VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Way of the Fittest
Stork, Jorg Willi

2022

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Stork, J. W. (2022). Way of the Fittest: Optimization by Behavioral Evolution.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 05. Nov. 2022

https://research.vu.nl/en/publications/cc84a9b0-4f40-4d50-8223-118ad951309e

©)©)e)©)E
®®@@®®
@@@®©
G\ (7NN 7N (42N
C)O)CRONE
@)@ ©@®
N/ N\ N\ T\

[—
Im
ol
—
=)
>
(L
5 =
= =
- b
=1 cr
i — ==
(= 1] —
== —|
=
0 cn
=
M =
=
e
.
 r
(=1
=

el
un
(= 1)
el
=
o
(= 1)
B
el
-
=
= |
=

Way of the Fittest

Optimization by Behavioral Evolution

Jorg Willi Stork
M. Eng.

Department of Computer Science
Faculty of Sciences, Vrije Universiteit Amsterdam

2021

VRIJE
- UNIVERSITEIT
AN° AMSTERDAM

Copyright (© 2021 by Jorg Willi Stork
Cover Art by Alexander Hagg

VRIJE UNIVERSITEIT

Way of the Fittest

Optimization by Behavioral Evolution

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor of Philosophy
aan de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus
prof.dr. C.M. van Praag,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bétawetenschappen
op dinsdag 18 januari 2022 om 9.45 uur

in een bijeenkomst van de universiteit,

De Boelelaan 1105

door
Jorg Willi Stork

geboren te Wipperfiirth, Duitsland

promotor: prof.dr. A.E. Eiben
copromotor: prof.dr. T. Bartz-Beielstein

promotiecommissie: prof.dr. T. Back
dr.-habil. C. Doerr
prof.dr. B. Filipi¢
prof.dr. G.M. Koole
prof.dr. E.-G. Talbi
dr. M. Wagner

Contents

|Acknowledgements|o o oo 1
1 Introductionl 3
.1 Motivationl 4
[L.2_Behavioral Evolutionl 5
1. COPE| v v e e e e e 9
I1.4 Frequently Used Acronyms| 16
2 An Introduction to Evolutionary and Surrogate Model-Based |
| Optimization for Global Search| 17
2.1 Introductionl. 18
2.2 Modern Optimization Algorithms|. 22
2.3 A New Taxonomy| 29
2.4 The Definition of Intuitive Algorithm Classes| 37
2.5 Algorithm Selection Guidelines| 53
2.6 Conclusion and Outlookl 58
13 Comparison of Evolutionary and Surrogate Model-Based Op- |
| timization of Neural Network Weights| 61
BI Tntroductionl. 62
8.2 Motivationl 62
3.3 Elevator Supervisory Group Controlf 63
3.4 Methods for Optimization of Neural Network Controllers[. . . . 65
3.5 Experiments|. o 70
8.6 Results and Discussion| L. 71
B.7 _Conclusion and Outlookl 75
4 Custom Distance Metrics for Surrogate Model-Based Opti- |
[mizationl 7
4.1 Introductionl. 78
4.2 Surrogate Model-Based Optimization|. 78
4.3 Kriging for Combinatorial Problems| 80
4.4 Distance Measures for Permutationf 82

iii

iv CONTENTS

4.5 Experiments and Results|. 85
A6 Conclusion and Outlookl 88
[>_Comparison of Distance Metrics for Surrogate Model-Based |
ptimization in Genetic Programmin 89

b.1 Introductionl. 90
0.2 Related Workl oo 91
9.3 A Test Case for SMBO-GP: Bi-level Symbolic Regression] . . . 93
b.4 Kernels for Bi-level Symbolic Regression| 95
b.5 CaseStudyl 100
5.6 Conclusion and Outlookf 104

6 Comparison of Genotypic and Phenotypic Distance Metrics for |
| Modeling Neural Networks| 105
6.1 TIntroductionl. 106
6.2 Related Workl oo 109
6.3 Methods for Modeling Neural Networks| 110
6.4 Experimental Setup| o000 114
6.5 Results and Discussion| 118
6.6 Conclusion and Qutlookl 121

|7 Comparison of Distance Metrics for Surrogate Model-Based |
L__Neuroevolutionl 123
[r.1 Introductionl. Lo 124
(.2 Related Workl o 125
(.3 Data Ffficient Neuroevolution| 126
7.4 Proposed Kernels and Distances| 130
[7.5 Experiments|. o 134
[f.6 Conclusion and Outlookl 141

I8 Surrogate Model-Based Optimization for Behavioral Neuroevo- |
| lution in Reinforcement Learning] 143
8.1 Introductionl. oo 144
8.2 Methods for Model-Based Searchl 146
8.3 Surrogate Model-based Neuroevolution tfor Reinforcement Learningl154
8.4 Experiments|. 157
8.5 Results and Discussion| 161

CONTENTS v

19 Analysis of the Behavioral Space in Context of Reinforcement |

167
9.1 Introductionl. 168
9.2 Methods for Analyzing Behavior| 170
9.3 Experiments|. o000 172
0.4 Results and DISCUSSION] - - « + « « « v v oo v e e e 176
9.5 Conclusion and Outlookl 183

10 A Framework for Behavioral Optimization in Reinforcement |

[TLearning 185
[10.1 Introductionl.o 186
M02 Methods . - . . .« o o oo 189
|110.3 Behavior-based Neuroevolutionary Iramning| 194
110.4 Experiments|. 198
[10.5 Conclusion and Outlookl 207

11 Concluding Remarks| 209

215
243
247

Acknowledgements

I dedicate this work to my parents Dagmar and Willi Stork. They have always

supported me unconditionally in so many different ways.

My sincere gratitude goes to my beloved fiancée Joana. She has always been
extremely patient with me, even when I was required to put work in front of

my private life.

First of all, I would like to thank Thomas Bartz-Beielstein for his constant
support and guidance throughout my academic career. He sparked my interest
in optimization, evolutionary algorithms, and research. Furthermore, he allowed
me to prove myself in the academic environment. I am incredibly grateful to
him for that.

Secondly, I would like to thank Gusz Eiben for his experience and assistance in
implementing new research ideas. Our fruitful discussions have always opened
up new perspectives and have been highly beneficial for my research. His

positive energy has always inspired me.

Furthermore, I would like to thank many amazing colleagues and friends. This
includes Martin Zaefferer, without whose experience and expertise I would never
have come this far. A special thank you goes to Andreas Fischbach, Frederik
Rehbach, and Margarita Rebolledo. Our numerous discussions about research

and life have constantly enriched me and made academic life more fun.

My great gratitude goes to Alexander Hagg, who has opened my eyes to entirely
new perspectives. I would also like to thank Boris Naujoks, who supported me
with his expertise, openness, and empathy. Not to forget all my other colleagues,

I really enjoyed working with you!

The publications presented in this thesis were partly supported by the Ger-
man Federal Ministry of Education and Research under the grant numbers
13FHO007IB6 and 17002X1, and by the European Union Horizon 2020 research
and innovation program under grant agreement no. 692286. Further, I received
funding by the Federal Ministry of Education and Research under the grant
numbers 13FH007IB6 and 13N15173.

Introduction

Preamble. FEvery human being has different behavioral traits. They define how
we act and interact with our surroundings, such as whether we seek friendliness
or antagonism in our interactions, whether we act according to common sense
or ignorance, and many more. In total, they build a definition of behavior and
express our impact in life, as a citizen, as a human. Our behaviors have led us

to succeed in natural selection and evolved modern humankind.

This notion of behavior can be extended to human-designed and acting enti-
ties, such as software agents or robots embedded in a nature-inspired evolutionary

optimization process, and describes their way of acting in environments.

In which ways can we shape the behavior of such entities to advance their

way of acting, their task performance, and ultimately, their ability to succeed?

3

Chapter 1. Introduction

1.1 Motivation

The use of evolutionary computation (EC) methods has demonstrated indis-
putable success in many domains of optimization, where they belong to the
state-of-the-art for solving problems with complex characteristics [Back et al.)
1997 |[Eiben and Smithl, 2015alb]. EC is inspired by Darwin’s theory of the
survival of the fittest. In competitive evolutionary processes, individuals who
are best adapted to their environment and have the best task performance
succeed. Their employment in applications in artificial intelligence thus seems

only natural and has been approached in different ways.

