
On the algebra of structured specifications

Răzvan Diaconescu

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, Romania

Ionuţ Ţuţu

Şcoala Normală Superioară Bucureşti, Romania

Abstract

We develop module algebra for structured specifications with model oriented denotations. Our work extends
the existing theory with specification building operators for non-protecting importation modes and with new
algebraic rules (most notably for initial semantics) and upgrades the pushout-style semantics of parameterized
modules to capture the (possible) sharing between the body of the parameterized modules and the instances
of the parameters. We specify a set of sufficient abstract conditions, smoothly satisfied in the actual situations,
and prove the isomorphism between the parallel and the serial instantiation of multiple parameters. Our
module algebra development is done at the level of abstract institutions, which means that our results are
very general and directly applicable to a wide variety of specification and programming formalisms that are
rigorously based upon some logical system.

1. Introduction

It is a great honour for us to dedicate this work to Professor Jan Bergstra on the occasion of his 60th
birthday. The significance of his many seminal contributions to theoretical computing science has not only
influenced the education and the way of thinking of several generations of researchers in the area, but also
goes beyond computing science, some of them touching fundamental aspects of our basic mathematical
education and preconceptions [4]. The style of his scientific contributions is based upon the use of (general)
algebra in a rather clear and elegant way, an aspect that unfortunately is the exception rather than the rule
within the current research activities in computing science.

Our paper is related to the seminal work of Professor Jan Bergstra and his collaborators on module
algebra [3]. To our understanding, [3] was the true start of the concept of module algebra as the study of
the algebraic rules satisfied by the module expressions of a software system (especially specification and
programming) that employs a well-developed structuring mechanism. In module algebra it is also important
that the software system is rather rigorously based upon a logical system, for example, many sorted (classical)
first order logic in the case of [3]. Let us refrain from repeating here the well-known arguments showing the
crucial role played by modularization or structuring of system specifications or of programs, a paradigm
sometimes referred to as specification or programming ‘in-the-large’. Instead, let us mention that module
algebra has several important consequences including crucial support for evaluation of module expressions
and for specification and programming in-the-large methodologies.

Email addresses: Razvan.Diaconescu@imar.ro (Răzvan Diaconescu), ittutu@gmail.com (Ionuţ Ţuţu)

Preprint submitted to Theoretical Computer Science December 27, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28904752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The first author of this paper (abbreviated RD) got involved with module algebra in 1991 when he was
a DPhil student at Oxford. His Professor, the late Joseph Goguen, an emblematic figure in many areas of
science and one of the most elegant promoters of the algebraic methods in computing science, had at that
moment invited RD to join his project aimed to give a replica of [3] in line with the formal specification
trend of developing things independently of any concrete underlying logic, that is of doing module algebra
within the abstract institution theory of Goguen and Burstall [16]. The result of this research project was
reported in the paper [14], which may be still one of the most cited scientific publications of RD, and which
introduced or shed a new light on several theoretical concepts that have influenced much of the work in the
area. Three of the main achievements of [14] that can be noticed now after 20 years are

1. the category theoretic concept of ‘inclusion system’,

2. the light shed on the importance of a model amalgamation property, called ‘(semi-)exactness’, in
structuring of specifications, and

3. the beginning of a long process of understanding at a general abstract level of what form of interpolation
property is needed for the underlying logic to support a well-behaved module system.

All above mentioned achievements which are reflected in a great deal of work developed by many researchers
worldwide, and that would take too much space to cite here, have [3] as one of their main causes.

After [14] had been completed, before it was published, we (Professor Joseph Goguen and RD) paid a
visit to Professor Bergstra’s group in Amsterdam to discuss and compare the two perspectives on module
algebra. As a DPhil student I (RD) had very little understanding of real computing science issues, and now
I recall quite vividly how interesting was the dialogue between Professor Bergstra and Professor Goguen.
There were very few moments in my development as a scientist of such learning intensity. After that I and
Professor Bergstra met in person only a couple of times, and in all those occasions I felt much friendship and
encouragement from Professor Bergstra.

1.1. The structure and contributions of this paper

There are at least three levels of giving semantics or denotations to specification modules:

1. The set of the (accumulated) axioms of the specification; this underlies [3] and is the most syntactic
level. The paper [14] argues about several shortcomings of this viewpoint.

2. The theory of the specification, in the sense of the closure of its set of axioms under (semantic)
deduction. This point of view is taken by [14] and can be considered as a middle grained approach.

3. The class of models of the specification in the style of [28, 6]. This is the most semantic approach.

The specification theory literature contains many arguments in favour of each of these viewpoints on
denotations for specification modules, and even many more arguments against each of them.

A good way to view these different perspectives on the semantics of specification modules is that these
refer to slightly different aspects of the same phenomena. However, we can now understand that since the
former two approaches are property oriented, in the sense that their emphasis is on the properties satisfied
by the models of the specifications, they do not consider an important point of structuring which is realized
only by the latter model oriented approach. Everybody sees specification or programming in-the-large
as the only realistic way to build complex specifications or programs; however, many neglect another
important motivation, namely that of being able to specify classes of models much beyond the capabilities of
specification in-the-small. A good example illustrating this difference in specification power is given by fields.

2

One can actually prove that the class of fields does not admit a specification in-the-small within any form of
Horn clause logic (including even the use of partial functions); however, it admits (see Example 3.1 below) a
rather simple specification in-the-large in order sorted (unconditional) equational logic, or equivalently in
many sorted conditional equational logic.1

While we think that the study of module algebra is important for all of the three above mentioned
approaches, here (unlike in [14]) we focus on the development of module algebra for the model oriented one.
This is done at the generic level of abstract institutions independently of any concrete underlying logical
system (like in [14], in the style introduced by [16]), our work being thus directly applicable to a multitude
of specification formalisms based upon various logics.

Our paper is structured as follows.

1. The first preliminary section introduces the basic category and institution theoretical concepts necessary
for our work. This includes a series of new developments (concepts and results) on the theory of
inclusion systems that are required especially by the part on parameterization.

2. In the next section in addition to recalling the standard primitive specification building operators from
the literature we also introduce new ones and extend some of the established ones in connection to
non-protecting importation modes. (By non-protecting importation modes we mean imports that are
not required to satisfy what is commonly known as the ‘no-junk’ and ‘no-confusion’ conditions.) As far
as we are aware this is the first module algebra study that includes the phenomenon of non-protecting
importation modes. Here we also recall some established basic concepts and results from the theory of
structured specifications at the level of abstract institutions but also develop some new ones.

3. The third technical section is devoted to the study of the algebraic rules for our specification building
operators that are satisfied by the model oriented denotations of structured specifications. Here besides
recalling important known rules we also study novel rules, some of them related to our new operators
(about non-protecting modes). An important class of new rules studied here are those concerning the
initial semantics operator, such as its distributivity over module sums.

4. In the last technical section we develop a semantics for the so-called pushout-style parameterization (à
la Clear [7]) at the level of abstract institutions that upgrades the existing one to capture the sharing
between the body of the parameterized module and the instance of the parameter. This relies crucially
upon our use of inclusion systems for structuring specifications, and we think that the resulting theory
captures most realistically the actual practice of pushout-style parameterized specifications. The
section ends with the proof of a rule of the form

SP(P1 ∪ P2 ⇐ v1 + v2) � SP(P1 ⇐ v1)(P2 ⇐ v2)

that expresses the isomorphism between the simultaneous (parallel) and the sequential (serial) instanti-
ation of multiple parameters. This rather mathematically difficult result relies upon the capture of a set
of sufficient abstract conditions for the underlying institution that are smoothly satisfied in the actual
situations.

1The elimination of the partiality of division by 0 has been an important research project of Professor Bergstra in the recent
years [4].

3

2. Preliminaries

The aim of this section is to introduce the category and institution theory concepts and notations necessary
for our work. An important part of this section is devoted to the development of a series of new technical
concepts and results about inclusion systems.

2.1. Categories

We assume the reader is familiar with basic notions and standard notations from category theory; e.g.,
see [22] for an introduction to this subject. With respect to notational conventions, |C| denotes the class
of objects of a category C, C(A, B) the set of arrows (morphisms) with domain A and codomain B, and
composition is denoted by “;” and in diagrammatic order. The category of sets (as objects) and functions (as
arrows) is denoted by Set, and CAT is the category of all categories.2

GivenH1,H2 ⊆ C byH1;H2 we denote the class of arrows {h1; h2 | h1 ∈ H1, h2 ∈ H2}. GivenH ∈ C
by
H
→ we denote the binary relation on |C| given by A

H
→ B if and only if there exists (h : A→ B) ∈ H . Also

H
← denotes the inverse of

H
→.

2.2. Institutions

Institutions have been defined by Goguen and Burstall in [8], the seminal paper [16] being printed after
a delay of many years. Below we recall the concept of institution which formalizes the intuitive notion of
logical system, including syntax, semantics, and the satisfaction between them.

Definition 2.1 (Institutions). An institution I = (SigI,SenI,ModI, |=I) consists of

1. a category SigI, whose objects are called signatures,

2. a functor SenI : SigI → Set, giving for each signature a set whose elements are called sentences over
that signature,

3. a functor ModI : (SigI)op → CAT giving for each signature Σ a category whose objects are called
Σ-models, and whose arrows are called Σ-(model) morphisms, and

4. a relation |=I
Σ
⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SigI|, called Σ-satisfaction,

such that for each morphism ϕ : Σ→ Σ′ in SigI, the satisfaction condition

M′ |=IΣ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M′) |=IΣ ρ

holds for each M′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).
We denote the reduct functor ModI(ϕ) by �ϕ and the sentence translation SenI(ϕ) by ϕ(). When

M = M′�ϕ we say that M is a ϕ-reduct of M′, and that M′ is a ϕ-expansion of M. When there is no danger of
ambiguity, we may skip the superscripts from the notations of the entities of the institution; for example SigI

may be simply denoted Sig.

Notation 2.1. In any institution as above we use the following notations:

– for anyM ⊆ |Mod(Σ)|,M∗ denotes {ρ ∈ Sen(Σ) | M |=Σ ρ for each M ∈ M}.

– for any E ⊆ Sen(Σ), E∗ denotes {M ∈ |Mod(Σ)| | M |=Σ ρ for each ρ ∈ E}.

2Strictly speaking, this is only a quasi-category living in a higher set-theoretic universe.

4

– for any E, E′ ⊆ Sen(Σ), E |= E′ denotes E∗ ⊆ E′∗.

– for any E ⊆ Sen(Σ), Mod(Σ, E) is the full subcategory of Mod(Σ) whose objects are in E∗.

Definition 2.2 (Preservation of Sentences). In an institution, given a classH of model homomorphisms, we

say thatH preserves the satisfaction of a sentence ρ when M |= ρ and M
H
→ N implies N |= ρ.

General assumption: We assume that model isomorphisms preserve the satisfaction of all sentences of the
institutions. It is easy to see that this assumption holds in all the concrete examples of institutions of interest
for specification and programming.

There is a myriad of examples of logics captured as institutions, both from logic and computing. A few
of them can be found in [12]. In fact the thesis underlying institution theory is that anything that deserves to
be called logic can be captured as institution. Let us very briefly present only the following example.

Example 2.1 (Algebra (MSA, OSA)). The many sorted algebra (MSA) signatures are pairs (S , F) consisting
of a set of sort symbols S and of a family F = {Fw→s | w ∈ S ∗, s ∈ S } of sets of function symbols indexed by
arities (for the arguments) and sorts (for the results). Signature morphisms ϕ : (S , F)→ (S ′, F′) consist of a
function ϕst : S → S ′ and a family of functions ϕop = {ϕ

op
w→s : Fw→s → F′

ϕst(w)→ϕst(s) | w ∈ S ∗, s ∈ S }.
The (S , F)-models M, called algebras, interpret each sort symbol s as a set Ms and each function

symbol σ ∈ Fw→s as a function Mσ from the product Mw of the interpretations of the argument sorts to the
interpretation Ms of the result sort. An (S , F)-model homomorphism h : M → M′ is an indexed family of
functions {hs : Ms → M′s}s∈S such that hs(Mσ(m)) = M′σ(hw(m)) for each σ ∈ Fw→s and each m ∈ Mw where
hw : Mw → M′w is the canonical component-wise extension of h, i.e. hw(m1, . . . ,mn) = (hs1(m1), . . . , hsn(mn))
for w = s1 . . . sn and mi ∈ Msi .

For each signature morphism ϕ, the reduct M′�ϕ of a model M′ is defined by (M′�ϕ)x = M′ϕ(x) for each
sort or function symbol x from the domain signature of ϕ.

Sentences are the usual first order sentences built from equational atoms t = t′, with t and t′ (well-formed)
terms of the same sort, by iterative application of Boolean connectives and quantifiers. Sentence translations
along signature morphisms just rename the sorts and function symbols according to the respective signature
morphisms. They can be formally defined by induction on the structure of the sentences.

The satisfaction of sentences by models is the usual Tarskian satisfaction defined inductively on the
structure of the sentences.

OSA [18, 17] refines MSA by considering a partial order structure on the sets of sorts of a signature,
which at the semantics level is reflected as a set theoretic inclusion between the corresponding carriers.
Therefore OSA signatures are tuples (S ,≤, F) such that (S , F) is a MSA signature and ≤ is a partial order
on S satisfying the following monotonicity condition: for any operation symbol σ ∈ Fw1→s1 ∩ Fw2→s2 , if
w1 ≤ w2 then s1 ≤ s2. Signature morphisms ϕ : (S ,≤, F)→ (S ′,≤′, F′) are MSA signature morphisms such
that the sort component ϕst : (S ,≤)→ (S ′,≤′) is an order-preserving function.

The OSA models M, or order sorted algebras, of a given OSA signature (S ,≤, F) are (S , F)-algebras
satisfying the following two monotonicity conditions:

1. Ms1 ⊆ Ms2 , whenever s1 ≤ s2, and

2. Mσ : w1→s1 and Mσ : w2→s2 agree on Mw1 , whenever w1 ≤ w2 and σ ∈ Fw1→s1 ∩ Fw2→s2 .

An (S ,≤, F)-morphism h : M → M′ is an (S , F)-morphism such that for any two sorts s1 and s2, if s1 ≤ s2
then hs1 and hs2 agree on Ms1 .

Both sentences and satisfaction are defined as in the case of MSA with the observation that for any two
sorts s1 and s2 such that s1 ≤ s2, the well-formed terms of sort s1 are also well-formed terms of sort s2.

5

2.3. Model amalgamation
The crucial role of model amalgamation for the semantics studies of formal specifications comes up in

a lot of works in the area, a few early examples being [28, 29, 23, 14]. The model amalgamation property
is a necessary condition in many institution-independent model theoretic results (see [12]), thus being one
of the most desirable properties for an institution. It can be considered even as more fundamental than the
satisfaction condition since in institutions with quantifications it is used in one of its weak forms in the proof
of the satisfaction condition at the induction step corresponding to quantifiers. Its importance within the
context of module algebra has been first emphasized in [14]. Model amalgamation properties for institutions
formalize the possibility of amalgamating models of different signatures when they are consistent on some
kind of generalized ‘intersection’ of signatures.

