
Constraints for behavioural specifications

Fernando Orejas
M. Pilar Ni vela

Report LSI-90-35

• Jtl \'l:Jl'- -:-1'1, ; ::, -\

... ',:-. ;:-;,-., J

Constraints for Behavioural Specifications

Abstract

F. Orejas, M. P. Nivela
Dept. de Llenguatges i Sistemes Informatics

Universitat Politecnica de Catalunya
Barcelona, Spain

Behavioural specifications with constraints for the incremental development of algebraic

specifications are presented. The behavioural contraints correspond to the completely defined subparts

of a given incomplete behavioural specification. Moreover, the local observability criteria used within a

behavioural constraint could not coincide with the global criteria used in the behavioural specification.

This is absolutely needed because, otherwise, some constraints could involve only non observable

sorts and therefore have trivial semantics. Finally, the extension operations and completion operations

for refining specifications are defined. The extension operations correspond to horizontal refinements

and build larger specifications on top of existing ones in a conservative way. The completion

operations correspond to vertical refinements, they add detail to an incomplete behavioural specification

and they do restrict the class of models.

1. Introduction

A formal framework for the incremental development of algebraic specifications is presented in

[OSC 89]. The main ideas of this approach are:

1. The possibility of dealing with incomplete specifications at any stage of the development

process. Incompleteness means that there may be not enough equations for defining the operations of

the specification or there may be not enough operations to generate all the values of a certain sort. It is

our believe that any approach for formalizing the specification development process from informal

requirements should be capable of dealing with such kind of incomplete specifications. The reason is

that, on the one hand, informal requirements are usually incomplete (even inconsistent) and, as a

consequence, the specifier must take design decisions within the development process that would make

the final specification complete and consistent. On the other hand, prematurely taking this decisions

may cause severe problems if it is later discovered that these decisions were inadequate from the

customer point of view. This may mean in practice that all the work done since the inadequate decision

could be wasted. The way of handling this incompleteness in this approach was by means of algebraic

specifications with constraints [Rei 80, BG 80]. The constraints correspond to the completely defined

subparts of a given incomplete specification. The corresponding semantics is then loose, accepting as

models all algebras satisfying the axioms and all the constraints of the specification. A related

approache in this context is the pioneering concept of canon [Rei 80] which essentially coincides with

1

our notion of incomplete specification but allowing also to deal with partial operations and algebras.

Even more related than the work of Reichel is the work on the design of the specification language

Look [ETLZ 82], in which many technical and methodological ideas of [OSC 89] could be found.

However, the results obtained in [OSC 89J go beyond the ones used for the semantic definition of

Look and, in fact, some open problems were solved.

2. Related with the notion of incomplete specification is the idea of developing specifications by

means of horizontal and vertical of refinements. In more classical approaches in the field of algebraic

specification (e.g. [GB 80]) the specifications are developed only by horizontal refinements (i.e.

extensions), while vertical refinements were considered only for the development of implementations.

In our context, vertical refinements are the operations by which we add detail to an incomplete

specification, i.e. vertical refinements make the specifications more complete. At the semantic level this

is seen as a restriction on the class of models. Our notion of vertical refinement coincides with the

notion used by Sannella and Wirsing and Sannella and Tarlecki to define implementations [SW 83,

ST 87a, ST 87b], even though the aims are different because they are more interested with the

development of programs from specifications. In fact, most of the methodological ideas underlying our

approach and theirs are the same. However, there is a fundamental differece in the sense that they are

only concerned with what happens at the model level and never try to obtain compatibility results or

even to describe their ideas at the specification level. In this sense, our approach can be considered an

extension and a complemem of theirs, in that one of our main aims is to obtain this kind of

compatibility results. We can also say that, in some sense, our methodological ideas about the

incremental development of specifications may be found in the specification language Larch (the

connection to Look has already been established). However the lack of precise formal semantics (to our

knowledge) make difficult a comparison at the technical level. Anyhow, our approach could be seen as

providing the adequate framework for writing such a semantic definition.

3. The way of handling incomplete specifications and the interaction of horizontal and vertical

refinements make useless, in our approach, the use of (explicitly) parameterized specifications. The

reason is that every incomplete specification may be seen as implicitly parameterized by its incomplete

subspecifications. In particular, the abovementioned interaction of horizontal and vertical refinement

allows to substitute any incomplete subspecification of a given specification by a more complete one in

a way that generalizes parameter passing in the more standard approaches [EM 85]. In fact, the results

obtained in our approach generalize all classical results on parameter passing by just requiring a limited

form of persistency.

Being convinced that the notions of behaviour and observability are critical with respect to the

semantics of software specifications, from the very beginning we wanted to express all the framework

in the behaviour setting defined in [Niv 87, NO 88) (for related approaches to behavioural

specifications see e.g. [HW 85, MG 85, ST 87a, Rei 81]). However there seemed to be a technical

problem: in the standard case most of the results and semantics constructions were obtained making

heavy use of the Amalgamation Lemma for specifications with constraints [Ehr 89] but, on the other

hand, in [ONE 89] it was shown that Amalgamation Lemma was only possible (under certain

2

reasonable restrictions) for pushout diagrams involving behavioural specification morphisms, but not

when involving the so called view specification morphisms. Now the problem was that because of the

need of having different observability criteria within the same specification (certain sorts are considered

non-observable at the global level but may be considered locally observable. within a constraint) there

was a need of dealing with this view morphisms that would cause all the troubles.

Fortunately, we were able to provide the adequate definitions, both from the methodological (we

think) and from the technical point of view, that would allow us to obtain all the needed results. To do

that, we had to generalize the Amalgamation and Extension Lemmas for behaviour specification

morphisms and the Extension Lemma for view morphisms for the case of specifications with

constraints. Also, we had to develop a very restricted version of the Amalgamation for view

morphisms that would only apply to free algebras. But, once this was done, must of the proofs and

constructions from rose 89] could be directly translated to the new setting, with some exception in

which a use of the Amalgamation Lemma in [OSC 89] was now translated into the use of the Extension

Lemma for view morphisms. This experience apparently showed that, in fact, the whole approach

could b_e parameterized being independent of any arbitrary Specification Logic or Institution [GB 85],

as long as a reasonble amount of basic constructions (amalgamation and extensions) are provided. In

this sense, we think that this could be done by extending some preliminary results that were presented

in [EPO 89].

Most of the related work (that we know) to our framework has already been mentioned: it

mainly has to do with the standard setting as defined in [OSe 89). With respect to the new aspects

presented in this paper, Le. the handling of behavioural constraints, the only related work we know is

from Reichel [Rei 87]. However there are big differences between the two approaches not only in the

aims, since the kind of results we obtain are of different nature of the ones obtained by him, but also

technical in two senses: a) our notion of behavioural equivalence is stronger, since algebras that only

differ on non-observable junk would be not equivalent for him but they would be for us, b) on the very

notion of constrained specification because, according to his approach, observability in a behavioural

canon is global, i.e. a sort can either be observable or non-observable in the whole specification while,

for us, a sort may be non observable at the global level but may be considered observable locally within

a constraint. The reason for this is that, otherwise, some constraints could involve only non-observable

sorts and therefore have trivial semantics.

The organization of the paper is as follows: in the next section we provide the basic definitions

arid notation about behavioural specifications. In the third section we present the main basic tools to be

used for proving all the results: we provide the Amalgamation and Extension Lemmas for behavioural

specifications slightly generalized with respect to the version of rose 89J. Also, we give the restricted

version of the Amalgamation Lemma for the view case that was mentioned above. In section 4, we

define our concept of behavioural specification with constraints and we specialize some results of the

previous section to this setting. The operations for refining specifications are defined and the main

results are obtained in section 5. In section 6 some conclusions are presented.

3

2. Behavioural Semantics

In this section a summary of the behavioural framework is given. For more details see [Niv 87,

NO 88, ONE 89].

2.1 Basic Behavioural Concepts

Given a signature I.= (S, 0) a behaviour signature B:E is a triple BL= (Obs, S, 0) with

Obs ~ S. The sorts in Obs are called observable sorts. A behaviour signature determines a set of

observable computations which will provide its observable behaviour. A computation is a term in

T:r.(Xobs) where Xobs = {Xsls e Obs is a family of observable variables. A computation of

observable sort, that is, in T1:(Xobs>s withs e Obs, is called an observable computation.

