8,165 research outputs found

    On the algebra of structured specifications

    Get PDF
    AbstractWe develop module algebra for structured specifications with model oriented denotations. Our work extends the existing theory with specification building operators for non-protecting importation modes and with new algebraic rules (most notably for initial semantics) and upgrades the pushout-style semantics of parameterized modules to capture the (possible) sharing between the body of the parameterized modules and the instances of the parameters. We specify a set of sufficient abstract conditions, smoothly satisfied in the actual situations, and prove the isomorphism between the parallel and the serial instantiation of multiple parameters. Our module algebra development is done at the level of abstract institutions, which means that our results are very general and directly applicable to a wide variety of specification and programming formalisms that are rigorously based upon some logical system

    Constraints for behavioural specifications

    Get PDF
    Behavioural specifications with constraints for the incremental development of algebraic specifications are presented. The behavioural constraints correspond to the completely defined subparts of a given incomplete behavioural specification. Moreover, the local observability criteria used within a behavioural constraint could not coincide with the global criteria used in the behavioural specification. This is absolutely needed because, otherwise, some constraints could involve only non observable sorts and therefore have trivial semantics. Finally, the extension operations and completion operations for refining specifications are defined. The extension operations correspond to horizontal refinements and build larger specifications on top of existing ones in a conservative way. The completion operations correspond to vertical refinements, they add detail to an incomplete behavioural specification and they do restrict the class of models.Postprint (published version

    Architectural Refinement in HETS

    Get PDF
    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement language, that we equip with a notion of refinement tree and with calculi for checking correctness and consistency of refinements. Soundness and completeness of these calculi is also investigated. Finally, we present the integration of the VSE refinement method in HETS as an institution comorphism. Thus, the proof manangement component of HETS remains unmodified

    Characterizing Van Kampen Squares via Descent Data

    Full text link
    Categories in which cocones satisfy certain exactness conditions w.r.t. pullbacks are subject to current research activities in theoretical computer science. Usually, exactness is expressed in terms of properties of the pullback functor associated with the cocone. Even in the case of non-exactness, researchers in model semantics and rewriting theory inquire an elementary characterization of the image of this functor. In this paper we will investigate this question in the special case where the cocone is a cospan, i.e. part of a Van Kampen square. The use of Descent Data as the dominant categorical tool yields two main results: A simple condition which characterizes the reachable part of the above mentioned functor in terms of liftings of involved equivalence relations and (as a consequence) a necessary and sufficient condition for a pushout to be a Van Kampen square formulated in a purely algebraic manner.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    corecore