Definition 2.3 (Model Amalgamation). A commutative square of signature morphisms

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

is a weak amalgamation square if and only if for each Σ1-model M1 and Σ2-model M2 such that M1�ϕ1 =

M2�ϕ2 , there exists a Σ′-model M′ such that M′�θ1 = M1 and M′�θ2 = M2.
It is a model amalgamation square when in addition M′ is unique; in such a case M′ may be denoted

M1 ⊗ϕ1,ϕ2 M2, or M1 ⊗ M2 for short when there is no danger of ambiguity.

In most of the institutions formalizing conventional or non-conventional logics, pushout squares of
signature morphisms are model amalgamation squares [14, 12]. These of course include our benchmark
MSA example.

Definition 2.4. An institution has (weak) model amalgamation when each pushout square of signatures is a
(weak) amalgamation square.

A semi-exact institution is an institution with the model amalgamation property extended also to model
homomorphisms, or equivalently an institution with a model functor ModI : (SigI)op → CAT that preserves
pullbacks.

2.4. Inclusion systems
Inclusion systems were introduced in [14] as a categorical device supporting an abstract general study of

structuring of specification and programming modules that is independent of any underlying logic. They
have been used in a series of general module algebra studies such as [14, 19, 12] but also for developing
axiomatizability [26, 10, 12] and definability [2] results within the framework of the so-called ‘institution-
independent model theory’ [12]. Inclusion systems capture categorically the concept of set-theoretic inclusion
in a way reminiscent of how the rather notorious concept of factorization system [5] captures categorically
the set-theoretic injections; however in many applications the former are more convenient than the latter.
Here we first recall from the literature the basics of the theory of inclusion systems and after we develop a
series of new concepts and results needed by our work here.

The definition below can be found in the recent literature on inclusion systems (e.g. [12]) and differs
slightly from the original one of [14].

Definition 2.5 (Inclusion Systems). 〈I, E〉 is a inclusion system for a category C if I and E are two
subcategories with |I| = |E| = |C| such that

6

1. I is a partial order (with the ordering relation denoted by ⊆), and

2. every arrow f in C can be factored uniquely as f = e f ; i f with e f ∈ E and i f ∈ I.

The arrows of I are called abstract inclusions, and the arrows of E are called abstract surjections. The
domain of the inclusion i f in the factorization of f is called the image of f and is denoted as Im(f) or f (A)
when A is a domain of f . An inclusion i : A→ B may be also denoted simply by A ⊆ B.

The inclusion system

– is epic when all abstract surjections are epis,

– has unions when I has finite least upper bounds (denoted ∪),

– has intersections when I has greatest lower bounds (denoted ∩), and

– is distributive when it has unions and intersections that satisfy the usual distributivity rules.

In [9] it is shown that the class I of the abstract inclusions determines the class E of the abstract
surjections. In this sense, [9] gives an explicit equivalent definition of inclusion systems which uses only the
class I of the abstract inclusions. In [14] it has been shown that whenever the category C has pullbacks the
existence of unions implies the existence of the intersections that are obtained as pullbacks of unions.

A ∩ B ⊆ //

⊆

��

A

⊆

��
B

⊆
// A ∪ B

Whenever we use unions and intersections we implicitly assume that the considered inclusion system has
them. It is often useful that the intersection-union squares are not only pullbacks, but they are also pushouts.
Although this property is widely spread among inclusion systems of interest, it does not hold in general and
therefore at the level of abstract inclusion systems it has to be assumed when necessary.

The standard example of inclusion system is that from Set, with set theoretic inclusions in the role of the
abstract inclusions and the surjective functions in the role of the abstract surjections. It is easy to note that
this has all properties introduced by Definition 2.5 above. The literature contains myriads of examples of
inclusion systems for categories of signatures and for categories of models of various institutions from logic
or from specification theory. Due to lack of space let us here recall only a couple of the most representative
ones, examples of great significance for our work here.

Example 2.2 (Inclusion Systems for MSA Signatures). Besides the trivial inclusion system that can be
defined in any category (i.e. identities as abstract inclusions and all arrows as abstract surjections) the category
of the MSA signatures admits also the following non-trivial inclusion systems:

Inclusion system Abstract surjections Abstract inclusions
ϕ : (S , F)→ (S ′, F′) (S , F) ⊆ (S ′, F′)

Closed ϕst : S → S ′ surjective S ⊆ S ′

Fw→s = F′w→s for w ∈ S ∗, s ∈ S
Strong ϕst : S → S ′ surjective S ⊆ S ′

F′w′→s′ =
⋃
ϕst(ws)=w′s′ ϕ

op(Fw→s) Fw→s ⊆ F′w→s for w ∈ S ∗, s ∈ S

Note that the strong inclusion systems for the MSA signatures is epic and is distributive (which implies
it has unions and intersections) while the closed one has none of these properties.

7

The following abstract concept that captures a rather common situation in practice, including of course
MSA, has been introduced in [14].

Definition 2.6 (Inclusive Institutions). An institution is inclusive when its category of signatures is endowed
with an inclusion system such that whenever Σ ⊆ Σ′ we have Sen(Σ) ⊆ Sen(Σ′).

For this work we assume the institutions to be inclusive.
In the following we introduce some new concepts and develop new results about inclusion systems that

are necessary for our work here.

Fact 2.1. If a square of inclusions like below is a pushout then D = B ∪C.

A ⊆ //

⊆

��

B

⊆

��
C

⊆
// D

The following abstracts the concept of disjointness from sets and MSA signatures to abstract inclusion
systems. Then it can be instantiated to many concrete frameworks.

Definition 2.7 (Disjoint Objects). In a category with pullbacks and a designated inclusion system we say
that two objects A and B are disjoint if and only if the intersection-union square

A ∩ B ⊆ //

⊆

��

A

⊆

��
B

⊆
// A ∪ B

describes a pushout and A ∩ B is an initial object in the category.

Example 2.3. Note that the concept of disjoint objects in Set just means ordinary disjoint sets, while
two signatures (S 1, F1) and (S 2, F2) are disjoint (with respect to the strong inclusion system for the MSA
signatures) if and only if S 1∩S 2 = ∅. If we considered single sorted signatures then disjointness of signatures
F1 and F2 means (F1)n ∩ (F2)n = ∅ for each arity n ∈ ω.

Directly from Definition 2.7 by the well-known expression of coproducts as pushouts we obtain the
following.

Corollary 2.1. If A and B are disjoint then A ∪ B is the coproduct of A and B.

Proposition 2.1. If B′ ⊆ B and A and B are disjoint, then A and B′ are disjoint too.

Proof. Since the intersection is the infimum with respect to the partial order given by the inclusions, we have
that A ∩ B′ ⊆ A ∩ B. By hypothesis A ∩ B is initial, thus there exists an unique arrow f : A ∩ B→ A ∩ B′.
By the uniqueness feature of the factorization of 1A∩B it follows that f is inclusion and hence A∩ B = A∩ B′

which means A ∩ B′ is initial.

Proposition 2.2. In any distributive inclusion system if A and C are disjoint and B and C are disjoint then
A ∪ B and C are disjoint.

8

Proof. By distributivity we have that (A ∪ B) ∩C = (A ∩C) ∪ (B ∩C). By the disjointness hypotheses we
have that both A ∩ C and B ∩ C are initial. By Proposition 2.1 twice we have that A ∩ C and B ∩ C are
disjoint; therefore, by Corollary 2.1, we obtain that (A ∩C) ∪ (B ∩C) is the coproduct of two initial objects
and hence it is initial too. We have thus shown that (A ∪ B) ∩C is initial.

The following generalizes the concept of compatible signature morphisms from the language CASL [24]
to abstract inclusion systems.

Definition 2.8 (Compatible Arrows). Two arrows f1 : A1 → B and f2 : A2 → B are compatible when
(A1 ∩ A2 ⊆ A1); f1 = (A1 ∩ A2 ⊆ A2); f2.

Notation 2.2. If the intersection-union square below is a pushout square

A1 ∩ A2
⊆ //

⊆

��

A1

⊆

��
A2 ⊆

// A1 ∪ A2

then for any two compatible arrows f1 : A1 → B and f2 : A2 → B we denote by f1 ∨ f2 the unique arrow
A1 ∪ A2 → B such that (Ai ⊆ A1 ∪ A2); (f1 ∨ f2) = fi for i ∈ {1, 2}.

Proposition 2.3. In a category endowed with an inclusion system that has unions and intersections we
assume the following:

1. each intersection-union square is a pushout square, and

2. A and A′ are two objects such that A ⊆ A′.

In the commutative diagram below, the right-hand square [A ∪ B, A′ ∪ B, B, B′] describes a pushout if and
only if the outer square [A ∪ (B ∩ A′), A′, B, B′] describes a pushout.

A ∪ (B ∩ A′) ⊆ //

⊆

��

A ∪ B v //

⊆

��

B

f
��

A′
⊆

// A′ ∪ B
v′
// B′

Proof. By the general result saying that gluing together pushout squares yields a pushout square it is enough
if we showed that the left-hand square [A ∪ (B ∩ A′), A′, A ∪ B, A′ ∪ B] depicts a pushout. In order to show
this we glue another square of inclusions on top of it.

A′ ∩ B ⊆ //

⊆

��

B

⊆

��
A ∪ (B ∩ A′) ⊆ //

⊆

��

A ∪ B

⊆

��
A′

⊆
// A′ ∪ B

Since the outer square [A′ ∩ B, A′, B, A′ ∪ B] is an intersection-union square, it is a pushout square, thus, by
the general properties of pushout squares, in order to show that the square [A ∪ (B ∩ A′), A′, A ∪ B, A′ ∪ B]

9

describes a pushout it is enough to prove that the top square [A′ ∩ B, A∪ (B∩ A′), B, A∪ B] depicts a pushout.
For this we just show that the latter top square is an intersection-union square.

On the one hand we have that

(A ∪ (B ∩ A′)) ∪ B = A ∪ ((B ∩ A′) ∪ B) = A ∪ B.

On the other hand because A ⊆ A′ and B ∩ A′ ⊆ A′ we have A ∪ (B ∩ A′) ⊆ A′, thus

(A ∪ (B ∩ A′)) ∩ B ⊆ A′ ∩ B. (1)

Since A′ ∩ B ⊆ B and A′ ∩ B ⊆ A ∪ (B ∩ A′) it follows that

A′ ∩ B ⊆ (A ∪ (B ∩ A′)) ∩ B. (2)

From (1) and (2) we have that (A ∪ (B ∩ A′)) ∩ B = A′ ∩ B.

Definition 2.9 (Preservation of Objects). In any category endowed with an inclusion system with intersections
we say that an arrow f : A→ B preserves an object C when (A ∩C ⊆ A); f is an inclusion.

Proposition 2.4. In a category with an epic inclusion system we consider a pushout square as below

A ⊆ //

f
��

B

g
��

A
⊆
// C

such that f ; f = f . Let f = e f ; (f (A) ⊆ A) and g = eg; (g(B) ⊆ C) with e f and eg being abstract surjections.

1. f (A) ⊆ g(B) and the commutative squares below are pushout squares

A
e f //

⊆

��

f (A)

⊆

��

⊆ // A

⊆

��
B eg

// g(B)
⊆
// C

2. Let us in addition assume that the inclusion system has intersections. If g preserves all objects
preserved by f then eg preserves all objects preserved by e f .

Proof.
1. By the Diagonal Fill-in Lemma (see [14, 12]) there exists an arrow f (A)→ g(B) which splits the given
pushout square into two commutative squares. By the uniqueness of factorization it is immediate to establish
that this arrow is an inclusion.

By the general properties of glueing pushout squares together, in order to establish that both squares
resulting from this splitting are pushout squares it is enough to establish the pushout property only for

10

the left-hand side square [A, B, f (A), g(B)]. For this we consider h : f (A) → D and k : B → D such that
e f ; h = (A ⊆ B); k.

A
e f //

⊆

��

f (A)

⊆

��

⊆ // A

⊆

�� e f ;h

��

B
eg //

k //

g(B) ⊆ //

((

C
q

��
D

f ; f = f means e f ; (f (A) ⊆ A); e f ; (f (A) ⊆ A) = e f ; (f (A) ⊆ A) = e f ; 1 f (A); (f (A) ⊆ A). Since each
abstract inclusion is mono (see [14, 12]) and since by hypothesis each abstract surjection is epi, we deduce
that (f (A) ⊆ A); e f = 1 f (A), hence (A ⊆ B); k = e f ; h = e f ; (f (A) ⊆ A); e f ; h. By the pushout property of the
outer original square [A, B, A,C] there exists an unique q : C → D such that g; q = k and (A ⊆ C); q = e f ; h.
We have that eg; ((g(B) ⊆ C); q) = k and that (f (A) ⊆ g(B)); ((g(B) ⊆ C); q) = (f (A) ⊆ A); (A ⊆ C); q =

(f (A) ⊆ A); e f ; h = h. The uniqueness of (g(B) ⊆ C); q is given by the epi property of eg.
2. Let D be an object preserved by e f , i.e. (A ∩ D ⊆ A); e f is an inclusion. It follows that (A ∩ D ⊆ A); e f ; i f

is an inclusion, and thus, by hypothesis, (B ∩ D ⊆ B); eg; ig is an inclusion too. By the uniqueness of
factorization property of inclusion systems we obtain that (B ∩ D ⊆ B); eg is inclusion; therefore D is
preserved by eg.

Definition 2.10 (Free Extensions along Inclusions). In any category endowed with an inclusion system with
intersections we say that an arrow f : A→ A1 admits free extensions along an inclusion A ⊆ A′ when there
exist pushout squares of the form

A ⊆ //

f
��

A′

f ′

��
A1 ⊆

// A′1

such that every object preserved by f is also preserved by f ′.
We say that f strongly admits free extensions along A ⊆ A′ when for every object A0 the arrow f admits

a free extension f ′ as above such that A0 ∩ A′1 ⊆ A0 ∩ A′.

Fact 2.2. In Set (endowed with the standard inclusion system) a function f : A→ A1 admits free extensions
along any A ⊆ A′ if and only if A1 and A′ \ A are disjoint. Moreover the free extension f ′ : A′ → A′1 is
defined by A′1 = A1 ∪ (A′ \ A) and by

f ′(a) =

 f (a) when a ∈ A,
a otherwise.

Consequently, any function f : A→ A strongly admits free extensions along any A ⊆ A′.

Definition 2.11 (Idempotent-by-Extension). In a category with pullbacks and endowed with an epic inclusion
system, an arrow f : A→ A is called idempotent-by-extension when it is idempotent, i.e. f ; f = f , and there
exists an object B such that A = B ∪ f (A) and B and f (A) are disjoint.

11

Example 2.4. In Set (considered with the standard inclusion system) each idempotent function f : A→ A is
also idempotent-by-extension by taking B = A \ f (A).

The category of the MSA signatures does not enjoy the identity between idempotency and idempotency-
by-extension, as shown by the following example. Let Σ be a signature with one sort and two constants a and
b and ϕ : Σ→ Σ that maps both constants to a. Then ϕ is idempotent but it is not idempotent-by-extension.