Analogously, a computation over a :E-algebra A is a term in T:r.(Aobs>· A computation of

observable sort, that is, in T :r.(Aobs>s with s e Obs, is called an observable computation over A.

We may associate two categories of models to every behaviour signature B:E: the well-known

category Alg(l:) of I.-algebras and I.-homomorphisms, and the category Beh(BI.) which defines

behavioural semantics. In this category objects are L-algebras as in Alg(I.) but morphisms are

different. To avoid confusion from now on morphisms in Alg(I.) will be called I.-homomorphisms

while morphisms in Beh(BI.) will be called !,-behaviour morphisms.

AL-behaviour morphism f: A ➔ B between two :E-algebras A and B is an Obs-indexed

family of mappings f == {fs}s e Obs preserving all the observable computations, that is, for every

t e Ti:(Aobs)s, s e Obs, it holds that fs (£A (t)) --= EB(f# s(t)) where r#: T i:(Aobs) ~ Ti:(BObs) is

the unique I.-hornomorphism which extends f and EA is the evaluation of terms in A, i.e. the unique

I.-homomorphism extending the inclusion of Aobs into A. :r...algebras together with :r...behaviour

morphisms form the category Beh(BI).

If Obs coincides with S then Beh(B:E) is exactly the same as Alg(I.) and if there are no

observable sorts in I: then I.,.behaviour homomorphisms are empty sets.

A I.-behaviour morphism f establishes a relationship between the observable computations t

over A and r#(t) over Bin such a way that it is compatible with their results £A (t) in A and e8 (r#(t)) in

B res~ectively. Thus an Obs-indexed family f = {fslse s is a I. behaviour morphism if these

observable computations over A yield in B the same value as in A, up to the transfonnation detennined

by f. If the converse holds, that is, if all the observable computations over B yield in A the same value

as in B up to the transformation detennined by f, and f itself is a bijection then A and B give the same

answers to the same questions, that is, they show the same observable behaviour. Hence behavioural

equivalence is characterized by isomorphism in the category Beh(BI.). In particular, isomorphism in

Beh(BI.) coincides with the notion of behavioural equivalence from [MG 85, HW 85, SW 83, ST 85].

A I.-behaviour morphism f such that fs is bijective for every s in Obs is a I-behaviour

isomorphism in the category Beh (BI.).

Two I.-algebras A and B are behaviourally equivalent, denoted A s BL B, if there exists a

};-behaviour isomorphism f: A ➔ B between them. Behavioural equivalence is an equivalence

relation between l:-algebras and every equivalence class is called a behaviour.

4

A I.-context over the sort sis a term c[z] e T1:(Xobsu{z})s• withs' EE Obs and

sort(z) = s. By c[t] we denote the application of the context over t, that is, cr(c[z]) where a is

the assigment a: Xobs ➔ T.r.(Xobs) defined by cr(z) = t and a(x) = x for every x in Xobs·

Analogously, a 1:-context over the sorts for a l;-algebra A is a term cA[z] e T1:(Aobsu{z})s•

with s' e Obs and sort(z) = s.

A l:-algebra A behaviourally satisfies the I.-equation e: A Y .t1 = t2, denoted by A l=a e,

if A satisfies AXQbs·c[o(t1)l=c[cr(tz)] for every I:-context c[zJ over the sort of e and every

assignment cr: Y ➔ T.r.CXobs)·

A behaviour presentation BP is a 4-tuple, BP = (Obs, S, 0., E) where BI. = (Obs, S, U) is

a behaviour signature and Ea set of I.-equations. Beh(BP) is the full subcategory of Beh(Bl:) of all

I.-algebras which behaviourally satisfy the equations in E. In what follows we will also denote BP by

BP = (Obs, P) with P = (S, Q, E), Obs c S and I.= (S, U), where P is called a presentation.

We will indistinctly write A= Bl: B or A= BP B.

2.2 Presentation morphisms and their associated functors

The relationships that can be established between two behaviour presentations BPl = (Obs 1,

Pl) and BP2 = (Obs2. P2) are as usual defined by presentation morphisms h: BPl ➔ BP2, that is, a

signature morphism h : l: 1 ➔ l:2 such that E2 I- h(El). But now it is necessary to make the

relationship between the observability criteria of BPl and BP2 explicit. If the observable sorts are

preserved. then h is said to be a weak presentation morphism. If the non observable sorts are preserved

then h is called a view presentation morphism. Finally, a behaviour presentation morphism preserves

both the observable and the non observable sorts.

Definition 2.2.1
Let BPl = (Obs 1, Pl) and BP2 == (Obs2, P2) be two behaviour presentations and h: ·p1 ➔ P2 a

presentation morphism. We say that h: BPI ➔ BP2 is a

a) weak presentation morphism if h(Obsl) c Obs2

b) view presentation morphism if h(Sl-Obsl) c S2-0bs2

c) behaviour presentation morphism if h(Obsl) ~ Obs2 and h(Sl-Obsl) !;: S2-0bs2

The associated categories are the following:

a) Weak-BP is the category of behaviour presentations and weak presentation morphisms. The

usual pushout constructions in P can be extended in a simple way to pushouts in Weak-BP.

b) BP is the category of behaviour presentations and behaviour presentation morphisms.

Obviously, pushouts in the category BP are defined in the same way as in Weak-BP.

c) View-BP is the category of behaviour presentations and view presentation morphisms.

Pushout constructions are easily obtained by using the ones of the non observable sorts (in the

category of Sets).

For every weak presentation morphism h: BPl ➔ BP2 (resp. behaviour presentation

5

morphism) there is a forgetful functor BUh: Beh(BP2) ➔ Beh(BPt) defined as usual.

Every weak presentation morphism h (resp. behaviour presentation morphism) has an

associated free functor BFreeh, which is left adjoint to the forgetful functor BUh, and is defined by

where the values a e As are interpreted as values of sort h(s).

If Obsl = S1 then BFreeh(A) is the usual free construction for every Pl-algebra A.

The behavioural equivalence relation may be extended uniformly from algebras to functors, that

is, behavioural equivalence of functors coincides with natural isomorphism. If F and F' are two

functors from Beh(BPl) to Beh(BP2) we will say that F and F' are behaviourally equivalent if they

are naturally isomorphic, which will be denoted by F = F'. Therefore, we immediately have that any

functor behaviourally equivalent to a free functor is also free.

However, if his a view presentation morphism then it has no associated forgetful functor. The

reason is that there can be less observable sorts in Obs2 than in Obs 1. This means that whenforgetting

over a BP2-bebaviour morphism f = {fs: A2s ➔ A2's}s e Obs2 there can exist some sorts e Obsl

such that h(s) ~ Obs2 and therefore fh(s) would not be defined. Passing from BP2 to BPl behaviours

can be done by a functor Viewh, called view functor, which builts up a BPl~behaviour morphism from

a BP2-behaviour morphism and describes how the models of Beh(BP2) are seen from the BPI point

of view. First of all a special realization of the behaviour of an algebra A2 in Beh(BP2) is constructed.

This realization belongs to the category Alg(P2+) and is behaviourally equivalent to A2, in in such a

way that BP2-behaviour morphisms can be extended to usual p2+ homomorphisms. After that a

forgetful functor from Alg(P2+) to Beh(BPI) is applied to this realization.

Definition 2.2.2

Let BP = (Obs, P) with P = (S, n, E) be a behaviour presentation. The presentation P*

behaviourally derived from BP is defined as p* = (S, n, E*) where E* is the set all observable

properties deduced from E, that is, E* = {t1 = t2 I t1, t2 e T1:(Xobs>s, s e Obs, EI- t1 = t2}.

A L-algebra A belongs to Beh(BP) if and only if A belongs to Alg(P*).

Definition 2.2.3

Leth: BPI ➔ BP2 be a view presentation morphism, BP2+ the behaviour presentation given

by BP2+ = (Obs2 + h(Obsl), P2+) with p+ =- p* + (0, 0, h(El)). Leth+: BPl ➔ BP2+ be the

behaviour presentation morphism defined as h on sorts and operations, and let Tl be the weak

presentation inclusion fl: BP2* ➔ BP2+.

The h(El)-realization functor Rh(E 1) is defined by the composition of functors

Rh(El) = BFree11 • Id, where Id is the identity functor between the categorie3 Beh(BP2) and

Beh(BP2*).

6

Proposition 2.2.4
Rh(El)CA2) is behaviourally equivalent to A2 for every algebra A2 in Beh(BP2) .

