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Abstract

We present a new technique for efficiently removing almost all short cycles in a graph without unin-
tentionally removing its triangles. Consequently, triangle finding problems do not become easy even in
almost k-cycle free graphs, for any constant k ≥ 4.

Triangle finding is at the base of many conditional lower bounds in P, mainly for distance computation
problems, and the existence of many 4- or 5-cycles in a worst-case instance had been the obstacle towards
resolving major open questions.

• Hardness of approximation: Are there distance oracles with m1+o(1) preprocessing time and
mo(1) query time that achieve a constant approximation? Existing algorithms with such desirable
time bounds only achieve super-constant approximation factors, while only 3 − ε factors were
conditionally ruled out (Pătraşcu, Roditty, and Thorup; FOCS 2012). We prove that no O(1)
approximations are possible, assuming the 3-SUM or APSP conjectures. In particular, we prove
that k-approximations require Ω(m1+1/ck) time, which is tight up to the constant c. The lower
bound holds even for the offline version where we are given the queries in advance, and extends to
other problems such as dynamic shortest paths.

• The 4-Cycle problem: An infamous open question in fine-grained complexity is to establish any
surprising consequences from a subquadratic or even linear-time algorithm for detecting a 4-cycle
in a graph. This is arguably one of the simplest problems without a near-linear time algorithm nor
a conditional lower bound. We prove that Ω(m1.1194) time is needed for k-cycle detection for all
k ≥ 4, unless we can detect a triangle in

√
n-degree graphs in O(n2−δ) time; a breakthrough that

is not known to follow even from optimal matrix multiplication algorithms.
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1 Introduction

One of the most central and challenging goals in fine-grained complexity is to prove hardness of approx-
imation results for the many fundamental problems that we already know are hard to compute exactly.
With the exception of few results that follow from simple gadget reductions,1 understanding the time vs.
approximation trade-off seems to require specialized fine-grained gap amplification techniques. As we know
from the quest for NP-hardness of approximation that started in the early 90’s, such techniques are not easy
to come by, and the fine-grained restrictions on the reductions can only make matters worse.

Two notable success stories, highlighted in a recent survey by Rubinstein and Vassilevska Williams
[RW19], are the Distributed PCP framework [ARW17] based on algebraic error-correcting codes that has lead
to strong results for many pair-finding type of problems [Rub18, KLM19, CW19, CGL+19, Che20, AAG+19,
KM20], and a graph-products technique [BRS+21] that has lead to impressive inapproximability results for
computing the diameter of a graph [DWVW19, Bon21b, Li21, DW21, Bon21a, DLW21]. Nevertheless, we
are still far away from satisfactory results for many problems (see the open questions in [ARW17, RW19]).
Even distance computations in graphs, an extensively studied subject in fine-grained complexity, exhibits
many huge gaps.

As a case in point, consider the open questions below for three of the most basic problems in the
area, each of them with a long list of upper bounds spanning several decades: distance oracles [Tho99,
CZ01, DHZ00, ABCP98, Coh98, TZ05, BS06, BGSU08, PR14, SVY09, PRT12], dynamic shortest paths
[SE81, RZ12, BR11, HKN14, HKNS15, Che18, DI04, Ber09, BKS12, FGH21], and shortest cycle (girth)
[IR78, LL08, RW12, DKS17b, Duc21, KRS+22].

Open Question 1.1 (Distance Oracles). Can we preprocess a graph in m1+o(1) time and answer shortest
path queries in mo(1) time with an O(1)-approximation? What if we are given the list of all queries in
advance?

No known O(1)-approximation algorithm can achieve the desirable time bounds in the open question. The
above references take m1+Θ(1/k) preprocessing time to answer queries with a k-approximation in mo(1) time.
Meanwhile, the best conditional lower bound by Pătraşcu, Roditty, and Thorup [PRT12] only rules out a
(3−ε)-approximation with such time bounds under a set-intersection conjecture.2 Existing inapproximability
results higher than the 3 − ε barrier are either information-theoretic incompressibility arguments [Bou85,
Mat96, TZ05] and therefore only rule out o(m) space bounds, or in the cell-probe model [SVY09] and
therefore only apply for query times up to log n.3

Open Question 1.2 (Dynamic Shortest Paths). Can we preprocess a graph in O(mn) time, then sup-
port edge-updates in mo(1) amortized time, and answer shortest path queries in mo(1) time with an O(1)-
approximation?

Again, no known constant factor approximation meets these desirable requirements on the update and
query times. It is known how to achieve update and query time O(m1/k) with approximation factor O(k)
in the partially dynamic (deletions only) case [Che18] and approximation factor (log n)O(k) in the fully
dynamic case [FGH21]. The only conditional lower bounds are for (2 − ε)-approximation algorithms and
they follow directly from the lower bounds for the exact setting [RZ04, AW14, HKNS15], where it is shown
that distinguishing distance 2 from 4 is hard.4

Open Question 1.3 (Girth). Can we return an O(1)-approximation to the girth (i.e. the length of the
shortest cycle) in m1+o(1) time?

1Similar to saying that the NP-hardness of 3-coloring implies a 4/3−ε-hardness of approximation for the chromatic number.
2Their conjecture and hardness result apply even for preprocessing algorithms with m1+o(1) space (and unbounded time),

but higher lower bounds are not known even when restricting the time complexity.
3The latter is due to the well-known barrier of proving higher unconditional lower bounds for any problem (see [PR14,

PRT12]). To prove inapproximability even with the more satisfying mo(1) restriction on the query time, we seem to need the
conditional lower bounds approach of fine-grained complexity.

4The lower bounds hold even against much higher O(n1−ε) update and query times, but inapproximability results with
higher multiplicative factors are not known even if we demand mo(1) update and query times.
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The best known approximation with m1+o(1) running time is super-constant; very recently, Kadaria et
al. [KRS+22] obtained an O(k)-approximation in O(m1+1/k) time. A lower bound for (4/3−ε)-approximation
follows from assuming hardness of triangle finding, as deciding if a graph has a triangle is equivalent to
distinguishing between girth 3 vs 4. No better lower bound is known.

Trying to answer the above questions negatively by a lower bound leads to a common barrier; it is the
short cycle barrier discussed below. Overcoming this barrier is related to Open Question 5 in the distributed
PCP paper [ARW17] asking for gap amplification techniques from conjectures other than SETH. This is
because (the exact versions of) our distance computation problems are not SETH-hard; their hardness is via
reductions from (detecting or) listing triangles in a graph, a problem that is hard under the 3SUM or APSP
conjectures, but not under SETH.

The Short Cycle Barrier. Suppose we are given a tripartite graph G with parts A,B,C and want to
detect a triangle a ∈ A, b ∈ B, c ∈ C.5 The standard reductions to distance oracles would do the following
(and more or less similarly for the other problems). We define a graph G′ that is obtained from G by
removing the B × C edges. Then, we query for the distance in G′ for any pair {b, c} ∈ E(G) ∩ B × C that
used to be an edge in G. If the distance is small, namely 2, we conclude that {b, c} is in a triangle in G,
because there must be an a ∈ A that is connected to both b and c; this is the yes-case. Otherwise, if the
distance is larger, namely ≥ 3, then we conclude that {b, c} is not in any triangle in G because there is no
node a ∈ A that is connected to both b and c; this is the no-case. Assuming a super-linear Ω(m1+ε) lower
bound for finding triangles (specifically for this all-edge version) we conclude that no distance oracle with
m1+o(1) preprocessing and mo(1) query time can distinguish between distance = 2 and ≥ 3.

To boost this result into a strong inapproximability statement, we must amplify the gap between the
distances in the yes-case vs. the no-case. Since the graph G′ is bipartite (by the assumption on G) we can
readily observe that the distance in the no-case will actually be ≥ 4, not just ≥ 3, so the above construction
rules out any (2− ε)-approximate answers in the aforementioned time bounds.

Unfortunately from a hardness of approximation perspective, it is rather difficult to argue that the
distance in the no-case must be any larger than 4. This is because for any pair {b, c} the graph G′ is
extremely likely to contain a 4-path that makes one zigzag, b→ a→ b′ → a′ → c, i.e. after the first step from
b to a ∈ N(b) ∩A, it goes back and forth once from a ∈ A to b′ ∈ B and back to a different node in a′ ∈ A,
and only then goes to c. (See Figure 1.) This path does not imply that a′ ∈ N(b) nor that a ∈ N(c) and
therefore does not correspond to a triangle in G. Indeed, it only corresponds to a 5-cycle in G that contains
the {b, c} edge. This is precisely the short cycle barrier: a short cycle allows a path to make a short detour
(a zigzag) and prevents us from achieving a larger gap between the yes- and no-cases. It is also rather clear
that simply subdividing edges will not work, as it increases the distance in the yes-case as well; it seems
impossible to break the factor 2 barrier with such simple tricks.

In FOCS 2010, Pătraşcu and Roditty [PR14] devised an ingenious graph-products technique (conceptu-
ally similar to [BRS+21]) to push the lower bound to approximation factors beyond 2. Thinking of their
construction in the terminology of triangles, their idea is to make G′ have k > 3 layers by adding k − 2
layers between B and C that together represent A. In the yes-case where {b, c} is in a triangle, the distance
is now k − 1, but the main advantage is that in the no-case they manage to force any path from b to c to
make a zigzag in each of the k − 1 layers, making the distance 3k − 2. For large enough k this shows that
distance oracles with (3 − ε)-approximations cannot meet the aforementioned time bounds. In the original
paper [PR14], they could only make this approach work for small k and could only prove inapproximability
for factors 2 2

3 − ε, but in a follow-up paper with Thorup [PRT12] the full potential of this approach was
realized, and they established a lower bound for any (3 − ε)-approximations. Alas, it is clear that 3 is the
limit of this approach. (We remark that this is a barrier even in weighted graphs.6)

The natural and more promising approach for circumventing this barrier is to somehow ensure that there
are no ≤ k-cycles in the original graph G. Then, any effective zigzag must be long, and even the natural

5This tripartite version is equivalent to the general case of Triangle detection by a standard reduction.
6The case of directed graphs is different however. For some of these problems even deciding if the distance is finite has strong

lower bounds. The reason is that the directed edges can prevent zigzags.
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Figure 1: If {b, c} belongs to a triangle in G, then the distance between b, c in G′ is 2. If {b, c} does not
belong to a triangle in G, then the distance between b, c in G′ can be as small as 4. This corresponds to a
5-cycle in G.

two-layered construction would give us a lower bound of Ω(k). Indeed, the distance for a pair b, c would
be = 2 if the pair is in a triangle, versus ≥ k − 1 otherwise. This would be reminiscent of the use of the
girth conjecture in lower bounds for multiplicative spanners [PS89, ADD+93], whereas the aforementioned
graph-products technique is reminiscent of lower bounds for additive spanners [Woo06, AB17b, ABP18].7 All
we have to do is to prove this gap amplification result for Triangle, amplifying the no-case from triangle-free
to k′-cycle free, for all 4 ≤ k′ ≤ k (without unintentionally removing a triangle in the yes-case). This boils
down to the following natural question.

Open Question 1.4 (Main Open Question). Can we prove hardness for finding a triangle in a 4-cycle free
graph? What if it is k-cycle free for all 4 ≤ k ≤ O(1)?

Any progress on Question 1.4 carries over to progress on the aforementioned three open questions, by the
standard reductions. But it is far from clear why such a gap amplification should be possible. The needle-in-
a-haystack flavor (and intuitive hardness) of triangle finding stems from the possibility of a triangle hiding
amidst plenty of 4- or 5-cycles. In a 4-cycle free graph no two nodes can have more than one common
neighbor; doesn’t that restrict the search space by too much?8

Clearly, we do not expect the triangle finding problem to remain equally hard in k-cycle-free graphs as
in general graphs, already because k-cycle-free graphs for a large even k are very sparse. Moreover, one can
apply a standard reduction, e.g. the one to distance oracles sketched above, and then use an existing upper
bound (e.g. [PRT12]) to find a triangle in m1+O(1/k) time. Therefore, the main open question is whether
or not the problem becomes very easy : Can we find a triangle in a 4-cycle free graph in linear time? This
contemplation touches upon a well-known hole in our understanding of graph problems. Indeed, by a simple
reduction, even this latter most restricted form of Question 1.4 is at least as hard as resolving one of the
most infamous open questions in fine-grained complexity:

Open Question 1.5. Can we determine if a graph contains a 4-cycle in m1+o(1) time?