3. Structured specifications

This section is structured as follows:

1. We define the concept of structured specification and the corresponding model-oriented denotations;
this includes the introduction of our new specification building operators that cover the non-protecting
importation situations.

2. We provide several examples of how concrete specification modules can be expressed by our primitive
specification building operators.

3. We develop some basic properties of structured specifications.

3.1. Primitive specification building operators

Given an inclusive institution I = (Sig,Sen,Mod, |=), its structured specifications (or just specifications
for short) are defined from the finite presentations by iteration of several specification building operators.
The semantics of each specification SP is given by its signature Sig[SP] and its category of models Mod[SP].
Below we sometimes define only the class of objects for each Mod[SP], the category Mod[SP] being the
corresponding full subcategory of Mod(Sig[SP]). For any specification SP we also calculate the set of its
axioms Ax[SP] ⊆ Sen(Sig[SP]).

Let us fix two classes of signature morphisms T ,D ⊆ Sig, considered as parameters for the structuring
process.

PRES. Each finite presentation (Σ, E) is a specification such that

Sig[(Σ, E)] = Σ,

Ax[(Σ, E)] = E,
Mod[(Σ, E)] = Mod(Σ, E).

UNION. For any specifications SP1 and SP2 we can take their union SP1 ∪ SP2 with

Sig[SP1 ∪ SP2] = Sig[SP1] ∪ Sig[SP2],
Ax[SP1 ∪ SP2] = Ax[SP1] ∪ Ax[SP2], 3

|Mod[SP1 ∪ SP2]| = {M ∈ Mod(Sig[SP1 ∪ SP2]) | M�Sig[SPi] ∈ Mod[SPi] for each i ∈ {1, 2}}.

TRANS. For any specification SP and signature morphism (ϕ : Sig[SP] → Σ′) ∈ T we can take its
translation along ϕ denoted by SP ? ϕ and such that

Sig[SP ? ϕ] = Σ′,

Ax[SP ? ϕ] = ϕ(Ax[SP]),
|Mod[SP ? ϕ]| = {M′ ∈ Mod(Σ′) | M′�ϕ ∈ Mod[SP]}.

When ϕ is inclusion we may denote SP ? ϕ by SP ? Σ′.

12

DERIV. For any specification SP′ and signature morphism (ϕ : Σ→ Sig[SP′]) ∈ Dwe can take its derivation
along ϕ denoted by ϕ | SP′ such that

Sig[ϕ | SP′] = Σ,

Ax[ϕ | SP′] = ϕ−1(Ax[SP′]∗∗),
|Mod[ϕ | SP′]| = {M′�ϕ | M′ ∈ Mod[SP′]}.

When ϕ is inclusion we may denote ϕ | SP′ by Σ | SP′.

H-EXT. Given a classH of model homomorphisms, we consider theH-extension of a specification SP,
denotedH(SP), such that

Sig[H(SP)] = Sig[SP],
Ax[H(SP)] = Ax[SP], and

|Mod[H(SP)]| = {M′ ∈ Mod(Sig[SP]) | M′ |= Ax[SP] and
there exists (h : M → M′) ∈ H with M ∈ Mod[SP]}

H-FREE. Given a class H of model homomorphisms, for any specifications SP1 and SP2 and signature
morphism ϕ : Sig[SP1] → Sig[SP2], we consider the H-free restriction of SP2 modulo ϕ and SP1,
denoted SP2 !H (ϕ, SP1), such that

Sig[SP2 !H (ϕ, SP1)] = Sig[SP2],
Ax[SP2 !H (ϕ, SP1)] = Ax[SP2], and

|Mod[SP2 !H (ϕ, SP1)]| = {M2 ∈ Mod[SP2] | there exists M1 ∈ Mod[SP1] and
an universal arrow (η : M1 → M2�ϕ) ∈ H
to the reduct functor Mod[SP2]→ Mod(Sig[SP1])}.

This means that for each homomorphism h : M1 → N2�ϕ where N2 ∈ Mod[SP2] there exists an unique
homomorphism h2 : M2 → N2 such that h = η; h2�ϕ.

M1

h ""

η // M2�ϕ

h2�ϕ
��

M2

h2

��
N2�ϕ N2

When ϕ is an inclusion of signatures we may omit ϕ from the notations and denote SP2 !H (ϕ, SP1)
simply by SP2 !H SP1. When SP1 is a presentation of the form (Σ, ∅), with Σ signature, we may simply
write it as Σ and denote the specification SP2 !H (ϕ, SP1) by SP2 !H ϕ or SP2 !H Σ when ϕ is inclusion.
When H is the class of identities we omit it as the subscript of !, and the universal property of the
models of SP2 !H (ϕ, SP1) is called strongly persistently ϕ-free.

Remark 3.1. 1. In some of the literature, e.g. [6, 27], the union ∪ is usually partially defined, only for
specifications over the same signature. The general union of two specifications is then obtained as the
(partially defined) union of their translations to the union signature. Like in [14] our use of inclusion
systems allows for the direct definition of the union of any specifications, without any conditions.

2. Note that if T andD, resp., are the class of the identities, then TRANS and DERIV, resp. are cancelled.
The rather realistic idea to define TRANS and DERIV relative to sub-classes of signature morphisms
seems to belong to [6]. Often in practiceD is the class of signature inclusions while T is the class of
all signature morphisms.

13

3. H-EXT is a completely new operator introduced for capturing non-protecting importation modes.

4. Our operatorH-FREE constitutes a significant extension of the existing initial semantics operator that
can be found in the literature (such as in [27]) which corresponds to the case whenH is the class of
the identities and SP1 is empty. The extension to arbitrary H is motivated by the capture of initial
semantics in relation with non-protecting importation modes.

3.2. Examples

Example 3.1. The following is a specification of the class of all fields in the CafeOBJ language [13]. The
underlying institution of this specification is OSA.

mod* GROUPS {

[G]

op 1 : -> G

op _*_ : G G -> G {assoc}

op _-1 : G -> G

vars x y : G

eq x * 1 = x .

eq 1 * x = x .

eq x * (x -1) = 1 .

eq (x -1) * x = 1 .

}

mod! GROUPSZ {

protecting(GROUPS)

[G < F]

op 0 : -> F

op _*_ : F F -> F

var x : F

eq x * 0 = 0 .

eq 0 * x = 0 .

}

mod* FIELDS {

protecting(GROUPSZ)

op _+_ : F F -> F {assoc comm}

op -_ : F -> F

vars x y z : F

eq x + 0 = x .

eq x + (- x) = 0 .

eq x * (y + z) = (x * y) + (x * z) .

eq (y + z) * x = (y * x) + (z * x) .

}

In this specification GROUPSZ imports GROUPS and FIELDS imports GROUPSZ. The specification GROUPS is
flat, its denotation consisting of the class of all groups (with multiplicative notation). Then

GROUPSZ = (GROUPS ∪ (Σ′, E′)) ! Sig[GROUPS]

14

where Σ′ is the extension of Sig[GROUPS] with F (declared as a super-sort of G), 0 and * : F F -> F, and
E′ is the set of the two Σ′-equations introduced by GROUPSZ. The definition of FIELDS is

FIELDS = GROUPSZ ∪ (Σ′′, E′′)

where Σ′′ extends Sig[GROUPSZ] with the two operation symbols introduced by FIELDS and E′′ consists of
the four equations introduced by FIELDS.

Example 3.2. The following MSA specification of integer numbers as an ‘extension’ of the natural numbers
uses the CafeOBJ importation mode extending.

mod! PNAT {

[Number]

op 0 : -> Number

op s : Number -> Number

}

mod! PINT {

extending(PNAT)

op p : Number -> Number

var X : Number

eq p(s(X)) = X .

eq s(p(X)) = X .

}

Let EX be the class of MSA inclusive model homomorphisms, i.e. model homomorphisms with all the
components set theoretic inclusions. Then we have that

PNAT = (Σ, ∅) ! ∅

where Σ = Sig[PNAT], the empty signature is also denoted by ∅ and

PINT = (EX(PNAT) ∪ (Σ′, E′)) !EX PNAT

where Σ′ is the extension of the Sig[PNAT] with the operation symbol p and E′ is the set that consists of the
two equations introduced by PINT.

One may note that the denotations of tight CafeOBJ modules with non-protecting imports is given by
expressions using both H-EXT and H-FREE operators, based upon the same class H of model homo-
morphisms. In this example !EX selects those models of (EX(PNAT) ∪ (Σ′, E′)) whose reducts to Sig[PNAT]
are codomains of universal arrows (belonging to EX) from models of PNAT to the reduct functor from
Mod[EX(PNAT) ∪ (Σ′, E′)] to Mod(Sig[PNAT]). Consequently, a more restrictive choice than EX as parameter
forH-EXT could eliminate the intended models of EX(PNAT) ∪ (Σ′, E′), whereas a less restrictive one could
impose unnecessary conditions on the models of PINT.

Note that if we used protecting(PNAT) instead of the extending importation mode, then PINT would
have been inconsistent in the sense of lacking models. Of course this could have been repaired by introducing
a super-sort for the integers, but the cost here would be to involve a more sophisticated logic, namely order
sorted algebra. In fact, it is often the case that extending importation modes can be specified alternatively
by protecting modes but within order sorted algebra, and in addition to that, one would also have to specify
some overloading of function symbols to the new super-sort.

15

Example 3.3. The following CafeOBJ code represents a MSA specification of {Zn | n ∈ ω}, i.e. the class of
the natural numbers modulo n for all n ∈ ω. The only operations considered are 0 and successor (s).

mod* PNATn {

protecting(PNAT)

op n : -> PNat

}

mod! Zn {

using(PNATn)

eq n = 0 .

}

Let US be the class of all MSA model homomorphisms. Then

PNATn = PNAT ∪ (Σ′, ∅)

where Σ′ adds the operation n to Sig[PNAT] and

Zn = (US (PNATn) ∪ (Σ′, {n=0})) !US PNATn.

Note that the models of PNATn are the pointed sets of the natural numbers, with the base-point denoted by
n. By definitions Zn specifies the free models along the theory inclusion (Σ′, ∅∗∗) ⊆ (Σ′, {n=0}∗∗) that are
based upon, or generated by, the PNATn models. These are obtained by identifying the elements of any given
PNATn algebra according to the congruence modulo n.

3.3. Basic properties of structured specifications
Proposition 3.1. For each specification SP, M ∈ Mod[SP] implies M |= Ax[SP].

Proof. We show the conclusion of the proposition by induction on the structure of the specification SP.

SP = (Σ, E): Obvious from the definition.

SP = SP1 ∪ SP2: Let M ∈ Mod[SP1 ∪ SP2]. Let us denote Sig[SP1] by Σ1 and Sig[SP2] by Σ2. Since
M�Σk ∈ Mod[SPk] for each k ∈ {1, 2}, by the induction hypothesis we have that each M�Σk |= Ax[SPk].
By the satisfaction condition it follows that M |=Σ1∪Σ2 Ax[SPk] for each k ∈ {1, 2}. Hence M |=

Ax[SP1] ∪ Ax[SP2].

SP = SP′ ? ϕ: Let M ∈ Mod[SP′ ? ϕ]. Then M�ϕ ∈ Mod[SP′] which by the induction hypothesis implies
M�ϕ |= Ax[SP′]. By the satisfaction condition this implies M |= ϕ(Ax[SP′]) = Ax[SP′ ? ϕ].

SP = ϕ | SP′: Let M ∈ Mod[ϕ | SP′]. Then there exists M′ ∈ Mod[SP′] such that M = M′�ϕ. By the
induction hypothesis we have that M′ |= Ax[SP′] hence M′ |= Ax[SP′]∗∗ too. But ρ ∈ ϕ−1(Ax[SP′]∗∗)
means ϕ(ρ) ∈ Ax[SP′]∗∗. Hence M′ |= ϕ(ρ) which by the satisfaction condition implies that M |= ρ.
This shows that M |= ϕ−1(Ax[SP′]∗∗) = Ax[ϕ | SP′].

SP = H(SP′): Obvious by definition, from the induction hypothesis.

SP = SP2 !H (ϕ, SP1): Obvious by definition, from the induction hypothesis.

16

Following a similar argument it can be shown that the converse of Proposition 3.1 holds for the first three
operators only.

Fact 3.1. For any specification SP built only with PRES, UNION and TRANS we have

Mod[SP] = Mod(Sig[SP],Ax[SP]).

For the case of the last three operators we give the following counter-arguments:

– In the sub-institution of MSA obtained by restricting the sentences only to universally quantified
equations, the class of models of a specification ϕ | SP′ is not necessarily closed under submodels,
therefore, in general, it cannot be specified through presentations.

– The same remark as above holds for specificationsH(SP) whereH is the class of strictly inclusive
homomorphisms.

– For the last operator let us consider the specification (Σ, E) ! ∅ describing the class of initial models of
(Σ, E). Since this class is not closed under products it follows that it cannot be the class of models of a
theory.

Fact 3.2. The following defines a preorder on specifications

SP1 |= SP2 if and only if Sig[SP1] = Sig[SP2] and Mod[SP1] ⊆ Mod[SP2].

The Definitions 3.1 and 3.2 together with the Facts 3.3 and 3.4 below can be found in the literature, for
example in [27].

Definition 3.1 (Equivalent Specifications). Two specifications SP1 and SP2 are equivalent, denoted SP1 |=|

SP2, when SP1 |= SP2 and SP2 |= SP1.

In general it is possible to have different specifications that are equivalent. When we are interested only
in the semantics of specifications rather than in the way they are constructed, it does make sense to consider
specifications modulo this equivalence relation.

Definition 3.2 (Specification morphisms). A specification Morphism ϕ : SP1 → SP2 between specifications
SP1 and SP2 is a signature morphism ϕ : Sig[SP1]→ Sig[SP2] such that SP2 |= SP1 ? ϕ.

Fact 3.3. A signature morphism ϕ : Sig[SP1] → Sig[SP2] is a specification morphism SP1 → SP2 if and
only if ϕ | SP2 |= SP1.

Fact 3.4. For any institution I, the specifications and their morphisms under the obvious composition form
a category, denoted SpecI.

The following gives a characterization of isomorphisms of specifications that is useful within the context
of the result of Theorem 5.1.

Proposition 3.2. ϕ : SP1 → SP2 is an isomorphism of specifications if and only if ϕ : Sig[SP1]→ Sig[SP2]
is an isomorphism of signatures and SP1 ? ϕ |=| SP2.

Proof. For the implication from the left to the right it is immediate that ϕ : Sig[SP1] → Sig[SP2] is an
isomorphism of signatures. We need only to show that SP1 ? ϕ |= SP2. For this we consider the inverse ϕ−1.
Since ϕ−1 : SP2 → SP1 is a specification morphism we have that SP1 |= SP2 ? ϕ

−1. Since ? is monotone

17

with respect to |= we further obtain that SP1 ? ϕ |= SP2 ? ϕ
−1 ? ϕ. Now we have just to apply (6) and (7)

from below to see that SP2 ? ϕ
−1 ? ϕ |=| SP2.

