19 research outputs found

    Neuroevolution for solving multiobjective knapsack problems

    Get PDF
    The multiobjective knapsack problem (MOKP) is an important combinatorial problem that arises in various applications, including resource allocation, computer science and finance. When tackling this problem by evolutionary multiobjective optimization algorithms (EMOAs), it has been demonstrated that traditional recombination operators acting on binary solution representations are susceptible to a loss of diversity and poor scalability. To address those issues, we propose to use artificial neural networks for generating solutions by performing a binary classification of items using the information about their profits and weights. As gradient-based learning cannot be used when target values are unknown, neuroevolution is adapted to adjust the neural network parameters. The main contribution of this study resides in developing a solution encoding and genotype-phenotype mapping for EMOAs to solve MOKPs. The proposal is implemented within a state-of-the-art EMOA and benchmarked against traditional variation operators based on binary crossovers. The obtained experimental results indicate a superior performance of the proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorporated into different EMOAs.Portuguese “Fundação para a Ciência e Tecnologia” under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014

    A neuroevolutionary approach to feature selection using multiobjective evolutionary algorithms

    Get PDF
    Feature selection plays a central role in predictive analysis where datasets have hundreds or thousands of variables available. It can also reduce the overall training time and the computational costs of the classifiers used. However, feature selection methods can be computationally intensive or dependent of human expertise to analyze data. This study proposes a neuroevolutionary approach which uses multiobjective evolutionary algorithms to optimize neural network parameters in order to find the best network able to identify the most important variables of analyzed data. Classification is done through a Support Vector Machine (SVM) classifier where specific parameters are also optimized. The method is applied to datasets with different number of features and classes.FCT - Fundação para a Ciência e Tecnologia in the scope of the projects: PEst-OE/EEI/UI0319/2014, UID/MAT/00013/2013, UID/CEC/ 00319/2019 and the European project MSCA-RISE-2015, NEWEX, with reference 734205

    Analytics of Heterogeneous Breast Cancer Data Using Neuroevolution

    Get PDF
    https://ieeexplore.ieee.org/document/8632897Breast cancer prognostic modeling is difficult since it is governed by many diverse factors. Given the low median survival and large scale breast cancer data, which comes from high throughput technology, the accurate and reliable prognosis of breast cancer is becoming increasingly difficult. While accurate and timely prognosis may save many patients from going through painful and expensive treatments, it may also help oncologists in managing the disease more efficiently and effectively. Data analytics augmented by machine-learning algorithms have been proposed in past for breast cancer prognosis; and however, most of these could not perform well owing to the heterogeneous nature of available data and model interpretability related issues. A robust prognostic modeling approach is proposed here whereby a Pareto optimal set of deep neural networks (DNNs) exhibiting equally good performance metrics is obtained. The set of DNNs is initialized and their hyperparameters are optimized using the evolutionary algorithm, NSGAIII. The final DNN model is selected from the Pareto optimal set of many DNNs using a fuzzy inferencing approach. Contrary to using DNNs as the black box, the proposed scheme allows understanding how various performance metrics (such as accuracy, sensitivity, F1, and so on) change with changes in hyperparameters. This enhanced interpretability can be further used to improve or modify the behavior of DNNs. The heterogeneous breast cancer database requires preprocessing for better interpretation of categorical variables in order to improve prognosis from classifiers. Furthermore, we propose to use a neural network-based entity-embedding method for categorical features with high cardinality. This approach can provide a vector representation of categorical features in multidimensional space with enhanced interpretability. It is shown with evidence that DNNs optimized using evolutionary algorithms exhibit improved performance over other classifiers mentioned in this paper

    Scalable Transfer Evolutionary Optimization: Coping with Big Task Instances

    Full text link
    In today's digital world, we are confronted with an explosion of data and models produced and manipulated by numerous large-scale IoT/cloud-based applications. Under such settings, existing transfer evolutionary optimization frameworks grapple with satisfying two important quality attributes, namely scalability against a growing number of source tasks and online learning agility against sparsity of relevant sources to the target task of interest. Satisfying these attributes shall facilitate practical deployment of transfer optimization to big source instances as well as simultaneously curbing the threat of negative transfer. While applications of existing algorithms are limited to tens of source tasks, in this paper, we take a quantum leap forward in enabling two orders of magnitude scale-up in the number of tasks; i.e., we efficiently handle scenarios with up to thousands of source problem instances. We devise a novel transfer evolutionary optimization framework comprising two co-evolving species for joint evolutions in the space of source knowledge and in the search space of solutions to the target problem. In particular, co-evolution enables the learned knowledge to be orchestrated on the fly, expediting convergence in the target optimization task. We have conducted an extensive series of experiments across a set of practically motivated discrete and continuous optimization examples comprising a large number of source problem instances, of which only a small fraction show source-target relatedness. The experimental results strongly validate the efficacy of our proposed framework with two salient features of scalability and online learning agility.Comment: 12 pages, 5 figures, 2 tables, 2 algorithm pseudocode

    Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and Research Opportunities

    Full text link
    Evolutionary algorithms (EA), a class of stochastic search methods based on the principles of natural evolution, have received widespread acclaim for their exceptional performance in various real-world optimization problems. While researchers worldwide have proposed a wide variety of EAs, certain limitations remain, such as slow convergence speed and poor generalization capabilities. Consequently, numerous scholars actively explore improvements to algorithmic structures, operators, search patterns, etc., to enhance their optimization performance. Reinforcement learning (RL) integrated as a component in the EA framework has demonstrated superior performance in recent years. This paper presents a comprehensive survey on integrating reinforcement learning into the evolutionary algorithm, referred to as reinforcement learning-assisted evolutionary algorithm (RL-EA). We begin with the conceptual outlines of reinforcement learning and the evolutionary algorithm. We then provide a taxonomy of RL-EA. Subsequently, we discuss the RL-EA integration method, the RL-assisted strategy adopted by RL-EA, and its applications according to the existing literature. The RL-assisted procedure is divided according to the implemented functions including solution generation, learnable objective function, algorithm/operator/sub-population selection, parameter adaptation, and other strategies. Finally, we analyze potential directions for future research. This survey serves as a rich resource for researchers interested in RL-EA as it overviews the current state-of-the-art and highlights the associated challenges. By leveraging this survey, readers can swiftly gain insights into RL-EA to develop efficient algorithms, thereby fostering further advancements in this emerging field.Comment: 26 pages, 16 figure

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    A flexible and efficient multi-purpose optimization library in python

    Get PDF
    Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., & Schettini, R. (2021). General purpose optimization library (Gpol): A flexible and efficient multi-purpose optimization library in python. Applied Sciences (Switzerland), 11(11), 1-34. [4774]. https://doi.org/10.3390/app11114774Several interesting libraries for optimization have been proposed. Some focus on individual optimization algorithms, or limited sets of them, and others focus on limited sets of problems. Frequently, the implementation of one of them does not precisely follow the formal definition, and they are difficult to personalize and compare. This makes it difficult to perform comparative studies and propose novel approaches. In this paper, we propose to solve these issues with the General Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that covers a wide range of stochastic iterative search algorithms, through which flexible and modular implementation can allow for solving many different problem types from the fields of continuous and combinatorial optimization and supervised machine learning problem solving. Moreover, the library supports full-batch and mini-batch learning and allows carrying out computations on a CPU or GPU. The package is distributed under an MIT license. Source code, installation instructions, demos and tutorials are publicly available in our code hosting platform (the reference is provided in the Introduction).publishersversionpublishe

    Rapid and Thorough Exploration of Low Dimensional Phenotypic Landscapes

    Get PDF
    PhDThis thesis presents two novel algorithms for the evolutionary optimisation of agent populations through divergent search of low dimensional phenotypic landscapes. As the eld of Evolutionary Robotics (ER) develops towards more complex domains, which often involve deception and uncertainty, the promotion of phenotypic diversity has become of increasing interest. Divergent exploration of the phenotypic feature space has been shown to avoid convergence towards local optima and to provide diverse sets of solutions to a given objective. Novelty Search (NS) and the more recent Multi-dimensional Archive of Phenotypic Elites (MAP-Elites), are two state of the art algorithms which utilise divergent phenotypic search. In this thesis, the individual merits and weaknesses of these algorithms are built upon in order to further develop the study of divergent phenotypic search within ER. An observation that the diverse range of individuals produced through the optimisation of novelty will likely contain solutions to multiple independent objectives is utilised to develop Multiple Assessment Directed Novelty Search (MADNS). The MADNS algorithm is introduced as an extension to NS for the simultaneous optimisation of multiple independent objectives, and is shown to become more e ective than NS as the size of the state space increases. The central contribution of this thesis is the introduction of a novel algorithm for rapid and thorough divergent search of low dimensional phenotypic landscapes. The Spatial, Hierarchical, Illuminated NeuroEvolution (SHINE) algorithm di ers from previous divergent search algorithms, in that it utilises a tree structure for the maintenance and selection of potential candidates. Unlike previous approaches, SHINE iteratively focusses upon sparsely visited areas of the phenotypic landscape without the computationally expensive distance comparison required by NS; rather, the sparseness of the area within the landscape where a potential solution resides is inferred through its depth within the tree. Experimental results in a range of domains show that SHINE signi cantly outperforms NS and MAP-Elites in both performance and exploration
    corecore