In 1994, Yuster and Zwick [YZ97] put forth the conjecture that one cannot detect a 4-cycle in a graph
in subquadratic time. The longstanding upper bound is O(m4/3) via a high-degree low-degree argument

7The Girth Conjecture and the techniques for additive spanners were already used, of course, for lower bounds against
distance oracles as well. However, such lower bounds (and any information-theoretic arguments) cannot prove lower bounds
higher than m; rather, they are interesting for understanding how much dense graphs can be compressed. Thus, the similarity
can only be in spirit.

8Such high-girth assumptions can indeed reduce the complexity of some problems from almost-quadratic to almost-linear.
In particular, in the Orthogonal Vectors problem with dimension d = no(1) (at the core of the Diameter lower bounds, and
many others), if no two vectors can have two common coordinates that are non-zero, there is an O(nd2) algorithm.
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[AYZ97]. The running time can also be bounded by O(n2) because when m ≥ 200 · n1.5 we can simply
output “yes”: by the Bondy-Simonovitz Theorem [BS74], a graph with such density must contain a 4-cycle.
Frustratingly, to this date, the field of fine-grained complexity has not managed to show any hardness for this
problem. “What hope do we have to understand more complex problems if we cannot settle the complexity
of this simple one, even conditionally?”9

In this paper we give answers to all of the above questions, some full and some partial, based on fine-
grained complexity assumptions. It turns out that Triangle (detection or listing) requires super-linear time
even when the graph has very few short cycles.

1.1 First Result: Removing Most k-Cycles

Our first main result is a fine-grained self-reduction for Triangle from worst-case
√
n-degree graphs to graphs

with few k′-cycles for all 4 ≤ k′ ≤ k. For concreteness, consider the All-Edge version where we want to
report for each of the m = O(n1.5) edges in the graph whether it is in a triangle. This problem is known to
require n2−o(1) time, under the 3-SUM Conjecture [Pat10, KPP16] or under the APSP Conjecture [VWX20],
and this holds even for graphs of maximum degree

√
n. Thus it is a very plausible conjecture that n2−o(1)

is required. (See Theorem 4.1 and the discussion in Section 7.) A worst-case input graph to this problem
might have up to nk/2+1/2 k-cycles. Given such a graph, for a sufficiently small constant α > 0 depending
on k, the following theorem constructs many subgraphs such that: (1) solving All-Edge-Triangle on all of
these subgraphs suffices to solve the original problem, (2) the total number of edges in all these subgraphs
is subquadratic n2−Ω(1), and (3) the total number of k-cycles in all these subgraphs is subquadratic n2−Ω(1).
The latter implies that a linear-time algorithm for All-Edge-Triangle in graphs with few short cycles implies
a subquadratic algorithm for the starting problem and refutes the popular conjectures.

Theorem 1.6 (Removing Most k-Cycles). For any choice of constants k ≥ 4, α ∈ (0, 1
2 ), and ε ∈ (0, 3−ω

4 )
the following holds. Given a graph G with n vertices and maximum degree at most

√
n, there is a randomized

algorithm, running in time O(n2−ε), that returns a subset of the edges E′ ⊆ E(G) and a collection of
s = n3/2−3α subgraphs G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it participates in a triangle
in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• For every i, the expected total number of k′-cycles of sizes 4 ≤ k′ ≤ k in Gi is at most O(n
ω−1

4 +kα+ε).

This result achieves a weaker statement than that asked by Question 1.4 because it does not remove all
short cycles. Still, it is sufficient for fully resolving Questions 1.1 and 1.2 above. Intuitively, by applying
the standard reductions (as described above), each of the few remaining short cycles might result in a false
positive: a pair {b, c} that has short distance even though it is not in a triangle. But since the number of
such cycles is small (and the degrees in the Gi graphs are small), they can all be filtered in a post-processing
stage in subquadratic time.

Before giving the inapproximabilty results, let us briefly explain why the matrix multiplication exponent
2 ≤ ω < 2.37286 [AW21] appears in our statements. Perhaps counter-intuitively, our lower bounds get higher
the closer ω gets to 2. Roughly speaking, this is because our results follow from reductions that employ
several procedures, including fast matrix multiplication, to extract these subgraphs with few short cycles
from a given graph. In any case, our results are new and meaningful for any 2 ≤ ω < 2.37286 (or even any
2 ≤ ω < 3); the only difference is in the constants.

9This is a quote from the survey by Rubinstein and Vassilevska Williams [RW19] where it is referring to the approximability
of the graph diameter problem. We find it no less poignant when considering the 4-cycle problem.
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Applications Our first corollary improves the (3− ε) hardness of Pătraşcu, Roditty, and Thorup [PRT12]
all the way up to ω(1), showing that O(k)-approximation with O(m1+1/k) preprocessing is indeed the right
tradeoff for distance oracles with O(m1/k) query time. Our lower bound is comparable to that of Sommer,
Verbin, and Yu [SVY09] in the cell-probe model, except that we allow much higher query time: mΩ(1) vs.
their O(1). Moreover, our lower bound applies to the easier offline version of the problem where all the
queries are given in advance; previous lower bounds [PR14, PRT12, SVY09] do not apply to this restricted

setting.10 If ω = 2 our lower bound becomes m1+ 1
4k−2−o(1) time for a (k−δ)-approximation; with the current

ω it is Ω(m1+ 1
6.3776k−4.3777 ).

Corollary 1.7 (Hardness of Approximation for Offline Distance Oracles). Let k ≥ 4 be an integer, and let
ε, δ > 0. Define c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM Conjecture or the APSP Conjecture,

no algorithm can return a (k− δ)-approximation to the distance between m pairs of nodes in a simple graph

with m edges in time O(m1+ 1
ck−d−ε). Consequently, there is no (k − δ)-approximate distance oracle with

O(m1+ 1
ck−d−ε) preprocessing and O(m

1
ck−d−ε) query time.

The Offline Distance Oracle problem in the above corollary is at the core of the dynamic shortest paths
problem as well. By a straightforward reduction it implies that Chechik’s decremental APSP k-approximation
algorithm in total time O(m1+1/αk) is tight up to the constant α. For fully dynamic algorithms, we can
strengthen the result further by ruling out algorithms that start with a cubic-time preprocessing phase (which
is natural as it gives the algorithm enough time to precompute all the distances). However, in this fully
dynamic case, the best known upper bound only achieves a (log n)O(k)-approximation in O(m1+1/k) time.

Corollary 1.8 (Hardness of Approximation for Dynamic APSP). Let k ≥ 4 be an integer, and let ε, δ > 0,
c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM Conjecture or the APSP Conjecture:

• No algorithm can maintain a simple graph through a sequence of edge-deletion updates in a total of

O(m1+ 1
ck−d−ε) time, while answering distance queries between a given pair of nodes with a (k − δ)-

approximation in O(m
1

ck−d−ε) time.

• No algorithm can preprocess a simple graph in O(n3) time and then support (fully dynamic) updates

and queries in O(m
1

ck−d−ε) time, where an answer to a query is a (k−δ)-approximation to the distance
between a given pair of nodes.

We next go back to the 4-Cycle problem. A direct corollary of our theorem is that the All-Edge version has
a super-linear lower bound, finally extending the m3/2 lower bound for triangle enumeration from Pătraşcu’s
seminal paper [Pat10] to a hardness result for 4-cycle enumeration.11 If ω = 2 the lower bound is m5/4−o(1),
and with the current ω it is Ω(m1.1927).

Corollary 1.9 (Hardness for k-Cycle Enumeration). Let k ≥ 3 be an integer, and let ε > 0. Assuming either

the 3-SUM Conjecture or the APSP Conjecture, no algorithm can process an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε)
time and then enumerate k-cycles with mo(1) delay.

Unlike our two previous corollaries, the lower bound in Corollary 1.9 does not get weaker with k. This
is because for all k > 4 we can simply apply Theorem 1.6 with k = 4 and then use known simple gadget
reductions that show that k-cycle (detection or enumeration) for any k is at least as hard as either the k = 3 or
k = 4 case (see [DKS17a]).12 Either way, we separate k-cycle from the class DelayClin of problems solvable
with linear time preprocessing and constant delay [DG07]. This class has received significant attention in

10In the stronger models that these papers consider, where we measure space/probes rather than time, this offline problem
becomes trivially easy.

11Pătraşcu’s lower bound is presented as a lower bound for the listing problem, rather than enumeration, where we are
required to list m triangles (and the lower bound is m4/3−o(1)). Our lower bound also extends to this version, but the exponent
is smaller.

12The reduction simply subdivides some of the edges. Note that this trick is not useful in the hardness of approximation
context because subdividing edges increases the distances even in the yes-case.
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recent years from the enumeration algorithms community (see e.g. [Seg15, FRU+18, CK19, CK20]). Our
result is somewhat surprising because enumerating all cycles (without restricting k) is in the class DelayClin
[BFG+13].

Theorem 1.6 does not fully resolve the Main Open Question 1.4, because it does leave nΩ(1) short cycles
in the graph. This is not an issue for all of the applications above because the application problem returns
multiple answers (that can be filtered afterwards). Unfortunately, this cannot be done for problems with a
single output, such as our most basic 4-Cycle detection problem. Nonetheless, with a bit more work we can
actually get rid of all k-cycles in the k = 4 case, as we discuss next.

1.2 Second Result: Removing all 4-Cycles

Our most technical result is a strengthening of Theorem 1.6, giving a reduction to graphs that are completely
4-cycle-free. The following theorem is analogous to Theorem 1.6 and should be thought of in the same way;
as a self-reduction from Triangle. The main two differences are that it only works for k = 4, but it achieves
the much stronger property of 4-cycle freeness in the subgraphs it produces.

Theorem 1.10. For any choice of constant α ∈ (0, 3−ω
8 ) and ε ∈ (0, 3−ω

4 − 2α) the following holds. Given
a graph G with n vertices and maximum degree at most

√
n, there is a randomized algorithm, running in

time O(n2−ε), that returns a subset of the edges E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs
G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it participates in a triangle
in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• With probability larger than 0.99, no subgraph Gi contains a 4-cycle.

This result fully resolves the main Open Question 1.4 in the k = 4 case. Consequently, we improve
the lower bound for girth approximation in m1+o(1) time from 4/3 − δ to 5/3 − δ; thus making the first
non-trivial step towards Open Question 1.3. And most importantly, we establish the first conditional lower
bound for 4-Cycle detection, resolving Open Question 1.5. If ω = 2 the lower bound is m7/6−o(1), and with
the current ω it is Ω(m1.1194). Note, however, that Corollary 1.11 uses a less standard conjecture compared
to our previous results.

Corollary 1.11 (Hardness for Triangle in 4-Cycle-Free Graphs). Assuming that triangle detection in graphs
with maximum degree at most

√
n requires n2−o(1) time, no algorithm can solve any of the following problems

in O(m1+ 3−ω
2(5−ω)

−ε) time, for any ε > 0:

• Decide if an m-edge graph has a 4-cycle.

• Decide if an m-edge 4-cycle-free graph has a triangle.

• Compute a (5/3− δ)-approximation to the girth of an m-edge graph, for any δ > 0.

As mentioned already, folklore gadget reductions show that either Triangle or 4-Cycle can be reduced
to a single instance of k-Cycle detection on the same number of edges, for any k ≥ 3 (we add a proof of
this statement in Appendix A.1, similar reductions appear, for example, in [DKS17a]). Thus, we establish a
super-linear Ω(m1.1194) lower bound for k-Cycle detection for all constant k ≥ 3.

Breaking the hardness assumption at the base of our conditional lower bound would be a major break-
through. The longstanding upper bound for triangle detection is O(min{m2ω/(ω+1), nω}) [AYZ97]. Even if
an optimal matrix multiplication algorithm exists (ω = 2) no algorithm breaks the quadratic barrier when
m = n1.5. This continues to be the case in the natural setting where the maximum degree (rather than
the average degree) is

√
n. Note that we cannot base these lower bounds on 3SUM or APSP, as we did in

the results above for problems with multiple outputs, until we know how to base the hardness of Triangle
detection itself on these assumptions. See Section 7 for further discussion.
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2 Technical Overview

The goal of this section is to give an overview of the main new ideas that go into our short cycle removal
technique. As discussed in the introduction, the technical barriers are most prominently apparent in the
challenge of proving a hardness result for 4-Cycle (detection). For this reason, we choose to focus this section
on this result, giving a tour of the reduction from Triangle (detection) to 4-Cycle. All of our conceptually
new ideas go into this result and can be appreciated more clearly in this simple context. Afterwards, in
Section 2.2 we point out how these ideas lead to Theorems 1.6 and 1.10. The additional required ideas
are either standard tricks (e.g. for the applications) or technical but unsurprising generalizations (e.g. for
the k > 4 case); we briefly mention them in Section 2.2. While this presentation of results goes in the
reverse order to that of the introduction, it has the advantage of presenting all important ideas while the
reader needs to only think about the following deceptively simple goal: solve Triangle in

√
n-degree graphs

in subquadratic time, given a linear-time algorithm for 4-Cycle.