One outstanding paradigm is neuroevolution, a method to generate artificial
neural networks (ANN) and optimize their weights, parameters, topologies, and
functions [Stanley et al., 2019; [Miller and Thomson/ {2000} Turner and Miller,
2013|. The evolutionary optimization in neuroevolution is based on fitness
selection with a customizable, i.e., user-selected, notion of an ANN’s quantita-
tive performance. In contrast, standard supervised learning methods employ
gradients based upon back-propagation that require a clear notion of correct
input-output samples. Neuroevolution is favorable if gradient information is
challenging to compute, sparse, vague, or even unavailable, such as in evolution-
ary robotics or reinforcement learning |Bongard, [2013|. However, the resulting
neuroevolutionary optimization problems are challenging in their nature due
to complex and costly environments, multi-modal fitness landscapes, and the
number of degrees of freedom in generating ANNs. Under these circumstances,
the steering of the evolutionary process in the direction of successful candidate
ANNs is challenging. Frequently, the process requires significant amounts of

evaluations to discover high-performing candidates.

In this context, surrogate model-based optimization (SMBO) can be em-
ployed to improve the sample efficiency by partially replacing fitness evalua-
tions |Forrester et al., [2008|. The surrogate approximates the complex fitness
landscape and predicts high-performing candidate solutions with the help of
distance metrics that determine the correlation of a candidate solution’s fitness

to that of similar individuals. The employment of such distance metrics in

4

1.2. Behavioral Evolution

neuroevolution is challenging as the correlation of fitness on a genotypic level
might be subject to non-linearities. A possible solution is to consider the corre-
lation of an individual’s fitness to their expressed phenotype and their derived
behavior in an environment |[Doncieux and Mouret| [2010; Moraglio et al.| [2012;
Hildebrandt and Branke, 2015; (Gaier et al. |2018].

This thesis presents results from cooperative research carried out at the VU
Amsterdam and TH Ko6ln. This research focuses on optimizing complex struc-
tures through EC and SMBO, employing phenotypic and behavioral distance
measures. The central concept of this thesis is the behavioral optimization
of individuals by the identification and utilization of the intense connection
between an individual’s behavior, environment, and fitness. The exploitation
of an entity’s behavior can significantly support and improve an evolutionary

optimization process.

1.2 Behavioral Evolution

In genetics, an organism’s genotype is the hereditary information, whereas the
phenotype is the set of all observable characteristics, including morphology,
biochemical and physiological properties. This notion was widened by [Dawkins
[1982] to the extended phenotype, which puts the behavior in the center of the
definition and describes how genes ultimately influence their surroundings in the
exerted behavior. Phenotypic variation emerges from the genotype with a strong
influence from an environment, i.e., the definition of a phenotype requires the
context of an environment. Evolution is then driven by the fitness of individual
genes, expressed by their comprehensive effects on their environment.

In the context of computer science, a differentiation between applications
with passive entities and active entities with agency embedded in space and time
exists |Eiben and Smith) |2015b|. For example, in a classic traveling salesperson
problem, a solution’s phenotype is depicted by the route connecting several cities.
This phenotype can be directly evaluated and awarded with a fitness, resulting
in a passive, non-acting entity without any notion of time. In contrast, a

phenotype from evolutionary robotics (ER) consists of the robot’s physical body

Chapter 1. Introduction

and its controller that cannot be directly evaluated. Instead, its behavior in an
environment has to be observed to assess its fitness. |Eiben and Smith| [2015b]
conclude that "in EC we have a 3-step chain, genotype—phenotype—fitness, while
in ER the chain is 4-fold, genotype—phenotype—behavior—fitness”. In their 4-fold
chain definition, behavior is a unique property of an entity, supplemental to the

phenotype, and the fitness is the quantification of the quality of this behavior.

Natural Evolution

Evolutionary Computation

I W

Genotype 1 —» Morphology

\ /
\\\ / Function
o V. A

J q \ / Behavior
| ot | | Brons
\ / \ Phenotype
\\\ ////

Figure 1.1: Relationship of genotype, phenotype, and behavior in genetics and
evolutionary computation.

A concept that combines the perspective of EC and genetics is presented
by [Hagg| [2021], which bases upon the principle of the extended phenotype by
Dawkins: the behavior is seen as an extension of the phenotype, which describes
how it interacts with its environment. However, the influence of the environment
differs from its role in genetics, as visualized in Figure In EC, the genotype
and related phenotypes are typically designed for a specific environment. The
environment is the application scope of an individual and does not influence
the transition to the phenotypic expression, which remains fixed. The behavior
of a phenotype can only be observed in an interaction with the environment.

Without these task-dependent interactions, behavior is not observable.

6

1.2. Behavioral Evolution

For example, the genes of a particular individual express the specific topology
and weights of an ANN for the task of controlling a specific robot. The genotype
is designed such that the phenotype has the required number of sensor inputs
and actor outputs for this robot. The controller’s behavior can only be measured
related to its task, e.g., maze solving, whereas the fitness is a measurement of
this behavior, e.g., how fast it moves to a target position. Considering fitness
optimization, the performance of a robot is measured based on its behavior.
This leads to the idea of behavioral optimization: If a method optimizes behavior,
it consequently optimizes fitness. Optimizing behavior instead of optimizing
the genotype might be a more appropriate methodology for robotics, as the
behavioral space is much “closer” to fitness.

Following the definitions of the 4-fold chain and extended phenotype, a
behavior is ultimately influenced by changes in the genotype, which is also the
typical target for any variation operators, such as mutation or crossover in EC.
However, conducting variation operations that drive the behavior in the desired
direction of optimal fitness remains challenging. The genotype-to-phenotype
mapping does not ensure a one-to-one relation because identical phenotypes can
be represented by multiple genotypes. This can be caused by gene neutrality:
specific gene mutations do not affect the phenotype, or competing conventions,
i.e., the existence of several ways to represent a functionally equal phenotype.
Moreover, a specific phenotype’s behavior is equal for identical environment
interactions, but equal behaviors can originate from entirely different entities,
e.g., different models or concepts. Ultimately, the purposeful adaption of
genotypes is challenging, as the complex transitions in the 4-fold chain do not
imply direct relationships between genotype and fitness variation.

This issue led to the idea of moving to the end of the chain, directly searching
in the space of behaviors. To realize this search, methods are required to operate
directly in this space. To enable efficient search methods like SMBO, it is
essential to be able to predict behaviors and their fitness, forming the central
concept of approximating the behavior-fitness correlation. The envisioned

behavioral optimization methods led to a set of requirements:

Chapter 1. Introduction

(I) Firstly, the desired methods are based on EC and SMBO methodologies.
Thus, it is required to acquire an in-depth understanding of these algorithms
and their concepts, particularities, and different available implementations.
(IT) Secondly, in large parts of this thesis, Kriging models are employed for
the task of SMBO as a flexible predictor. Kriging is a data-driven, distance-
based model based upon Gaussian processes. However, the application of
Kriging was previously limited to continuous optimization, while other problem
domains were less investigated. An essential requirement is the advancement of
Kriging to support custom distance measures that can be non-continuous, i.e.,
combinatorial, genotypic, or behavioral measures.

(III) Thirdly, it is required to design, test, and analyze new methods operating
in the phenotypic space based upon the principles of EC and SMBO. A particular
focus lies on establishing and comparing genotypic and phenotypic distance
measures applicable for modeling topology-changing ANN.

(IV) Fourthly, the developed mechanism needs to be extended in its applicability
to time-dependent reinforcement learning. It requires a task-dependent and
precise notion of an individual’s behavior with an in-depth analysis of ways to
compare, control, and steer these behaviors. Finally, it is required to design
efficient behavioral optimization algorithms and prove their performance.

This thesis presents several works, which are in their entirety a fundamental
step towards fulling these requirements and establishing behavioral optimization.
The main contributions of the research in this thesis are:

(1) An extensive introduction to EC and SMBO in the greater context of
global optimization, including a new taxonomy for algorithm classification and
recommendations for practitioners.