For the implication from the right to the left we know that ϕ : Sig[SP1]→ Sig[SP2] is an isomorphism of
signatures and that SP1 ?ϕ |=| SP2. Let ϕ−1 be the inverse of ϕ as a signature morphism. We have to establish
that SP1 |= SP2 ? ϕ

−1. This is achieved by applying ?ϕ−1 to both sides of the relation SP1 ? ϕ |= SP2, by the
monotonicity of ? and by (6) and (7) below.

The following result from [27] extends the famous lifting result of co-limits from signatures to theories
from [16]. We recall it together with its proof because later in the paper we will need the explicit construction
of pushouts of specification morphisms.

Proposition 3.3. The forgetful functor Spec→ Sig lifts finite co-limits.

Proof. We use the basic category theory result (see [1]) that each finite co-limit can be expressed in terms of
initial objects and pushouts.

For the case of initial objects, it is easy to see that if Σ is an initial signature then (Σ, ∅) is an initial
specification.

For the case of pushouts, we consider any span of specification morphisms ϕ : SP→ SP1 and θ : SP→
SP2 and we take a pushout of the underlying signature morphisms as follows.

Sig[SP]
ϕ //

θ

��

Sig[SP1]

θ′

��
Sig[SP2]

ϕ′
// Σ′

We define the specification SP′ = SP1?θ
′∪SP2?ϕ

′. It is easy to see that θ′ : SP1 → SP′ and ϕ′ : SP2 → SP′

are specification morphisms.

SP
ϕ //

θ
��

SP1

θ′

�� f

��

SP2

g ..

ϕ′ // SP′

h

""
SP′′

For any specification morphisms f : SP1 → SP′′ and g : SP2 → SP′′ such that ϕ; f = θ; g, by the pushout
property for the underlying signature morphisms, there exists an unique signature morphism h : Sig[SP′]→
Σ = Sig[SP′′] such that f = θ′; h and g = ϕ′; h. It remains to show that h is a specification morphism
SP′ → SP′′. By (6) of Fact 4.1 and (10) of Proposition 4.2 we have that

SP′ ? h = (SP1 ? θ
′ ∪ SP2 ? ϕ

′) ? h = SP1 ? (θ′; h) ∪ SP2 ? (ϕ′; h) = SP1 ? f ∪ SP2 ? g.

Because f and g are specification morphisms SP′′ |= SP1 ? f and SP′′ |= SP2 ? g, hence SP′′ |= SP1 ? f ∪
SP2 ? g = SP′ ? h.

Note co-limits of signatures are not lifted uniquely to co-limits of specifications. One argument for this
is that for any fixed initial signature Σ we have that any specification (Σ, E) such that E ⊆ ∅∗∗ is initial.

18

4. Algebraic rules for structured specifications

In this section we first recall from the algebraic specification folklore and literature some important
algebraic rules for the model oriented denotations of structured specifications and after that we prove a series
of new rules.

The proofs of Proposition 4.1, Fact 4.1 and of Proposition 4.2 below are straightforward and moreover
these results appear elsewhere in the literature (modulo our use of inclusion systems), such as in [27]. In
their property oriented variant they can also be found in [14]. Therefore let us skip their proof here.

Proposition 4.1. For any specifications SP, SP′, SP′′,

SP ∪ SP′ |=| SP′ ∪ SP. (3)

SP ∪ SP |=| SP. (4)

(SP ∪ SP′) ∪ SP′′ |=| SP ∪ (SP′ ∪ SP′′). (5)

Fact 4.1. For any signature morphisms ϕ : Σ → Σ′ and ϕ′ : Σ′ → Σ′′ and specifications SP and SP′′ such
that Sig[SP] = Σ and Sig[SP′′] = Σ′′,

SP ? (ϕ;ϕ′) |=| (SP ? ϕ) ? ϕ′. (6)

SP ? 1Σ |=| SP. (7)

(ϕ;ϕ′) | SP′′ |=| ϕ | ϕ′ | SP′′. (8)

1Σ′ | SP′ |=| SP′. (9)

Proposition 4.2. For any specifications SP1 and SP2 and any signature morphism ϕ : Sig[SP1 ∪ SP2]→ Σ

(SP1 ∪ SP2) ? ϕ |=| (SP1 ? (i1;ϕ)) ∪ (SP2 ? (i2;ϕ)) (10)

where ik is the inclusion Sig[SPk] ⊆ Sig[SP1 ∪ SP2] for k ∈ {1, 2}.

The following has been proved in [27].

Proposition 4.3. For any pushout of signature morphisms as below

Σ
ϕ //

θ
��

Σ1

θ′

��
Σ2

ϕ′
// Σ′

and for any specification SP1 with Sig[SP1] = Σ1

ϕ′ | (SP1 ? θ
′) |= (ϕ | SP1) ? θ. (11)

If the institution has weak model amalgamation then

ϕ′ | (SP1 ? θ
′) |=| (ϕ | SP1) ? θ. (12)

19

Proposition 4.4. In any institution, for any pushout of signatures as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2 θ2

// Σ′

and for any specifications SP1, SP2 such that Σk = Sig[SPk] for k ∈ {1, 2} we have that

(ϕk; θk) | (SP1 ? θ1 ∪ SP2 ? θ2) |= (ϕ1 | SP1) ∪ (ϕ2 | SP2), for k ∈ {1, 2}. (13)

If the institution has weak model amalgamation then

(ϕk; θk) | (SP1 ? θ1 ∪ SP2 ? θ2) |=| (ϕ1 | SP1) ∪ (ϕ2 | SP2), for k ∈ {1, 2}. (14)

Proof.
(13): Let M ∈ Mod[(ϕk; θk) | (SP1?θ1 ∪ SP2?θ2)]. Then there exists M′ ∈ Mod[SP1?θ1 ∪ SP2?θ2] such
that M = M′�ϕk;θk . Let M1 = M′�θ1 and M2 = M′�θ2 . Then Mi ∈ Mod[SPi] for i ∈ {1, 2}. Since M = Mi�ϕi

for i ∈ {1, 2} we have that M ∈ Mod[ϕi | SPi] for i ∈ {1, 2} which means M ∈ Mod[ϕ1 | SP1] ∩Mod[ϕ2 |

SP2] = Mod[(ϕ1 | SP1) ∪ (ϕ2 | SP2)].
(14): Let M ∈ Mod[(ϕ1 | SP1)∪ (ϕ2 | SP2)]. Since Mod[(ϕ1 | SP1)∪ (ϕ2 | SP2)] = Mod[ϕ1 | SP1]∩Mod[ϕ2 |

SP2] for each i ∈ {1, 2} there exists Mi ∈ Mod[SPi] such that M = Mi�ϕi . By the weak model amalgamation
hypothesis there exists a Σ′-model M′ such that M′�θi = Mi. This means M′ ∈ Mod[SP1 ? θ1 ∪ SP2 ? θ2].
Since M = M′�ϕk;θk we have that M ∈ Mod[(ϕk; θk) | (SP1 ? θ1 ∪ SP2 ? θ2)].

Corollary 4.1. In any institution with unions and intersections of signatures, for any specifications SP1 and
SP2, let Σ = Sig[SP1] ∩ Sig[SP2]. Then

Σ | (SP1 ∪ SP2) |= (Σ | SP1) ∪ (Σ | SP2). (15)

Moreover if the institution has weak model amalgamation and each intersection-union square of signatures
is pushout then

Σ | (SP1 ∪ SP2) |=| (Σ | SP1) ∪ (Σ | SP2). (16)

The distributivity rule (16) above has been stated as an exercise in [27] for the particular case of equational
logic. Its property oriented variant has been a cornerstone in [3] (for the special case of many sorted first
order logic) and in [14] (in the general institution-independent case), its proof has been significantly more
difficult that the proof above of its model oriented variant and required an interpolation property for the
underlying institution.

Fact 4.2. IfH contains all identities then for each flat specification (Σ, E)

H(Σ, E) |=| (Σ, E). (17)

Fact 4.3. IfH = H ′;H ′′ then for each specification SP

H ′(H ′′(SP)) |=| H(SP). (18)

Definition 4.1. A classH of model homomorphisms is preserved by a signature morphism ϕ when h�ϕ ∈ H
for each h ∈ H .

20

Proposition 4.5. If each inclusion of signatures preservesH then for all specifications SP1 and SP2 we have

H(SP1 ∪ SP2) |= H(SP1) ∪H(SP2) (19)

Proof.
(19): Let M′ ∈ Mod[H(SP1 ∪ SP2)]. Then there exists N′ ∈ Mod[SP1 ∪ SP2] and (h′ : N′ → M′) ∈ H
such that M′ |= Ax[SP1] ∪ Ax[SP2]. It follows that h′�Σk ∈ H for k ∈ {1, 2}. By the satisfaction condition
M′�Σk |= Ax[SPk]. These imply M′ ∈ Mod[H(SP1) ∪H(SP2)].

Recall from [12] the following concept:

Definition 4.2 (Lifting of Relations). Let ϕ : Σ1 → Σ2 be a signature morphism and R = 〈R1, R2〉 with
R1 ⊆ |Mod(Σ1)| × |Mod(Σ1)| and R2 ⊆ |Mod(Σ2)| × |Mod(Σ2)| be a pair of binary relations. We say that
ϕ lifts R if and only if for each M2 ∈ |Mod(Σ2)| and N1 ∈ |Mod(Σ1)|, if 〈M2�ϕ, N1〉 ∈ R1, there exists
N2 ∈ |Mod(Σ2)| such that N2�ϕ = N1 and 〈M2, N2〉 ∈ R2.

M2�ϕ
R1 N1 = N2�ϕ

M2
R2

(∃)N2

Proposition 4.6. If ϕ lifts
H
←− then

H(SP) ? ϕ |= H(SP ? ϕ). (20)

If ϕ lifts
H
−→ andH preserves the satisfaction of all sentences of the institution then

H(ϕ | SP′) |= ϕ | H(SP′). (21)

If ϕ preservesH then

H(SP ? ϕ) |= H(SP) ? ϕ. (22)

ϕ | H(SP′) |= H(ϕ | SP′). (23)

Proof.
(20): Let N′ ∈ Mod[H(SP) ? ϕ]. Then there exists M ∈ Mod[SP] and (h : M → N′�ϕ) ∈ H such that
N′�ϕ |= Ax[SP]. By the lifting assumption there exists (h′ : M′ → N′) ∈ H such that M′�ϕ = M. By the
Satisfaction Condition we have M′ |= ϕ(Ax[SP]) = Ax[SP ? ϕ]. Hence N′ ∈ Mod[H(SP ? ϕ)].
(21): Let N ∈ Mod[H(ϕ | SP′)]. Then there exists M′ ∈ Mod[SP′] and (h : M′�ϕ → N) ∈ H . By the
lifting assumption there exists (h′ : M′ → N′) ∈ H such that N′�ϕ = N. By the preservation assumption
N′ |= Ax[SP′], hence N′ ∈ Mod[H(SP′)].
(22): Let us consider N′ ∈ Mod[H(SP ? ϕ)]. Then there exists (h′ : M′ → N′) ∈ H such that M′�ϕ ∈
Mod[SP]. Also N′ |= Ax[SP ? ϕ] = ϕ(Ax[SP]). By the preservation assumption we have that (h′�ϕ : M′�ϕ →
N′�ϕ) ∈ H . By the Satisfaction Condition we have N′�ϕ |= Ax[SP]. Hence N′ ∈ Mod[H(SP) ? ϕ].
(23): Let N ∈ Mod[ϕ | H(SP′)]. Then there exists a model N′ ∈ Mod[H(SP′)] with N′�ϕ = N and
(h′ : M′ → N′) ∈ H such that M′ ∈ Mod[SP′] and N′ |= Ax[SP′]. By the preservation assumption
(h′�ϕ : M′�ϕ → N′�ϕ) ∈ H . By the Satisfaction Condition we have that N′�ϕ |= ϕ−1(Ax[SP′]∗∗) = Ax[ϕ | SP′]
hence N′�ϕ ∈ Mod[H(ϕ | SP′)].

21

Example 4.1. Let EX and EPI be the classes of the MSA model homomorphisms that are inclusions and
surjective, resp. Let US be the class of all MSA model homomorphisms and ISO the class of MSA model
isomorphisms. We say that an MSA signature morphism ϕ : (S , F)→ (S ′, F′) is an encapsulation if for each
σ′ ∈ F′w′→ϕ(s) there exists σ in F such that σ′ = ϕ(σ). According to the literature (e.g. [11, 12, 25] we have
the following:

– ϕ lifts (model) isomorphisms if and only if it is injective on the sorts.

– ϕ lifts
EX
→ and

EPI
← if it is injective.

– ϕ lifts
EPI
→ and

EX
← if it is injective on the sorts and it is an encapsulation.

– ϕ lifts
US
→ and

US
← if it is both injective and an encapsulation.

It is very easy to check the following:

– Any ϕ preserves EX, EPI, and US.

The following holds by the basic assumption on our institutions:

– ISO preserves the satisfaction of all sentences.

The following properties are well known from the model theory literature (e.g. [21]):

– EX preserves the satisfaction of the sentences of the form (∃X)ρ where ρ is any quantifier-free sentence.

– EPI preserves the satisfaction of the universally quantified equations (∀X)t = t′.

– US preserves the satisfaction of the equational atoms t = t′.

Corollary 4.2. If each morphism inD (i.e. used for derivation) lifts isomorphisms andH ; ISO ⊆ ISO;H
then the class of models Mod[SP] of each specification SP is closed under isomorphisms.

Proof. We prove the conclusion of the proposition by recursion on the structure of the specification SP.

SP = (Σ, E): From (17) of Fact 4.2 with ISO in the role ofH there.

SP = SP1 ∪ SP2: From (19) of Proposition 4.5 with ISO in the role ofH there.

SP = SP′ ? ϕ: From (22) of Proposition 4.6 with ISO in the role ofH there.

SP = ϕ | SP′: From (21) of Proposition 4.6 with ISO in the role ofH there.

SP = H(SP′): Let M ∈ Mod[SP] and N � M. Note that by the assumption that the institution is closed
under isomorphisms, N |= Ax[SP′]. There exists M′ ∈ Mod[SP′] and (h : M′ → M) ∈ H . Because
H ; ISO ⊆ ISO;H there exists N′ � M′ and (f : N′ → N) ∈ H . By the induction hypothesis
N′ ∈ Mod[SP′] hence N ∈ Mod[SP].

SP = SP2 !H (ϕ, SP1): Let M2 ∈ Mod[SP2 !H (ϕ, SP1)] and let i2 : M2 → N2 be an isomorphism. This
means there exists M1 ∈ Mod[SP1] and (η : M1 → M2�ϕ) ∈ H universal arrow. Because H ; ISO ⊆
ISO;H there exists N1, i1 : M1 → N1 isomorphism, and (η′ : N1 → N2�ϕ) ∈ H such that the diagram
below commutes.

