79 research outputs found

    Hardness of Approximation in {P} via Short Cycle Removal: {C}ycle Detection, Distance Oracles, and Beyond

    Get PDF

    Approximation Algorithms and Hardness for nn-Pairs Shortest Paths and All-Nodes Shortest Cycles

    Full text link
    We study the approximability of two related problems on graphs with nn nodes and mm edges: nn-Pairs Shortest Paths (nn-PSP), where the goal is to find a shortest path between O(n)O(n) prespecified pairs, and All Node Shortest Cycles (ANSC), where the goal is to find the shortest cycle passing through each node. Approximate nn-PSP has been previously studied, mostly in the context of distance oracles. We ask the question of whether approximate nn-PSP can be solved faster than by using distance oracles or All Pair Shortest Paths (APSP). ANSC has also been studied previously, but only in terms of exact algorithms, rather than approximation. We provide a thorough study of the approximability of nn-PSP and ANSC, providing a wide array of algorithms and conditional lower bounds that trade off between running time and approximation ratio. A highlight of our conditional lower bounds results is that for any integer k1k\ge 1, under the combinatorial 4k4k-clique hypothesis, there is no combinatorial algorithm for unweighted undirected nn-PSP with approximation ratio better than 1+1/k1+1/k that runs in O(m22/(k+1)n1/(k+1)ϵ)O(m^{2-2/(k+1)}n^{1/(k+1)-\epsilon}) time. This nearly matches an upper bound implied by the result of Agarwal (2014). A highlight of our algorithmic results is that one can solve both nn-PSP and ANSC in O~(m+n3/2+ϵ)\tilde O(m+ n^{3/2+\epsilon}) time with approximation factor 2+ϵ2+\epsilon (and additive error that is function of ϵ\epsilon), for any constant ϵ>0\epsilon>0. For nn-PSP, our conditional lower bounds imply that this approximation ratio is nearly optimal for any subquadratic-time combinatorial algorithm. We further extend these algorithms for nn-PSP and ANSC to obtain a time/accuracy trade-off that includes near-linear time algorithms.Comment: Abstract truncated to meet arXiv requirement. To appear in FOCS 202

    Stronger 3-SUM Lower Bounds for Approximate Distance Oracles via Additive Combinatorics

    Full text link
    The "short cycle removal" technique was recently introduced by Abboud, Bringmann, Khoury and Zamir (STOC '22) to prove fine-grained hardness of approximation. Its main technical result is that listing all triangles in an n1/2n^{1/2}-regular graph is n2o(1)n^{2-o(1)}-hard under the 3-SUM conjecture even when the number of short cycles is small; namely, when the number of kk-cycles is O(nk/2+γ)O(n^{k/2+\gamma}) for γ<1/2\gamma<1/2. Abboud et al. achieve γ1/4\gamma\geq 1/4 by applying structure vs. randomness arguments on graphs. In this paper, we take a step back and apply conceptually similar arguments on the numbers of the 3-SUM problem. Consequently, we achieve the best possible γ=0\gamma=0 and the following lower bounds under the 3-SUM conjecture: * Approximate distance oracles: The seminal Thorup-Zwick distance oracles achieve stretch 2k±O(1)2k\pm O(1) after preprocessing a graph in O(mn1/k)O(m n^{1/k}) time. For the same stretch, and assuming the query time is no(1)n^{o(1)} Abboud et al. proved an Ω(m1+112.7552k)\Omega(m^{1+\frac{1}{12.7552 \cdot k}}) lower bound on the preprocessing time; we improve it to Ω(m1+12k)\Omega(m^{1+\frac1{2k}}) which is only a factor 2 away from the upper bound. We also obtain tight bounds for stretch 2+o(1)2+o(1) and 3ϵ3-\epsilon and higher lower bounds for dynamic shortest paths. * Listing 4-cycles: Abboud et al. proved the first super-linear lower bound for listing all 4-cycles in a graph, ruling out (m1.1927+t)1+o(1)(m^{1.1927}+t)^{1+o(1)} time algorithms where tt is the number of 4-cycles. We settle the complexity of this basic problem by showing that the O~(min(m4/3,n2)+t)\widetilde{O}(\min(m^{4/3},n^2) +t) upper bound is tight up to no(1)n^{o(1)} factors. Our results exploit a rich tool set from additive combinatorics, most notably the Balog-Szemer\'edi-Gowers theorem and Rusza's covering lemma. A key ingredient that may be of independent interest is a subquadratic algorithm for 3-SUM if one of the sets has small doubling.Comment: Abstract shortened to fit arXiv requirement