(2) Demonstrating the sample efficiency gain of applying SMBO to the task of
neural network weight optimization in an applied study, including a comparison
with common evolutionary algorithms.

(3) The definition of a custom Kriging kernel and a comparison of distance
metrics for combinatorial search spaces, illustrating their applicability and
performance in SMBO for permutation problems, including their capacity to

increase the sampling efficiency of the optimization.

1.3. Scope

(4) The introduction of a phenotypic distance metric for the task of tree-based
genetic programming models, fixed-topology ANN, as well as graph-based,
topology-changing ANN in neuroevolution. Moreover, a rigorous comparison
against genotypic distance metrics in different empirical studies was conducted,
including investigating their performance for modeling and SMBO processes.
(5) Development of behavioral distance measures in the context of reinforcement
learning, including their implementation in SMBO with empirical studies of their
performance. Further, an investigation of influences by task and environment
and the implications of different ways to generate behavior.

(6) Development of a behavioral optimization framework for reinforcement
learning, utilizing a diverse set of optimization and training methods exploiting
behavior. It is based on topology-changing control policies in a gradient-free

neuroevolutionary algorithm.

1.3 Scope

This thesis presents a collection of scientific publications, with each being
presented in a designated chapter. The work’s content is primarily equivalent
to their published versions, except for necessary layout changes, harmonizing
expressions, and language and grammar corrections.

As an exception, Chapter {4| presents a summary of papers [I] and [II],
focussing on the most relevant content for the scope of this thesis. If any
noteworthy changes were applied (e.g., the renaming of a specific expression),
they are marked as footnotes in the text.

Figure[T.2]illustrates the path starting from classic evolutionary and surrogate-
based optimization, to the realization of suitable genotypic and phenotypic dis-
tance measures for complex combinatorial spaces, to the successful application

of behavioral optimization in the domain of reinforcement learning.

Chapter 1. Introduction

§Optimization Algorithms Surrogate Model-Based Evolutionary Global

{for Complex Problems Optimization i Optimization Search
e 2 I
iKriging Surrogates beyond Custom Distances Combinatorial
|Continuous Spaces and Kernels Problems

Neural Network
Weights and
Topologies

Genetic
Programming;
Neuroevolution

iKriging Surrogates for
|Complex Structures

iBehavioraI Optimization Reinforcement
/in Reinforcement Learning Learning

Figure 1.2: Owverview of the scope of this thesis.

Evolutionary and Surrogate Model-Based Optimization

The concepts of EC and SMBO form the basis for all research papers presented
in this thesis. Article [IX] explains the algorithms, embedded in an overview of
optimization methods, and illustrates their design and search behavior compared
to other available local and global search strategies. A particular focus of the
research lies in their abilities to solve complex and costly problems in the domain
of real-world problems. Paper [III] outlines an applied study comparing the
performance of evolutionary and SMBO algorithms to optimize neural networks.
The study employs a conventional version of neuroevolution, which optimizes

ANN connection weights.

Kriging Surrogates beyond Continuous Spaces

Chapter 4 explains Kriging models and their adaptation from continuous to
custom search spaces and analyzes combinatorial distances. Custom distance
measures are employed in all remaining papers and serve as a basis for the

research of genotypic, phenotypic, and behavioral surrogate models.

10

1.3. Scope

Neuroevolution

Most research papers in this thesis employ a version of neuroevolution, either
in the shape of conventional weight optimization or extended to neural network
topology evolution. While conventional neuroevolution is addressed in paper
[ITT], the remaining research focuses on optimizing changing topologies. For this
task, cartesian genetic programming for artificial neural networks (CGP-ANN)
is employed based on graph-based ANN structures derived from genotypic
representations organized and arranged in cartesian coordinate systems with a
fixed size [Miller and Thomson, [2000; |Turner and Miller| |2013]. These fixed-size

representations allow direct comparisons if employed in a genotypic distance.

Genotypic and Phenotypic Distances

The definition of suitable distance metrics for modeling and optimization is a
challenging task. A central pillar in this thesis is the identification, implemen-
tation, benchmarking, and comparison of genotypic and phenotypic distance
measures in model-based optimization processes. The difficulty of the interac-
tions and transitions from an individual’s genotype to their phenotypes and
behavior, which ultimately defines their fitness in an environment, are examined
and discussed for different domains. The applications range from genetic pro-
gramming [IV], over the performance analysis of modeling neural networks [VII],
to the surrogate-based optimization of topology-changing neural networks [V].
The gathered insights ultimately lead to the concept of environment-specific

behavioral distances.

Behavioral Optimization

The final part of this thesis is dedicated to researching distances and models
in the behavioral space based on reinforcement learning agents. In this con-
text, paper [VI] defines behavior as the reactions of ANN to the consecutive
environment states embedded in time. A central research question is how a
mutual behavioral space can be defined in this context of different trajectories.
Paper [VIII] advances this investigating by comparing behavior for specific
state sets, including their importance and impacts on the distance metric and

modeling quality. Finally, paper [X] integrates the prior insights to create an

11

Chapter 1. Introduction

algorithm for behavioral optimization of topology-changing neural networks.
The algorithm employs different definitions of behavioral metrics in a hybrid
optimization process, including significant influences by value-based methods

from standard reinforcement learning.

List of Papers

This thesis is based on ten papers published between 2014 and 2021. The papers
in this thesis are listed below, along with details of the contribution to the

publication in question.

Part 2014 2017 2018 2019 2020 2021
Optimization of [I1T] [IX]

Complex Problems

Combinatorial 1]]

Distance Metrics

Neuroevolution [I17] [V,vl [vI [X]
Genotypic and [IV] [V, VII]

Phenotypic Metrics

Behavioral [V]] [VIII] [X]

Optimization

[I] Zaefferer M, Stork J, Friese M, Fischbach A, Naujoks B, & Bartz-Beielstein
T (2014, July). Efficient global optimization for combinatorial problems. In
Proceedings of the Genetic and Evolutionary Computation Conference (pp.
871-878). ACM, New York.

[IT] Zaefferer M, Stork J, & Bartz-Beielstein T (2014, September). Distance
measures for permutations in combinatorial efficient global optimization. In
International Conference on Parallel Problem Solving from Nature (pp.
373-383). Springer, Cham.

Papers [I] and [II] were crafted in the early stage of my Ph.D. trajectory and

present the concepts for employing surrogates in combinatorial search spaces,

12

1.3. Scope

a significant milestone for my subsequent research. I supported the crafting,
researching, and discussing of the novel idea behind the paper and assisted in

analyzing the experiments for these papers.

[ITI] Stork J, Zaefferer M, Fischbach A, Rehbach F, & Bartz-Beielstein T (2017)
Surrogate-assisted learning of neural networks. In Proceedings of the 27.
Workshop Computational Intelligence (pp. 195-210), KIT Scientific Publishing.

Paper [III] presents applied research and compares evolutionary and surrogate-
based optimization for solving an elevator group control problem. I designed

the work, conducted and analyzed the experiments, and wrote most of the text.

[IV] Zaefferer M, Stork J, Flasch O, & Bartz-Beielstein T (2018, September).
Linear combination of distance measures for surrogate models in genetic
programming. In International Conference on Parallel Problem Solving from
Nature (pp. 220-231). Springer, Cham.

Together with the first author, I developed the idea behind paper [IV]
and the experimental design. I elaborated on the idea of using a phenotypic
distance measure for the comparison of complex structures. I further supported

conducting and analyzing the experiments and wrote parts of the text.

[V] Stork J, Zaefferer M, & Bartz-Beielstein T (2019, April). Improving
neuroevolution efficiency by surrogate model-based optimization with
phenotypic distance kernels. In International Conference on the Applications
of Evolutionary Computation (Part of EvoStar) (pp. 504-519). Springer, Cham.
Nominated Outstanding Student Award

The paper [V] compares different genotypic and phenotypic distances for
modeling Kriging surrogates of ANNs with changing topologies. I designed the
idea, implemented the algorithm, conducted and analyzed the experiments, and

wrote most of the text.

[VI] Stork J, Zaefferer M, Bartz-Beielstein T, & Eiben AE (2019, July).