Some notation: Throughout the paper, we assume that the input graph G = (V,E) for the triangle
finding and all-edge triangle problems is tripartite with sides A,B, and C.13 We denote the set of neighbors
of a node u by N(u). We use [k] to denote the set of integers {1, 2, · · · , k}, and we use the notation “{4, .., k}-
cycles” to denote the set of cycles of length at least 4 and at most k. We say that an event happens with
high probability if it happens with probability at least 1 − 1/nc, for an arbitrarily large constant c. We
denote by ω the matrix multiplication exponent. Throughout this paper, by “subquadratic” we mean any
bound of the form O(n2−ε), for any constant ε > 0. Moreover, we always treat k as a constant.

2.1 Triangle to 4-Cycle

To reduce Triangle to 4-Cycle, we want to convert a hard instance for Triangle in a way such that any
triangle becomes a 4-cycle. Since a hard instance for Triangle is a tripartite graph with sides A,B, and C,
perhaps the first idea that one may try to use is to subdivide the edges between B and C, by adding a
dummy node bc on each {b, c} edge. Indeed, if the original graph doesn’t contain a 4-cycle, then a 4-cycle in
the new graph must use a dummy node, and therefore, the existence of a 4-cycle in the new graph implies
the existence of a triangle in the original graph.

However, the original graph may have up to n2.5 4-cycles.14 In particular, even after adding the dummy
nodes between B and C, there could still be up to n2.5 4-cycles between A and B (4-cycles that use two
nodes from A and two nodes from B), up to n2.5 4-cycles between A and C, and up to n2.5 4-cycles that
use two nodes from A and one node from each of B and C. None of these 4-cycles uses a dummy node, and
therefore, the existence of a 4-cycle in the new graph doesn’t necessarily imply the existence of a triangle in
the original graph. We call these false 4-cycles. Notably, this issue does not arise when reducing to k-cycle
detection for odd k (see [DKS17a]) and it can be side-stepped easily in harder contexts such as the directed15

or counting16 versions or in other models [ACKL20, BDG07]17. Alas, such simple tricks do not work in the
most basic case. As discussed in the introduction, this is not a mere technicality but the obstacle for gap
amplification results.

To overcome this, one may try to remove all the 4-cycles from the graph before applying the reduction,
perhaps by finding a set of edges that intersects all of them, checking whether there is a triangle that uses one
of these edges, and then removing these edges from the graph. Indeed, this would leave the graph without
any 4-cycles. However, even if we can efficiently check for each of these edges whether it is in a triangle,
finding n2.5 4-cycles is impossible in subquadratic time.

13If not, let A = B = C = V and copy each edge in E three times.
14This is because each edge may be in up to n 4-cycles.
15Where the directions can prevent the existence of false cycles.
16By counting the number of 4-cycles in the induced graph on subsets of the three parts we can find out the exact number

of false 4-cycles and then subtract it from the total number.
17E.g. in databases a cycle can be forced by definition to use one node from each of the three parts and one dummy node.
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Hitting Cycles Faster Than Triangles: Random Slicing At a high-level, our first main idea is simple:
since a 4-cycle uses one more node than a triangle, a random subsampling reduces the number of 4-cycles at
a higher rate than it reduces the number of triangles. Indeed, suppose that we subsample nodes, leaving each
node in the graph with probability p. A triangle survives with probability p3 while a 4-cycle only survives
with a smaller probability p4. To implement this idea we use the following random slicing approach.

Roughly speaking, instead of reducing Triangle to 4-Cycle in the original tripartite graph, we break the
graph into triangle-disjoint tripartite subgraphs,18 which we refer to as slices, and reduce Triangle to 4-Cycle
in each of these slices. This way, we would only need to remove 4-cycles that are fully contained in the slices,
and not 4-cycles across the slices. In more detail, we partition each of A,B and C randomly into n1/2−α

sets, each of size n1/2+α (where each node joins one of the sets uniformly at random). In order to solve
Triangle in the original graph, it suffices to solve Triangle in each (Aj , Bk, C`) slice, for j, k, ` ∈ [n1/2−α].
For each such slice, we want to reduce Triangle to 4-Cycle by first removing all the 4-cycles in the slice, and
then subdividing the edges between Bk and C`. This time, the expected total number of 4-cycles in all the
slices is smaller than n2.5, for α < 1/2. This is because each slice is expected to have n1/2+4α 4-cycles, and
in total, over all slices, we have n3/2−3α+1/2+4α = n2+α 4-cycles in expectation.

Unfortunately, n2+α 4-cycles is still too much. If the number of 4-cycles is super-quadratic, then finding
and removing all of them in subquadratic time is hopeless. In other words, while we can hit 4-cycles at a
higher rate than we hit triangles with random slicing, this higher rate is not fast enough to get the number
of 4-cycles down from the worst-case n2.5 to subquadratic without essentially deleting all edges.

Nevertheless, observe that if we started with fewer than n2.5 4-cycles in the original graph, then the
expected number of 4-cycles over all the slices following the random slicing would be subquadratic. Can we
prove that graphs with too many 4-cycles are not actually hard for Triangle?19

Structure vs. Randomness: Dense-Piece Removal Our next main observation is that random
√
n-

regular graphs only have O(n2) 4-cycles. So if a graph has the worst-case n2.5 number of 4-cycles, then it
must have a lot of structure that one could potentially exploit for solving Triangle faster. A priori, this may
not sound like a promising approach because we know that Triangle is very easy in random graphs,20 and its
hardness arises from structure that existing algorithms cannot exploit. Fortunately, we identify a connection
between the existence of many 4-cycles and the existence of dense subgraphs that we do know how to exploit
algorithmically. This is based on the fact that the savings from using fast matrix multiplication for Triangle
are greater in denser graphs. This is a novel use of the structure vs. randomness paradigm [Tao07] in the
context of Triangle.21

In a bit more detail, we show that in subquadratic time we can find a set of edges Ẽ, with an answer to
each edge in the graph to whether it participates in a triangle containing an edge in Ẽ, such that the graph
induced by E \ Ẽ has fewer than n2+γ 4-cycles, for some 0 ≤ γ < 1/2 to be chosen later. This is based on
the connection between 4-cycles and dense subgraphs. One can show that an n-node graph with maximum
degree

√
n and at least n2+γ 4-cycles must contain at least n1+γ dense subgraphs, each with 2

√
n nodes and

roughly n1/2+γ edges.22 We refer to such subgraphs as dense pieces. In particular, each of these dense pieces
lies between two neighborhoods N(u) and N(v) where {u, v} is an edge. We can use this property to find
a dense piece efficiently: we sample ≈ n1/2−γ edges {u, v}, and for each of them we sample ≈ n1/2−γ pairs
of nodes between N(u) and N(v) to estimate the number of edges in N(u)×N(v). With high probability,
for one of the sampled edges {u, v}, there are at least ≈ n1/2+γ edges between N(u) and N(v), and it will
be detected when we estimate the number of edges between N(u) and N(v). After finding the dense piece

18By triangle disjoint we mean that each triangle appears in exactly one of these tripartite subgraphs.
19It is natural but perhaps a bit surprising that our goal switched from proving the hardness of Triangle in 4-cycle free graphs

to showing the easiness of Triangle in graphs with a maximal number of 4-cycles.
20In a random

√
n-regular graph, any edge is in a triangle with constant probability, so we can find a triangle in O(

√
n)

expected time.
21The other two examples that come to mind are the mildly subcubic combinatorial algorithm of Bansal and Williams

[BW12] using the Freize-Kannan regularity lemma, and the distributed algorithms (see [CPSZ21]) that exploit an expander
decomposition of the graph.

22This is because there are n3/2 edges, and each edge participates in at most n 4-cycles.
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N(u) ∪N(v), we use a matrix multiplication approach, together with a high-degree low-degree analysis, to
efficiently check whether there is a triangle that uses an edge from the dense piece. Hence, by removing all
the dense pieces gradually, where in each step we find a new dense piece, check whether there is a triangle
that uses an edge from the dense piece, and then remove it, we obtain a graph with fewer than n2+γ 4-cycles.
Since in each step we remove a dense piece of Ω(n1/2+γ) edges, and the number of edges is O(n3/2), the
number of steps is bounded by O(n1−γ). For an appropriate choice of γ = ω−1

4 +ε′ < 0.345, for an arbitrarily
small constant ε′ > 0, we show that the total running time for removing all the dense pieces is subquadratic.

Hence, we first remove all dense pieces in subquadratic time, which leaves only n2+γ 4-cycles to begin
with. Then, we apply the random slicing, and reduce Triangle to 4-Cycle in each of the (Aj , Bk, C`) slices
where we know that the total number of false 4-cycles is subquadratic. This brings us to the final task of
removing all of the remaining 4-cycles in subquadratic time. Let us remark at this point that for Theorem 1.6
and its applications where we can tolerate the existence of few cycles, this extra step is not necessary.

Output-Sensitive False Cycle Removal Following the dense-piece removal and the random slicing, the
total number of 4-cycles in all the slices is n3/2+γ+α, which for some choice of α < 0.155, is subquadratic. It
may still seem challenging to list all of them efficiently, even when their number is subquadratic: we do not
even know how to find one 4-cycle in a general

√
n-degree graph in subquadratic time.

By exploiting a special property of 4-cycles in tripartite graphs, together with the small degree property
of each slice, we design an algorithm that lists all false cycles in time that is linear in their number. The
crux of our idea is that all the 4-cycles in a slice can be found by looking only at one part of the slice at
a time. For instance, to list all the 4-cycles that use two nodes from Aj , it suffices to list all the {a, u, a′}
two-paths in the slice, where {a, a′} ⊆ Aj . For this, we can list all the two-paths between Aj and Bk,
and all the two-paths between Aj and C`, and then find all the 4-cycles that use a pair {a, a′} ⊆ Aj (by
looking at all the two-paths that the pair {a, a′} participates in). At first sight, since we have n3/2−3α slices,
each containing n1/2+3α pairs {a, a′} that can be connected by a two-path, this approach may seem to take
quadratic time inevitably. Yet, with an additional trick, and a more sophisticated global analysis that takes
into account all the slices at once, we are able to charge the running time to the total number of 4-cycles in
all the slices, which is subquadratic.

As a final clean-up step before subdviding the edges between Bk and C` and making a call to the 4-
Cycle algorithm, we delete an edge from each of the n3/2+γ+α 4-cycles that were found. But first, we must
check whether any of them is in a triangle, and we cannot afford to spend the trivial

√
n time for each.

Fortunately, we only need to look for a triangle in the slice where nodes only have degree nα, making the
total time n3/2+γ+2α still subquadratic for α < 0.0775.

Thus, in subquadratic time we can make sure that all calls that we make to the 4-Cycle algorithm are
made on graphs without false 4-cycles. To conclude, we point out that the total sizes of all the 4-Cycle
instances that our reduction produces is also subquadratic, so if we could solve 4-Cycle in linear time (or
even m1.01) we would get a subquadratic algorithm for Triangle. Indeed, the number of slices is n3/2−3α and
each has n1/2+2α edges.

2.2 The Theorems and Corollaries

First, let us clarify the connection between the above reduction and our Theorems for the k = 4 case. The
slices are precisely the Gi subgraphs with few cycles that our theorems produce, and the set of edges E′ are
those edges that we identify (and remove) in the dense-piece removal process as participating in a triangle.
For Theorem 1.6 the final process of removing all false 4-cycles is not necessary; the number of remaining
4-cycles in the slices is small enough. For Theorem 1.10 we do list all remaining 4-cycles and remove an edge
from each, while placing it in E′ if it participates in a triangle. The slices that result after this clean-up are
the 4-cycle free Gi subgraphs that we return.

The k > 4 Case To remove most k′-cycles for all 4 ≤ k′ ≤ k we follow a similar route. Even though the
number of k′-cycles in a worst-case (or random) graph becomes larger as k′ grows, the random slicing method
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also becomes more effective at reducing their number. The intuition is that a k′ > 4 cycle uses even more
nodes than a triangle does, and so it is even less likely to survive a random subsampling; i.e. longer cycles
can be hit at an even higher rate. This leads to the same situation where we would be done if the number
of k′-cycles was lower than the worst case, e.g. if the graph was random. With more careful combinatorial
arguments we manage to obtain a similar structure vs. randomness result: if a graph has too many k′-cycles
then it must have a dense subgraph, and moreover such dense subgraphs can be found efficiently. Once we
have that, reducing the number of k′-cycles by removing the dense pieces proceeds in exactly the same way
as in the k = 4 case.