M2�ϕ
i2�ϕ
�
// N2�ϕ

M1

η

OO

i1

� // N1

η′

OO

22

Let M′2 ∈ Mod[SP2] and let homomorphism h : N1 → M′2�ϕ. By the universal property of (η,M2)
there exists an unique homomorphism f ′ : M2 → M′2 such that η; f ′�ϕ = i1; h. Then η′; (i−1

2 ; f ′)�ϕ =

i−1
1 ; η; f ′�ϕ = i−1

1 ; i1; h = h. This shows the existence part. Moreover for any g′ : N2 → M′2 such that
η′; g′�ϕ = h we have that i1; η′; g′�ϕ = η; (i2; g′)�ϕ and by the uniqueness of f ′ this implies i2; g′ = f ′.
Hence g′ must be i−1

2 ; f ′ indeed. We have thus shown that there exists an unique g′ : N2 → M′2 such
that η′; g′�ϕ = h which proves that N ∈ Mod[SP2 !H (ϕ, SP1)].

Example 4.2. For the MSA specifications that are structured with EX and/or US and such that each morphism
inD is injective on the sorts, from Corollary 4.2 we have that Mod[SP] is closed under isomorphisms for
each structured specification SP. Note that in this case the condition onD is rather mild, since in practice the
information hiding operator DERIV is usually considered for signature inclusions.

Proposition 4.7. Assume the institution is semi-exact. For any pushout of signatures as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2 θ2

// Σ′

and for any specifications SP1, SP2 and SP such that Σk = Sig[SPk] for k ∈ {1, 2} and Σ = Sig[SP] we have

(SP1 ? θ1 ∪ SP2 ? θ2) !H ((ϕk; θk), SP) |= (SP1 !H (ϕ1, SP)) ? θ1 ∪ (SP2 !H (ϕ2, SP)) ? θ2 (24)

if (ϕ1 | SP1) |=| (ϕ2 | SP2).

Proof. Let M′ ∈ Mod[(SP1 ? θ1 ∪ SP2 ? θ2) !H ((ϕk; θk), SP)]. Let us employ the following notations:
M1 = M′�θ1 , M2 = M′�θ2 , and M = M′�ϕk;θk . We have to show that Mk ∈ Mod[SPk !H (ϕk, SP)] for each
k ∈ {1, 2}.

By the hypothesis there exists (η : M0 → M) ∈ H such that M0 ∈ Mod[SP] and for any N′ ∈ Mod[SP1 ?

θ1 ∪ SP2 ? θ2] and h : M0 → N′�ϕk;θk there exists an unique h′ : M′ → N′ such that η; h�ϕk;θk = h.
Let us fix k ∈ {1, 2}. For any homomorphism hk : M0 → Nk�ϕk with Nk ∈ Mod[SPk] we show that

there exists an unique homomorphism h′k : Mk → Nk such that η; h′k�ϕk = hk. For showing this we let { j} =

{1, 2} \ {k}. From the condition of our equivalence, i.e. that ϕ1 | SP1 |=| ϕ2 | SP2, there exists N j ∈ Mod[SP j]
such that Nk�ϕk = N j�ϕ j . Let N′ be the amalgamation of Nk and N j; evidently N′ ∈ Mod[SP1?θ1 ∪ SP2?θ2].
We let h′ : M′ → N′ be the unique homomorphism such that η; h′�ϕk;θk = hk.

The existence of h′k : Mk → Nk such that η; h′k�ϕk = hk is given by defining h′k = h′�θk . For showing the
uniqueness of h′k let us we consider fk : Mk → Nk such that η; fk�ϕk = hk. Let f be the amalgamation of fk
and h′�θ j . Since η; f �ϕk;θk = η; fk�ϕk = hk, by the uniqueness part of the universal property of M′ we have
that f = h′, hence fk = h′�θk = h′k.

Proposition 4.8. Assume the institution is semi-exact. For any pushout of signatures as below

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2 θ2

// Σ′

23

and for any specifications SP1 and SP2 such that Σk = Sig[SPk] for k ∈ {1, 2} we have

(SP1 ! ϕ1) ? θ1 ∪ (SP2 ! ϕ2) ? θ2 |= (SP1 ? θ1 ∪ SP2 ? θ2) ! (ϕk; θk) (25)

(SP1 ? θ1 ∪ SP2 ? θ2) ! (ϕk; θk) |=| (SP1 ! ϕ1) ? θ1 ∪ (SP2 ! ϕ2) ? θ2 if (ϕ1 | SP1) |=| (ϕ2 | SP2).(26)

Proof.
(25): Let M′ ∈ Mod[(SP1 ! ϕ1) ? θ1 ∪ (SP2 ! ϕ2) ? θ2]. For each k ∈ {1, 2} let Mk denote M′�θk and let
M denote M′�ϕk;θk . We have that each Mk, k ∈ {1, 2}, is strongly persistently ϕk-free and we show that M′

is strongly persistently (ϕk; θk)-free. For this let us consider any homomorphism h : M → N′�ϕk;θk for any
N′ ∈ Mod[SP1 ? θ1 ∪ SP2 ? θ2]. Since from the hypothesis each Mk is strongly persistently ϕk-free we have
that there exists hk : Mk → N′�θk such that hk�ϕk = h. Let h′ : M′ → N′ be the amalgamation of h1 and h2.
Evidently h′�ϕk;θk = h.

For the uniqueness part, let us consider another homomorphism f ′ : M′ → N′ such that f ′�ϕk;θk = h.
This implies that f ′�θk�ϕk = h. By the uniqueness part of the universal properties of each Mk, we have that
f ′�θk = hk, and from this by the uniqueness of amalgamation of homomorphisms we obtain that f ′ = h′.
(26): From (25) and the instance of (24) of Proposition 4.7 above obtained for the class H of model
homomorphisms consisting of the identities and SP consisting of an empty presentation (Σ, ∅).

Corollary 4.3. In any semi-exact institution in which the intersection-union squares of signatures are
pushouts we have that for any specifications SP1 and SP2 and for Σ = Sig[SP1] ∩ Sig[SP2]

(SP1 ! Σ) ∪ (SP2 ! Σ) |= (SP1 ∪ SP2) ! Σ and (27)

(SP1 ∪ SP2) ! Σ |=| (SP1 ! Σ) ∪ (SP2 ! Σ) if (Σ | SP1) |=| (Σ | SP2). (28)

Example 4.3. Let

mod* TRIV { [Elt] }

According to Corollary 4.3 we have the equivalence TUPLES |=| (PAIRS ∪ TRIPLES) of the specifications
below:

mod! PAIRS {

protecting(TRIV)

[Pairs]

op < , > : Elt Elt -> Pairs

ops p1 p2 : Pairs -> Elt

vars E1 E2 : Elt

eq p1(<E1,E2>) = E1 .

eq p2(<E1,E2>) = E2 .

}

mod! TRIPLES {

protecting(TRIV)

[Triples]

op < , , > : Elt Elt Elt -> Triples

ops p1 p2 p3 : Triples -> Elt

vars E1 E2 E3 : Elt

eq p1(<E1,E2,E3>) = E1 .

eq p2(<E1,E2,E3>) = E2 .

eq p3(<E1,E2,E3>) = E3 .

}

mod! TUPLES {

protecting(TRIV)

[Pairs Triples]

op < , > : Elt Elt -> Pairs

op < , , > : Elt Elt Elt -> Triples

ops p1 p2 : Pairs -> Elt

ops p1 p2 p3 : Triples -> Elt

vars E1 E2 E3 : Elt

eq p1(<E1,E2>) = E1 .

eq p2(<E1,E2>) = E2 .

eq p1(<E1,E2,E3>) = E1 .

eq p2(<E1,E2,E3>) = E2 .

eq p3(<E1,E2,E3>) = E3 .

}

24

Proposition 4.9. If the institution is semi-exact, then for any pushout of signatures

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2 θ2

// Σ′

and any specification SP′ such that Sig[SP′] = Σ′ we have that

(θ1 | SP′) ! ϕ1 |= θ1 | (SP′ ! θ2). (29)

Proof.
(29): Let M1 ∈ Mod[(θ1 | SP′) ! ϕ1]. Then there exists M′ ∈ Mod[SP′] such that M1 = M′�θ1 . It would
be sufficient if we showed that M′ ∈ Mod[SP′ ! θ2]. For this we consider any homomorphism h2 : M2 =

M′�θ2 → N′�θ2 for some N′ ∈ Mod[SP′]. We have to show that there exists an unique homomorphism
h′ : M′ → N′ expanding h2. Since M1 ∈ Mod[(θ1 | SP′) ! ϕ1] there exists an unique homomorphism
h1 : M1 → N′�θ1 expanding h2�ϕ2 . By semi-exactness we define h′ : M′ → N′ as h1 ⊗ h2, i.e. the (unique)
amalgamation of h1 and h2. The uniqueness of h′ is a consequence of the uniqueness of the amalgamation
and of the uniqueness of the expansion of h2�ϕ2 to h1.

5. On parameterized specification

Pushout-style parameterization originates from work on Clear [7] and constitutes the basis of parameter-
ized specification for the whole OBJ family of languages (i.e. OBJ3 [20], CafeOBJ [13], etc.) but also for
ACT TWO [15] and other languages. In this section we develop an institution-independent semantics for
pushout-style parameterization that refines the existing one by considering the possible sharing between the
body of the parameterized module and the instance of the parameter. It is quite straightforward to note that
this consideration fits most realistically and pragmatically the actual practice of parameterized specification
and programming; in this section we provide some simple and natural examples supporting this claim. Our
approach to (pushout-style) parameterization owes crucially to the use of inclusion systems.

This section is structured as follows:

1. We define the concept of parameterized module and of pushout-style instantiation of parameters.

2. We discuss multiple parameters and their simultaneous (parallel) instantiation as a special case of
single parameter instantiation.

3. We introduce sequential (serial) instantiation of multiple parameters and prove a theorem giving a
set of sufficient abstract conditions for the isomorphism between the simultaneous and the sequential
instantiation of parameters.

5.1. Single parameters

Definition 5.1 (Parameterized Specification). A parameterized specification, denoted SP(P), consists of a
specification morphism P→ SP such that its underlying signature morphism is an inclusion Sig[P] ⊆ Sig[SP].
Then P is called the parameter of the parameterized specification and SP the body of the parameterized
specification.

25

In practice, the parameter P is an (isomorphic) renaming of a specification P0 such that Sig[P0] and Sig[P]
are disjoint. If we denote by p the corresponding isomorphism Sig[P0]→ Sig[P], then of course P = P0 ? p.
The readers familiar with the OBJ family of languages may find that our SP(P) corresponds there to the
SP(p :: P0). The reason for such isomorphic renamings is that while usually we specify P0, we also
need to make sure the parameter does not share with other parts of the our specifications, such as other
parameters or specifications used for instantiations. A practical way to achieve this, which is realized in
some implementations of actual specification languages, is to rename the entities of P0 by qualifying them
by P. For example a sort s of P0 would appear in P as s.P.

In the literature (e.g. [27]) parameterized specifications are often defined just as specification morphisms
P → SP. We think that this is much too general and does not capture precisely enough the realities of
parameterized specifications, our additional condition that Sig[P] ⊆ Sig[SP] filling this conceptual gap.
Below we will see that one of the consequences of our inclusion systems based approach is the possibility to
consider sharing in a rather natural and clean way.

Example 5.1. In the following parameterized specification SG^ of semigroups ‘with powers’, the parameter
consists of the the renaming of the specification SG of semigroups by S. In the CafeOBJ notation this is
denoted (S :: SG).

mod* SG {

[Elt]

op + : Elt Elt -> Elt { assoc }

}

mod! PNAT {

[PNat]

op 0 : -> PNat

op s : PNat -> PNat

}

mod! PNAT+ {

protecting(PNAT)

op + : PNat PNat -> PNat

vars M N : PNat

eq M + 0 = M .

eq M + s(N) = s(M + N) .

}

mod* SG^ (S :: SG) {

protecting(PNAT)

op ^ : Elt PNat -> Elt

eq E:Elt ^ s(N:PNat) = E + (E ^ N) .

}

In the parameterized specification SG^, the sort of SG ? S is Elt.S. In this example the specification SG^

is defined as (SG ? S) ∪ PNAT ∪ (Σ′, E′) where Σ′ is Sig[SG ? S] ∪ Sig[PNAT] plus the operation ^ and E′

consists of the only equation specified by SG^.

Definition 5.2 (Instantiation of Parameters). Let us consider a parameterized specification SP(P). Given
any specification morphism v : P → SP1 such that Sig[P] and Sig[SP1] are disjoint, the instance of the

26

parameterized specification SP(P) by v, denoted SP(P ⇐ v), is defined as a pushout of specifications as
below

(Sig[P] ∪ (Sig[SP] ∩ Sig[SP1]), ∅) ⊆ //

v+id
��

SP

v1

��
SP1 i

// SP(P⇐ v)

where

– id is the inclusion Sig[SP] ∩ Sig[SP1] ⊆ Sig[SP1], and

– v + id is the unique signature morphism ‘extending’ both v and id by the coproduct property of the
disjoint union Sig[P] ∪ (Sig[SP] ∩ Sig[SP1]) (see Corollary 2.1 and Proposition 2.1).

Note that the instances of parameterized specifications are unique only up to isomorphisms. Also the
pushout above takes into account the possible sharing between the body SP of the parameterized module and
the instance SP1 of the parameter. In practice, since the parameters are qualified by renamings (e.g. SG ? S)
the condition that Sig[P] and Sig[SP1] are disjoint is naturally fulfilled, which means there is no need to
consider the more general case with sharing between P and SP1 that may lead to technical complications
(such as conditions on v).

The lifting co-limit result of Proposition 3.3 gives the following two-steps characterization for instances
of parameterized specifications.

Corollary 5.1 (Instantiation of Parameters). SP(P⇐ v) of Definition 5.2 may be obtained as follows:

1. We consider a pushout square of signature morphisms:

Sig[P] ∪ (Sig[SP] ∩ Sig[SP1]) ⊆ //

v+id
��

Sig[SP]

v1

��
Sig[SP1]

i
// Σ′1

2. We define

SP(P⇐ v) = (SP ? v1) ∪ (SP1 ? i).

In the actual situations when P is the renaming via an isomorphism p of another specification P0 we
specify a specification morphism v0 : P0 → SP1, usually called view in the literature. In this case of course
the specification morphism v above is just p−1; v0 and the result SP(P ⇐ v) of the instantiation may be
denoted by SP(p ⇐ v0), a convention that is used by the OBJ family of languages. In most situations we
may choose the result of the instantiation such that the underlying signature morphism of i is an inclusion;
the explanation for this is given by Proposition 5.2 below.

Example 5.2. The multiplication of natural numbers may be specified as follows by using an instantiation
of SG^ by the signature morphism pnat-as-sg.

27

view pnat-as-sg from SG to PNAT+ {

sort Elt -> PNat,

op + -> +

}

mod* PNAT* {

protecting(SG^ (S <= pnat-as-sg) * {op ^ -> * })

eq M:PNat * 0 = 0 .

}

Then SG^(S⇐ pnat-as-sig) is obtained by the pushout of specification shown below:

SG

pnat-as-sg

��

(Sig[SG ? S] ∪ Sig[PNAT], ∅) ⊆ //

(S−1;pnat-as-sg)+id

��

SG^

��
PNAT+ PNAT+

⊆
// SG^(S⇐ pnat-as-sg)

Now we may define a specification morphism from SG to PNAT* that maps + to * , called pnat*-as-sg.
This requires the proof of the associativity of multiplication of natural numbers as inductive property. We
skip this here. The following defines the power operation on the natural numbers.

mod* PNAT^ {

protecting(SG^ (S <= pnat*-as-sg))

eq M:PNat ^ 0 = s 0 .