Surrogate models for enhancing the efficiency of neuroevolution in

13

Chapter 1. Introduction

reinforcement learning. In Proceedings of the Genetic and Evolutionary
Computation Conference (pp. 934-942). ACM, New York.
Nominated Best Paper Award

The paper [VI] explores the idea of applying behavior-based surrogates
for neuroevolution for the task of reinforcement learning. I designed the idea,
implemented the algorithm, conducted and analyzed the experiments, and wrote

most of the text.

[VII] Hagg A, Zaefferer M, Stork J, & Gaier A (2019, July). Prediction of
neural network performance by phenotypic modeling. In Proceedings of the
Genetic and Evolutionary Computation Conference (pp. 1576-1582). ACM,
New York.

The paper [VII] intensively discusses the performance of genotypic and
phenotypic distance metrics for modeling complex search spaces. All authors
contributed equally to the idea behind the paper, the planning of the experiments,
and the discussion of the results. My unique contribution encompasses the use

of phenotypic distances and parts of the writing.

[VIII] Stork J, Zaefferer M, Bartz-Beielstein T, & Eiben AE (2020).
Understanding the behavior of reinforcement learning agents. In Bioinspired
Optimization Methods and Their Applications: 9th International Conference,
(pp. 148-160). Springer Nature, Cham.

The paper [VIII] analyzes general behavior, behavioral distance metrics, and
behavioral models in reinforcement learning. I designed the idea, conducted

and analyzed the experiments, and wrote most of the text.

14

1.3. Scope

[IX] Stork J, Eiben, AE, & Bartz-Beielstein, T (2020). A new taxonomy of
global optimization algorithms. Natural Computing, 1-24. Springer, Cham.

The article [IX] presents an extensive overview and new taxonomy for modern
optimization algorithms. I contributed to this article by investigating literature,
compiling the information, creating the new taxonomy, figures, overviews, and

overall writing.

[X] Stork J, Zaefferer M, Eisler N, Tichelmann P, Bartz-Beielstein T, & Eiben
AE (2021). Behavior-based neuroevolutionary training in reinforcement

learning. (to appear) In 2021 Genetic and Evolutionary Computation
Conference Companion. ACM, New York.

The paper [X] combines previous research to employ an algorithm for
behavioral optimization in reinforcement learning. I designed and implemented
the algorithm, planned, conducted, and analyzed the experiments, and wrote
the text.

Further Publications

For the following papers, I have co-authorship and decided not to add their

content to the thesis.

Heinerman J, Stork J, Coy MAR, Hubert J, Bartz-Beielstein T, Eiben AE, &
Haasdijk E (2017, September). Can social learning increase learning speed,
performance or both?. In Artificial Life Conference Proceedings 14 (pp.
200-207). MIT Press.

The paper illustrates the impact of sharing behavior among robot controllers.
I prepared the experimental plan and analyzed the results of the tuning part of

the paper. I wrote the tuning part.

Rehbach F, Zaefferer M, Stork J, & Bartz-Beielstein T (2018, July).
Comparison of parallel surrogate-assisted optimization approaches. In
Proceedings of the Genetic and Evolutionary Computation Conference (pp.
1348-1355). ACM, New York.

15

Chapter 1. Introduction

In this paper, different ways to parallel evaluations in the context of surro-
gates are highlighted. I supported discussing the underlying idea, planning and

analyzing the experiments, and writing the paper.

Stork J, Friese M, Zaefferer M, Bartz-Beielstein T, Fischbach A, Breiderhoff B,
Naujoks B, & Tusar T (2020). Open issues in surrogate-assisted optimization.

In High-Performance Simulation-Based Optimization (pp. 225-244). Springer.

This overview book chapter discusses open issues in SMBO. I wrote a part

of the text and investigated the literature.

1.4 Frequently Used Acronyms

ANN Artificial Neural Network

BD Behavioral Distance

CGP Cartesian Genetic Programming
EA Evolutionary Algorithm

EC Evolutionary Computation
EGO Efficient Global Optimization
EI Expected Improvement

ES Evolution Strategy

GO Global Optimization

GP Genetic Programming

MLE Maximum Likelihood Estimation
NE NeuroEvolution

PHD Phenotypic Distance

RL Reinforcement Learning

RS Random Search

SMBO Surrogate Model-Based Optimization
SMB-NE Surrogate Model-Based NeuroEvolution

16

An Introduction to Evolutionary and

Surrogate Model-Based Optimization for
Global Search

Chapter [2] was published as:

Stork J, Eiben, AE, & Bartz-Beielstein, T (2020). A new taxonomy of global optimization
algorithms. Natural Computing, 1-24. Springer, Cham.
DOI: 10.1007/s11047-020-09820-4

17

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

Surrogate model-based optimization, nature-inspired metaheuristics, and hybrid
combinations have become state-of-the-art in algorithm design for solving real-
world optimization problems. Still, it is difficult for practitioners to get an
overview that explains their advantages in comparison to a large number of
available methods in the scope of optimization. Available taxonomies lack the
embedding of current approaches in the larger context of this broad field. This
article presents a taxonomy of the field, which explores and matches algorithm
strategies by extracting similarities and differences in their search strategies.
A particular focus lies on algorithms using surrogates, nature-inspired designs,
and those created by automatic algorithm generation. The extracted features of
algorithms, their main concepts, and search operators, allow us to create a set
of classification indicators to distinguish between a small number of classes. The
features allow a deeper understanding of components of the search strategies and
further indicate the close connections between the different algorithm designs.
We present intuitive analogies to explain the basic principles of the search
algorithms, particularly useful for novices in this research field. Furthermore,
this taxonomy allows recommendations for the applicability of the corresponding

algorithms.

2.1 Introduction

Modern applications in industry, business, and information systems require
a tremendous amount of optimization. Global optimization (GO) tackles
various severe problems emerging from the context of complex physical systems,
business processes, and particularly from applications of artificial intelligence.
Challenging problems arise from industry on the application level, e.g., regarding
manufacturing speed, part quality, or energy efficiency, or on the business level,
such as optimizing production plans, purchase, sales, and after-sales. Further,
they emerge from artificial intelligence and information engineering, for example,
the optimization of machine learning models such as neural networks for different
applications. Their complex nature connects all these problems: they tend to

be expensive to solve and with unknown objective function properties, as the

18

2.1. Introduction

underlying mechanisms are often not well described or unknown.

Solving optimization problems of this kind relies necessarily on performing
costly computations, such as simulations, or even real-world experiments, which
are frequently considered being black-box. In this context, the commonly
high costs of function evaluations are a considerable challenge. Whether we
are probing a real physical system, querying the simulator, or creating a new
complex data model, many resources are needed to fulfill these tasks. GO
methods for such problems thus need to fulfill a particular set of requirements.
They need to work with black-box-style probes only, so without any further
information on the structure of the problem. Further, they must find the best
possible improvement within a limited number of function evaluations.

The improvement of computational power in the last decades has been
influencing the development of algorithms. A massive amount of computational
power became available for researchers worldwide through multi-core desk-
top machines, parallel computing, and high-performance computing clusters.
This has contributed to the following fields of research: Firstly, the develop-
ment of more complex, nature-inspired, and generally applicable heuristics,
so-called metaheuristics. Secondly, it facilitated significant progress in the field
of accurate, data-driven approximation models, so-called surrogate models,
and their embodiment in an optimization process. Thirdly, the upcoming of
approaches that combine several optimization algorithms and seek towards
automatic combination and configuration of the optimal optimization algo-
rithm, known as hyperheuristics. The hyperheuristic approach shows the close
connections between different named algorithms, in particular in the area of
bio-inspired metaheuristics. All these GO algorithms differ broadly from stan-
dard approaches, define new classes of algorithms, and are not well integrated

into available taxonomies.

19

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

Hence, we propose a new taxonomy, which:

I describes a comprehensive overview of GO algorithms, including surrogate-

based, model-based, and hybrid algorithms,

IT can generalize well and connects GO algorithm classes to show their simi-

larities and differences,

IIT focusses on simplicity, which enables an easy understanding of GO algo-

rithms,

IV can be used to provide underlying knowledge and best practices to select a

suitable algorithm for a new optimization problem.