Definition 2.2.S

Let BPl = (Obsl, Pl) and BP2 = (Obs2, P2) be two behaviour presentations with

Pl = (SI, n 1, El) and P2 == (S2, n2, E2). Let h: BPl ➔ BP2 be a view presentation

morphism.

The functor Viewh: B eh(BP2) ➔ Beh(BPl), called view functor associated to h, is

defined as Viewh = BUh+ 0 Rh(El)

2.3 Pushout constructions

When putting together two behaviours BP2 and BP3 with a common sub-behaviour BPl it may

happen that the resulting behaviour BP4 is not the right combination of BPl and BP2 behaviours

because the observable computations of BP2 and BP3 may be combined to cause side effects in the

observable computations of BP4.

This means that not every pushout diagram {BP4, i2, h2} = po {BPl, BP2, BP3, il, hl} of

the form

BPl il ►

BP3 ----41►~ BP4
i2

with the involved presentation morphisms being any of the previous three kinds, will be useful when

dealing with behavioural semantics. This kind of discontinuity, if allowed, originates several undesired

effects being the most important one the incompatibility of the semantic constructs used at the

presentation and model levels. This problem is overcome if the pushout satisfies the observation

preserving property. We say that an observable computation t e Tr,(Xobs)Obs is minimal if no

subterm oft different from a variable is an observable computation.

Definition 2.3.1

A pushout diagram {BP4, i2, h2} = po {BPI, BP2, BP3, il, hl} in the category BP or in

Weak-BP satisfies the observation preserving property if, for any set Xobs4 of observable

variables, for every minimal observable computation t e Tr,4(Xobs4) and for every

s e S4 - Obs4 being the sort of a non observable subterm oft, it holds that s e S4-i2 ° hl(S1).

If a pushout satisfies the observation preserving property then every minimal observable

computation t belongs either to Th2(U)(Xobs2) or to Ti2(1:3)CXobs3).

When dealing with the category View-BP we need a slightly different version of the

observation preserving property, as we will see in the proof of the existence of the extension lemma.

7

Definition 2.3.2

A pushout diagram {BP4, i2, h2} = po {BPl, BP2, BP3, il, bl} in the category View-BP

with il, i2 behaviour presentation morphisms of BP, satisfies the observation preserving

property if the diagram {P4+, i2+, h2+} = po {Pl, P2, p3+, il, hl+} satisfies the observation

preserving property in BP.

So, also in this case, every minimal observable computation t e T .r.4(Xobs4) belongs either to

Th2(!2)(Xobs2) or to Ti2(L3)(Xobs3).

The observation preserving property of all the pushouts diagrams in this paper is assumed. For

this reason we will not explicitly state this porperty.

3. Behavioural Amalgamation and Extension properties

This section describes the amalgamation and extension properties that can be obtained in each of

the categories BP and View-BP (unfortunately, in the category Weak-BP in general there are neither

Amalgamation nor Extension Lemmas). First, we will state the Amalgamation Lemma associated to the

category BP (its proof can be found in [ONE 89]). Then we will see a slight generalization, with

respect to (ONE 89], of the Extension Lemmas associated to the categories BP and View-BP.

Finally, we will present a restrictive (with respect to free algebras) version of the Amalgamation

Lemma for View-BP. This restrictive version is caused by the problem that, in general, in View-BP

there are no appropriate amalgamated ~urns. Nevertheless, that restrictive version is sufficient for our

purposes in the following sections.

Definition 3.1 (Behavioural Amalgamation)

Let {BP4, i2, h2} = po {BPl, BP2, BP3, il, hl}be pushout diagram in BP.
1. For all algebras A3 e Beh(BP3), A2 e Beh(BP2) and Al e Beh(BPl) such that

BUhl (A3) = Al = BUil (A2) the behavioral amalgamated sum of A3 and A2 with respect to Al,

denoted by A4 = A3 + Al A2, is the algebra in Beh(BP4) defined by A4 = A3 +Al A2 where + Al

denotes the usual amalgamation in categories of algebras.

2. For all behaviour morphisms h3: A3 ➔ B3 in Beh(BP3), h2: A2 ➔ B2 in Beh(BP2) and

bl: Al ➔ Bl in Beh(BPl) with BUhl (f3) = fl = BUil (f2) the behavioral amalgamated sum of

f3 and f2 with respect to fl, denoted by f4 = f3 +n f2, is the BP4-behaviour morphism defined for

every sin S4 as f48 =ifs e i2(S3) then f3s else f28.

Lemma 3.2 (Behavioural Amalgamation Lemma)

Let {BP4, i2, h2} == po {BPI, BP2, BP3, il, hl} be pushout diagram in BP.

1. Given algebras A3e Beh(BP3), A2e Beh(BP2) and Ale Beh(BPl) such that BUhl (A3) =
Al= BUil(A2) the behavioural amalgamation A4 = A3 +Al A2 is the unique algebra in Beh(BP4)

which satisfies A3 = BUi2(A4) and A2 = BUhi(A4).

Conversely, every A4 e Beh(BP4) has a unique representation A4 = A3 + Al A2 where

A3 = BUi2(A4), A2 = :BUh2(A4) and Al= BUhl (A3) = BUil (A2).

8

2 Given behaviour morphisms h3: A3 ➔ B3 in Beh(BP3), h2: A2 ➔ B2 in Beh(BP2) and

hl: Al➔ Bl in Beh(BPl) with BUh1(f3) =fl= BUi1(f2) the behavioural amalgamation

f4 =- f3+n f2 is the unique homomorphism satisfying f3 = BUi2(f4) and f2 = BUh2(f4).

Conversely, every BP4•behaviour morphism f4: A4 ➔ B4 has a unique representation

f4 = f3 +n f2 where f3 = BUi2(f4), f2 = BUh2(f4) and fl = BUhl (f3) = BUil (f2).

Definition 3.3
Let BPI, BP2 be two behaviour presentations and h: BPl ➔ BP2 a (weak) behaviour

presentation morphism and let A be a subcategory ofBeh(BPl).

A functor G: Beh(BPl) ➔ Beh(BP2) is (strongly) persistent relative to A iff for every A in A

A= BUh(G(A)).

Lemma 3.4 (Behaviour Extension Lemma)

Let {BP4, i2, h2} = po {BPl, BP2, BP3, il, hl} be a pushout diagram in BP. Let A3 and Al

be subcategories of Beh(BP3) and Beh(BPl) respectively such that BUhl (A3) is included in Al.

Finally, let F: Beh(BPl) ➔ Beh(BP2) be a strongly persistent functor relative to Al.

1. There exists a unique (up to isomorphism) persistent relative to A3 functor

F': A3 ➔ Beh(BP4) such that BUh2 ° F' = F O BUhl which moreover is defined by

(i) F'(A3) = A3 +Al F(Al) for every A3 in A3 with Al= BUh1(A3)

(ii) F(f3) = f3 +n F(fl) for every f3 in A3 with fl = BUhl (f3)

2. If F restricted to Al is a free functor with respect to BUil then F' is free w.r.t. BUi2·

Proof Sketch

1. Trivially, F' is a functor as defined by i) and ii) and, by construction, is persistent relative to

A3 and is an extension of F.

2. Suppose B4eBeh(BSPEC4) and f: A3 ➔ BUi2(B4) e A3, then let Al= BUhi(A3),

B2 = BUh2(B4) and f '= BUhl (f). Since Fil is free then there is a unique g': F(Al) ➔ B2 in

Beh(BSPEC2) such that BUil (g') = f. Taking g = f +r g we have that g: F'(A3) ➔ B4 and

BUi2(g) = f. Moreover, the Behavioural Amalgamation Lemma implies the uniqueness of g. D

It is not always possible to define amalgamated sums for pushouts in the category View.BP.
For instance, consider the following behaviour presentations

bpres BPI = obs sorts s1, s2 ops a: ➔ sl end bpres

bpres BP2 = obs sorts s 1, s2, s3 ops a: ➔ sl, g: s 1 s3 ➔ s2 end bpres

bpres BP3 = obs sorts sl non obs sorts s2 ops a: ➔ st end bpres

bpres BP4 = obs sorts sl, s3 non obs sorts s2 ops a: ➔ sl, g: s1 s3 ➔ s2 end bpres

The algebra A4 = { {a}sl• {b}83, {g(a, b)}8z } cannot be properly decomposed as an

amalgmated sum. The algebras A2 and A3 should be defined by A2 = Viewh2(A4) = { {aJs1, {b}s3,

9

{g(a, b)}s2} and A3 = BUiz(A4) = { {aJs1, {g(a, b)}s2 }. But then Viewhl (A3) = { {a}sl• 0s2}

and BUu(A2) = { {a}sl• {g(a, b)}sz} which are not equal.