    New Algorithms and Hardness for Incremental Single-Source Shortest Paths in Directed Graphs

    Full text link
    In the dynamic Single-Source Shortest Paths (SSSP) problem, we are given a graph G=(V,E)G=(V,E) subject to edge insertions and deletions and a source vertex sVs\in V, and the goal is to maintain the distance d(s,t)d(s,t) for all tVt\in V. Fine-grained complexity has provided strong lower bounds for exact partially dynamic SSSP and approximate fully dynamic SSSP [ESA'04, FOCS'14, STOC'15]. Thus much focus has been directed towards finding efficient partially dynamic (1+ϵ)(1+\epsilon)-approximate SSSP algorithms [STOC'14, ICALP'15, SODA'14, FOCS'14, STOC'16, SODA'17, ICALP'17, ICALP'19, STOC'19, SODA'20, SODA'20]. Despite this rich literature, for directed graphs there are no known deterministic algorithms for (1+ϵ)(1+\epsilon)-approximate dynamic SSSP that perform better than the classic ES-tree [JACM'81]. We present the first such algorithm. We present a \emph{deterministic} data structure for incremental SSSP in weighted digraphs with total update time O~(n2logW)\tilde{O}(n^2 \log W) which is near-optimal for very dense graphs; here WW is the ratio of the largest weight in the graph to the smallest. Our algorithm also improves over the best known partially dynamic \emph{randomized} algorithm for directed SSSP by Henzinger et al. [STOC'14, ICALP'15] if m=ω(n1.1)m=\omega(n^{1.1}). We also provide improved conditional lower bounds. Henzinger et al. [STOC'15] showed that under the OMv Hypothesis, the partially dynamic exact ss-tt Shortest Path problem in undirected graphs requires amortized update or query time m1/2o(1)m^{1/2-o(1)}, given polynomial preprocessing time. Under a hypothesis about finding Cliques, we improve the update and query lower bound for algorithms with polynomial preprocessing time to m0.626o(1)m^{0.626-o(1)}. Further, under the kk-Cycle hypothesis, we show that any partially dynamic SSSP algorithm with O(m2ϵ)O(m^{2-\epsilon}) preprocessing time requires amortized update or query time m1o(1)m^{1-o(1)}

    Algorithms for sparse convolution and sublinear edit distance

    Get PDF
    In this PhD thesis on fine-grained algorithm design and complexity, we investigate output-sensitive and sublinear-time algorithms for two important problems. (1) Sparse Convolution: Computing the convolution of two vectors is a basic algorithmic primitive with applications across all of Computer Science and Engineering. In the sparse convolution problem we assume that the input and output vectors have at most t nonzero entries, and the goal is to design algorithms with running times dependent on t. For the special case where all entries are nonnegative, which is particularly important for algorithm design, it is known since twenty years that sparse convolutions can be computed in near-linear randomized time O(t log^2 n). In this thesis we develop a randomized algorithm with running time O(t \log t) which is optimal (under some mild assumptions), and the first near-linear deterministic algorithm for sparse nonnegative convolution. We also present an application of these results, leading to seemingly unrelated fine-grained lower bounds against distance oracles in graphs. (2) Sublinear Edit Distance: The edit distance of two strings is a well-studied similarity measure with numerous applications in computational biology. While computing the edit distance exactly provably requires quadratic time, a long line of research has lead to a constant-factor approximation algorithm in almost-linear time. Perhaps surprisingly, it is also possible to approximate the edit distance k within a large factor O(k) in sublinear time O~(n/k + poly(k)). We drastically improve the approximation factor of the known sublinear algorithms from O(k) to k^{o(1)} while preserving the O(n/k + poly(k)) running time.In dieser Doktorarbeit über feinkörnige Algorithmen und Komplexität untersuchen wir ausgabesensitive Algorithmen und Algorithmen mit sublinearer Lauf-zeit für zwei wichtige Probleme. (1) Dünne Faltungen: Die Berechnung der Faltung zweier Vektoren ist ein grundlegendes algorithmisches Primitiv, das in allen Bereichen der Informatik und des Ingenieurwesens Anwendung findet. Für das dünne Faltungsproblem nehmen wir an, dass die Eingabe- und Ausgabevektoren höchstens t Einträge ungleich Null haben, und das Ziel ist, Algorithmen mit Laufzeiten in Abhängigkeit von t zu entwickeln. Für den speziellen Fall, dass alle Einträge nicht-negativ sind, was insbesondere für den Entwurf von Algorithmen relevant ist, ist seit zwanzig Jahren bekannt, dass dünn besetzte Faltungen in nahezu linearer randomisierter Zeit O(t \log^2 n) berechnet werden können. In dieser Arbeit entwickeln wir einen randomisierten Algorithmus mit Laufzeit O(t \log t), der (unter milden Annahmen) optimal ist, und den ersten nahezu linearen deterministischen Algorithmus für dünne nichtnegative Faltungen. Wir stellen auch eine Anwendung dieser Ergebnisse vor, die zu scheinbar unverwandten feinkörnigen unteren Schranken gegen Distanzorakel in Graphen führt. (2) Sublineare Editierdistanz: Die Editierdistanz zweier Zeichenketten ist ein gut untersuchtes Ähnlichkeitsmaß mit zahlreichen Anwendungen in der Computerbiologie. Während die exakte Berechnung der Editierdistanz nachweislich quadratische Zeit erfordert, hat eine lange Reihe von Forschungsarbeiten zu einem Approximationsalgorithmus mit konstantem Faktor in fast-linearer Zeit geführt. Überraschenderweise ist es auch möglich, die Editierdistanz k innerhalb eines großen Faktors O(k) in sublinearer Zeit O~(n/k + poly(k)) zu approximieren. Wir verbessern drastisch den Approximationsfaktor der bekannten sublinearen Algorithmen von O(k) auf k^{o(1)} unter Beibehaltung der O(n/k + poly(k))-Laufzeit