Our new taxonomy is created based on algorithm key features and divides the
algorithms into a small number of intuitive classes: Hill-Climbing, Trajectory,
Population, Surrogate, and Hybrid. Further, Ezact algorithms are shortly
reviewed but not an active part of our taxonomy, which focuses on heuristic
algorithms. We further utilize extended class names as descriptions founded
on the abstracted human behavior in pathfinding. The analogies Mountaineer,
Sightseer, Team, Surveyor create further understanding by using the image of a
single or several persons hiking a landscape in search of the desired location
utilizing the shortest path. This utilized abstraction allows us to present
comprehensible ideas on how the individual classes differ and, moreover, how
the respective algorithms perform their search.

This chapter mainly addresses different kinds of readers: Beginners will find
an intuitive and comprehensive overview of GO algorithms, especially concerning
common metaheuristics and developments in the field of surrogate-based and
hybrid and hyperheuristic optimization. For advanced readers, we also discuss
the applicability of the algorithms to tackle specific problem properties and
provide essential knowledge for reasonable algorithm selection. We provide
an extensive list of references for experienced users. The taxonomy can be
used to create realistic comparisons and benchmarks for the different classes of
algorithms. It further provides insights for practitioners who aim to develop

new search strategies, operators, and algorithms.

20

2.1. Introduction

In general, most GO algorithms were developed for a specific search domain,
e.g., discrete or continuous. However, many algorithms and their fundamental
search principles can be successful for different problem spaces with reasonably
small changes. For example, evolution strategies (ES), which are popular in
continuous optimization (see [Hansen et al., [2003]), have their origin in the
discrete problem domain. Beyer and Schwefel| [2002] describe how the ES moved
from discrete to continuous decision variables. Based on this consideration, the
article is focused but not limited to illustrating the algorithm variants for the
continuous domain while they have their origins or are most successful in the

discrete domain.

Moreover, we focused this taxonomy on algorithms for objective functions
without particular characteristics, such as multi-objective, constrained, noisy,
or dynamic. These function characteristics pose additional challenges to any
algorithm, which are often faced by enhancing available search schemes with
specialized operators or even completely dedicated algorithms. We included
the former as part of the objective function evaluation in our general algorithm
scheme and provide references to selected overviews. Dedicated algorithms,
e.g., for multi-objective search, are not discussed in detail. However, their
accommodation in the presented taxonomy is possible if their search schemes
are related to the algorithms described in our taxonomy. If further required,
we outlined the exclusive applicability of algorithms and search operators to

specific domains or problem characteristics.

We organized the remainder of this chapter as follows: Section [2.2] presents
the development of optimization algorithms and their core concepts. Section
motivates a new taxonomy by reviewing the history of available GO taxonomies,
illustrates algorithm design aspects, and presents extracted classification features.
Section [2.4] introduces the new intuitive classification with examples. Section [2.5
introduces best practices suggestions regarding the applicability of algorithms.
Section summarizes and concludes the article with the recent trends and

challenges in GO and currently essential research fields.

21

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

2.2 Modern Optimization Algorithms

This section describes the fundamental principles of modern search algorithms,
particularly the elements and backgrounds of surrogate-based and hybrid opti-
mization. Global optimization aims to find the overall best solution, i.e., for the
common task of minimization, to discover decision variable values that minimize
the objective function value.

We denote the global search space as compact set S = {x | x; < x < x,}
with x;, x,, € R™ being the explicit, finite lower and upper bounds on x. Given a
single-objective function f: R™ — R with real-valued input vectors x we attempt
to find the location x* € R™ which minimizes the function: argmin f(x),x € S.

Finding a global optimum is always the ultimate goal and desirable. However,
for many practical problems, discovering a solution that improves the current
best solution in a given budget of evaluations or time will be considered a
success. Notably, in continuous GO domains, an optimum commonly cannot be
identified exactly; thus, modern heuristics are designed to spend their resources
as efficiently as possible to find the best possible improvement in the objective
function value while finding a global optimum is never guaranteed.

Torn and Zilinskas| [1989] mention three principles for the construction of
an optimization algorithm:

1. An algorithm utilizing all available a priori information will outperform a

method using less information.

2. If no a priori information is available, the information is completely based

on evaluated candidate points and their objective values.

3. Given a fixed number of evaluated points, optimization algorithms will

only differ from each other in the distribution of candidate points.
If @ priori information about the function is accessible, it can significantly
support the search and should be considered during the algorithm design.
Current research on algorithm designs that include structural operators, such
as function decomposition, is known as grey-box optimization [Whitley et al.)
2016}, [Santana), |2017]. However, many modern algorithms focus on handling

black-box problems where the problem includes little or no a priori information.

22

2.2. Modern Optimization Algorithms

The principles displayed above lead to the conclusion that the most crucial
design aspect of any black-box algorithm is finding a strategy to distribute the
initial candidates in the search space and generate new candidates based on a
variation of solutions. These procedures define the search strategy, which needs
to follow the two competing goals of exploration and exploitation. The balance
between these two competing goals is usually part of the algorithm configuration.
Any algorithm needs to be adapted to the structure of the problem at hand to
achieve optimal performance. This can be considered during the construction
of an algorithm, before the optimization by parameter tuning or during the
run by parameter control |[Bartz-Beielstein et al.l [2005a} [Eiben et al., [1999].
In general, the main goal of any method is to reach their target with high
efficiency, i.e., to discover optima fast and accurately with as few resources as
possible. Moreover, for many demanding and expensive tasks the goal is to
identify a valuable solution or improvement, instead of the global optimum. We

will discuss the design of modern optimization algorithms in Section [2:3.2}

2.2.1 Exact Algorithms

Ezact algorithms, also referred to as non-heuristic or complete algorithms
[Neumaier), 2004], are a special class of deterministic, systematic or exhaustive
optimization techniques. They can be applied in discrete or combinatorial
domains, where the search space has a finite number of possible solutions or
for continuous domains, if an optimum is searched within some given toler-
ances. Exact algorithms have a guarantee to find a global optimum by using
a predictable amount of resources, such as function evaluations or computa-
tion time |[Neumaier} |2004}; [Fomin and Kaski, [2013} [Woeginger, 2003]. This
guarantee often requires sufficient a priori information about the objective
function, e.g., the best possible objective function value. Without available a
priori information, the stopping criterion needs to be defined by a heuristic
approach, which softens the guarantee of solving to optimality. Well-known
exact algorithms are based on the branching principle, i.e., splitting a known

problem into smaller sub-problems, which each can be solved to optimality. The

23

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

Branch-and-bound algorithm is an example for exact algorithms [Lawler and
Wood|, |1966].

2.2.2 Heuristics and Metaheuristics

In modern computer-aided optimization, heuristics and metaheuristics are
established solution techniques. Although presenting solutions that are not
guaranteed to be optimal, their general applicability and ability to present fast
sufficient solutions make them very attractive for applied optimization. Their
inventors built them upon the principle of systematic search, where solution
candidates are evaluated and rewarded with a fitness. The term fitness has
its origins in EC, where fitness describes an individual’s competitive ability
in the reproduction process. The fitness is in its purest form the objective
function value y = f(x) concerning the optimization goal, e.g., in a minimization
problem, smaller values have higher fitness than larger values. Moreover, it can
be part of the search strategy, e.g., scaled or adjusted by additional functions,
particularly for multi-objective or constrained optimization.

Heuristics can be defined as problem-dependent algorithms, which are
developed or adapted to the particularities of a specific optimization problem
or problem instance [Pearl, 1985|. Typically, heuristics perform systematic
evaluations, although utilizing stochastic elements. Heuristics use stochastic
principles to provide fast, not necessarily exact (i.e., not optimal) numerical
solutions to optimization problems.

Metaheuristics can be defined as problem independent, general-purpose
optimization algorithms. They apply to a wide range of problems and problem
instances. The term meta describes the higher-level method utilized to guide
the underlying heuristic strategy |Talbi, 2009].

Metaheuristics share the following characteristics [Boussaid et al.| 2013]:

— The algorithms are nature-inspired; they follow certain natural principles

or behaviors (e.g., biological evolution, physics, social behavior).

— The search process involves stochastic parts; it utilizes probability distri-

butions and random processes.

24

2.2. Modern Optimization Algorithms

— As they are meant to be generally applicable solvers, they include a set of
control parameters to adjust the search strategy.