However, in the view case we have a restricted version of the Extension Lemma that will allow

us to express an amalgamation descomposition for the subclass of algebras which are free

constructions.

Lemma 3.5 (View Extension Lemma)

Let {BP4, i2, h2} = po {BPl, BP2, BP3, il, hl}be pushout diagram in View-BP with iland i2

behaviour presentation morphisms. Let A3 and A 1 be subcategories of Beh(BP3) and Beh(BPl)

respectively such that Viewh 1 (A3) is included in A 1.

If BFreeil is persistent relative to A 1 then

(i) BFreei2 is persistent relative to A3

(ii) BFreei2, with respect to algebras is A 3, is an extension of BFreeil, that is,

BFreeil
0
Viewhl (A3) =BP2 Viewhz O BFreeiz(A3), for every A3 in A3.

Proof
We can consider the following presentation diagram (1)

il
BPl ► BP2

hi' l (a) lh2'
i2+

hl BP3+ ► BP4+ h2

i3 l (b) li4
i2

BP3 ► BP4

where BP3+ is the presentation BPJ+ = (Obs3+hl(Obsl), p3* +hl(El)), BP4+ is the presentation

BP4+ = (Obs4+h2(Obs2), p4* +h2(E2)), hl + and h2+ are defined (on sorts and operations) as hl and

h2, and i3 and i4 a.re the inclusion morphisms i3: BP3* ➔ BP3+, i4: BP4* ➔ BP4+.

Its corresponding semantic diagram (2) is

10

Beh(BPl)
BFreeil

► Beh(BP2) ._,

r BUh{
(c)

BUh2+1

View BFreeit
Viewh2 hl Beh(BP3+) ► Beh(BP4+)

I Rhl(El)
(d)

Rh2(E2r
BFre~2

Beh(BP3) ► Beh(BP4)

The functor BFreei2+ is an extension of BFreCj 1 by the Behaviour Extension Lemma (applied to the

subdiagram (a) which is a pushout in BP). Moreover, Rhl(El) is in fact a free functor. Since the

composition of free functors is also a free functor we have that BFreei2 +
0

Rh 1 (E 1) and

Rh2(E2) 0 BFreei2 are naturally isomorphic and therefore

BFreeil
O

Viewhl =BP2 Viewh2(E2)
0

BFreei2

The relative persistency of BFreei 1 implies the relative persistency of BFreei2+ by the Behaviour

Exten~ion Lemma. Moreover, the relative persistency of BFreei2+ implies the relative persistency of

BFreei2 since the former can be seen as a realization of the latter. []

By having this version of the Extension Lemma, it is possible to represent (up to behavioural

equivalence) the subclass algebras in Beh(BP4) which are free constructions over algebras of Beh(BP3)

as amalgamated sums of appropriate algebras in Beh(BP3) and Beh(BP2).

Definition 3.6 (View Amalgamation of algebras in the free case)

Let {BP4, i2, h2} = po {BPI, BP2, BP3, il, hl}be a pushout diagram in View-BP with iland i2

behaviour presentation morphisms. Let Al , A3 and A4 be subcategories of Beh(BPl), Beh(BP3) and

Beh(BP4) respectively such that Viewhl (A3) = Al, BUiz(A4) = A3 and Viewh2(A4) = Freeil (Al). Let

us also suppose that BFreeu is strongly persistent relative to A 1.

For all algebras A3 e A3, A2 e Beh(BP2) and A 1 e A 1 such that

(i) Viewhl (A3) = Al =-= BUil (A2)

(ii) A2 = BFreeil (Al)

the view amalgamated sum of A3 and A2 with respect to A 1, denoted by A4 = A3 EB A 1 A2, is the

algebra in Beh(BP4) defined as A4 = Rhl (El)(A3) + A 1 A2 where + A 1 denotes behaviour

amalgamation.

To see that this definition has sense let us consider the above presentation diagrams (1) and (2). The

algebra Rhl(El) is in Beh(BP3+) and satisfies BUh1+(A3) =Al = BUn(A2). Therefore A4 =
Rhl(El)(A3) + Al A2 is an algebra in Beh(BP4+) and also in Beh(BP4).

The same argument allows to define the amalgamation of behaviour morphisms as stated in the

foJlowing definition.

11

Definition 3.7 (View Amalgamation of morphisms in the free case)

Let {BP4, i2, h2} = po {BPl, BP2, BP3, il, hl }be pushout diagram in View-BP with i1 and

i2 behaviour presentation morphisms. Let Al , A3 and A4 be subcategories of Beh(BPl), Beh(BP3)

and Beh(BP4) respectively such that Viewhl (A3) = Al, BUi2(A4) = A3 and Viewh2(A4) = Freeil (Al)

Let us also suppose that BFreei 1 is strongly persistent relative to A 1.

For all behaviour morphisms h3: A3 ➔ B3 in Beh(BP3), h2: A2 ➔ B2 in Beh(BP2) and

hl: Al ➔ Bl in Beh(BPl) such that

(i) Viewhl (f3) = fl = BUil (f2)

(ii) f2 = BFreeil(fl)

the view amalgamated sum of f3 and f2 with respect to fl, denoted by f4 = f3 EBn f2, is the

BP4-behaviour morphism defined by f4 = Rhl(El)(f3) +n fl.

Lemma 3.8 (View Amalgamation Lemma in the free case)

Let {BP4, i2, h2} = po {BPI, BP2, BP3, il, h 1} be pushout diagram in View-BP with iland i2

behaviour presentation morphisms. Let Al, A3 and A4 be subcategories of Beh(BPl), Beh(BP3) and

Beh(BP4) respectively such that Viewh1(A3) = Al, BUiz(A4) = A3 and Viewhz(A4) = Freen(Al).

Moreover, assume that Freei 1 is persistent relative to A 1. Then:

1. Given algebras A3 e A3, A2 e Beh(BP2) and A 1 e Al such that

(i) A2 = BFreeu (Al)

(ii) Viewh 1 (A3) = A 1 = BUi l (A2)

the view amalgamation sum A4 = A3 EB A 1 A2 is a free construction w.r.t. A3.

Moreover, for every A4 e Beh(BP4) it holds that A4 =ap4 Rhl(El)(A3) +Al A2, where

A3 = BUiz(A4), A2 = Viewh2(A4) and Al= Viewhl (A3) = BUil (A2).

2 Given behaviour morphisms h3: A3 ➔ B3 in A3, h2: A2 ➔ B2 in Beh(BP2) and hl: Al➔ Bl

in Al with

(i) f2=BFreei1(fl)

(ii) Viewhl (f3) = fl = BUil (fl)

the view amalgamation sum f4 =- f3 Ef>n f2 satisfies that f4 = Freeiz(f3).

Moreover, every BP4-behaviour morphism f4: A4 ➔ B4 is naturally isomorphic to

Rhl(El)(f3) +n f2 where f3 = BUi2(f4), f2 = Viewh2(f4) and fl = Viewh1(f3) = BUj1(f2).

Proof

Since the diagram (a) is pushout in BP we have by the Behaviour Extension Lemma that Freei2+ is

an extension of Freei 1 which moreover is given by Freeiz +(B) = B +a 1 Freeil (B 1) where B 1 =

BUh1+(B). Thus in particular

Freeiz+(Rhl(El)(A3)) = Rhl(El)(A3) + Al Freeil (Al)= Rhl(Et)CA3) +At A2 = A4

The algebra A4 is a free construction w.r.L A3 because by the View Extension Lemma Freeiz is also

an extension of Freei2+,

The same argument is valid for morphisms.