}

Proposition 2.3 helps with providing the following alternative definition (Proposition 5.2 below) of
instantiation of parameters that compared to Definition 5.2 has the disadvantage of being less intuitive but has
the advantage of being technically more convenient in some situations. The additional technical condition
given by Definition 2.10 helps with narrowing the class of possible isomorphic results of the instantiation.
This condition holds quite naturally for certain classes of signature morphisms in many actual institutions
through the pattern shown in the proof of the result below.

Proposition 5.1 (Free Extensions of MSA Signature Endo-Morphisms). In MSA every signature morphism
ϕ : (S , F)→ (S , F) strongly admits free extensions ϕ′ along any inclusion of signatures (S , F) ⊆ (S ′, F′).

Proof. Let us consider a fixed MSA signature Σ0 = (S 0, F0).
At the level of the sort symbols, the free extension ϕ′st : S ′ → S ′ of ϕst along S ⊆ S ′ is given by Fact 2.2:

ϕ′st(s′) =

ϕst(s′) when s′ ∈ S ,
s′ otherwise.

28

For each (w1, s1) ∈ S ′∗ × S ′, let us define the following three disjoint unions of sets:

⊎
ϕst(ws)=w1 s1

Fw→s =

∅ when (w1, s1) < S ∗ × S ,
{(σ,ws,Σ0) | σ ∈ Fw→s, ϕ

st(ws) = w1s1}

when (w1, s1) ∈ S ∗ × S and ϕst(w1s1) , w1s1,

{(σ,ws,Σ0) | σ ∈ Fw→s, ϕ
st(ws) = w1s1, ws , w1s1} ∪ Fw1→s1

when (w1, s1) ∈ S ∗ × S and ϕst(w1s1) = w1s1⊎
ws=w1 s1

Fw→s =

{
∅ when (w1, s1) < S ∗ × S ,
Fw1→s1 when (w1, s1) ∈ S ∗ × S

⊎
ϕ′st(w′s′)=w1 s1

F′w′→s′ =

{(σ,w′s′,Σ0) | σ ∈ F′w′→s′ , ϕ

′st(w′s′) = w1s1}

when ϕ′st(w1s1) , w1s1,

{(σ,w′s′,Σ0) | σ ∈ F′w′→s′ , ϕ
′st(w′s′) = w1s1, w′s′ , w1s1} ∪ F′w1→s1

when ϕ′st(w1s1) = w1s1.

Note that
⊎
ϕst(ws)=w1 s1 Fw→s ⊆

⊎
ϕ′st(w′s′)=w1 s1 F′w′→s′ .

We define the function θw1→s1 :
⊎
ϕst(ws)=w1 s1 Fw→s →

⊎
ws=w1 s1 Fw→s by

– θw1→s1 = ∅, i.e. the empty function, when (w1, s1) < S ∗ × S , and

– θw1→s1(σ[,ws,Σ0]) = ϕ
op
w→s(σ) when (w1, s1) ∈ S ∗ × S .

Let us check that the condition of Fact 2.2 holds, namely that
⊎

ws=w1 s1 Fw→s and
⊎
ϕ′st(w′s′)=w1 s1 F′w′→s′ \⊎

ϕst(ws)=w1 s1 Fw→s are disjoint, or equivalently that
⊎

ws=w1 s1 Fw→s ∩
⊎
ϕ′st(w′s′)=w1 s1 F′w′→s′ is a subset of⊎

ϕst(ws)=w1 s1 Fw→s. If σ ∈
⊎

ws=w1 s1 Fw→s ∩
⊎
ϕ′st(w′s′)=w1 s1 F′w′→s′ then (w1, s1) ∈ S ∗ × S and ϕ′st(w1s1) =

w1s1. We conclude that ϕst(w1s1) = w1s1, and therefore σ ∈
⊎
ϕst(ws)=w1 s1 Fw→s.

Hence we consider the following free extension in Set given by Fact 2.2:⊎
ϕst(ws)=w1 s1 Fw→s

⊆ //

θw1→s1
��

⊎
ϕ′st(w′s′)=w1 s1 F′w′→s′

θ′w1→s1
��⊎

ws=w1 s1 Fw→s ⊆
// (F′1)w1→s1

Note that according to Fact 2.2

(F′1)w1→s1 =

 ⊎
ws=w1 s1

Fw→s

 ∪
 ⊎
ϕ′st(w′s′)=w1 s1

F′w′→s′ \
⊎

ϕst(ws)=w1 s1

Fw→s

 . (30)

For any w′′ ∈ S ′∗ and s′′ ∈ S ′ we define ϕ′w′′→s′′ as the composition between the canonical injection
F′w′′→s′′ →

⊎
ϕ′st(w′s′)=ϕ′st(w′′s′′) F′w′→s′ and θ′

ϕ′st(w′′)→ϕ′st(s′′).
We have thus obtained the inclusion of the signatures (S , F) ⊆ (S ′, F′1) and the morphism ϕ′ : (S ′, F′)→

(S ′, F′1). Our construction has followed the general construction of pushouts of MSA signature morphisms
from pushouts of functions (see [30, 12]); therefore, the square depicted below is a pushout square.

(S , F) ⊆ //

ϕ

��

(S ′, F′)

ϕ′

��
(S , F)

⊆
// (S ′, F′1)

29

In order to show that ϕ′ is a free extension of ϕ let us consider a signature (S , F) such that for any sort
or operation symbol x in (S , F) ∩ (S , F) we have that ϕ(x) = x. Since ϕ′st is a free extension of ϕst we
immediately obtain that ϕ′st(s) = s, for every s ∈ S ∩ S . Let us now consider σ ∈ F′w→s ∩ (F)w→s for some
(w, s) ∈ (S ′ ∩ S)∗ × (S ′ ∩ S). We have two situations:

1. σ ∈ Fw→s: in this case we have that ϕ′op
w→s(σ) = ϕ

op
w→s(σ); since σ belongs (S , F) ∩ (S , F) we also

have that ϕop
w→s(σ) = σ hence ϕ′op

w→s(σ) = σ.

2. σ < Fw→s: in this case since (w, s) ∈ (S ′ ∩ S)∗ × (S ′ ∩ S) we have that ϕ′st(ws) = ws; hence
the canonical injection F′w→s →

⊎
ϕ′st(w′s′)=ws F′w′→s′ is inclusion and also by Fact 2.2 we have that

θ′w→s(σ) = σ. Consequently ϕ′op
w→s(σ) = σ.

In order to complete our argument it remains to show that

(S 0, F0) ∩ (S ′, F′1) ⊆ (S 0, F0) ∩ (S ′, F′).

At the level of the sort symbols the above relation is trivial. Let x ∈ (F0)w1→s1 ∩ (F′1)w1→s1 for some fixed
(w1, s1) ∈ (S ′ ∩ S 0)∗ × (S ′ ∩ S 0). Let us recall the value of (F′1)w1→s1 given by (30). By set theoretic
arguments, since x is in Σ0, it cannot be of the form (σ,ws,Σ0). It follows that x ∈ F′w1→s1

.

Proposition 5.2. The instantiation of a parameterized specification as defined by Definition 5.2 may be
obtained by a pushout of specification morphisms as follows:

P ∪ SP1
⊆ //

v+1Sig[SP1]

��

SP ∪ SP1

v′

��
SP1 i

// SP(P⇐ v)

Moreover if in addition

1. the inclusion system for the signatures is epic, and

2. each idempotent-by-extension signature morphism admits free extensions along any signature inclusion
(with the same domain)

then we may choose SP(P⇐ v) such that Sig[SP1] ⊆ Sig[SP(P⇐ v)].

Proof. For the first part of the proposition we apply Proposition 2.3 for the diagram below of signature
morphisms.

Sig[P] ∪ (Sig[SP] ∩ Sig[SP1]) ⊆

j
//

⊆

��

Sig[P ∪ SP1]

⊆

��

v+1 // Sig[SP1]

i
��

Sig[SP]
j1
⊆

// Sig[SP ∪ SP1]
v′
// Sig[SP(P⇐ v)]

The conclusion for this part follows now by the calculation below that uses some of the equations of
Proposition 4.1, Fact 4.1 and Proposition 4.2.

(SP1 ? i) ∪ ((SP ∪ SP1) ? v1)

|=| (SP1 ? i) ∪ SP ? ((Sig[SP] ⊆ Sig[SP ∪ SP1]); v′) ∪ SP1 ? ((Sig[SP1] ⊆ Sig[SP ∪ SP1]); v′)

|=| (SP1 ? i) ∪ (SP ? (j1; v′)) ∪ SP1 ? ((Sig[SP1] ⊆ Sig[P ∪ SP1]); (Sig[P ∪ SP1] ⊆ Sig[SP ∪ SP1]); v′)

|=| (SP1 ? i) ∪ (SP ? (j1; v′)) ∪ (SP1 ? i)

|=| (SP1 ? i) ∪ (SP ? (j1; v′)).

30

For the second part of the proposition we apply the first part of Proposition 2.4 for Sig[P] ∪ Sig[SP1] in
the role of A and Sig[SP] ∪ Sig[SP1] in the role of B.

Sig[P ∪ SP1]

⊆

��

v+1 // Sig[SP1]

i⊆

��

⊆ // Sig[P ∪ SP1]

⊆

��
Sig[SP ∪ SP1]

v′
// Sig[SP(P⇐ v)]

⊆
// Σ′1

The role of the arrow f of Proposition 2.4 is played by the composition (v + 1Sig[SP1]); (Sig[SP1] ⊆ Sig[P1] ∪
Sig[SP1]); it is easy to see that f is idempotent-by-extension and that e f = v + 1Sig[SP1] (because this is a
retract and from [14] we know that each retract is an abstract surjection). By the assumption on the existence
of free extensions we get the g of Proposition 2.4 and by the first part of Proposition 2.4 we may define v′ as
eg.

When the inclusion system for the signatures is epic and each idempotent-by-extension signature
morphism admits free extension we shall always implicitly assume that SP(P⇐ v) is chosen such that

Sig[SP1] ⊆ Sig[SP(P⇐ v)].

Example 5.3. MSA fulfils the additional conditions of Proposition 5.2, the conditions on the existence of
free extensions being a special case of Proposition 5.1. Hence for the structured specifications over MSA
we may use the alternative definition of parameter instantiation given by Proposition 5.2. For example,
the instantiation SG^(S⇐ pnat-as-sig) of Example 5.2 may be obtained by the following pushout of
specifications:

(SG ? S) ∪ (PNAT+) ⊆ //

(S−1;pnat-as-sg)+1PNAT+

��

(SG^) ∪ (PNAT+)

��
PNAT+

⊆
// SG^(S⇐ pnat-as-sg)

5.2. Multiple parameters

Specification modules may sometimes contain more than one parameter as in the example below.

Example 5.4. This is an example of a parameterized specification of the mathematical concept of semigroup
homomorphism that uses two semigroup parameters, one for the source, and the other for the target of the
homomorphism.

mod* SGH (S1 :: SG, S2 :: SG) {

op h : Elt.S1 -> Elt.S2

vars X Y : Elt.S1

eq h(X + Y) = h(X) + h(Y) .

}

Here we use two parameters based upon the same specification, namely SG. In general, this need not be the
case.

31

The general condition of multiple parameters is that any two parameters of the same parameterized
specification should be disjoint.

Definition 5.3 (Multiple Parameters). A multiple parameterized specification is a specification with several
parameters such that for any parameters P1 and P2 we have that Sig[P1] and Sig[P2] are disjoint.

Example 5.5. This condition is easily guaranteed in the language CafeOBJ by the qualification system
corresponding to the parameters. This can be noticed in SGH where the sorts of S1, resp. S2, are denoted by
Elt.S1, resp. Elt.S2.

Proposition 5.3. For any multiple parameterized specification SP(P1, . . . , Pn) we have that SP(P1∪· · ·∪Pn)
is a (single) parameterized specification.

Proof. It is enough to do this for n = 2, since this can be immediately extended to greater n by induction.
Because each Sig[Pi] ⊆ Sig[P1∪P2] we have that Sig[P1∪P2] = Sig[P1]∪Sig[P2] ⊆ Sig[SP]. Moreover

for each M ∈ Mod[SP] we have that M�Sig[P1∪P2]�Sig[Pi] = M�Sig[Pi] ∈ Mod[Pi]. Hence M�Sig[P1∪P2] ∈

Mod[P1 ∪ P2] which shows that the signature inclusion Sig[P1 ∪ P2] ⊆ Sig[SP] is a specification morphism
P1 ∪ P2 → SP.

The definition of the simultaneous instantiation of multiple parameters is just a special case of the
definition Definition 5.2 of the instantiation of a single parameter as follows. For the sake of simplicity of
the presentation we consider the simplest case, that of two parameters, the general case getting the same
treatment.

Corollary 5.2 (Simultaneous Instantiation of Parameters). Let us consider a multiple parameterized speci-
fication SP(P1, P2) with two parameters P1 and P2. Then for any specification morphisms v1 : P1 → SP1
and v2 : P2 → SP2 such that for all i, j ∈ {1, 2} Sig[Pi] and Sig[SP j] are disjoint, we have that P1 ∪ P2 and
SP1 ∪ SP2 are disjoint.

Consequently, since the condition of Definition 5.2 is fulfilled, the instance of SP(P1, P2) by v1 and v2 is
defined as SP(P1 ∪ P2 ⇐ v1 + v2) where v1 + v2 is the unique specification morphism that makes the diagram
below commute

P1

v1

��

⊆ // P1 ∪ P2

v1+v2

��

P2
⊇oo

v2

��
SP1 ⊆

// SP1 ∪ SP2 SP2⊇
oo

Proof. That Sig[P1 ∪ P2] and Sig[SP1 ∪ SP2] are disjoint follows from Proposition 2.2 (applied twice).
Because Sig[P1] and Sig[P2] are disjoint, by Corollary 2.1 we have that Sig[P1 ∪ P2] is their coproduct.

Therefore there exists an unique signature morphism (v1 + v2) : Sig[P1 ∪ P2] → Sig[SP1 ∪ SP2] such that
vi; (Sig[SPi] ⊆ Sig[SP1 ∪ SP2]) = (Sig[Pi] ⊆ Sig[P1 ∪ P2]); (v1 + v2). Moreover by (10) and (6) we have that

(P1 ∪ P2) ? (v1 + v2) = P1 ? v1 ∪ P2 ? v2

and since SPi |= Pi ? vi (because vi are specification morphisms) we obtain SP1 ∪ SP2 |= (P1 ∪ P2)? (v1 + v2)
which shows that v1 + v2 is indeed a specification morphism P1 ∪ P2 → SP1 ∪ SP2.

Example 5.6. We can obtain the powers of any natural number by instantiating the semigroup homomorphism
specification as follows:

32

mod* PNATn {

protecting(PNAT)

op n : -> PNat

}

mod! POWERofN {

protecting(PNATn)

protecting(SG-HOM(S1 <= view to PNAT+ { op + -> + },

S2 <= view to PNAT* { op + -> * }))

eq h(0) = s 0 .

eq h(s 0) = n .