Roughly speaking, we show that if a graph with maximum degree
√
n has at least nk

′/2+γ k′-cycles,
then it must contain many O(

√
n)-node dense subgraphs (pieces), each with at least Ω(n1/2+γ) edges. In

particular, each of these dense pieces lies between two neighborhoods of a pair of nodes {u,w} that are
connected by a simple (k′− 2)-path (a path of k′− 2 nodes, including u and w). In more detail, for a simple
path of k′ − 2 nodes, {u, u1, · · · , uk′−4, w}, we say that it is γ-dense if the number of k′-cycles that use it is
Ω(n1/2+γ). Thus, a γ-dense path implies that the number of edges between N(u) and N(w) is Ω(n1/2+γ).
We show that if a graph with maximum degree

√
n has at least nk

′/2+γ k′-cycles, then it must contain at
least 1

2n
k′/2−1+γ simple (k′ − 2)-paths that are γ-dense. Since there are at most nk

′/2−1/2 (k′ − 2)-paths
in the graph, we can use this property to find a dense piece efficiently, by sampling paths and estimating
the density between the neighborhoods of the extreme nodes. Similar path counting arguments were also
employed in the cell-probe lower bound of Sommer, Verbin, and Yu [SVY09], but the overall argument and
set-up is completely different.

This suffices for proving Theorem 1.6. Substantially new ideas are required if one wishes to remove all
k′-cycles, extending Theorem 1.10 to k > 4, because our output-sensitive enumeration strategy no longer
applies.

The Applications The corollaries follow from Theorems 1.6 and 1.10 in rather standard ways, as suggested
in the introduction. See Sections 5.3 and 6.2 for the full details.

A road-map for the technical parts: In Section 5 we prove Theorem 1.6, as well as its hardness conse-
quences for distance oracles, dynamic APSP, and k-cycle enumeration. In Section 6, we prove Theorem 1.10,
as well as its hardness consequences for triangle finding in 4-cycle free graphs, 4-cycle finding, and girth
approximation.

3 Further Related Work

Many previous works derive consequences from high-girth graphs for distance computation problems. For
example, in lower bounds for graph sparsification (spanners) [PS89, ADD+93] or compression (distance
oracles) [Bou85, Mat96, TZ05, SVY09], and for the number of rounds in a distributed setting [GKP20,
DKO14] the lower bound constructions are built on constructions of a high-girth graph, either explicit (see
[Hoo02]) or hypothetical under the Girth Conjecture [Erd65]. Unfortunately, no one has managed to make
such an approach work for conditional lower bounds in P, because such constructions are too structured to
be worst-case graphs and cannot encode a hard worst-case instance of another problem such as 3SUM. Our
approach is diametrically opposed: we start from a worst-case graph and efficiently turn it into an (almost)
high-girth graph by our short cycle removal technique (albeit with worse parameters than the best explicit
constructions).

Countless papers in fine-grained complexity and graph algorithms study triangles and short cycles. Let
us mention a few that are more relevant for this work. Roditty and Vassilevska Williams [RW12] proved a
conditional lower bound for a particular approach for approximating the girth of a graph, but left proving
hardness (for any algorithm) as a main open question. Dahlgaard, Knudsen, and Stöckel [DKS17a] prove
the hardness of k-cycle detection for all k ≥ 5 assuming the hardness of the k = 3 and k = 4 cases. Dudek
and Gawrychowski prove that counting 4-cycles is equivalent to computing the quartet distance on trees
[DG19] and to counting 4-patterns in permutations [DG20]. Unlike in undirected graphs where the k-Cycle
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detection problem tends to become easier as k grows (because the graph gets sparser), this is not the case in
directed graphs where it is conjectured that n2−o(1) is required for large enough k ≥ 3, and this conjecture
is implied by other conjectures on the k-Clique problem [LWW18, AR18b].

Besides the two general techniques mentioned above for hardness of approximation in P, and their applica-
tions, there are also results that follow from problem-specific tweaks to the exact-lower-bound constructions.
In the context of distance computations in graphs, some examples are for APSP [DHZ00, ACIM99], Diam-
eter and related problems (without the use of graph-products) [RW13, CLR+14, AWW16], for the Girth
in directed graphs [DW20] (see [PRS+18, CLRS20] for recent upper bounds for this problem), and for
dynamic near-additive spanners [BHG+21]. A more general result talks about the possibility of avoiding
the logW factor that comes from the standard scaling trick in (1 + ε)-approximations for a problem with
weights up to W by reduction to an unweighted problem [BKW19]. Moreover, there is a connection between
deterministic approximation algorithms and circuit complexity that has lead to strong inapproximability
results [AB17a, AR18a, CGL+19] but the hardness assumptions underlying such barriers are known to be
breakable with randomized algorithms.

Finally, we mention that we are not aware of previous papers studying the complexity of problems when
the input is restricted to have a high girth, but such questions were already studied in the context of graph
spanners [BKMP10, ABP18].

4 Preliminaries

Most of our lower bounds rely on the following theorem, which establishes hardness of a triangle finding
problem based on either of the standard conjectures about 3-SUM or All Pairs Shortest Paths (for background
on these conjectures see e.g. [VW15, Wil18]).

Theorem 4.1 (All-Edges-Triangle is 3-SUM and APSP hard [VWX20]). Let ε > 0. Assuming the 3-
SUM conjecture or the APSP conjecture, no O(n2−ε)-time algorithm can answer for each edge whether it
participates in a triangle in a given n-node graph with maximum degree at most

√
n.

For some background on this theorem, we mention that reductions from 3-SUM to triangle listing were ini-
tiated by Pătraşcu [Pat10] and further refined in [KPP16]. Recently, Vassilevska Williams and Xu [VWX20]
showed that the 3-SUM conjecture can be replaced by the APSP conjecture, obtaining the same result under
either of these conjectures. They also showed a variant of this lower bound which replaces triangle listing
by asking for every edge whether it is part of a triangle [VWX20, Corollary 3.9]; this variant is more useful
in our context and stated above (slightly rephrased).

5 Removing Most k-Cycles

In this section we prove Theorem 1.6.

Theorem 1.6 (Removing Most k-Cycles). For any choice of constants k ≥ 4, α ∈ (0, 1
2 ), and ε ∈ (0, 3−ω

4 )
the following holds. Given a graph G with n vertices and maximum degree at most

√
n, there is a randomized

algorithm, running in time O(n2−ε), that returns a subset of the edges E′ ⊆ E(G) and a collection of
s = n3/2−3α subgraphs G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it participates in a triangle
in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• For every i, the expected total number of k′-cycles of sizes 4 ≤ k′ ≤ k in Gi is at most O(n
ω−1

4 +kα+ε).
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The proof of Theorem 1.6 is provided in Section 5.2. We start with the dense-piece removal step, which
is described in Section 5.1. Then, in Section 5.2, we use a randomized slicing together with the dense-piece
removal step to deduce the theorem. In Section 5.3, we prove hardness results that are consequences of the
theorem.

5.1 Dense Piece Removal

In this section we prove the following lemma.

Lemma 5.1. Let γ = (ω − 1)/4 + ε for an ε ∈ (0, 3−ω
4 ), and let k ≥ 4. Given a graph G = (V,E) with

maximum degree at most
√
n, there is an O(n2−ε)-time algorithm that returns a subset of the edges Ẽ ⊆ E

and reports all the edges in E that are in a triangle using an edge from Ẽ, such that the graph G̃ = (V,E \ Ẽ)
has at most O(nk/2+γ) k-cycles.

That is, Lemma 5.1 implies that in order to solve All-Edge Triangle in G in subquadratic time, it suffices
to solve All-Edge Triangle in the graph G̃ = (V,E \ Ẽ) in subquadratic time. This is because after reporting
all the edges in the graph that are in a triangle using an edge from Ẽ, it is safe to remove Ẽ from the
graph (without unintentionally removing triangles with unreported edges) and solve All-Edge Triangle in
the obtained graph G̃. The advantage of reducing the problem to solving All-Edge Triangle in G̃ is that G̃
is guaranteed to have significantly less k-cycles compared to a worst-case instance.

A road-map for the proof of Lemma 5.1: We start with the useful definition of a γ-dense piece and a γ-
dense path (Definition 5.2). In Lemma 5.3, we show that a graph that has many k-cycles must contain many
dense paths, a property that we use in Lemma 5.5 to show that a dense subgraph can be found efficiently.
In Lemma 5.6, we show that given a

√
n-node subgraph, we can check for all edges e in the graph, whether

there is a triangle that uses e and an edge from this subgraph efficiently. After the proof of Lemma 5.6,
we put everything together and present the formal proof of Lemma 5.1. Finally, in Theorem 5.7, we use
the same ideas to show that All-Edge Triangle is 3SUM and APSP hard even when the graph contains a
subquadratic number of triangles, a property that we need in one of our applications in Section 5.3 (namely,
the lower bound for k-cycle enumeration).

Definition 5.2 (γ-Dense Pieces and γ-Dense Paths). Given an n-node graph with maximum degree at
most

√
n, we say that a set of nodes of size at most 2

√
n is a γ-dense piece if the subgraph induced by these

nodes has at least n1/2+γ/2 edges. Furthermore, we say that a simple (k − 2)-path, {u, u1, · · · , uk−4, w}, is
γ-dense if the number of k-cycles that use it is at least n1/2+γ/2.

Hence, a γ-dense (k− 2)-path, {u, u1, · · · , uk−4, w}, implies that there are n1/2+γ/2 edges between N(u)
and N(w), which implies that N(u) ∪ N(w) is a γ-dense piece. In the following lemma, we show that if
there are many k-cycles in the graph then there are many γ-dense (k − 2)-paths, which implies that there
are many γ-dense pieces.

Lemma 5.3. Let k ≥ 4. For every 0 ≤ γ < 1/2, every n-node graph with maximum degree at most
√
n that

has at least nk/2+γ k-cycles must contain at least 1
2n

k/2−1+γ simple γ-dense (k−2)-paths {u, u1, · · · , uk−4, w}.

Proof. Let c be the number of k-cycles in the graph, and for a simple path p of k − 2 nodes, let cp be the
number of k-cycles that use p as a subpath. Observe that

c ≤
∑

(k−2)-paths p

cp

Furthermore, the number of (k− 2)-paths in the graph is at most n · (
√
n)k−3 = n

k−1
2 , because there are

n ways to pick the first node in the path, and (
√
n)k−3 ways to extend this node to a (k−2)-path. Moreover,

observe that each (k− 2)-path, {u, u1, · · · , uk−4, w}, participates in at most n k-cycles, because there are at
most n edges between N(u) and N(w). Hence, since each (k− 2)-path that is not γ-dense participates in at
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most 1
2n

1/2+γ k-cycles, if we have fewer than 1
2n

k/2−1+γ γ-dense (k− 2)-paths, this implies that the number
of k cycles is bounded by

c <
1

2
n · nk/2−1+γ +

1

2
n1/2+γ · n

k−1
2 = nk/2+γ ,

which is a contradiction.

The remainder of this section is devoted to showing that there is a subquadratic-time algorithm that
removes all dense pieces, leaving the obtained graph with fewer than nk/2+γ k-cycles by Lemma 5.3. We
start with the following proposition that follows by a standard Chernoff argument.

Proposition 5.4. Let X and Y be two
√
n-size sets of nodes (not necessarily different). Sample S =

200n1/2−γ log n pairs in X × Y independently and uniformly at random. It holds that:

1. If the number of edges between X and Y is at least n1/2+γ/2, then at least 50 log n of the sampled pairs
are edges, with probability at least 1− 1/n10.

2. If the number of edges between X and Y is smaller than n1/2+γ/200, then fewer than 50 log n of the
sampled pairs are edges, with probability at least 1− 1/n10.

In the following lemma, we show that if the graph has at least nk/2+γ k-cycles, then a dense subgraph
can be found efficiently.

Lemma 5.5. Let k ≥ 4. Given an n-node graph of maximum degree at most
√
n that contains at least

nk/2+γ k-cycles, there is an O(n1−2γ log2 n)-time algorithm that finds a pair of nodes {u,w}, such that the
number of edge between N(u) and N(w) is at least n1/2+γ/200, with high probability.