12

4. Behaviour Constraints

As it was said in the introduction. our aim is to deal with incomplete behavioural specifications

by means of constraints. The idea will be that a specification consists of a global presentation that

includes all the sorts, operations and equations that have been declared up to a certain point and a set of

constraints that characterize the completely defined subparts of the given specification. These

constraints work as the standard free or generating constraints [BG 80, Rei 80] but only up to

behavioural equivalence. That is, the use of standard free generating constraints allows to restrict the

class of models of a given specification by considering acceptable only those models that satisfy that a

certain subpart of the model bas been freely constructed from another subpart. In our framework,

making use of the existence of free constructions for categories of behaviours [Niv 87, NO 88] that

work like the standard free constructions, but up to behavioural equivalence, we define our constraints

by means of these behaviour free constructions. In this sense, intuitively, a model of a given

specification satisfies a behaviour constraint if some part of this model is behaviourally equivalent to

what can be obtained aplying a free construction to another subpart. It must be said that in fact, the

situation is a little more complicated, as we will see later, because the local observability criteria used

within the constraint need not to coincide with the global criteria used in the specification. However,

before considering this problem let us, first, see an standard simple example of what we may consider

an incomplete behavioural specification.

bspec Val eq = enrich Bool with

end bspec

obs sorts val
opns eq: val val ➔ bool
eqns eq(x,x) = true

eq(x,y) = eq(y,x)
(eq(x,y) and eq(y,z)) ⇒ eq(x,z) = true

bspec Set= enrich Val_eq defining

end bspec

non•obs sorts set
opns 0: ➔set

add: set val ➔ set
e : val set ➔ bool

eqns add(add(s,x),y) = add(add(s,y),x)
XE 0 = false
XE add(s,y) = (xe s) or eq(x,y)

bspec Choose= enrich Set with
opns choose: set ➔ val
eqns choose(add(s,x))E add(s,x)

end bspec

According to our framework, the specification Choose is an incomplete specification with two

completely defined subparts: the booleans and the sets of values. On the other hand, in Choose the sort

val and the operations eq and choose are considered to be incompletely defined. The semantics of this

specification is going to be loose, i.e. all (behavioural) models of the specification satisfying the

constraints will be considered admissible. In particular, this means that admissible models will be those

that their Boolean part coincides with the standard boolean algebra of two elements and whose Set part

behaves as finite sets of elements taken from the sort val. Note that this means that, if the Set part are

13

sequences of values, this will be an admissible model, even if it is not a model in the standarC: sense (it

does not satisfy the commutativity property for add).

Now, in order to define the proper notion of behaviour constraints we have to take into account

that, as said above, observability in constraints must be local and not global in the following sense: In

the standard framework that we defined in [OSC 89J the presentations defining the constraint on a

given specification were contained in the global presentation. Here, asking for this inclusion would not

be sensible, in general, because it could happen that none of the sorts involved in the constraint is

observable and, as a consequence, the semantics of the constraint would be trivial. This means that

some sorts should be considered locally observable within the constraint even if, at the global level,

they are not observable. This also means that, in order to define constraint satisfaction, i.e. to describe

how some parts of the models of the given specification are freely constructed (up to behavioural

equivalence) from another part of the model, the forgetful functor cannot be used to obtain these parts.

Instead, a View functor will have to be used.

Definition 4.1
A behaviour constraint BC is a pair of behaviour presentations (BPl, BPI') such that

Obsl = Sl andBPl ~ BPI'.

Given a presentation BP, a behaviour constraint BC= (BPI, BPl ') is defined on BP if

1) BPl' is view included in BP, i.e. Pl'~ P and Sl'-Obsl' ~ S-Obs, and 2) for every sort sl in

Obs 1 '-0bs 1 we have thats 1 is in Obs.

An algebra A e Beh(BP) satisfies a behaviour constraint (BPI, BPl ') defined on BP,

denoted A I"" (BPl, BPI') if

Notation:

We will shortly write = instead of =ap if Bp is clear from the context. From now on, we will

denote by _ j ap: Beh(BP') ➔ Beh(BP) and - 1 BP': Beh(BP) ➔ Beh(BP') the forgetful functor

and the free functor respectively which are associated to the inclusion BP c BP'. Moreover, if BP is

view included in BP' then _IBP: Beh(BP') ➔ Beh(BP) will denote the View functor associated to

this view inclusion.

The previous definitions reflect the above discussion. In particular, condition 1) states our

choice with respect to local observability within a constraint, i.e. we have considered that when stating

a constraint (BP 1, BPl ') all sorts in BPI could be used to observe the behaviour of the objects created

by the constraint. On the other hand, condition 2) states that all sorts introduced by the constraint

should be observable if and only if they are observable at the global level. The reason for this is that we

are considering that constraints are the way of completely defining the sorts and operations introduced

by them, i.e. the sorts and operations that are in BPI '-BPI. Therefore, if this is the complete definition

of these sorts, their observability should also be defined by the constraint, i.e. the observability of

14

these sorts should be the same within the constraint and at the global level.

Now, we can define our concept of behaviour (incomplete) specification as a presentation,

including all the sorts, operations and equations of interest at this point and a set of constraints defining

the complete parts of this specification. The semantics of such specification is, obviously, loose.

Definition 4.2

A behaviour specification BSP is a pair <BP, ~> where BP is a behaviour presentation and

sis a set of behaviour constraints on BP. The semantics of a behaviour specification BSP is defined

by the following class of models

Mod(BSP) = { A E Beh(BP) I A I= ~}

As in [OSC 89] and other related approaches (e.g. [ST 87b]) no special notion of specification

(internal) correctness is used apart of consistency, i.e. the class of models of a given specification

should not be empty.

As said above the basic constructions needed for adequately defining the operations for building

specifications are the Amalgamation and Extension Lemmas. The Amalgamation Lemma we present

here is just an extension of the one in section 3., in the sense that it applies to specifications (with

constraints) and not only presentations. On the other hand, the Extension Lemma is an especial case of

the View Extension Lemma from section 3, just considering that the subcategories of algebras on

which we build the extension are the ones defined by the constraints.

In what follows we will define these lemmas with respect to pushouts in which all morphisms

are inclusions or view inclusions. The reasons for this restriction is, on the one hand, simplicity and,

on the other, that with the exception of some constructions at the end of the paper, that need that two of

the arrows of a pushout be what it is called a refinement morphism, we only need inclusions.

Pushouts of specifications will not be explicitly defined although they are what it is expected,

i.e. the push out of the global presentations and if, we are just dealing with inclusions, the union of the

sets of constraints.

Lemma 4.3 (Behaviour Amalgamation Lemma with Constraints)

Let BSPi = (BPi, ~i), i=l..4, be two specifications such that BSP4 is the pushout of BSP2 and

BSP3 with respect to BSPl. Then

Mod(BSP4) == Mod(BSP2) ~od(BSP1)Mod(BSP3)

Moreover, amalgamation has the following universal property: If A4 = A2 +A 1A3 (resp.

h4 = h2 +hl h3) then A4 is the unique algebra (resp. h4 is the unique homomorphism) satisfying

A4 I P2 = A2 and A4 [p3 = A3. (resp. h4 I P2 = h2 and h4 I p3 == h3).

15

Proof

By making use of the Behaviour Amalgamation Lemma, it is only necessary to prove that if

A4 = A2 +A1A3, and Ai is in Mod(BSPi), i=l,3, then A4 satisfies every constraint in BSP4. Now,

let (BP, BP') be a constraint in BSP4. This means that there there is an i (i=l,2 or 3) such that

(BP, BP') is in BSPi. But then we have: -6:.

A4 I BP I BP' == A4 I Bpi I BP I BP' = Ai I BP I BP'= Ai I BP' = A4 I BPi I BP' = A4 ! BP'

[]

In order to state the Extension Lemma we need, we will first define the notion of relative

persistency that is adequate here.

Definition 4.4

Given a specification BSP = <BP, ~>, a behaviour constraint BC == (BPl. BPl ') with

BPl ~ BP is persistent relative to BSP if for any A in Mod(BSP) it holds that

Please note that we do not assume BPl • to be included in BP.

Lemma 4.5 (Extension Lemma with Constraints)

Let BSP be a specification, BSP = <BP, ~>, and BC be a behaviour constraint,

BC= (BPl, BP2), such that BPl is view included in BP and BPnBP2 = BPl and let BP+BP2

denote the result specification of the pushout diagram

BPl ---►- BP2

l l
BP ----1►• BP+BP2

then if (BPl, BP2) is persistent relative to BSP we have that (BP, BP+BP2) is persistent relative to

BSP and the associated free functor I BP+BP2: Beh(BP) ➔ Beh(BP+BP2) is an extension of

I BP2: Beh(BPl) ➔ Beh(BP2) for BSP-models, that is for every A in Mod(BSP):

A IBPl I BP2 =AI BP+BP21 BP2

Moreover, Mod(BSP) I BP+BP2 ~ Mod(<BP+BP2, l;u{(BPl, BP2)}>) and for every

algebra A4 (respectively behaviour homomorphism h4) in Mod(BSP4) we have that A4 (resp. h4) is

naturally isomorphic to A4 l BP I BP+BP2 (respectively h4 I BP I BP+BP2)).