— They do not rely on the information of the process which is available before
the start of the optimization run, so-called a priori information. Still,
they can benefit from such information (e.g., to set up control parameters)

During the remainder of this article, we will focus on heuristic, respectively,

metaheuristic algorithms.

2.2.3 Surrogate Model-Based Optimization Algorithmsﬂ

Surrogate model-based optimization algorithms are designed to process expensive
and complex problems, which arise from real-world applications and sophisti-
cated computational models. These problems are commonly black-box, which
means that they only provide very sparse domain knowledge. Consequently,
problem information needs to be exploited by experiments or function eval-
uations. SMBO is intended to model available, i.e., evaluated information
about candidate solutions to utilize it to the full extent. A surrogate model
is an approximation that substitutes the original expensive objective function,
real-world process, physical simulation, or computational process during the
optimization. In general, surrogates are either simplified physical or numerical
models based on knowledge about the physical system, or empirical functional
models based on knowledge acquired from evaluations and sparse sampling of
the parameter space [Sendergaard, |2003|. In this work, we focus on the latter,
so-called data-driven models. The terms surrogate model, meta-model, response
surface model and also posterior distribution are used synonymously in the
common literature [Mockus, [1974; |Jones, [2001; [Bartz-Beielstein and Zaefferer,
2017]. Furthermore, we assume that it is crucial to distinguish between the
use of an explicit surrogate of the objective function and general model-based
optimization |Zlochin et al. [2004], which additionally refers to methods where a
statistical model is used to generate new candidate solutions (cf. Section [2.3.2).

We thus distinguish between the two different terms surrogate model and model

Mnstead of “surrogate-based” (original article), the term “surrogate model-based optimiza-
tion (SMBO)” is used in the thesis.

25

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

to avoid confusion and will briefly refer to a surrogate model as a surrogate.
Another term present in the literature is surrogate-assisted optimization, which
mostly refers to the application of surrogates in combination with population-
based EC |Jin| [2011]. Important publications featuring overviews or surveys
on surrogates and SMBO were presented by [Sacks et al.|[1989], \Jones| [2001],
Queipo et al.| [2005], [Forrester and Keane| [2009]. SMBO is commonly defined
for but not limited to the case of complex real-world optimization applications.
We define a typical SMBO process by three layers, where the first two are
considered as problem layers, while the latter one is the surrogate, i.e., an
approximation of the problem layers. We could transfer the defined layers to
different computational problems with expensive function evaluations, such as
complex algorithms or machine learning tasks. Each layer can be the target of
optimization or used to retrieve information to guide the optimization process.
Figure illustrates the different layers of objective functions and the SMBO
process for real-world problems. The objective function layers, from the bottom

up, are:

L1 The real-world application fi(x), given by the physical process itself or a
physical model. Direct optimization is often expensive or even impossible
due to evaluations involving resource-demanding prototype building or even
dangerous experiments.

L2 The computational model f3(x), given by a simulation of the physical
process or a complex computational model, e.g., a computational fluid
dynamics model or structural dynamics model. A single computation may
take minutes, hours, or even weeks to compute.

L3 The surrogate s(x), given by a data-driven regression model. The accuracy
heavily depends on the underlying surrogate type and amount of available
information (i.e., function evaluations). The optimization is, compared to
the other layers, typically cheap. Surrogates are constructed either for the

real-world application f;(x) or the computational model fa(x).

Furthermore, the SMBO cycle includes the optimization process itself, which is
given by an adequate optimization algorithm for the selected objective function

layer. No SMBO is performed, if the optimization is directly applied to f1(x)

26

2.2. Modern Optimization Algorithms

Architecture Examples

(optional)

meta-

optimization algorithm \'J fast global)
P 9 /' heuristic |\ metaheuristic /

' R proft ~ § robot |

Sl
@) Zu;’ro(?gte mose/l prediction behavioral |
iata-driven mode model __§ ___ model | :

$..

fa(z) computational model business data physics
expert model / data platform platform simulator

device / business task

f1(@) real world process

(optional) approximation / data stream

(optional) parameter tuning (optional) optimization

Figure 2.1: A SMBO process with the different objective function layers: real-world
process, computational model, and surrogate. The arrows mark different possible
data/application streams. Dotted arrows are in the background, i.e., they pass through
elements; each connection always terminates with an arrow. Typically, surrogates are
models either for the simulation or real-world function. Direct optimization of the
problem layers is also possible. Two examples of processes are given to outline the use
of the architecture in a business data and robot control task.

27

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

or fa(x). The SMBO uses fi(x) or f2(x) for verification of promising solution
candidates. Moreover, the control parameters of the optimization process and
the SMBO cycle, including the surrogate modeling process, can be tuned.
Each layer imposes different evaluation costs and fidelities: the real-world
problem is the most expensive to evaluate but has the highest fidelity, while the
surrogate is the cheapest to evaluate but has a lower fidelity. The main benefit of
using surrogates is thus the reduction of needed expensive function evaluations
on the objective function fi(x) or fa(x) during the optimization. The studies
by [Loshchilov et al|[2012], [Marsden et al|[2004], |Ong et al. [2005] and [Won
and Ray| [2004] feature benchmark comparisons of SMBO. Nevertheless, the
model construction and updating of the surrogates also require computational
resources, as well as evaluations for verification on the more expensive function
layers. An advantage of SMBO is the availability of the surrogate, which can
be utilized to gain further global insight into the problem, which is particularly
valuable for black-box problems. It can be utilized to identify important decision

variables or visualize the nature of the problem, i.e., the fitness landscape.

2.2.4 Meta-Optimization and Hyperheuristics

Meta-optimization or parameter tuning [Mercer and Sampson, [1978| describes
the process of finding the optimal parameter set for an optimization algorithm.
It is also an optimization process itself, which can become very costly in terms
of objective function evaluations, as they are required to evaluate the parameter
set of a specific algorithm. Hence, particular SMBO algorithms have become
very successful meta-optimizer |[Bartz-Beielstein et al.,2005a]. Figure shows
where the meta-optimization is situated in an optimization process. If the
algorithm adapts parameters during the active run of optimization, it is called
parameter control |Eiben et al., [1999|. Algorithm parameter tuning and control
is further discussed in Section

A hyperheuristic |[Cowling et al., 2000, 2002| is a high-level approach that
selects and combines low-level approaches (i.e., heuristics, elements from meta-

heuristics) to solve a specific problem or problem class. It is an optimization

28

2.3. A New Taxonomy

algorithm that automates the algorithm design process by searching an ample
space of pre-defined algorithm components. A hyperheuristic can also be utilized
in an online fashion, e.g., trying to find the most suitable algorithm at each
state of a search process [Vermetten et al.| [2019]. We regard hyperheuristics as
hybrid algorithms (cf. Section [2.4.5).

2.3 A New Taxonomy

The term tazonomy is defined as a consistent procedure or classification scheme
for separating objects into classes or categories based on specific features. The
term taxonomy is mainly present in natural science for establishing hierarchical
classifications. A taxonomy fulfills the task of distinction and order; it provides
explanations and a greater understanding of the research area by identifying
coherence and the differences between the classes.

Several reasons drive our motivation for a new taxonomy: The first reason
I) is that considering available GO taxonomies (Section cf. Figure 2.2),
we can conclude that during the last decades, several authors developed new
taxonomies for optimization algorithms. However, new classes of algorithms
have become state-of-the-art in modern algorithm design, particularly model-
based, surrogate-based, and hybrid algorithms dominate the field. Existing
taxonomies of GO algorithms do not reflect this situation. Although there
are surveys and books which handle the broad field of optimization and give
general taxonomies, they are outdated and lack the integration of the new
designs. Available up-to-date taxonomies often address a particular subfield
of algorithms and discuss them in detail. However, a generalized taxonomy,
which includes the above-described approaches and allows to connect these
optimization strategies, is missing.