Proof. First, we show that we can sample a γ-dense (k − 2)-path efficiently. Observe that in O(1)-time, we
can sample a (k − 2)-path, such that each simple path {u, u1, · · · , uk−4, w} is sampled with probability at
least 1/n(k−1)/2. This can be done by first sampling a starting node, and in each step we sample a node from
the neighborhood of the previously sampled node, until we sample a (k − 2)-path. Hence, by Lemma 5.3,

the probability mass of the simple (k − 2)-paths that are γ-dense is at least n
k
2−1+γ/n(k−1)/2 = nγ−1/2.

Therefore, by sampling 100n1/2−γ log n such (k − 2)-paths, one of them is a simple γ-dense path with high
probability. Moreover, for each sampled (k − 2)-path, {u, u1, · · · , uk−4, w}, we sample 200n1/2−γ log n pairs
in N(u) × N(w), and check how many of the sampled pairs are edges. If the number is at least 50 log n,
we output the pair of nodes {u,w}. By Proposition 5.4, the algorithm finds at least one pair {u,w} with
the desired property with high probability. Furthermore, by Proposition 5.4, for any pair {u,w} that the
algorithm outputs there are at least n1/2+γ/200 edges between N(u) and N(w), with high probability.

Next, we show that given two
√
n-size sets of nodes X and Y (not necessarily disjoint), there is an efficient

algorithm that reports all the edges in the graph that are in a triangle using an edge from X × Y .

Lemma 5.6. Given an n-node graph with maximum degree at most
√
n, and two

√
n-size sets of nodes X

and Y , there is an O(n
3+ω
4 )-time algorithm that finds all the edges in the graph that are in a triangle using

an edge from X × Y .

Proof. Let β > 0 be a constant to be chosen later, V h be the set of nodes that have at least n1/2−β neighbors
in X ∪Y , and V ` be the set of nodes that have fewer than n1/2−β neighbors in X ∪Y . Observe that for any
edge e that is in a triangle that uses an edge from X × Y , it holds that either the triangle uses a node from
V ` (in which case either e ∈ V `× (X ∪ Y ) or e ∈ X × Y and the third node is in V `), or it uses a node from
V H (in which case either e ∈ V H × (X ∪ Y ) or e ∈ X × Y and the third node is in V H). We start with the
low-degree case, in which we find all the triangles that use a node from V `.
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Low-degree nodes: First, observe that we can find the set of nodes V ` in linear time, as follows. We go
over the nodes in X ∪ Y , and for each of them we mark its neighbors. Then, we go over all the nodes in the
graph and take those that were marked fewer than n1/2−β times to V `.

To find the triangles involving nodes in V `, we go over all the nodes in V ` and for each of them we go over
all pairs of neighbors in X ∪ Y , and for each such pair we check whether it is an edge. To analyse the time
complexity of this step, we bucket the set of nodes in V ` by their degrees in X ∪ Y , where the i’th bucket
contains every node v ∈ V ` of degree |N(v) ∩ (X ∪ Y )| ∈ [2i, 2i+1), for 0 ≤ i ≤ log(n1/2−β). Observe that
the time it takes to process the i’th bucket is O( n2i · (2

i+1)2). This is because there are O(n/2i) nodes with
degrees in [2i, 2i+1), since the number of edges incident to X ∪ Y is O(n). Hence, in total for all buckets,
this takes time

O
(∑

i

n

2i
· (2i+1)2

)
= O(n · n1/2−β) = O(n3/2−β).

High-degree nodes: Observe that the set V h can be found in linear time in a similar way that we used
to find the set V `. Furthermore, the size of V h is at most O(n1/2+β) since the total number of edges incident
to nodes in X ∪ Y is at most O(n). It remains to find all the edges e that are in a triangle that uses a node
from V h and an edge from X × Y . Hence, either e ∈ X × Y (in which case we want to check whether it
is in a triangle that uses a node from V h), e ∈ V h ×X (in which case we want to check whether it is in a
triangle that uses a node from Y ), or e ∈ V h× Y (in which case we want to check whether it is in a triangle
that uses a node from X). To find these edges, we use a matrix multiplication approach, as follows.

e ∈ X ×Y : To find all the edges in X ×Y that are in a triangle that uses a node from V h, we use a matrix
multiplication algorithm. Consider the Boolean matrices X×V h and V h×Y , where 1-entries indicate edges.
By multiplying the two matrices, we get all the pairs u ∈ X,w ∈ Y for which there is a 2-path between u
and w through V h. Hence, by going over all the edges in X × Y , we can check for each of them whether it
participates in a triangle that uses a node from V h. Multiplying an n1/2×n1/2+β matrix by an n1/2+β×n1/2

matrix takes time O(nw/2 ·nβ), because we can split it into nβ many matrix products on n1/2×n1/2 square
matrices.23 Furthermore, going over all the edges in X × Y takes O(n) time. Hence, finding all the edges in
X × Y that are in a triangle that uses a node from V h takes time O(nw/2+β).

e ∈ V h×X or e ∈ V h×Y : To find the edges in V h×X that are in a triangle that uses a node from Y , we
use a similar matrix multiplication algorithm. This time, consider the matrices V h × Y and Y ×X, where
1-entries indicate edges. By multiplying the two matrices, we get all the pairs u ∈ V h, x ∈ X for which
there is a 2-path between u and x through Y . Hence, by going over all the edges in V h ×X (which takes
O(n1+β) time), we can check for each of them whether it participates in a triangle that uses a node from Y .
Multiplying an n1/2 × n1/2+β matrix by an n1/2 × n1/2 matrix takes O(nw/2 · nβ) time as well.

Finding the edges in in V h × Y that are in a triangle that uses a node from X is done in a similar way.
Hence, in total, the high degree case takes O(nω/2+β) time.

Putting everything together To optimize the time complexity in total for the high-degree and the
low-degree cases, we set β = (3− ω)/4, which implies a total running time of O(n(3+ω)/4), as desired.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. We iteratively run the following algorithm that has a 3-step structure: (1) Find a pair
{u,w} with at least n1/2+γ/200 edges between N(u) and N(w) by using the algorithm from Lemma 5.5
(if the algorithm from Lemma 5.5 fails to find such a pair, we know that the graph has fewer than nk/2+γ

k-cycles, and we stop), (2) report all the edges that are in a triangle that uses an edge from N(u)×N(w) by
using the algorithm from Lemma 5.6, and (3) remove all the edges between N(u) and N(w) from the graph.

23This step could be improved using rectangular matrix multiplication, which for the current value of ω would yield better
constants in our lower bounds. Since in the limit for ω = 2 + o(1) our lower bounds are unaffected, we omit the details.
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Since the number of edges in the graph is at most n3/2, and in each step we remove at least n1/2+γ/200 edges,
the algorithm has at most O(n1−γ) iterations. Furthermore, in each iteration, step (1) takes O(n1−2γ log2 n)
time, step (2) takes O(n(3+ω)/4) time, and step (3) takes linear time. Hence, in total, the running time is
O(n1−γ · n(3+ω)/4). For γ = (ω − 1)/4 + ε, where ε ∈ (0, 3−ω

4 ), this is O(n2−ε), as desired (the upper bound
on ε is needed so that we have γ < 1/2).

Finally, we finish this section with the following remark and theorem on the number of triangles in the
All-Edge Triangle problem.

A remark on the All-Edge Triangle problem: One of our lower bound results in Section 5.3 requires
the total number of triangles in the All-Edge Triangle instance to be subquadratic, specifically the lower
bound for 4-cycle enumeration in Theorem 5.8. Interestingly, we can use the same ideas that we presented
in this section to show that the All-Edge Triangle problem is still (3-SUM and APSP) hard even when the
number of triangles is O(n3/2+γ), for γ = ω−1

4 + ε.

Theorem 5.7. Let ε ∈ (0, 3−ω
4 ) and γ = ω−1

4 + ε. Assuming the 3-SUM conjecture or the APSP conjecture,
no O(n2−ε)-time algorithm can answer for each edge whether it participates in a triangle in a given n-node
graph with maximum degree at most

√
n, and O(n3/2+γ) triangles.

Proof. By Theorem 4.1, assuming the 3-SUM conjecture or the APSP conjecture, no O(n2−ε)-time algorithm
can answer for each edge whether it participates in a triangle in a given n-node graph with maximum degree
at most

√
n. Hence, it suffices to show that we can reduce the number of triangles in the input graph to

n3/2+γ in subquadratic time.
For this, we use the same dense piece removal trick that we introduced in this section. Observe that an

n-node graph with at least n3/2+γ triangles must contain at least 1
2n

1/2+γ nodes that each participate in at

least 1
2n

1/2+γ triangles. Otherwise, since each node can be in at most n triangles, the number of triangles

would be smaller than 1
2n ·n

1/2+γ + 1
2n

1/2+γ ·n = n3/2+γ , which is a contradiction. Hence, there are at least
1
2n

1/2+γ nodes v for which the number of edges between the nodes in N(v) is at least 1
2n

1/2+γ .

Therefore, as long as the number of triangles is at least n3/2+γ , we can find a
√
n-node subgraph with

Ω(n1/2+γ) edges efficiently: sample 100n1/2−γ log n nodes v, and for each of them sample 200n1/2−γ log n
pairs in N(v)×N(v) and check how many of the sampled pairs are edges. If the number of edges is at least
50 log n, we output N(v). By a similar analysis to the one in Lemma 5.5, as long as long as the number
of triangles is at least n3/2+γ , this algorithm finds a

√
n-node subgraph with Ω(n1/2+γ) edges, with high

probability. Moreover, by Lemma 5.6, we report all the edges in the graph that participate in a triangle that

uses an edge from the subgraph in O(n
3+ω
4 ) time.

Therefore, by iteratively finding a dense subgraph, checking for each edge in the subgraph whether there
is a triangle that uses it, and removing these edges from the graph, we obtain a graph with fewer than n3/2+γ

triangles. By a similar analysis to the one provided in the proof of Lemma 5.1, this takes subquadratic time,
as desired.

5.2 Hitting k-Cycles Faster than Triangles: A Proof of Theorem 1.6

Proof of Theorem 1.6. Let γ = (ω− 1)/4 + ε, where ε ∈ (0, 3−ω
4 ). Recall that we can assume without loss of

generality that the input graph is tripartite. Let A,B, and C be the three parts. First, we run the algorithm
from the dense piece removal step (Lemma 5.1) for every 4 ≤ k′ ≤ k, and we set E′ to be the set of reported
edges that are in a triangle that uses an edge from a dense piece Ẽ. This takes O(kn2−ε) = O(n2−ε) time.
Furthermore, the obtained graph has fewer than nk

′/2+γ k′-cycles for every 4 ≤ k′ ≤ k.
We break the obtained graph into tripartite subgraphs, which we refer to as slices, such that each triangle

appears in exactly one slice, as follows. We randomly partition each of the sets A,B and C into n1/2−α sets,
each of expected size n1/2+α, where each node joins each of the sets uniformly at random, and independently
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of the choices for the other nodes. We denote these sets by {Aj}j∈[n1/2−α], {Bk}k∈[n1/2−α], and {C`}`∈[n1/2−α].

That is24,
A = A1∪̇ . . . ∪̇An1/2−α , B = B1∪̇ . . . ∪̇Bn1/2−α , C = C1∪̇ . . . ∪̇Cn1/2−α .

By a standard Chernoff argument, for every slice (Aj , Bk, C`), the number of nodes is O(n1/2+α) and the
maximum degree is O(n1/2/n1/2−α) = O(nα) with high probability. It remains to show that the expected
number of {4, .., k}-cycles in each slice is O(nγ+αk). Observe that the probability that a given k′-cycle is fully
contained in the slice (Aj , Bk, C`) is 1/(n1/2−α)k

′
= 1/(nk

′/2−k′α). Hence, the expected number of k′-cycles

that are fully contained in the slice (Aj , Bk, C`) is nk
′/2+γ/(nk

′/2−kα) = nγ+k′α. Over all 4 ≤ k′ ≤ k, the
expected number of {4, .., k}-cycles is at most knγ+kα = O(nγ+kα) (since k is constant), as desired.

5.3 Consequences of Theorem 1.6

We start with a hardness result for 4-cycle enumeration.

Theorem 5.8. For every ε > 0 there is a δ > 0 such that if there is an algorithm that can preprocess

an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε) time and then enumerate 4-cycles with mo(1) delay, then there is an
n2−δ+o(1)-time algorithm that given an n-node graph with maximum degree at most

√
n and O(n2−δ) triangles

answers for every edge whether it participates in a triangle with probability at least 9/10.