16

Proof

Immediate from the View Extension Lemma and from the View Amalgamation Lemma for the

free case just considering that the subcategories Al, A3 and A4 of Beh(BPI), Beh(BP3) and

Beh(BP4) are the ones that satisfy the constraints of BSP. IJ

5. Main results

Now that we have the basic results needed (amalgamation and extension lemmas) we will

extend the results presented in [OSC 89] to the behaviour case. These results concern the whole

process of building a specification. In particular, first we will see that if a specification is completely

defined then its semantics coincides with the initi~ behaviour semantics [Niv 87, NO 88), i.e. the final

result of the development process has what we consider the proper behaviour semantics of a

specification. Then, we will present the three basic operations for extending a specification (horizontal

refinements) and show that we can define compatible semantics both at the model level and at the

specification level. Finally, we introduce the notion of vertical refinement and show a horizontal

composition theorem that may be seen as a generalization of parameter passing as defined in [EM 85]

for the standard case and in [Niv 87, NO 88] for the behaviour case.

The notion of completeness of a specification is, as in [OSC 89] based on two properties 1)

every sort and operation is defined in some constraint and 2) there is no circularity among constraints.

The absence of circularity is needed as it shows the following example:

Let BP0, BP0', BPl, BPl' and BP be

bspec BP0 = obs sorts s 1 end bspec

bspec BPO'= obs sorts s1, s2
ops f: sl ➔ s2

end bspec

bspec BP = obs sorts s 1, s2
ops f: sl ➔ s2

g: s2 ➔ sl
end bspec

bspec BPl c:Obs sorts s2 end bspec

bspec BPl '= obs sorts sl, s2
ops g: s2 ➔ sl

end bspec

and let BSP be (BP, {(BP0, BP0'), (BPl, BPI')}). In BSP every sort and operation seems to be

defined on some constraint, but this is not really true. In fact, the constraints only say that elements of

sorts sl must be a copy of elements of sort s2 and vice-versa. Absence of this kind of circularity allows

to avoid this kind of situations. Certainly, circularity is not by itself a problem (for instance, in the

previous example another constraint could have existed really defining the elements of sorts s1 and s2).

However, for simplicity, we have adopted this restricted notion together with the additional restriction

that every sort or operation is defined by a unique constraint. Nevertheless the next theorem would also

apply for not so strong restrictions.

Definition 5.1

A specification BSP = <BP, ~> is complete if the following two conditions hold:

17

a) Complete definition: for every se S there exists a unique (BPl, BP2)e ~ such that

se S2-Sl and for every open there exists a unique (BPl, BP2)e ~ such that ope 02-Ql.

b) No circularity: the transitive closure of the relation <, defined by

(BPl, BP2) < (BP3, BP4) if there exists seS3 such that seS2-Sl or there exists open3 such that

ope 02 - n1, is a strict partial order on ~.

Theorem 5.2

Let BSP =<BP,~> be a consistent behaviour specification, then ifBSP is complete we have

Mod(BSP) = {AeAlg(BP) I A =BP Tsp}

where T BP is the initial BP-algebra.

Proof

Let BCo, BC 1, ... , BC0 be a topological sort of ~ with respect to the partial order defined by

condition b. that is BCi < BCj implies i<j. Note that BCo must have the form (0,BPo)- Let

BSPo = <BPo,~o>, ... , BSP n = <BP n•~n> be the following sequence of specifications:

BSPo = <BPo, (0,BPo)>

BSPi+I = <BPi+l•~iu{ (BP'i+I,BP\+i) }>

where BCi+l= (BP\+1,BP"i+l) and BPi+l denotes the result of the pushout

BP.' 1 ► BP"
l+ i+I

l l
BP • BP . l

1+

Note that for every i, j, with i ~ j, if s is in S"rS'i then s is observable in BP'\ iff s is

observable in BPj. Now, we will prove by induction that for every i:

1. BCj is persistent relative to BSPi-1 · In the case i = 0 we consider BCi to be persistent

(persistent relative to the empty specification), which trivially is since BCo = (0,BPo)-

2. T BPiE Mod(BSPi)

3. ff A, Be Mod(BSPi) then A =asp. B.
l

It should be clear that, if 1., 2. and 3. hold for every i, then the theorem is true since, by

construction, BSP n c BSP and in addition, by condition a., :En = I: and Sn = l;. Then,

Mod(BSP) ~ Mod(BSPn)· But ifMod(BSPn) only contains algebras which are isomorphic to TBPn

18

and Mod(BSP) cannot be empty, since it is assumed to be consistent, then Mod(BSP) = Mod(BSP n)

and T BPn =:BP T BP·

If i = 0 then, as it was said above, condition 1. trivially holds. Also, conditions 2. and 3. are

obviously satisfied since the only BPo-algebras that satisfy the behaviour constraint (0,BPo) are

exactly the algebras which are isomorphic to T BPO·

Assume i = j+ 1. To prove that BCj+l is persistent relative to BSPj we have to prove that:

Now, if BSP is consistent there should be an A such that AeMod(BSP), but since TBPj is the

only BPralgebra satisfying the behaviour constraints in Sj, this means that A I BPj = TBPj· On the

other hand, A must also satisfy the behaviour constraint BCj+l• therefore:

A I BP'j+l I BP"j+l =AI BP"j+l

but this implies that:

and therefore:

Now, to prove 2. it is enough to notice that, since (BP'j+ 1,BP"j+ 1) is persistent relative to

BSPj, according to the Extension Lemma TBPj I BPj+I is in Mod(BSPj+I>· But, TBPj I BPj+l 2

TBPj+l·

Finally, 3 is also a consequence of the Extension Lemma. On one hand we have that all algebras

~n Mod(~SPj) are isomorph.ic which i~plies that ~11 algebras in Mod(BS,.~ I BP'j+l are also

isomorphic and, therefore, so 1t happens with algebras m Mod(BSPj) I BP'j+l I B j+l. On the other,

from the Extension Lemma we have that:

then, from the Amalgamation Lemma [EM85], we have that all algebras m

Mod(<BPj+ l •Sju{BCj+ 1 }>) are also isomorphic. []

The next thing to study, as said above, are the basic operations that we define for building a

specification. We consider two kinds of them: extension operations and completion operations.

Extension operations, which correspond to horizontal refinements, build larger specifications on top of

existing ones in a conservative way. That is, we assume that if BSP2 extends BSPl then the models of

BSP2, when forgetting the new sorts and operations coincide exactly with the models of BSP1. This

means that we assume that extension operations do not add additional detail on existing sorts and

operations, i.e. there is no restriction on the class of models. On the other hand, completion operations,

which correspond to vertical refinements, do restrict the class of models of the refined specification.

Since completion operations may also add new sons, operations and equations to a existing

19

specification, it hc1.ppens that extensions are a special case of vetical refinements. Then, we could ask

about the need of this distinction. The reason is mainly methodological, we believe that a specifier

should always be conscious of when is s/he adding new thmgs or when is s/he adding detail or

completing a previously existing specification. This also happens in many specification languages (e.g.

the prorecting case for enrichment declaration in OBJ [FGJ 85]). In particular, the language GSBL

developped following the ideas introduced in [OSC 89] makes heavy use of this distinction in order to

enhance the incremental construction of specificataions. Moreover, at a more technical level, knowing

that some specifications are extensions, in our sense, of some subspecifications allows to assure, for

free the correctness (i.e. consistency) of the result specification after applying certain operations. For

instance this happens when combining specifications or when doing a horizontal composition of

vertical refinements.

Definition S.3

Given specifications BSPl and BSP2, BSP2 is a loose extension of BSPl if

a) BSPI c:; BSP2

b) Mod(BSPl) = Mod(BSP2) I BPI

We consider three basic operations for defining loose extensions: enrich defining, enrich

with and combine. Their semantics, at the specification level is given below.

The operation enrich defining adds to a given specification new sorts and operations together

with a constraint defining them. That is, given a specification BSP : <BP, ~> and a constraint

C = (BPI,BP2) such that BPl ~ BP, enrich defining creates a new specification

<BP+BP2, ~u{C}>, where BP+BP2 denotes, as in the Extension Lemma (cf. 4.5) the pushout of

BP and BP2 over BPl.