This gap motivated our second reason II) the development of a general-
ization scheme for algorithms. We argue that the search concepts of many
algorithms are built upon each other and are related. While the algorithms have
apparent differences in their strategies, they are not overall different. Many

examples of similar algorithms can be found in different named nature-inspired

29

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

metaheuristics that follow the same search concepts. However, certain elements
are characteristic of algorithms, which allow us to define classes based on their
search elements. Even different classes share a large amount of these search
elements. Thus our new taxonomy is based on a generalized scheme of five
crucial algorithm design elements (Section cf. Figure , which allows us
to take a bottom to top approach to differentiate, but also connect the different
algorithm classes. The recent developments in hybrid algorithms drive the
urge to generalize search strategies, where we no longer use specific, individual
algorithms but combinations of search elements and operators of different classes
to find and establish new strategies, which cannot merely be categorized.

Our third reason III) is the importance of simplicity. Our new taxonomy
is not only intended to divide the algorithms into classes but also to provide
an intuitive understanding of the working mechanisms of each algorithm to a
broad audience. To support these ideas, we will draw analogies between the
algorithm classes and the behavior of a human-like individual in each of the
descriptive class sections.

Our last reason IV) is that we intend our taxonomy to be helpful in practice.
A common issue is the selection of an adequate optimization algorithm if
faced with a new problem. Our algorithm classes are connected by individual
properties, which allows us to utilize the new taxonomy to propose suitable
algorithm classes based on a small set of problem features. These suggestions,
in detail discussed in Section and illustrated in Figure shall help users

to find best practices for new problems.

2.3.1 History of Taxonomies

In the literature, one can find several taxonomies trying to shed light on the
vast field of optimization algorithms. The identified classes are often named by
a significant feature of the algorithms in the class, with the names either being
informative or descriptive. For example, [Leon| [1966] presented one of the first
overviews on global optimization. It classified algorithms into three categories: 1.

Blind search, 2. Local search 3. Non-local search. Blind search refers to simple

30

2.3. A New Taxonomy

Surrogate Hyperheuristic
Non-Heuristic Heuristic and Metaheuristic Optimization and Hybrid

" Non-local
e @Sm S@ searen

Determ®

methods

Probabilistic methods >

1984 Archetti
Covering Randt_)m Random search methods Stochastic
methods sampling model
Guaranteed . Indirect
1989 Térn Direct methods methods

: accuracy
and Zilinskas
1992 Zilinskas ‘Approximating
objective
function

Clustering
methods

Covering
methods

1995 Arora @m@

2001 Jones

Random search methods

Stochastic

\

Interpolating
or Non-
Interpolating

2002 Talbi GaD Heuristic and Metaheuristic Hybrid

Complete and

i
\

2004 Neumaier Incomplete and Asymptotically Complete

rigorous

|
!

2004 Zlochin nstance-Based Model-Based

"
!

yperheuristic

2010 Burke i

2011 Jin Surrogate-Assisted

. . . Population-
2013 Boussaid Single-Solution Based

Hill-Climber ' Trajectory ' Population
“Mountaineer” . “Sightseer” ‘ “Team”

Figure 2.2: Global Optimization Tazonomy History. Information from|Leon [1966)],
Archetti and Schoen| [1984), |Torn and Zilinskas [1989|Arora et al.| [1995], |Jones
[2001)], | Talby [2002], | Neumaser| [2004)], | Zlochin et al.| [2004)])Burke et al.| [2010], |Jin)
[2011)] and|Boussaid et al.| [2013] are illustrated and compared. Different distinctions
between the large set of algorithms were drawn. A comprehensive tazonomy is missing
and introduced by our new taxonomy, which concludes the diagram and is further

presented in Section .

A

Hybrid
“Chimera”

Surrogate
“Surveyor”

2019 Stork 1 Exact

31

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

search strategies that select the candidates at random over the entire search
space but following a built-in sequential selection strategy. During local search,
new candidates are selected in the immediate neighborhood of the previous
candidates, which leads to a trajectory of small steps. Finally, non-local search
allows to escape from local optima and thus enables a global search. |Archetti and
Schoen| [1984] extends the above scheme by also adding the class of deterministic
algorithms, i.e., those who are guaranteed to find the global optimum with a
defined budget. The paper stands out in establishing a taxonomy, which for
the first time includes the concepts to construct surrogates, as they describe
probabilistic methods based on statistical models, which are iteratively utilized
to perform the search. [Térn and Zilinskas [1989] reviewed existing classification
schemes and presented their classifications. They made that the most crucial
distinction between two non-overlapping main classes, namely those methods
with or without guaranteed accuracy. The main new feature of their taxonomy
is the clear separation of the heuristic methods in those with direct and indirect
objective function evaluation. Mockus| [1974] also discussed the use of Bayesian
optimization. Today’s high availability of computational power did not exist;
therefore, |Torn and Zilinskas| [1989] concluded the following regarding Bayesian

models and their applicability for (surrogate-based) optimization:

Even if it is very attractive, theoretically it is too complicated for
algorithmic realization. Because of the fairly cumbersome computa-
tions involving operations with the inverse of the covariance matriz
and complicated auxiliary optimization problems the resort has been

to use simplified models.

Still, we find the scheme of dividing algorithms into non-heuristic (or exact),
random (or stochastic), and further surrogate-based frequently. Several following
taxonomies added different algorithm features to their taxonomies, such as
metaheuristic approaches |Arora et al.| [1995], SMBO |[Jones| [2001], non-heuristic
methods [Neumaier| [2004], hybrid methods [Talbi| [2002], direct search methods
|[Audet| 2014} |[Kolda et al., |2003|, model-based optimization [Zlochin et al.
[2004], hyperheuristics Burke et al.| [2010], surrogate-assisted algorithms |Jin

32

2.3. A New Taxonomy

[2011], nature-inspired methods [Rozenberg et al. [2012], or population-based
approaches|Boussaid et al.|[2013]. We created an overview of selected taxonomies

and put them into the comparison in Figure 2.2

2.3.2 The Four Elements of Algorithm Design

Any modern optimization algorithm, as defined in Section [2.2] can be reduced
to the three key search strategy elements initialization, generation and selection.
A fourth element controls all these key elements: the control of the different
functions and operators in each element. The underlying terminology is generic
and based on typical concepts from the field of EC. We could easily exchange it
with wording from other standard algorithm classes (e.g., evaluate= test/trial,
generate=produce/variate). Algorithm displays the principal elements
and the abstracted fundamental structure of optimization algorithms |Bartz-
Beielstein and Zaefferer| [2017]. We could map this structure and elements to
any modern optimization algorithm. Even if the search strategy is inherently
different or elements do not follow the illustrated order or appear multiple times
per iteration. The initialization of the search defines starting locations or a

schema for the initial candidates. Two common strategies exist:

1. If there is no available a priori knowledge about the problem, the best
option is to use well-distributed starting points. The initial distribution
target is often exploration, i.e., a broad distribution of the starting points
if possible. Particularly interesting for SMBO are systematic initialization
schemes by methods from the field of design of experiments |[Crombecq
et al.l 2011} [Bossek et al.l [2020].

2. Suppose domain knowledge or other a priori information is available, such
as information from the data or process from previous optimization runs.
In that case, it is beneficial to utilize this information, e.g., by using
a selection of solutions, such as those with the best fitness. However,
known solutions can also bias the search towards them. Thus, e.g., restart
strategies intentionally discard them. In SMBO, the initial modeling can

use available data.

33

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

The initial candidates have a significant impact on the balance between explo-
ration and exploitation. Space-filling designs with large amounts of random
candidates or sophisticated design of experiments methods will lead to an initial
exploration of the search space. Starting with a single candidate will presum-
ably lead to an exploitation of the neighborhood of the selected candidate
location. Hence, algorithms using several candidates are in general more robust,
while single candidate algorithms are sensitive to the selection of the start-
ing candidate, particularly in multi-modal landscapes. Multi-start strategies
can further increase the robustness and are particularly common for single-
candidate algorithms and are frequently recommended for population-based
algorithms [Hansen et al.l [2010b)].

Algorithm 2.3.1: General Optimization Algorithm

1 set initial control parameters

2 begin

3 t=0

4 initialize candidate(s)

5 evaluate initial candidate(s)

6 while not termination-condition do

7 t=t+1

8 generate new candidate(s)

9 evaluate new candidate(s)

10 select solution(s) for next iteration
11 optional: update control parameters
12 end
13 end

The generation during the search process defines the methods for finding
new candidates, with particular regard to how they use available or obtained
information about the objective function. A standard approach is the variation
of existing observations, as it utilizes, and to a certain extent, preserves previous
iterations’ information. Even by the simplest hill-climber class algorithms, which
do not require any global information or stored knowledge of former iterations
(Section [2.4.1]), use the last obtained solution to generate new candidate(s).

