bandwidth

Figure C.8: Bandwidth of Kernel
”
Add “ on Skylake SP 6148 if the data for the arrays a[],b[] und c[] are

stored in the main memory

According to the ECM model (see eqution C.4) and the results of the kernel ADD, a Haswell processor loses about
10% of its bandwidth compared to the theoretical bandwidth of the main memory and reaches 64 GB/s. A Skylake
processor loses 20% of the theoretical bandwidth. Only because of the faster main memory and more memory
channels, the kernel on Skylake can reach a bandwidth of 95 GB/s.
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