Proof. Let G be an n-node tripartite graph with sides A,B, and C. First, we run the subquadratic-time
algorithm from Theorem 1.6 with ε′, α to be chosen later, and k = 4. Since the expected number of 4-

cycles in each Gi is O(n
ω−1

4 +ε′+4α), it follows that the total number of 4-cycles in all the Gi’s is at most

O(n3/2+ω−1
4 +α+ε′) with probability at least 99/100 (by linearity of expectation and Markov). Furthermore,

since each edge that is in a triangle is either in E′ or is in a triangle in one of the Gi’s, in order to find the
remaining edges in E \ E′ that are in a triangle, it suffices to enumerate the triangles in all the Gi’s.

For this, we subdivide the edges in B × C by adding a dummy node bc on each edge {b, c}. Hence, any
triangle {a, b, c} in some Gi becomes a 4-cycle {a, b, bc, c}; these are the only newly introduced 4-cycles. We
refer to the other 4-cycles that are not a result of subdividing triangles as false 4-cycles; note that each
false 4-cycle already was a 4-cycle before subdividing the edges. For each Gi, we run a 4-cycles enumeration
algorithm on the subdivided graph. Let P (m) = mx be the preprocessing time and D(m) = mo(1) be the
delay. Since each Gi has n1/2+2α edges with high probability, the total preprocessing time for all Gi’s is

O(n3/2−3α · P (n1/2+2α)) = O(n3/2−3α+x(1/2+2α)),

with high probability. For x < 1 + α/(1/2 + 2α) this is subquadratic. On the other hand, the total delay

we spend on false 4-cycles is O(n3/2+ω−1
4 +α+ε′+o(1)) with probability at least 99/100. The remaining delay

is spent on enumerating subdivided triangles, and there is only a subquadratic number of them. Hence, for
α = 3−ω

4 − ε′′, for ε′′ > ε′, the total delay is subquadratic. Furthermore, since

1 + α/(1/2 + 2α) = 1 +
3−ω

4 − ε′′

1/2 + 2( 3−ω
4 − ε′′)

> 1 +
3−ω−4ε′′

4
4−ω

2

> 1 + (3− ω)/(2(4− ω))− 2ε′′,

when we set x = 1 + (3−ω)/(2(4−ω))− ε, for ε = 2ε′′, the total preprocessing time and the total delay are
both subquadratic, as desired.

Corollary 5.9 follows immediately by combining Theorem 5.8 and Theorem 5.7.

24We use the notation ∪̇ to denote a disjoint union of sets.
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Corollary 5.9. Assuming either the 3-SUM or APSP Conjectures, no algorithm can process an m-edge

graph in O(m1+ 3−ω
2(4−ω)

−ε) time and then enumerate 4-cycles with mo(1) delay.

By simple gadget reductions that show that k-cycle (detection, enumeration, or listing) for any k is at
least as hard as either the k = 3 or k = 4 case (see Appendix A) the following corollary follows:

Corollary 1.9 (Hardness for k-Cycle Enumeration). Let k ≥ 3 be an integer, and let ε > 0. Assuming either

the 3-SUM Conjecture or the APSP Conjecture, no algorithm can process an m-edge graph in O(m1+ 3−ω
2(4−ω)

−ε)
time and then enumerate k-cycles with mo(1) delay.

Next, we show a hardness result for approximate distance oracles.

Theorem 5.10. For every ε, δ′ > 0 there is a δ > 0 such that if there is an O(m1+ 3−ω
2(k+1−ω)

−ε)-time algorithm
that can (k/2− δ′)-approximate the distances between m given pairs of nodes in a given m-edge graph, then
there is an O(n2−δ)-time algorithm for n-node graphs with maximum degree at most

√
n that with probability

at least 9/10 answers for every edge whether it participates in a triangle.

Proof. First, we run the subquadratic-time algorithm from Theorem 1.6 with ε′ and α to be chosen later.
For each of the returned Gi’s, we show how to check for every edge in B × C whether it participates in
a triangle. (Checking the edges in A × B ∪ A × C is symmetric.) For every Gi, we remove the edges in
(B×C)∩E(Gi), and we denote the obtained graph by G′i. We run a (k/2− δ′)-approximate distance oracle
algorithm on G′i, where we query all the {b, c} pairs that correspond to the removed edges. We refer to the
pairs {b, c} for which the algorithm returned an estimate that is smaller than k as the candidates of Gi. For
each such candidate pair, we check whether the corresponding edge is in a triangle in Gi, which takes O(nα)
time per edge. If the edge is found to be in a triangle, we remove it from the set of candidates of Gj for
every j > i. This ensures that we don’t spend too much time on checking whether the same edge is in many
different triangles.

Observe that for every edge {b, c} that is in a triangle in Gi, the (k/2−δ′)-approximation algorithm must
return an estimate that is smaller than k when we query the pair {b, c}, as there is a two-path between b
and c in G′i. Furthermore, for every pair {b, c} for which the algorithm returns an estimate that is smaller
than k, it holds that there is a path between b and c of length at most k − 1 in G′i, and therefore the edge
{b, c} is in a cycle of length at most k in Gi. We refer to the edges {b, c} for which the algorithm returns an
estimate < k but {b, c} is not in a triangle in Gi as false edges.

Running time: Let T (m) = mx be the running time of the distance oracle algorithm (specifically, the
total time for preprocessing an m-edge graph and answering m approximate distance queries that are given
in advance). In total, running this algorithm for all the G′i’s takes time

O(n3/2−3α+x(1/2+2α)).

For x < 1+α/(1/2+2α) this is subquadratic. Furthermore, the total number of {4, .., k}-cycles in all the
Gi’s is O(n3/2−3α+(ω−1)/4+ε′+αk) with probability at least 99/100. Therefore, this is also the total number
of times we check whether a false edge is in a triangle, over all the Gi’s. For an edge {b, c} that participates
in a triangle, we run a single check - the first time it was found to be in a triangle in some Gi. Hence,
the total running time for this step is O(n3/2+(ω−1)/4+ε′+α(k−3) · nα) = O(n3/2+(ω−1)/4+ε′+α(k−2)). This is
subquadratic when we set

α =
1
2 −

ω−1
4

k − 2
− ε′′ =

3− ω
4(k − 2)

− ε′′

for ε′′ > ε′. For this choice of α, we have that
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1 + α/(1/2 + 2α) = 1 +

3−ω
4(k−2) − ε

′′

1
2 + 2( 3−ω

4(k−2) − ε′′)

> 1 +

3−ω−4(k−2)ε′′

4(k−2)

k+1−ω
2(k−2)

= 1 +
3− ω

2(k + 1− ω)
− 4(k − 2)ε′′

2(k + 1− ω)

> 1 +
3− ω

2(k + 1− ω)
− 4(k − 2)ε′′

2(k + 1− 3)

= 1 +
3− ω

2(k + 1− ω)
− 2ε′′

Thus, when we set x = 1+ 3−ω
2(k+1−ω)−ε, for ε > 2ε′′, the total running time is subquadratic, as desired.

Corollary 1.7 follows immediately by combining Theorem 5.10 with Theorem 4.1.

Corollary 1.7 (Hardness of Approximation for Offline Distance Oracles). Let k ≥ 4 be an integer, and let
ε, δ > 0. Define c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM Conjecture or the APSP Conjecture,

no algorithm can return a (k− δ)-approximation to the distance between m pairs of nodes in a simple graph

with m edges in time O(m1+ 1
ck−d−ε). Consequently, there is no (k − δ)-approximate distance oracle with

O(m1+ 1
ck−d−ε) preprocessing and O(m

1
ck−d−ε) query time.

Finally, we prove a hardness result for dynamic approximate All Pairs Shortest Paths.

Theorem 5.11. For every ε, δ′ > 0 and integer k ≥ 4 there is a δ > 0 such that if there is a dy-
namic algorithm for (k/2 − δ′)-approximate APSP with preprocessing time O(N3) and update/query time

O(m
3−ω

2(k+1−ω)
−ε) in N -node and m-edge graphs, then there is an O(n2−δ)-time algorithm for n-node graphs

with maximum degree at most
√
n that with probability at least 9/10 answers for every edge whether it

participates in a triangle.

Proof. First, we run the subquadratic-time algorithm from Theorem 1.6 with ε′ and α to be chosen later.
We show how to use a dynamic algorithm to check for each edge {b, c} ∈ B × C whether it participates
in a triangle. (Checking the edges in A × B ∪ A × C is symmetric.) For each Gi, we remove the B × C
edges, obtaining a graph G′i. We let G′1 be the input graph to be preprocessed by the dynamic algorithm in
O((n(1/2+α))3) = O(n3/2+3α) time, and we consider the following sequence of updates and queries we feed
into the dynamic algorithm.

Sequence of updates and queries: For 1 ≤ i ≤ n3/2−3α phases, in each phase i we make the following
queries and updates. Queries: For each edge {b, c} ∈ (B × C) ∩ E(Gi), we query the pair {b, c}. This
takes O(n1/2+2α) queries. Updates: we delete all the edges in G′i and add all the edges in G′i+1, by using

O(n1/2+2α) updates.

Postprocessing: We use the distance estimations returned by the queries to find for each edge {b, c} in
each Gi whether it in a triangle in Gi, as follows. For each G′i, we collect all the pairs {b, c} for which
the answer to the query is < k, and we refer to the corresponding edges as the candidates of Gi. For each
candidate edge, we check whether it is in a triangle in Gi by iterating over all neighbors of the endpoints,
and if so, we remove the edge from the set of candidates of Gj for every j > i. This finishes the reduction.
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Running time: In total, for all phases, the number of queries and updates is O(n2−α). Hence, if each
update and query takes time O(nx(1/2+2α)), we have that the total query and update time is O(nx(1/2+2α) ·
n2−α), for all updates and queries. For x < α

1/2+2α , this is subquadratic.

For the postprocessing the analysis is similar to the one in Theorem 5.10: Checking whether a candidate
edge forms a triangle takes time O(nα), and there are O(n3/2+(ω−1)/4+ε′+α(k−3)) candidate edges in total,
so the postprocessing takes total time O(n3/2+(ω−1)/4+ε′+α(k−2)). For α = 3−ω

4(k−2) − ε
′′, for ε′′ > ε′, this is

subquadratic. Since ω ≥ 2 and k ≥ 4, this choice of α satisfies α < 1/6, so also the preprocessing time of
O(n3/2+3α) is subquadratic.

Furthermore, by a similar calculation to the one provided in Theorem 5.10, we have that α
1/2+2α >

3−ω
2(k+1−ω) − 2ε′′. For ε > 2ε′′, we set x = 3−ω

2(k+1−ω) − ε <
α

1/2+2α . Hence, since the number of edges at any

time of the dynamic process is m = O(n1/2+2α), as a function of the number of edges m, if the update time

is O(mx) = O(m
3−ω

2(k+1−ω)
−ε), the total running time of the above algorithm is subquadratic, as desired.

The following corollary follows immediately by combining Theorem 5.10, Theorem 5.11, and Theorem 4.1,
where the first bullet follows by a straightforward reduction from the Offline Distance Oracles problem to
Decremental Dynamic APSP (just preprocess the graph and answer the queries without ever making edge
deletions).

Corollary 1.8 (Hardness of Approximation for Dynamic APSP). Let k ≥ 4 be an integer, and let ε, δ > 0,
c = 4

3−ω and d = 2ω−2
3−ω . Assuming either the 3-SUM Conjecture or the APSP Conjecture:

• No algorithm can maintain a simple graph through a sequence of edge-deletion updates in a total of

O(m1+ 1
ck−d−ε) time, while answering distance queries between a given pair of nodes with a (k − δ)-

approximation in O(m
1

ck−d−ε) time.

• No algorithm can preprocess a simple graph in O(n3) time and then support (fully dynamic) updates

and queries in O(m
1

ck−d−ε) time, where an answer to a query is a (k−δ)-approximation to the distance
between a given pair of nodes.

6 Removing All 4-Cycles

In this section we prove Theorem 1.10 (Section 6.1), as well as some hardness consequences of it (Section 6.2).

6.1 A proof of Theorem 1.10

Theorem 1.10. For any choice of constant α ∈ (0, 3−ω
8 ) and ε ∈ (0, 3−ω

4 − 2α) the following holds. Given
a graph G with n vertices and maximum degree at most

√
n, there is a randomized algorithm, running in

time O(n2−ε), that returns a subset of the edges E′ ⊆ E(G) and a collection of s = n3/2−3α subgraphs
G1, . . . , Gs ⊆ G such that:

• Every edge e ∈ E′ participates in a triangle of G.

• If an edge e ∈ E(G) participates in a triangle of G, then it is either in E′ or it participates in a triangle
in at least one subgraph Gi.