The operation enrich with adds new sorts and operations without any new constrah1t. That is,

given a specification BSP = <BP, ~>, where BP= ((S, Op), E), and a triple (St, Opl, El), such

that BPl = ((S+Sl, Op+Opl), E+El) is a presentation and where+ denotes disjoint union, enrich

with creates the new specification <Pl,~>.

Finally, the operation combine puts together two specifications whithout duplicating their

common part. That is, given specifications BSPl, BSP2 and BSP3, such that BSP2 and BSP3 are

loose extensions of BSPl, the combination of BSP2 and BSP3 over BSPl is defined as the result of

the pushout:

BSPl ► BSP2

l l
BSP3 ► BSP4

The semantics of these three operations could also be defined at the model level as follows:

Mod(enrich <BP,~> defining (BP1,BP2)) :ee {A/ 3 A'e Mod(<BP, ~>), A=- A' I P+P2}

20

Mod(enrich <BP,~> with (BI,E)) = Mod(<BP, ~>)~od(<BP, 0>)Mod(<BP+(B:E,E), 0>)

Mod(combine BSP2 and BSP3 wrt BSPl) = Mod(BSP2) +Mod(BSPl) Mod(BSP3)

This model level definitions are compatible with the previous ones because of the Amalgamation

and Extension Lemmas seen in the previous section. It may be noted that these definitions are

essentially the same to the ones given in [OSC 89] except (or the case of the enrich defining

operation. The reason is that in [OSC 89] this operation was defined in tenns of amalgamated sums,

while here, because this operation involves some view inclusions, would not be possible, in general.

As a consequence, in this paper, we have defined the meaning of that operation by means of the

closure, under behavioural equivalence (behavioural isomorphy) of the extensions of the models of the

enriched specification.

In what follows, we will study the correctness of these three operations, i.e. under which

conditions these operations define loose extensions. The simplest case is the combine operation, since

the result BSP4 of the combination of two specifications, BSP2 and BSP3, that are loose extensions of

BSPl is always a loose extension of BSP2 and BSP3:

Theorem 5.4

Let BSPI, BSP2 and BSP3 be three consistent specifications such that BSP2 and BSP3 are

loose extensions of BSPl and BSP2nBSP3 = BSPl, and let BSP4 be the result of the pushout:

BSPl ---►~BSP2

l l
BSPJ------t►~ BSP4

then BSP4 is a loose extension of BSP2 and BSP3.

Proof

The proof is almost trivial: w.1.o.g., let us prove that BSP4 is a loose extension of BSP2. Let

A2 be in Mod(BSP2), then we know that Al = A2 I BPt is in Mod(BSPl) and, since BSP3 is an

extension of BSPl, there should be an A3 in Mod(BSP3) such that Al = A3 lap1. Then, by the

Amalgamation Lemma for specifications with constraints [Ehg88], we have that A4 = A2 + Al A3 is in

Mod(BSP4). []

The case of enrich defining is also quite simple. It depends on the relative persistency of the

new constraint with respect to the enriched specification:

Theorem 5.5

Given a specification BSP = <BP,~> and a constraint C = (BPl, BP2) such that BPI~ BP

and BP2('1BP = BPI, and let BP+BP2 be the result of the pushout:

21

BPI ---►.,..BP2

l l
BP --~►• BP+BP2

then BSP' == <BP+BP2, ~u{C}> is a loose extension of BSP iff C is persistent relative to BSP.

Proof

If BSP' is a loose extension of BSP this means that for every BP-algebra A such that A I==~

there is a BP+BP2-algebra B such that B I== ~u{C} and B I BP = A. Now, if B sati.sfi'!s C this means

that:

but this implies that:

and therefore:

Conversely, if (BP1,BP2) is persistent relative to BSP, by the Extension Lemma proved above,

we know that for every Ae Mod(BSP) it holds that A I BP+BP2e Mod(BSP) and A I BP+BP2 1 BP=

A.[]

Finally, the correctness of the enrich with operation is the most complicated case. Here, as in

[OSC 89] we will just give a sufficient condition which we think can handle many situations.

Essentially, it says that an enrichment of this kind over a specification BSP is a loose extension if we

can provide a constraint persistent relatively to BSP, defining completely the enrichment. We think that

this is a reasonable condition for many situations since, often, the reason of adding some sorts or

operations without defining them completely is that we do not want to take a decision of choosing

among several possible alternatives.

Corollary 5.6

Given a specification BSP = <BP,~>, and a presentation BPI, such that BP~ BPl, then

BSPI =<BPI,~> is a loose extension of BSP if there exists a constraint C = (BP2, BP3), such

that BP2 ~ BP, BP1 t;;; BP3 and (BP2, BP3) is persistent relative to BSP.

Proof

If there is a constraint (BP2, BP3) such that BP2 ~ BP, BPl !:: BP3 and (BP2, BP3) is

persistent relative to BSP, then using the previous theorem we know that BSP' = <BP+BP3, t;u{C}>

is a loose extension of BSP. But, Mod(BSP') I BPI ~ Mod(BSPI) thus BSPI is a loose extension of

BSP.[]

22

The second kind of refinements we consider are vertical refinements. A vertical refinement

consists on adding detail to a specification, in our case completing the given specification or, similarly,

restricting its class of models. In this sense, it seems reasonable to consider vertical refinements as

some class of specification morphism. As in [OSC 89] we have considered a definition which is more

restrictive than it, perhaps, could be. In particular, we have restricted refinement morphisms to translate

constraints injectively. The reason for this is, mainly, methodological According to our approach a

constraint represents a part of a specification completely defined. In this sense, it seems reasonable to

think that when we are completing a specification the already completed pans should remain

untouched. A similar restriction is taken in [ETLZ82J but, apparently, just for technical reasons.

Definition 5.7

A refinement morphism f: <BPI, ~b ➔ <BP2, ~2> is a behaviour presentation mophism

f: BP1 ➔ BP2, satisfying:

a) f is injective on constrained sorts and operations, that is for every constraint (BP, BP') in

~l, if sl, s2e S'-S (resp. opl, op2E n• -Q) then f(sl) = f(s2) implies sl = s2 (resp.

f(opl) = f(op2) implies opl = op2)

Facts 5.8
1. Obviously, the composition of vertical refinements is a vertical refinement. Therefore,

vertical composition trivially holds.

2. If f : <BPl, ~l> ➔ <BP2, ~2> is a refinement morphism then Mod(<BP2,l;2>) I BPl ~
Mod(<BPI; l;b). This is a consequence of the restriction imposing f to be injective on ~1.

3. There are pushouts (amalgamations) associated to categories of specifications (models) with

refinement morphisms (the associated forgetful functors). In particular, the proof of existence of

amalgamations, in this case, would be just a slight generalization of the one given in the previous

section.

The main operation for defining vertical refinements is presented in the following theorem. In

particular, it shows how we can substitute, within a specification, an incomplete part for a more

complete one. Specifically, it states how a vertical refinement of a given specification BSPl induces a

vertical refinement on any loose extension of BSPl. This fact has several interpretations. On one hand,

the theorem states, in our framework, the horizontal composition property [GB80J, namely, that the

order in which we perfonn vertical and horizontal refinements is not important. On the other, it shows

that in our framework there is no need for parameterization, since any specification BSP2 may be seen

as having as implicit parameters all specifications BSPl loosely extended by BSP2. Then, this induced

vertical refinement may be seen as a generalized fonn of parameter passing. The relation of our

construction to parameter passing is very similar to the one found by B . Meyer [Mey86J, at the

programming language level, between genericity and inheritance, showing that inheritance may be seen

as a generalization of genericity. Indeed, as it is shown in [C088], our notion of vertical refinement

may be seen, from a methodological standpoint, as an inheritance relation defined at the specification

level Obviously, this kind of inheritance relation has nothing to do with the subtyping (or subsorting)

23

relation also studied in the literature [GM83].