}

The result of the instantiation imported by POWERofN is explained by Corollary 5.2, with the corresponding
pushout diagram being as follows:

(SG ? S1) ∪ (SG ? S2) ⊆ //

S1−1;v1+S2−1;v2
��

SGH

��
PNAT*

⊆ // SGH((S1 ∪ S2)⇐ (v1 + v2))

5.3. Sequential instantiation of parameters
Example 5.7. The result of POWERofN may be obtained in a different way, namely by instantiating the
parameters S1 and S2 one by one as follows.

mod! POWERofN {

protecting(PNATn)

protecting(SG-HOM(S1 <= view to PNAT+ { op + -> + })

(S2 <= view to PNAT* { op + -> * }))

eq h(0) = s 0 .

eq h(s 0) = n .

}

This means that

1. we instantiate the first parameter S1 and obtain a parameterized module SGH(S1⇐ v1)(S2) (where v1
is the view corresponding to S1), and

2. we instantiate S2 and obtain the final result SGH(S1⇐ v1)(S2⇐ v2) (where v2 is the view correspond-
ing to S2).

This process can be seen in the diagram below.

SG ? S2
⊆ //

⊆

��

(SG ? S2 ∪ PNAT+)

⊆

��

(S2−1;v2)+id // PNAT*

⊆

��

SG ? S1
⊆ //

S1−1;v1
��

SGH(S1, S2)

v′1))
PNAT+

⊆
// SGH(S1⇐ v1)(S2)

v′2 // SGH(S1⇐ v1)(S2⇐ v2)

33

Note that as the result of the first instantiation step PNAT+ has to be shared with the instance of the second
parameter, hence according to Definition 5.2 the specification SG ? S2 ∪ PNAT+ appears in the pushout of the
second instantiation.

Another point is that Sig[SG?S2] is included in Sig[SGH(S1⇐ v1)(S2)] hence (S2::SG) can be regarded
as a parameter for SGH(S1⇐ v1)(S2) in the sense of Definition 5.2.

The following is the general procedure of sequential instantiation of parameters. Given the data of
Corollary 5.2 we instantiate the parameters one by one by treating them as single separate parameters
(Definition 5.2). Because in this case it is technically more convenient, let us use the variant of parameter
instantiation given by Proposition 5.2. The process of sequential instantiation of parameters can be visualized
in the diagram below:

P1 ∪ SP1

i1⊆

��

v1+1Sig[SP1] // SP1

⊆i′1
��

P2
⊆ //

i2⊆

��

SP ∪ SP1
v′1 // SP(P1 ⇐ v1)

⊆i′2
��

P2 ∪ SP2

v2+1Sig[SP2]

��

⊆

i3
// SP(P1 ⇐ v1) ∪ SP2

v′2
��

SP2
i′3
⊆

// SP(P1 ⇐ v1)(P2 ⇐ v2)

(31)

The correctness of the second instantiation step relies upon the fact that P2 is indeed a parameter for the
result SP(P1 ⇐ v1) of the first instantiation step. This follows immediately from the result below.

Proposition 5.4. In addition to the technical hypotheses underlying the sequential instantiation defined
above let us also assume that

– there exists a signature 0 initial both in Sig and in the subcategory I of the abstract inclusions,

– the inclusion system is epic and distributive, and

– each idempotent-by-extension signature morphism admits free extensions.

Then for the diagram of sequential instantiation (31) the signature morphism (Sig[P2] ⊆ Sig[SP ∪ SP1]); v′1
is an inclusion.

Proof. We apply Proposition 2.4 for Sig[P1 ∪ SP1] in the role of A, Sig[SP ∪ SP1] in the role of B, and
Sig[P2] in the role of the preserved object. By Proposition 2.2 we have that Sig[P2] and Sig[P1 ∪ SP1]
are disjoint and by the assumption that there exists a signature 0 initial both in Sig and in the subcategory
of the abstract inclusions, it is easy to see (by antisymmetry) that Sig[P2] ∩ (Sig[P1 ∪ SP1]) = 0, hence
Sig[P2] ∩ (Sig[P1 ∪ SP1]) ⊆ Sig[SP1]. It follows that

(Sig[P2] ∩ (Sig[P1 ∪ SP1]) ⊆ Sig[SP ∪ SP1]); (v1 + 1Sig[SP1])

= (Sig[P2] ∩ (Sig[P1 ∪ SP1]) ⊆ Sig[SP1]); (Sig[SP1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1])

= (Sig[P2] ∩ (Sig[P1 ∪ SP1]) ⊆ Sig[SP1]); 1Sig[SP1]

= (Sig[P2] ∩ (Sig[P1 ∪ SP1]) ⊆ Sig[SP1]).

This together with the condition on the existence of free extensions allows us to apply the second part of
Proposition 2.4 in order to get that (Sig[P2] ⊆ Sig[SP ∪ SP1]); v′1 is an inclusion.

34

Note that the additional condition on the existence of the signature 0 holds naturally in the examples, in
the case of MSA the signature 0 being just the empty signature.

Theorem 5.1. Let SP(P1 ∪ P2 ⇐ v1 + v2) and SP(P1 ⇐ v1)(P2 ⇐ v2) be two instances of a multiple
parameterized specification SP(P1, P2). Under the conditions of Proposition 5.4 the simultaneous and the
sequential instantiation of multiple parameters are isomorphic, provided that SP(P1 ⇐ v1) can be chosen
such that Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP ∪ SP1]. More precisely, there exists an isomorphism of
specifications such that the diagram below commutes

SP(P1 ∪ P2 ⇐ v1 + v2) � // SP(P1 ⇐ v1)(P2 ⇐ v2)

SP1 ∪ SP2

⊆

ee

⊆

99

Proof. Consider the instantiation diagram (31) above. Let us first show that v′1; i′2; v′2 and i′3 are compatible.
By the definition of compatibility this means showing that

(Sig[SP ∪ SP1] ∩ Sig[SP2] ⊆ Sig[SP ∪ SP1]); v′1; i′2; v′2 is an inclusion. (32)

This is done in two steps. First we show that

(Sig[SP ∪ SP1] ∩ Sig[SP2] ⊆ Sig[SP ∪ SP1]); v′1 is an inclusion. (33)

For this we apply (the second part of) Proposition 2.4 for the pushout square defining SP(P1 ⇐ v1). A
straightforward calculation shows that (Sig[SP ∪ SP1] ∩ Sig[SP2]) ∩ Sig[P1 ∪ SP1] = Sig[SP1] ∩ Sig[SP2].
We also have that

(Sig[SP1] ∩ Sig[SP2] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1])

= (Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP1]); (Sig[SP1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1])

= (Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP1]); 1Sig[SP1] = Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP1]

which allows us to apply Proposition 2.4 for obtaining (33).
Now the conclusion (32) is obtained by applying Proposition 2.4 to the pushout square defining the instantia-
tion SP(P1 ⇐ v1)(P2 ⇐ v2). Since (Sig[SP ∪ SP1] ∩ Sig[SP2]) ∩ Sig[P2 ∪ SP2] = Sig[SP ∪ SP1] ∩ Sig[SP2]
we can apply Proposition 2.4 as follows

(Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2])

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2]); (Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2])

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2]); 1Sig[SP2]

= Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2].

The next step in our proof is to establish that

i′1; i′2; v′2 = (Sig[SP1] ⊆ Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]). (34)

This is achieved through the application of the second part of Proposition 2.4 to the pushout square defining
SP(P1 ⇐ v1)(P2 ⇐ v2) justified by noting that

Sig[SP1] ∩ Sig[P2 ∪ SP2] = Sig[SP1] ∩ Sig[SP2]

35

and by the following calculation

(Sig[SP1] ∩ Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2])

= (Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP2]); (Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2])

= (Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP2]); 1Sig[SP2]

= Sig[SP1] ∩ Sig[SP2] ⊆ Sig[SP2].

The relations (32) (giving the compatibility between v′1; i′2; v′2 and i′3) and (34) together with the fact that
Sig[SP2] ⊆ Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)] (giving the compatibility between i′1; i′2; v′2 and i′3) allow us to draw
the following square of specification morphisms:

P1 ∪ P2 ∪ SP1 ∪ SP2

v1+v2+1Sig[SP1∪SP2]

��

⊆

j
// SP ∪ SP1 ∪ SP2

(v′1;i′2;v′2)∨i′3
��

SP1 ∪ SP2
i=(i′1;i′2;v′2)∨i′3

⊆
// SP(P1 ⇐ v1)(P2 ⇐ v2)

The conclusion of our theorem follows once we have proved that this is a pushout square. Let us first show
that it is commutative. For this we use the pushout property of unions for Sig[P1 ∪ P2 ∪ SP1 ∪ SP2] which
means that it is enough to check the restriction of the commutativity property of the diagram to each of the
four components of this union as follows:

(Sig[P1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3)

= ((Sig[P1] ⊆ Sig[P1 ∪ SP1]); i1); v′1; i′2; v′2
= (Sig[P1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1]); i′1; i′2; v′2
= v1; i′1; i′2; v′2 = v1; (Sig[SP1] ⊆ Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]) (by (34))

= v1; (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); i = (Sig[P1] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); i.

(Sig[P2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3)

= (Sig[P2] ⊆ Sig[SP ∪ SP1]); (Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3)

= (Sig[P2] ⊆ Sig[SP ∪ SP1]); (v′1; i′2; v′2) = i2; i3; v′2 = i2; (v2 + 1Sig[SP2]); i′3 = v2; i′3
= (Sig[P2] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); i.

(Sig[SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3)

= (Sig[SP1] ⊆ Sig[SP ∪ SP1]); (Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3)

= (Sig[SP1] ⊆ Sig[SP ∪ SP1]); (v′1; i′2; v′2)

= (Sig[SP1] ⊆ Sig[P1 ∪ SP1]); ((Sig[P1 ∪ SP1] ⊆ Sig[SP ∪ SP1]); v′1); i′2; v′2
= (Sig[SP1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1]); i′1; i′2; v′2 = 1Sig[SP1]; i′1; i′2; v′2 = i′1; i′2; v′2
= (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); i = (Sig[SP1] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); i.

(Sig[SP2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3) = i′3 = (Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); i

= (Sig[SP2] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); i.

36

Now we show that this commutative square is a pushout. For this we apply Proposition 3.3. Thus at the first
stage we show that the underlying square of signature morphisms is a pushout. Let us consider signature
morphisms f : Sig[SP∪SP1∪SP2]→ Σ and g : Sig[SP1∪SP2]→ Σ such that j; f = (v1 +v2 +1Sig[SP1∪SP2]); g.
We have to show that there exists an unique signature morphism h : Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]→ Σ such
that

((v′1; i′2; v′2) ∨ i′3); h = f and i; h = g. (35)

Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]

v1+v2+1Sig[SP1∪SP2]

��

⊆

j
// Sig[SP ∪ SP1 ∪ SP2]

(v′1;i′2;v′2)∨i′3
��

f

��

Sig[SP1 ∪ SP2]

g //

i=(i′1;i′2;v′2)∨i′3
⊆

// Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]
h

))
Σ

Let us introduce the following notations:

– f1 = (Sig[SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f ,

– f2 = (Sig[SP2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f ,

– f0 = (Sig[SP] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f .

– g1 = (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); g, and

– g2 = (Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); g.

Note that j; f = (v1 + v2 + 1Sig[SP1∪SP2]); g implies that

f1 = g1 and f2 = g2. (36)

Since f0 and f1 are compatible let us we consider f0 ∨ f1 : Sig[SP ∪ SP1]→ Σ. Let us show that

i1; (f0 ∨ f1) = (v1 + 1Sig[SP1]); f1. (37)

By the pushout property of the union Sig[P1 ∪ SP1] it is enough to perform the following two calculations:

(Sig[P1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1]); f1 = v1; f1 = v1; g1 = v1; (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); g

= (Sig[P1] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); g

= (Sig[P1] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); j; f

= (Sig[P1] ⊆ Sig[SP ∪ SP1]); (f0 ∨ f1) = (Sig[P1] ⊆ Sig[P1 ∪ SP1]); i1; (f0 ∨ f1).

(Sig[SP1] ⊆ Sig[P1 ∪ SP1]); (v1 + 1Sig[SP1]); f1 = 1Sig[SP1]; f1 = f1
= (Sig[SP1] ⊆ Sig[SP1 ∪ SP]); (f0 ∨ f1) = (Sig[SP1] ⊆ Sig[P1 ∪ SP1]); i1; (f0 ∨ f1).

From (37) and the pushout property of the square defining SP(P1 ⇐ v1) there exists an unique morphism
q : Sig[SP(P1 ⇐ v1)]→ Σ such that v′1; q = f0 ∨ f1 and i′1; q = f1.

Now let us show that q and f2 are compatible. On the one hand we know from the hypotheses that
Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP ∪ SP1], hence Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP2] ∩ Sig[SP ∪

37

SP1]. On the other hand from (33) we have that Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP(P1 ⇐ v1)] hence
Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)]. Thus

Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] = Sig[SP2] ∩ Sig[SP ∪ SP1].

Based on this relation we have the following calculation showing the compatibility between f2 and q.

(Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP(P1 ⇐ v1)]); q

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP(P1 ⇐ v1)]); q

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1]); v′1; q

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1]); (f0 ∨ f1)

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2]); (Sig[SP2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f

= (Sig[SP2] ∩ Sig[SP ∪ SP1] ⊆ Sig[SP2]); f2 = (Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP2]); f2.

Therefore let q ∨ f2 : Sig[SP(P1 ⇐ v1) ∪ SP2]→ Σ.

Sig[P1 ∪ SP1]
i1⊆
��

v1+1Sig[SP1] // Sig[SP1]
⊆i′1 ��

f1

��

Sig[P2] ⊆ //

i2⊆
��

Sig[SP ∪ SP1]
v′1 // Sig[SP(P1 ⇐ v1)]

⊆i′2 ��

q

��

Sig[P2 ∪ SP2]
v2+1Sig[SP2]
��

⊆

i3
// Sig[SP(P1 ⇐ v1) ∪ SP2]

v′2��
q∨ f2

++Sig[SP2]
i′3
⊆

//

f2

66Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]
h

// Σ

Let us show that

i3; (q ∨ f2) = (v2 + 1Sig[SP2]); f2. (38)

By the pushout property of the union Sig[P2 ∪ SP2] for showing (38) it is enough to perform the following
calculations:

(Sig[P2] ⊆ Sig[P2 ∪ SP2]); i3; (q ∨ f2) = (Sig[P2] ⊆ Sig[SP ∪ SP1]); v′1; i′2; (q ∨ f2)

= (Sig[P2] ⊆ Sig[SP ∪ SP1]); v′1; q = (Sig[P2] ⊆ Sig[SP ∪ SP1]); (f0 ∨ f1)

= (Sig[P2] ⊆ Sig[SP]); (Sig[SP] ⊆ Sig[SP ∪ SP1]); (f0 ∨ f1) = (Sig[P2] ⊆ Sig[SP]); f0
= (Sig[P2] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); j; f

= (Sig[P2] ⊆ Sig[P1 ∪ P2 ∪ SP1 ∪ SP2]); (v1 + v2 + 1Sig[SP1∪SP2]); g

= v2; (Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); g = v2; g2 = v2; f2
= (Sig[P2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2]); f2.