    Online Euclidean Spanners

    Get PDF

    Current Algorithms for Detecting Subgraphs of Bounded Treewidth Are Probably Optimal

    Get PDF
    The Subgraph Isomorphism problem is of considerable importance in computer science. We examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of applications. This problem has a well-known algorithm via color-coding that runs in time O(n^{tw(H)+1}) [Alon, Yuster, Zwick\u2795], where n is the number of vertices of the host graph G. While there are pattern graphs known for which Subgraph Isomorphism can be solved in an improved running time of O(n^{tw(H)+1-?}) or even faster (e.g. for k-cliques), it is not known whether such improvements are possible for all patterns. The only known lower bound rules out time n^{o(tw(H) / log(tw(H)))} for any class of patterns of unbounded treewidth assuming the Exponential Time Hypothesis [Marx\u2707]. In this paper, we demonstrate the existence of maximally hard pattern graphs H that require time n^{tw(H)+1-o(1)}. Specifically, under the Strong Exponential Time Hypothesis (SETH), a standard assumption from fine-grained complexity theory, we prove the following asymptotic statement for large treewidth t: For any ? > 0 there exists t ? 3 and a pattern graph H of treewidth t such that Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). Under the more recent 3-uniform Hyperclique hypothesis, we even obtain tight lower bounds for each specific treewidth t ? 3: For any t ? 3 there exists a pattern graph H of treewidth t such that for any ? > 0 Subgraph Isomorphism on pattern H has no algorithm running in time O(n^{t+1-?}). In addition to these main results, we explore (1) colored and uncolored problem variants (and why they are equivalent for most cases), (2) Subgraph Isomorphism for tw < 3, (3) Subgraph Isomorphism parameterized by pathwidth instead of treewidth, and (4) a weighted variant that we call Exact Weight Subgraph Isomorphism, for which we examine pseudo-polynomial time algorithms. For many of these settings we obtain similarly tight upper and lower bounds

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded

    A Neighborhood-preserving Graph Summarization

    Full text link
    We introduce in this paper a new summarization method for large graphs. Our summarization approach retains only a user-specified proportion of the neighbors of each node in the graph. Our main aim is to simplify large graphs so that they can be analyzed and processed effectively while preserving as many of the node neighborhood properties as possible. Since many graph algorithms are based on the neighborhood information available for each node, the idea is to produce a smaller graph which can be used to allow these algorithms to handle large graphs and run faster while providing good approximations. Moreover, our compression allows users to control the size of the compressed graph by adjusting the amount of information loss that can be tolerated. The experiments conducted on various real and synthetic graphs show that our compression reduces considerably the size of the graphs. Moreover, we conducted several experiments on the obtained summaries using various graph algorithms and applications, such as node embedding, graph classification and shortest path approximations. The obtained results show interesting trade-offs between the algorithms runtime speed-up and the precision loss.Comment: 17 pages, 10 figure
    corecore