• With high probability, each Gi has O(n1/2+α) vertices and maximum degree O(nα).

• With probability larger than 0.99, no subgraph Gi contains a 4-cycle.

Proof. Let α ∈ (0, 3−ω
8 ) and ε, ε′ ∈ (0, 3−ω

4 − 2α) to be chosen later. First, we run the subquadratic-time
algorithm from Theorem 1.6 with ε′, α, and k = 4. Recall that this algorithm returns a set of edges E′ and
n3/2−3α subgraphs, such that each edge that is in a triangle is either in E′ or in a triangle in one of the
subgraphs, where each subgraph is a slice (Aj , Bk, C`), for j, k, ` ∈ [n1/2−α]. Furthermore, each slice has
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O(n(ω−1)/4+ε′+4α) 4-cycles in expectation, and therefore the overall number of 4-cycles in all the slices is
at most O(n3/2+α+(ω−1)/4+ε′) with probability at least 99/100. Our algorithm adds more edges to E′ such
that the obtained slices are 4-cycle-free, as follows.

We show that it is possible to list all the 4-cycles in all the slices in time that is linear in their number,
see Lemma 6.1 below. After listing all the 4-cycles, we denote by Sj,k,` the set of edges that participate
in 4-cycles in the slice (Aj , Bk, C`). Note that after removing the edges Sj,k,` from the slice (Aj , Bk, C`)
it becomes 4-cycle-free, as desired. It remains to check for each edge in Sj,k,` whether it participates in
a triangle in the slice, and if so we add it to E′. Since the degree of each node in a slice is with high
probability at most O(nα), this takes O(|Sj,k,`| · nα) time per slice with high probability. Hence, in total,

for all slices, this takes time
∑
j,k,`O(|Sj,k,`| · nα) = O(n3/2+2α+(ω−1)/4+ε′) with constant probability. By

setting α = (3−ω)/8− (ε+ ε′)/2, this takes time O(n2−ε), as desired. It remains to show how to efficiently
list all the 4-cycles in all the slices in time that is linear in their number:

Lemma 6.1. We can enumerate all 4-cycles in any of the slices (Aj , Bk, C`), for all j, k, ` ∈ [n1/2−α], in
total time O(n3/2+α + c) where c is the output size, that is, c is the total number of such 4-cycles.

Proof. Observe that for any slice, any 4-cycle uses exactly two nodes from one of the sides of the slice. In
the following, we show how to list all the 4-cycles that use two nodes from Aj , for all the slices (Aj , Bk, C`).
Listing all the 4-cycles that use two nodes from Bk or two nodes from C` is symmetric.

We start with the following useful notations. For each slice (Aj , Bk, C`), we think about Aj as being the
center of the slice, Bk being the left side of the slice, and C` being the right side of the slice. For a set Aj

and a pair {a, a′} ⊆ Aj , let La,a
′

k be the set of nodes b ∈ Bk for which {a, b, a′} is a two-edge path. Similarly,

let Ra,a
′

` be the set of nodes c ∈ C` for which {a, c, a′} is a 2-path. Furthermore, for a set Aj and a pair

{a, a′} ⊆ Aj , let Ia,a
′

L be the set of coordinates k ∈ [n1/2−α] for which La,a
′

k is not empty. Similarly, Ia,a
′

R is

the set of coordinates ` ∈ [n1/2−α] for which Ra,a
′

` is not empty. Finally, for every pair of sets Aj , Bk, let

PLj,k be the set of pairs {a, a′} ⊆ Aj for which |La,a
′

k | ≥ 2. Similarly, PRj,` is the set of pairs {a, a′} ⊆ Aj for

which |Ra,a
′

` | ≥ 2.

Our algorithm has a preprocessing step that computes all the sets Ia,a
′

L , Ia,a
′

R , all the nonempty sets

La,a
′

k , Ra,a
′

` , and all the sets PLj,k, P
R
j,` (for every j, k, ` ∈ [n1/2−α] and every pair {a, a′} ∈ Aj). Then we show

that given the sets Ia,a
′

L , Ia,a
′

R , La,a
′

k , Ra,a
′

` we can list all the 4-cycles that use two nodes from Aj and one

node from each of Bk and C`, and given the sets PLj,k, P
R
j,`, L

a,a′

k , Ra,a
′

` we can list all 4-cycles between every
pair Aj , Bk, and every pair Aj , C`. The details follow.

Preprocessing step: Recall that we denote by N(u) the set of neighbors of a node u in the original
graph. For each pair Aj , Bk, we go over all the nodes b ∈ Bk, and for each such node, we go over all the

pairs {a, a′} ⊆ N(b) ∩ Aj , and we add k to Ia,a
′

L and b to La,a
′

k . If |La,a
′

k | ≥ 2, then we also add {a, a′} to
PLj,k. Since the size of Bk is O(n1/2+α), and the maximum degree of a node b ∈ Bk in Aj is O(nα), for a pair

Aj , Bk, this takes time O(n1/2+α · n2α) = O(n1/2+3α). Hence, in total, for all pairs Aj , Bk, this takes time

O(n1−2α · n1/2+3α) = O(n3/2+α). The sets Ia,a
′

R , the nonempty sets Ra,a
′

` , and the sets PRj,` are computed
symmetrically, for all j, `, and {a, a′} ⊆ Aj .

Listing all 4-cycles between all pairs Aj , Bk and all pairs Aj , C`: We show how to list all 4-cycles
between all pairs Aj , Bk. Listing all the 4-cycles between all pairs Aj , C` is symmetric. Observe that the
total number of 4-cycles between all pairs Aj , Bk is

∑
j,k∈[n1/2−α]

∑
{a,a′}∈PLj,k

(
|La,a

′

j |
2

)
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To list them, we go over all pairs Aj , Bk, and for each such pair we list all tuples (a, b, a′, b′), where

{a, a′} ∈ PLj,k, and {b, b′} ⊆ La,a
′

k . Since all the sets PLj,k and La,a
′

k were already computed in the preprocessing
step, this takes an amount of time which is linear in the number of 4-cycles. We list all the 4-cycles between
all pairs Aj , C` in a similar way.

Listing all 4-cycles that use two nodes from Aj and one node from each of Bk, C`, for every
j, k, `: Observe that the number of such 4-cycles is

∑
j∈[n1/2−α]

∑
{a,a′}⊆Aj

∑
(k,`)∈Ia,a

′
L ×Ia,a

′
R

|La,a
′

k | · |Ra,a
′

` | (1)

Our goal is to list all these 4-cycles in an amount of time that is linear in their number. For this, we go
over all sets Aj , and for each such set, we go over all pairs {a, a′} ⊆ Aj , and for each such pair, we go over

all pairs (k, `) ∈ Ia,a
′

L × Ia,a
′

R , and list all the tuples (a, b, a′, c), where b ∈ La,a
′

k and c ∈ Ra,a
′

` . The amount
of time for this step is proportional to

∑
j∈[n1/2−α]

∑
{a,a′}⊆Aj

(
1 +

∑
(k,`)∈Ia,a

′
L ×Ia,a

′
R

|La,a
′

k | · |Ra,a
′

` |

)
.

This is because for the pairs {a, a′} that don’t contribute any 4-cycle to the sum (1) we spend constant
time. For the other pairs, the amount of time we spend is proportional to the number of 4-cycles they
participate in. Note that the summand 1 contributes O(n1/2−α · |Aj |2) = O(n1/2−α · (n1/2+α)2) = O(n3/2+α)
to the running time. The other summand is simply the total number of 4-cycles as in (1). We thus obtain
total time O(n3/2+α + c), as desired.

This finishes the proof of Theorem 1.10.

6.2 Consequences of Theorem 1.10

We start with a reduction from triangle detection to 4-cycle detection.

Theorem 6.2. For every δ > 0 there is a δ′ > 0 such that if there is an O(m1+ 3−ω
2(5−ω)

−δ)-time algorithm
for 4-cycle detection, then there is an O(n2−δ′)-time algorithm for triangle detection in n-node graphs with
maximum degree at most

√
n.

Proof. First, we run the subquadratic-time algorithm from Theorem 1.10 with an arbitrarily small constant
ε > 0 and α < (3− ω)/8− ε/2 to be chosen later. Since the algorithm already checked for each edge in E′

whether it participates in a triangle, and since each triangle either uses an edge from E′ or is in one of the
Gi’s, it remains to solve triangle detection in each Gi.

For this, we add a dummy node bc on each edge {b, c} ∈ B × C, which converts any triangle {a, b, c} to
a 4-cycle {a, b, bc, c}. Furthermore, since none of the Gi’s had a 4-cycle before adding the dummy nodes,
the existence of a 4-cycle in Gi implies the existence of a triangle. Therefore, to solve triangle detection, it
suffices to run a 4-cycle detection algorithm in all the obtained Gi’s. Let T (m) = mx be the time complexity
for 4-cycle detection in m-edge graphs. Since each Gi has O(n1/2+2α) edges with high probability, the total
running time for all the Gi’s is

O(n3/2−3α · (n1/2+2α)x) = O(n
3
2−3α+x(1/2+2α))

For x < 1 + α/(1/2 + 2α), this is subquadratic. Hence, by setting α = (3− ω)/8− ε′, for some ε′ > ε/2,
the running time from Theorem 1.6 is subquadratic, and
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1 + α/(1/2 + 2α) = 1 +
3−ω

8 − ε′

1/2 + 2( 3−ω
8 − ε′)

> 1 +
3− ω

2(5− ω)
− 8ε′

2(5− ω)

By setting x = 1 + 3−ω
2(5−ω) − δ, for δ > 8ε′, the total running time for 4-cycle detection in all the Gi’s is

subquadratic, as desired.

Corollary 1.11 follows immediately from Theorem 6.2. The second and third bullets follow by essentially
the same proof as the one provided for Theorem 6.2. Instead of running a 4-Cycle detection algorithm, we
run a triangle detection in 4-cycle free graphs for the second bullet, and a girth approximation algorithm for
the third bullet.

Corollary 1.11 (Hardness for Triangle in 4-Cycle-Free Graphs). Assuming that triangle detection in graphs
with maximum degree at most

√
n requires n2−o(1) time, no algorithm can solve any of the following problems

in O(m1+ 3−ω
2(5−ω)

−ε) time, for any ε > 0:

• Decide if an m-edge graph has a 4-cycle.

• Decide if an m-edge 4-cycle-free graph has a triangle.

• Compute a (5/3− δ)-approximation to the girth of an m-edge graph, for any δ > 0.

7 On the Hardness of Triangle

The conditional lower bounds in this paper are based on the n2−o(1) time hardness of two versions of triangle
finding in

√
n-degree graphs: The all-edge version of reporting for each of the n1.5 edges whether it is in a

triangle, and the more basic detection version of just deciding if there is any triangle in the graph. The former
is already known to be hard under either the 3SUM or APSP conjectures [VWX20], two of the most central
conjectures in fine-grained complexity [VW15, Wil18], and therefore does not need further justification (see
also [DKPW20] for equivalences to range reporting problems). The goal of this section is to discuss the latter
assumption.

Abboud and Vassilevska Williams [AW14] introduced the following Triangle Conjecture and used it to
prove hardness result for dynamic problems; the conjecture has also been used elsewhere, e.g. in databases
[CK19].

Conjecture 7.1 (The Triangle Conjecture [AW14]). Triangle detection requires m4/3−o(1) time, for some
density regime m = Ω(n). In other words, there exists a constant 1 ≤ α ≤ 2 such that for all ε > 0 there is
no algorithm that given a graph with n nodes and m = Θ(nα) edges detects whether it contains a triangle in
O(m4/3−ε) time.

They also considered a weaker form of the conjecture where only some Ω(m1+δ) lower bound is assumed,

and a stronger form with an m
2ω
ω+1−o(1) lower bound even when ω > 2. However, the above m4/3−o(1) is the

more natural and popular hypothesis and it continues to hold even if ω = 2.
While the conjecture does not specify the density for which m4/3−o(1) time is required, by a simple

high-degree low-degree analysis, one can show that the hardest regime is m = n1.5:

Observation 7.2. The Triangle Conjecture is equivalent to the hypothesis that Triangle detection requires
n2−o(1) time in graphs with average degree Θ(

√
n).
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Proof. One direction is trivial: If Triangle detection requires n2−o(1) time in graphs with average degree
Θ(
√
n), then for the density regime m = Θ(n3/2) Triangle detection requires m4/3−o(1) time, so the Triangle

Conjecture holds.
For the other direction, suppose that Triangle in graphs with N nodes and Θ(N1.5) edges can be solved

in O(N2−ε) time, for some ε > 0. Given a graph on n nodes and m edges as input to Triangle, let H be the
set of nodes of degree ≥ m1/3−δ, and let L = V \H be the nodes of degree at most m1/3−δ.