Theorem 5.9
Let BSPl and BSP2 be consistent behaviour specifications such that is a loose extension of

BSPl, and let f be a refinement morphism, f: BSPl ➔ BSP3, for a given specification BSP3 such that

BSPl = BSP2r'\BSP3. The result of substituting BSPl by BSP3 in BSP2 is the specification

BSP4 = <BP4,~4> defined by the pushout:

BSPl ----i►P>BSP2

BSP3 ---►P BSP4

then we have:

1. BSP4 is a loose extension of BSP3

2. BSP3 is consistent iff BSP4 is consistent

Proof

1.We know that Mod(BSP4) = Mod(BSP3) ~od(BSPl) Mod(BSP2). Then, if Mod(BSP3) = 0,

so is Mod(BSP4). Now, given an Ae Mod(BSP3), we have that A J BPI e Mod(BSPI). But, if BSP2 is

a loose extension of BSPI, there is a Be Mod(BSP2) such that B I BPl = A I BPI. Then, by defining

B' =A+ A j BPI B we have that B'e Mod(BSP4) and B' I BP3 = A.

2. Is an immediate consequence of 1., since if BSP4 is a loose extension of BSP3, then

Mod(BSP3) is not empty iff Mod(BSP4) is not empty.[}

In the previous theorem, the fact that BSP2 is a loose extension of BSPt , i.e.

Mod(BSP2) l BPI = Mod(BSPI), is absolutely needed to guarantee the consistency of BSP4. The

situation is similar to the need of persistency to assure the correctness of parameter passing:

Theorem 5.10

Let BSPl and BSP2 be specifications such that BSPl t; BSP2, then if BSP2 is not a loose

extension of BSPt there is a consistent specification BSP3 such that BSP2("'1BSP3 = BSPl and a

refinement morphism f: BSPl ➔ BSP3 such that the result, BSP4. of the associated pushout diagram:

BSPt ---►.-BSP2

BSP3----i►~ BSP4

is not consistent.

Proof

If BSP2 is not a loose extension of BSPt this means that there is an AleMod(BSPt) such that

24

for every A2e Mod(BSP2) A2 I BPl is not isomorphic to Al. Let BSP3 = <BP3, ~3>, where BP3 is

the presentation obtained by adding to BPl all the values from Al as constants of the appropriate sorts

and all the equations satisfied by Al, and ~3 is obtained by adding to l;I the constraint (0, BP3).

Obviously, Mod(BSP3) = {BeBeh(BP3) / B / BPl = Al}.

Now, Mod(BSP4) = 0, for

Mod(BSP4) = Mod(BSP3) ~od(BSPl) Mod(BSP2)

and

{AeMod(BSP2) I A IBPl e Mod(BSP3) lap1} = 0 [J

6. Conclusions

We have presented an approach for formalizing the specification development process from

informal requirements which is capable of dealing with incomplete specifications. Moreover, it also

takes into account the notions of behaviour and observability which are critical with respect to the

semantics of software specifications. The way of handling this incompleteness is by means of

behavioural specifications with constraints which correspond to the completely defined subparts of a

given incomplete specification. The concept of behavioural constraint allows to deal with different

observability criteria within the same behavioural specification (certain sorts are considered

non-observable at the global leve1 '1ut may be considered locally observable within a constraint) which

is a need from the metodological point of view. The corresponding semantics is loose, accepting as

models all algebras behaviourally satisfying the axioms and all the behavioural constraints, obtaining

compatibility results with respect to the operations for horizontal and vertical refinement. The

interaction of horizontal and vertical refinements allows to substitute any incomplete subspecification of

a given specification by a more complete one in a way that generalizes the satandard behavioural

parameter passing by requiring a limited fonn of persistency in the behaviour sense.

To achieve that, a generalization of the Amalgamation and Extension Lemmas for behaviour

specification morphisms, the Extension Lemma for view morphisms and a version of the

A.nalgamation for view morphisms for free algebras has been necessary to obtain.

7. References

[BG 80]

[CO 88]

R.M. Burstall,; J.A. Goguen, The semantics of Clear, a specification language, Proc.

Copenhagen Winter School on Abstract Software Specification, Springer LNCS 86,

pp. 292-332, 1980.

S. Clerici, ; F. Orejas, GSBL: an algebraic specification language based on

inheritance, Proc. Europ. Conf. on Object Oriented Programming, (Oslo, 1988),

Springer LNCS.

25

[Ehg 89] H. Ehrig, A categorical concept of constraints for algebraic specifications, Proc.

International Workshop on Categorical Methods in Computer Science with Aspects

from Topology, Berlin 1988, Springer LNCS 332, (1989).

[EM 85] H. Ehrig, B. Mahr, Fundamentals of algebraic specification 1, EATCS Monographs

on Theor. Comp. Sc., Springer Verlag, 1985.

[EPO 89] H. Ehrig, P. Pepper, F. Orejas, On recent trends in algebraic specification, Proc.

ICALP 89, LNCS 372 (1989) 263 - 289.

[E1LZ 82] H. Ehrig, H., J.W. Thatcher, P. Lucas, S.N. Zilles, Denotational and initial algebra

semantics of the algebraic specification language LOOK, Draft Report. IBM Research,

1982.

[FGJ 85] K. Futatsugi, J.A. Goguen, J.P. Jouannaud, Principles of OBJ 2, Proc. POPL 85,

ACM (1985) 221-231.

[GB 80] J.A. Goguen, R.M .. Burstall, CAT, a system for the structured elaboration of correct

programs from Ftructured specifications, Tech. Report CSL-118, Comp. Sc. Lab.,

SRI Int., 1980.

[GB 85]

[HW 85J

[MG 85]

[Mey 86]

[Niv 87]

J.A. Goguen, R.M. Burstall, Institutions: Abstract Model Theory for Computer

Science, CSLI Report 85-30, 1985.

R. Hennicker, M. Wirsing, Observational Specification: A Bi.rkhoff-Theorem , Recent

Trends in Data Type Specification, Informatik-Fachberichte, Springer 116 (1985)

119-135.

J. Meseguer, J. A. Goguen, Initiality, induction and computability, Algebraic

Methods in Semantics, M. Nivat and J. Reynolds (eds.), Cambridge Univ. Press

(1985) 459-540.

B. Meyer, Genericity versus Inheritance, Proc. ACM conf. Object-Oriented

Programming Syst, Languages, and Applications, ACM, New York, I 986, pp.

391-405

M1 P. Nivela, Semantica de Comportamiento en Lenguajes de Especificaci6n, PhD.

Thesis, Facultat d'Informatica, Universitat Politecnica de Catalunya, Barcelona (1987).

26

[NO 88]

[ONE 89]

[OSC 89]

[Rei 80]

[Rei 81]

[Rei 84]

[Rei 87]

[SW 83]

[ST 87a]

[ST 87b]

M• P. Nivela, F. Orejas, Initial Behaviour Semantics for Algebraic Specifications,

Proc. 5th Workshop on Algebraic Specifications of Abstract Data Types, Gullane

1987, Springer LNCS 332, (1988) 184-207.

F. Orejas, M1 P. Nivela, H. Ehrig, Semantical constructions for categories of

behavioural specifications, Proc. International Workshop on Categorical Methods in

Computer Science with Aspects from Topology, Berlin 1988, Springer LNCS 332,

(1989) 220-243.

F. Orejas, V. Sacristan, S. Clerici, Development of Algebraic Specifications with

Constraints, Proc. International Workshop on Categorical Methods in Computer

Science with Aspects from Topology, Berlin 1988, Springer LNCS 332, (1989)

H. Reichel, Initially restricting algebraic theories, Proc. MFCS 80, Springer LNCS 88

(1980), pp. 504-514.

H. Reichel, Behavioural equivalence - a unifying concept for initial and final

specification methods, Proc. 3rd Hungarian Computer Science Conf., Budapest

(1981) 27-39.

H. Reichel, Behavioral validity of equations in abstract data types, Contributions to

General Algebra 3, Proc.of the Vienna Conference, Verlag B. G. Teubner, Stuttgart

(1985) 301-324.

H. Reichel, Initial Computability, Algebraic Specifications and Partial Algebras, Int.

Series of Monographs on Comp. Sc, Oxford Science Publ., 1987.

D. Sannella, Wirsing, M., A kernel language for algebraic specification and

implementation. Proc. Intl. Conf. on Foundations of Computation Theory Sweden.

Springer LNCS 158 (1983) 413-427.

D. Sannella, A. Tarlecki, On observational equivalence and algebraic specification. J.

Comp. and Sys. Sciences 34, pp. 150-178 (1987).

D. Sannella, A. Tarlecki Toward formal development of programs from algebraic

specifications: implementations revisited. Proc. Joint Conf. on Theory and Practice of

Software Development, Pisa, Springer LNCS 249, pp. 96-110 (1987).

27