(Sig[SP2] ⊆ Sig[P2 ∪ SP2]); i3; (q ∨ f2) = (Sig[SP2] ⊆ Sig[SP(P1 ⇐ v1) ∪ SP2]); (q ∨ f2)

= f2 = 1Sig[SP2]; f2 = (Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2]); f2.

38

Now from (38) and the pushout property of the square defining SP(P1 ⇐ v1)(P2 ⇐ v2) there exists an
unique h : Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)] → Σ such that v′2; h = q ∨ f2 and i′3; h = f2. Let us prove that h
satisfies the relations (35). For this we use the pushout properties of the unions Sig[SP1 ∪ SP2 ∪ SP] and
Sig[SP1 ∪ SP2], resp. Hence the proof of ((v′1; i′2; v′2) ∨ i′3); h = f is achieved through the following couple of
calculations:

(Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3); h = v′1; i′2; v′2; h = f0 ∨ f1
= (Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f

(Sig[SP2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); ((v′1; i′2; v′2) ∨ i′3); h = i′3; h = f2
= (Sig[SP2] ⊆ Sig[SP ∪ SP1 ∪ SP2]); f .

and the proof of i; h = g is achieved through the following couple of calculations:

(Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); i; h = (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); ((i′1; i′2; v′2) ∨ i′3); h

= i′1; i′2; v′2; h = f1 = g1 = (Sig[SP1] ⊆ Sig[SP1 ∪ SP2]); g

(Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); i; h = (Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); ((i′1; i′2; v′2) ∨ i′3); h

= i′3; h = f2 = g2 = (Sig[SP2] ⊆ Sig[SP1 ∪ SP2]); g.

For showing the uniqueness of h satisfying the relations (35) let us assume there exists another morphism
h′ : Sig[SP(P1 ⇐ v1)(P2 ⇐ v2)]→ Σ such that

((v′1; i′2; v′2) ∨ i′3); h′ = f and ((i′1; i′2; v′2) ∨ i′3); h′ = g.

By left composition of the first equation with Sig[SP ∪ SP1] ⊆ Sig[SP ∪ SP1 ∪ SP2] and with Sig[SP2] ⊆
Sig[SP ∪ SP1 ∪ SP2] we obtain

v′1; i′2; v′2; h′ = f0 ∨ f1 and i′3; h′ = f2.

Since v1 + 1Sig[SP1] is epi (see the proof of Proposition 5.2) and epis are stable under pushouts, it follows that
v′1 is also epi. This means

i′2; v′2; h′ = q and i′3; h′ = f2.

Since

(Sig[SP2] ⊆ Sig[SP(P1 ⇐ v1) ∪ SP2]); v′2
= (Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (Sig[P2 ∪ SP2] ⊆ Sig[SP(P1 ⇐ v1) ∪ SP2]); v′2
= (Sig[SP2] ⊆ Sig[P2 ∪ SP2]); (v2 + 1Sig[SP2]); i′3 = i′3

we obtain that

i′2; v′2; h′ = q and (Sig[SP2] ⊆ Sig[SP(P1 ⇐ v1) ∪ SP2]); v′2; h′ = f2.

By the uniqueness aspect of the pushout property of the union Sig[SP(P1 ⇐ v1) ∪ SP2] we further obtain
that v′2; h′ = q ∨ f2 which by the epi property of v′2 implies h′ = h.

39

In order to complete our proof that the square

P1 ∪ P2 ∪ SP1 ∪ SP2

v1+v2+1Sig[SP1∪SP2]

��

⊆

j
// SP ∪ SP1 ∪ SP2

(v′1;i′2;v′2)∨i′3
��

SP1 ∪ SP2
i=(i′1;i′2;v′2)∨i′3

⊆
// SP(P1 ⇐ v1)(P2 ⇐ v2)

is a pushout of specifications, according to the construction of pushouts of specifications given by Proposi-
tion 3.3 it remains to show that

SP(P1 ⇐ v1)(P2 ⇐ v2) |=| (SP ∪ SP1 ∪ SP2) ? ((v′1; i′2; v′2) ∨ i′3) ∪ (SP1 ∪ SP2) ? i. (39)

The proof of (39) consists of the following calculation that uses the rules (3), (4), and (5) of Proposition 4.1,
(6) of Fact 4.1, and (10) of Proposition 4.2:

SP(P1 ⇐ v1)(P2 ⇐ v2) |=| SP2 ? i′3 ∪ (SP(P1 ⇐ v1) ∪ SP2) ? v′2
|=| SP2 ? i′3 ∪ SP(P1 ⇐ v1) ? i′2 ? v′2 ∪ SP2 ? (Sig[SP2] ⊆ Sig[P2 ∪ SP2]) ? i3 ? v′2
|=| SP2 ? i′3 ∪ SP(P1 ⇐ v1) ? i′2 ? v′2 ∪ SP2 ? i′3
|=| SP2 ? i′3 ∪ SP(P1 ⇐ v1) ? i′2 ? v′2
|=| SP2 ? i′3 ∪ (SP1 ? i′1 ∪ SP ? Sig[SP ∪ SP1] ? v′1) ? i′2 ? v′2
|=| SP2 ? i′3 ∪ SP1 ? (i′1; i′2; v′2) ∪ SP ? Sig[SP ∪ SP1] ? (v′1; i′2; v′2)

(SP ∪ SP1 ∪ SP2) ? ((v′1; i′2; v′2) ∨ i′3) ∪ (SP1 ∪ SP2) ? i

|=| (SP ∪ SP1) ? (v′1; i′2; v′2) ∪ SP2 ? i′3 ∪ SP1 ? Sig[SP1 ∪ SP2] ? i ∪ SP2 ? Sig[SP1 ∪ SP2] ? i

|=| SP ? Sig[SP ∪ SP1] ? (v′1; i′2; v′2) ∪

SP1 ? Sig[SP ∪ SP1] ? (v′1; i′2; v′2) ∪ SP2 ? i′3 ∪ SP1 ? (i′1; i′2; v′2) ∪ SP2 ? i′3
|=| SP ? Sig[SP ∪ SP1] ? (v′1; i′2; v′2) ∪ SP1 ? (i′1; i′2; v′2) ∪ SP2 ? i′3 ∪ SP1 ? (i′1; i′2; v′2) ∪ SP2 ? i′3
|=| SP2 ? i′3 ∪ SP1 ? (i′1; i′2; v′2) ∪ SP ? Sig[SP ∪ SP1] ? (v′1; i′2; v′2).

Note that Theorem 5.1 may be formulated more generally for any finite number of parameters, and in
that case the proof would follow immediately from the current two parameters version by a simple induction.

The additional requirement that the result SP(P1 ⇐ v1) of the first instantiation is chosen such that

Sig[SP2] ∩ Sig[SP(P1 ⇐ v1)] ⊆ Sig[SP ∪ SP1]

is essential in the proof of Theorem 5.1. If we disregarded this condition we may find situations where the
isomorphism between the results of the two types of parameter instantiation may fail, as shown by the simple
example below.

Example 5.8. Let us consider the following parameterized specification written in the CafeOBJ language.

mod* ELT { [Elt] }

mod* SP(E1 :: ELT, E2 :: ELT) {

op a : -> Elt.E1

}

40

Given the fitting argument specifications

mod* SP1 {

[S]

}

view v1 from ELT to SP1 { sort Elt -> S }

mod* SP2 {

[S]

op a : -> S

}

view v2 from ELT to SP2 { sort Elt -> S }

by the simultaneous instantiation SP(E1 + E2⇐ v1 + v2) we may obtain a specification with the following
signature

[S]

ops a a’ : -> S

If we instantiate SP sequentially we may choose a result of SP(E1⇐ v1) with the signature

[Elt.E2 S]

op a : -> S

which breaks the above hypothesis. Continuing with the instantiation SP(E1⇐ v1)(E2⇐ v2) we may get
the signature

[S]

op a : -> S

which is not isomorphic with the one obtained through the simultaneous instantiation.

Note however that a proper choice of the instantiation SP(P1 ⇐ v1) can always be made when the
base institution strongly admits free extensions for idempotent-by-extension signature morphisms. In our
benchmark example MSA this condition is guaranteed by the Proposition 5.1.

Corollary 5.3. Let SP(P1, P2) be a multiple parameterized specification and vi : Pi → SPi, i ∈ {1, 2}, two
specification morphisms such that Sig[Pi] and Sig[SP j] are disjoint, for i, j ∈ {1, 2}. If in addition to the
hypotheses of Proposition 5.4 the base institution strongly admits free extensions for idempotent-by-extension
signature morphisms, then there exists an instantiation SP(P1 ⇐ v1) (of the first parameter) such that
any further instantiation SP(P1 ⇐ v1)(P2 ⇐ v2) (of the second parameter) is isomorphic with the results
SP(P1 + P2 ⇐ v1 + v2) of the simultaneous instantiation, making the diagram below commutative.

SP(P1 ∪ P2 ⇐ v1 + v2) � // SP(P1 ⇐ v1)(P2 ⇐ v2)

SP1 ∪ SP2

⊆

ee

⊆

99

41

6. Conclusions

In this paper we have extended the set of the primitive institution-independent building operators
for structuring specifications that is quite well established in the literature with new operators related to
importation modes that are non-protecting and we have investigated new algebraic rules for the algebra of the
model-oriented denotations of structured specifications determined by these building operators. Within the
framework of our institution-independent specification structuring we have also extended the pushout-style
parameterization concepts to the situation of sharing between the body of the parameterized module and the
instance of the parameter, situation that corresponds to the actual realities of generic specification practice.
Moreover, we have developed a set of abstract conditions naturally satisfied in the concrete specification
frameworks that guarantee that the parallel and the serial instantiation of multiple parameters give isomorphic
results. The checking of the conditions underlying this general result has been illustrated for the concrete
case of structured specifications over many sorted algebra.

Our work leaves open a series of technical questions, such as to find sets of conditions naturally satisfied
in the applications for upgrading the rules (19), (24), (29) from preorder to equivalence rules, and to extend
the theory of parameterized specifications to situations that involve a higher level of sharing. For example
we plan to consider sharing between different parameters, and between parameters and fitting argument
specifications, situations that may occur quite naturally when the parameters use data types such as Booleans,
numbers, etc.

Acknowledgements

The authors are grateful to both anonymous referees for very carefully studying their work, for finding a
series of mistakes of various degrees, and for making a number of suggestions that have led to an improvement
of this presentation.

Bibliography

[1] Jirı́ Adamek, Horst Herrlich, and George Strecker. Abstract and Concrete Categories. John Wiley, 1990.
[2] Marc Aiguier and Fabrice Barbier. An institution-independent proof of the Beth definability theorem. Studia Logica,

85(3):333–359, 2007.
[3] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Journal of the Association for Computing Machinery, 37(2):335–

372, 1990.
[4] Jan Bergstra and John Tucker. Elementary algebraic specifications of the rational complex numbers. In Kokichi Futatsugi,

José Meseguer, and Jean-Pierre Jouannaud, editors, Algebra, Meaning and Computation (a festschrift in honour of Professor
Joseph Goguen), volume 4060 of LNCS, pages 459–475. Springer-Verlag Berlin Heidelberg, 2006.

[5] Francis Borceux. Handbook of Categorical Algebra. Cambridge University Press, 1994.
[6] Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical Computer Science, 286(2):197–245, 2002.
[7] Rod Burstall and Joseph Goguen. Putting theories together to make specifications. In Raj Reddy, editor, Proceedings, Fifth

International Joint Conference on Artificial Intelligence, pages 1045–1058. Department of Computer Science, Carnegie-Mellon
University, 1977.

[8] Rod Burstall and Joseph Goguen. The semantics of Clear, a specification language. In Dines Bjorner, editor, 1979 Copenhagen
Winter School on Abstract Software Specification, volume 86 of Lecture Notes in Computer Science, pages 292–332. Springer,
1980.

[9] Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical Structures in Computer Science, 7(2):195–
206, 1997.

[10] Răzvan Diaconescu. Elementary diagrams in institutions. Journal of Logic and Computation, 14(5):651–674, 2004.
[11] Răzvan Diaconescu. An institution-independent proof of Craig Interpolation Theorem. Studia Logica, 77(1):59–79, 2004.
[12] Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.
[13] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and Methodologies for

Object-Oriented Algebraic Specification, volume 6 of AMAST Series in Computing. World Scientific, 1998.

42

[14] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modularisation. In Gerard Huet and Gordon
Plotkin, editors, Logical Environments, pages 83–130. Cambridge, 1993. Proceedings of a Workshop held in Edinburgh,
Scotland, May 1991.

[15] Werner Fey. Pragmatics, concepts, syntax, semantics and correctness notions of ACT TWO: An algebraic module specification
and interconnection language. Technical Report 88–26, Technical University of Berlin, Fachbereich Informatik, 1988.

[16] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for specification and programming. Journal of the
Association for Computing Machinery, 39(1):95–146, 1992.

[17] Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra. Mathematical Structures in Computer
Science, 4(4):363–392, 1994.

[18] Joseph Goguen and José Meseguer. Order-sorted algebra solves the constructor selector, multiple representation and coercion
problems. In Proceedings, Second Symposium on Logic in Computer Science, pages 18–29. IEEE Computer Society, 1987.
Also Report CSLI-87-92, Center for the Study of Language and Information, Stanford University, March 1987; revised version
in Information and Computation, 103, 1993.

[19] Joseph Goguen and Grigore Roşu. Composing hidden information modules over inclusive institutions. In From Object-
Orientation to Formal Methods, volume 2635 of Lecture Notes in Computer Science, pages 96–123. Springer, 2004.

[20] Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud. Introducing OBJ. In Joseph
Goguen and Grant Malcolm, editors, Software Engineering with OBJ: algebraic specification in action. Kluwer, 2000.

[21] Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.
[22] Saunders Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.
[23] José Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium, 1987, pages 275–329.

North-Holland, 1989.
[24] Peter D. Mosses, editor. CASL Reference Manual, volume 2960 of Lecture Notes in Computer Science. Springer, 2004.
[25] Andrei Popescu, Traian Şerbănuţă and Grigore Roşu. A semantic approach to interpolation. Theoretical Computer Science,

410(12-13):1109–1128, 2009.
[26] Grigore Roşu. Axiomatisability in inclusive equational logic. Mathematical Structures in Computer Science, 12(5):541–563,

2002.
[27] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic Specification and Formal Software Development. Springer

(in press).
[28] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution. Information and Control, 76:165–210, 1988.
[29] Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions. Theoretical Computer Science, 37:269–304,

1986.
[30] Andrzej Tarlecki, Rod Burstall, and Joseph Goguen. Some fundamental algebraic tools for the semantics of computation, part

3: Indexed categories. Theoretical Computer Science, 91:239–264, 1991.

43

	Introduction
	The structure and contributions of this paper

	Preliminaries
	Categories
	Institutions
	Model amalgamation
	Inclusion systems

	Structured specifications
	Primitive specification building operators
	Examples
	Basic properties of structured specifications

	Algebraic rules for structured specifications
	On parameterized specification
	Single parameters
	Multiple parameters
	Sequential instantiation of parameters

	Conclusions