• To find a triangle that uses any node from L, iterate over all m edges {u, v} and if one of the endpoints
is in L, e.g. u, scan its neighborhood and for each w ∈ N(u) check if u, v, w is a triangle. This takes
O(m ·m1/3−δ) time.

• To find a triangle that only uses nodes from H consider the induced graph on these N = m/m1/3−δ =
m2/3+δ nodes. This graph has only m = O(N1.5) edges. If the number of edges happens to be o(N1.5)
we can artificially turn it into Θ(N1.5) by simply adding a bipartite graph on N nodes and N1.5 edges
(this does not introduce any new triangles). Then, by assumption, we can find a triangle in this graph
in time O(N2−ε) = O((m2/3+δ)2−ε) = O(m4/3+2δ−2/3ε) = O(m4/3−δ) for δ < ε/10.

In both cases we can solve Triangle detection in time O(m4/3−δ), which refutes the Triangle Conjecture.

This does not quite prove an equivalence between our hardness assumption and the Triangle Conjecture
because we do not know how to reduce the average degree ≤

√
n case to the maximum degree

√
n case.

Indeed, this issue arises also in the all-edge version where we do not know how to reduce the general
m = n1.5 case to the

√
n-degree case. There, we side-stepped this discussion by starting from other popular

conjectures (3SUM and APSP) rather than from a hardness assumption about All-Edges-Triangle itself. Can
we do the same here? Unfortunately, basing the Triangle Conjecture on other popular conjectures such as
3SUM and APSP is a major open question:

Open Question 7.3. Can we prove the Triangle Conjecture under other hardness assumptions such as
3SUM or APSP?

Ever since Pătraşcu’s [Pat10] 3SUM-hardness for the all-edge and listing versions of Triangle, it has been
a pressing open question to prove the same for detection. APSP has been connected to Triangle detection
in the work of Vassilevska Williams and Williams [WW18] but only in a restricted sense: the two problems
are subcubic-equivalent for combinatorial algorithms in dense graphs. Extending such results to general
algorithms or to sparse graphs is a well-known challenge.

As a side result of independent interest, we make progress towards this goal. We prove the first conditional
lower bound for Triangle detection that is based on the hardness of a problem of a very similar flavor to 3SUM
and APSP: the Zero-Triangle problem. Importantly, this hardness continues to hold under the restriction to√
n-degree graphs, justifying our belief that this is the hard case for triangles.

Definition 7.4 (Zero-Triangle). Given a tripartite graph G = (A×B×C,E) with integral edge weights w :
E → [−W,+W ] decide if there is a triangle (a, b, c) ∈ A×B×C with total weight w(a, b)+w(b, c)+w(a, c) = 0.

Ignoring subpolynomial improvements, there are only two algorithms for this problem. The first is
a brute force over all triples and its running time is O(|A| · |B| · |C|). In the symmetric setting where
|A| = |B| = |C| = n/3 this is O(n3) and it is optimal under both 3-SUM and APSP conjectures, as long as
W = Ω(n3) [Pat10, WW13]. The second algorithm is faster when W is small enough: It applies the standard
exponentiation trick (encoding w as 2w) to reduce summation to multiplication and then uses fast matrix
multiplication. In the symmetric setting the running time is O(W · nω) and otherwise it is a complicated
expression that depends on the rectangular matrix multiplication exponent. Assuming ω = 2, the upper
bound simplifies to (W ·N)1+o(1) where N = (|A| · |C|+ |A| · |B|+ |B| · |C|) is an upper bound on the size
of the graph. It is natural to conjecture that these bounds cannot be broken for Zero-Triangle.

Conjecture 7.5 (The Strong Zero-Triangle Conjecture). Zero-Triangle requires (min{WN, |A|·|B|·|C|})1−o(1)

time, for any parameters W, |A|, |B|, |C| = nΘ(1) and where N = (|A| · |C|+ |A| · |B|+ |B| · |C|).
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While this conjecture is not known to be implied by the 3-SUM and APSP conjectures (because the
existing reductions change the ratio of weight W to number of nodes n) its plausibility has the same source.
In fact, it is analogous to the stronger version of the APSP conjecture recently studied by Chan, Vassilevska,
and Xu [CWX21]. Notably, Zero-Triangle is a problem that is hard due to the weights and the addition
operator and not due to the graph structure: the input graph may be assumed to be complete. Thus, we find
it surprising that it explains the hardness of our purely structural subgraph detection problems; in particular
it gives a tight lower bound for Triangle:

Theorem 7.6. If Triangle detection in graphs with maximum degree
√
n can be solved in O(n2−ε) time, for

some ε > 0, then Zero-Triangle with |A| = n, |B| = |C| =
√
n and W =

√
n can be solved in O(n2−ε) time,

and the Strong Zero Triangle Conjecture is false.

Proof. Given an instance of Zero-Triangle with |A| = n, |B| = |C| =
√
n and W =

√
n we construct an

unweighted graph as follows. Each node in u ∈ B ∪ C is copied 6W + 1 times u−3W , . . . , u3W where ui
represents both the node u and the integer value i. A node a ∈ A has a single copy in the new graph.

An edge of weight x from a ∈ A to b ∈ B becomes an edge from a to bx. An edge of weight y from
a ∈ A to c ∈ C becomes an edge from a to c−y. On the other hand, an edge of weight z from b ∈ B to
c ∈ C becomes a matching between the bi and cj nodes such that there is an edge between bi and ci+z for
all i ∈ [−2W, 2W ].

A zero-triangle (a, b, c) with weights w(a, b) = x,w(a, c) = y, w(b, c) = z becomes a triangle a, bx, c−y.
The edges (a, bx) and (a, c−y) exist by definition, and the third edge exists because −y = x+ z. By a reverse
argument, any triangle in the new graph corresponds to a zero-triangle in the original graph.

The reduction is rather simple but we find the statement quite interesting. First, it bases the Triangle
Conjecture (and our hardness for 4-Cycle) on a hardness assumption of a very different nature. Second,
it makes a substantial step towards establishing the Triangle Conjecture under the more central 3-SUM
or APSP Conjectures. And third, assuming ω = 2, it pinpoints a challenge that one must resolve before
making any further progress on Triangle, the lower bound is completely tight for all density regimes (due to
Observation 7.2).

8 Open Questions

In this paper we have introduced a short cycle removal technique and used it to obtain the first conditional
lower bounds for 4-Cycle detection and to demonstrate the optimality of the O(m1+1/k)-time vs. O(k)-
approximation trade-off for various distance computation problems. Some of the hardness results are based
on the conjectured hardness of the All-Edge Triangle problem (and therefore implied by the 3SUM/APSP
Conjectures) and some are based on the hardness of triangle detection. Let us conclude by highlighting some
open questions.

Tight bounds. Does breaking the longstanding O(min(n2,m4/3)) upper bound for 4-Cycle imply a new
algorithm for triangle detection? Tightening the constants in the exponents of the lower bound of each of
the problems we have considered is an interesting open question. One way to reduce the gaps is by resolving
the following conjecture about the relationship between 4-cycles and dense pieces.

Conjecture 8.1. For all ε > 0 there is a δ > 0 such that any graph with maximum degree at most
√
n that

has ≥ n2+ε 4-cycles must have a subgraph on k nodes and ≥ k1.5+δ edges.

A constructive proof of this conjecture (that comes with an efficient algorithm for finding the dense
pieces) would establish an m4/3−o(1) lower bound for 4-Cycle enumeration with no(1) delay.
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Which patterns can be detected in linear time? In its most basic form, the subgraph isomorphism
problem asks if a given graph G on m edges contains a fixed size pattern H as a (not necessarily induced)
subgraph. It is natural to conjecture that the subgraph isomorphism problem can be solved in m1+o(1) time
if and only if H is acyclic. A linear time algorithm for forests follows from the Color-Coding technique
[AYZ97], and this paper proves that all cycles require super-linear time (assuming the hardness of triangles).
Thus, all we have to do is reduce k-cycle detection to the detection of any pattern that contains a k-cycle.
Such a reduction is known for odd k [DVW21] but not for even.
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A Reduction from Triangle or 4-Cycle to any k-Cycle

For completeness, we include a proof of the following statement. The components of this proof are considered
folklore.

Theorem A.1. For any integer k ≥ 3 one of the following is true:

• There is a reduction that given an m-edge tripartite graph G runs in O(m) time and constructs a graph
G? such that the k-cycles in G? are in 1-to-1 correspondence with the triangles in G.

• There is a reduction that given an m-edge graph G runs in O(m) time and constructs a graph G? such
that the k-cycles in G? are in 1-to-1 correspondence with the 4-cycles in G.

Recall that in Triangle detection we can assume without loss of generality that the input graph is
tripartite, so this condition makes no big difference.

By Theorem A.1, if k-Cycle detection can be solved in time O(mα), for some α ≥ 1, then either Triangle
or 4-Cycle detection can also be solved in time O(mα). Moreover, if after O(mα) preprocessing we can
enumerate k-cycles with mo(1) delay, then the same is true for enumerating either triangles or 4-cycles.

Lemma A.2. Let r | k be two positive fixed integers such that r divides k. There is a reduction that given
an m-edge graph G runs in O(m) time and constructs a graph G? such that the k-cycles in G? are in 1-to-1
correspondence with the r-cycles in G.

Proof. We can assume that 3 ≤ r < k, as otherwise the claim is straightforward. Let G be a graph with m
edges, we construct the graph G? by replacing each edge of G with a path of length k

r (that is, each edge of G

is subdivided by k
r − 1 vertices). The number of edges in G? is k

rm = O(m), and constructing G? from G
takes O(m) time. We prove the claim by showing that G? contains a k-cycle if and only if G contains an
r-cycle.

If G contains an r-cycle, then after the subdivision of its edges this r-cycle corresponds to a k-cycle in G?.
On the other hand, any simple cycle in G? can be partitioned into paths of length k

r corresponding to the
full subdivision of edges from G. This holds as the degree of every subdividing vertex is exactly 2. Hence,
every cycle in G? is of size divisible by k

r and such cycle of size k
r · x must correspond to a cycle of size x

in G. In particular, if G? contains a k-cycle then G contains an r-cycle.

Lemma A.3. Let k ≥ 3 be any odd fixed integer. There is a reduction that given an m-edge tripartite graph G
runs in O(m) time and constructs a graph G? such that the k-cycles in G? are in 1-to-1 correspondence with
the triangles in G.

Proof. Let G be a tripartite graph with m edges and vertex sets V = A ∪ B ∪ C. We construct G? by
replacing every edge of G with endpoints in B and C with a path of length k − 2 (that is, we subdivide
each edge of E(G) ∩ (B × C) by k − 3 vertices). The number of edges in G? and the time to construct it
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are O(m). If G contains a triangle then G? clearly contains a corresponding k-cycle. It is left to prove that
if G? contains a k-cycle then G contains a triangle.

Denote by D(i) for 1 ≤ i ≤ k−3 the set of all i-th vertices in a subdivision of some subdivided edge. The
graph G? is homomorphic to the k-cycle by the partition A,B,D(1), . . . , D(k−3), C. Any k-cycle in G? must
include exactly one vertex in each of the parts A,B,D(1), . . . , D(k−3), C, since the k-cycle is not bipartite yet
after the removal of any of these parts the remaining graph is homomorphic to a path and hence bipartite.
Due to the degree of each vertex in a part D(i) being exactly 2, such a cycle is necessarily a triangle of G
with one subdivided edge. This follows in a similar manner to the proof of Lemma A.2.

Proof of Theorem A.1. Let k ≥ 3. If k is not a power of 2, then it has an odd prime divisor p and hence we
can apply Lemma A.3 to reduce from Triangle detection to p-Cycle detection, and then apply Lemma A.2
to reduce from p-Cycle detection to k-Cycle detection, to prove the theorem. Otherwise, k ≥ 3 is a power
of 2 and in particular is divisible by 4. Then we can use Lemma A.2 to reduce from 4-Cycle detection to
k-Cycle detection.

We note that the components in the proof of Theorem A.1 (and any other previously known technique) do
not show that if 4-Cycle detection is linear then so is Triangle detection. The reason that a similar argument
fails is that as a bipartite graph, a 4-cycle can appear between any of the three pairs of parts in G. On the
other hand, we observe that if the original graph G contains no 4-cycle, then a similar reduction does work.
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