Sophisticated algorithms generate new candidates based on exploited and stored

34

2.3. A New Taxonomy

global knowledge about the objective function and fitness landscape. This
knowledge is stored by either keeping an archive of all available or selected
observations or implicitly using distribution or data models of available obser-
vations. Another option to generate new candidates is combining information
of multiple candidates by dedicated functions or operators, mainly present in
the trajectory class (Section . The exact operators for the generation and
variation of candidate solutions are various and an essential aspect of keeping

the balance between exploration and exploitation in a search strategy.

The selection defines the principle of choosing the solutions for the next
iteration. We use the term selection, which has its origins in EC. Besides
the most straightforward strategy of choosing the solution(s) with the best
fitness, advanced selection strategies have emerged, which are mainly present in
metaheuristics [Boussaid et al., [2013]. These selection strategies are widespread
in algorithms with several candidates per gemeration step; thus, EC introduced
the most sophisticated selection methods |Eiben and Smith} |2015b|. The use of
absolute differences in fitness or their relative difference is the most common
strategy and called ranked selection, i.e., based on methods such as truncation,

tournament, or proportional selection.

The control parameters determine how the search can be adapted and
improved by controlling the above-mentioned key elements. We distinguish
between internal and external parameters: External parameters, also known as
offline parameters, can be adjusted by the user and need to be set a priori to the
optimization run. Typical external parameters include the number of candidates
and settings influencing the above-mentioned key elements. Besides standard
theory-based defaults |Schwefel, |1993|, they are usually set by either utilizing
available domain knowledge, extensive a priori benchmark experiments |Gamy
perle et al.||2002], or educated guessing. Sophisticated meta-optimization meth-
ods were developed to exploit the correct parameter settings in an automated
fashion. Well-known examples are sequential parameter tuning |[Bartz-Beielstein
et all 2005a], iterated racing for automatic algorithm tuning [Lopez-Ibanez
et al.l [2016], bonesa [Smit and Eiben| |2011] or SMAC [Hutter et all [2011]. In

comparison to external parameters, internal ones are not meant to be changed

35

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

by the user. They are either fixed to an absolute value, which is usually based
on physical constants or extensive testing by the authors of the algorithm, or
are adaptive, or even self-adaptive. Adaptive parameters are changed during
the search process based on fixed strategies and exploited problem informa-
tion [Eiben et al.| [1999] without user influence. Self-Adaptive parameters are
optimized during the run, e.g., by including them into the candidate vector x
as an additional decision value. Algorithms using adaptive schemes tend to
have better generalization abilities than those with fixed parameters. Thus,
they are wildly successful for black-box problems, where no prior information
about the objective function properties is available to set up parameters in
advance [Hansen et al., |2003]. In general, the settings of algorithm control
parameters directly affect the balance between exploration and exploitation

during the search and are crucial for the search strategies and their performance.

Further, the evaluation step computes the fitness of the candidates. The
evaluation is a crucial aspect, as it defines how and which information about
any candidate solution is gathered by querying the objective function, which
can significantly influence the search strategy and the utilized search operators.
However, as important aspects of the evaluation are mostly problem-dependent,
such as noise, constraints and multiple objectives. The handling of these aspects
sometimes requires unique strategies, operators, or even specialized algorithm
designs. These unique algorithms will not be covered in our taxonomy. How-
ever, strategies for handling these particular characteristics are often enhanced
versions of in this taxonomy presented algorithms, e.g., for handling multiple
objectives. Multi-objective problems include several competing goals, i.e., an
improvement in one objective leads to a deterioration in another objective.
Thus, no single optimal solution is available, but a set of equivalent quality,
the non-dominated solutions, or so-called Pareto-set, where reasonable solu-
tions need to be selected from |Fonseca et al.| 1993} Naujoks et al., [2005]. A
so-called decision-maker is needed to select the final solutions, which is often
the user himself. Further, multi-objective algorithms can include special search
operators, such as hyper-volume-based selection or non-dominated sorting for
rank-based selection [Deb et al.2002; [Beume et al.,|2007]. While most computer

36

2.4. The Definition of Intuitive Algorithm Classes

experiments are deterministic, i.e., iterations using the same value set for the
associated decision variables should deliver the same results, real-world problems
are often non-deterministic. They include non-observable disturbance variables
and stochastic noise. Typical noise handling techniques include multiple eval-
uations of solutions to reduce the standard deviation and special sampling
techniques. The interested reader can find a survey on noise handling by |Arnold
and Beyer| [2003]. Moreover, optimization problems frequently include different
constraints, which we need to consider during the optimization process. Con-
straint handling techniques can be directly part of the optimization algorithm,
but most algorithms are designed to minimize the objective function and add
constraint handling on top. Thus, algorithms integrate it by adjusting the
fitness, e.g., by penalty terms. Different techniques for constraint handling are
discussed by [Coello| [2002] and [Arnold and Hansen| [2012].

2.4 The Definition of Intuitive Algorithm Classes

In his work about evolution strategies, Rechenberg [1994] illustrated a visual
approach to an optimization process: a mountaineer in an alpine landscape,
attempting to find and climb the highest mountain. The usage of analogies
to the natural world is a valuable method to explain the behavior of search
algorithms. In the area of metaheuristics, the behavior of nature and animals
inspired the search procedure of the algorithms: Evolutionary algorithms follow
the evolution theory |Rechenberg} [1994; [Eiben and Smithl [2015b]; particle swarm
optimization [Kennedy and Eberhart] 1995} |Shi and Eberhart| [1998] utilizes a
strategy similar to the movement of bird flocks; ant colony optimization |[Dorigo
et al., 2006] mimics, as the name suggests, the ingenious pathfinding and food
search principles of ant populations.

We take up the idea of optimization processes being human-like individuals
and use it in the definition of our extended class names: the mountaineer,
sightseer, team, surveyor and chimera. This additional naming shall accomplish
the goal of presenting an evident and straightforward idea of the search strategies

of the algorithms in the associated class.

37

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

2.4.1 Hill-Climbing Class: "The Mountaineer"

Intuitive Description 1 (The Mountaineer)

The mountaineer is a single individual who hikes through a landscape, concen-
trating on achieving his ultimate goal: finding and climbing the highest mountain.
He is utterly focused on his goal to climb up that mountain. So while he checks
different paths, he will always choose the ascending way and not explore the

whole landscape.

Hill-Climbing algorithms focus their search strategy on greedy exploitation with
minimal exploration. Hence, this class encompasses fundamental optimization
algorithms with direct search strategies, including gradient-based algorithms and
deterministic or stochastic hill-climbing algorithms. Gradient-based algorithms,
also known as first-order methods, are in the first case applicable to differentiable
functions, where the gradient information is available. If the gradient is not di-
rectly available, it can be approximated or estimated, for example, by stochastic
gradient descent (SGD) algorithms |[Ruder;, [2016]. These algorithms have, by
design, fast convergence to a local optimum situated in a region of attraction
and commonly no explicit strategy for exploration. Overviews of associated
algorithms were presented by [Lewis et al. [2000] and [Kolda et al.| [2003]. Com-
mon algorithms include the quasi-Newton Broyden-Fletcher—Goldfarb-Shanno
algorithm [Shanno, [1970], conjugate gradients |Fletcher, [L976], the direct search
algorithm Nelder-Mead |[Nelder and Meadl [1965|, and stochastic hill climbers,
e.g., the (1+1)-Evolution Strategy |Rechenberg, 1973} [Schwefel, [1977].

Famous SGD algorithms are adaptive moment estimation (ADAM) |Kingma
and Bal [2014] and the adaptive gradient algorithm (AdaGrad) [Duchi et al.,2011].
They are frequently applied in machine learning, particularly for optimizing
neural network weights with up to millions of parameters.

As this class defines fundamental search strategies, hill-climbers are often
part of sophisticated algorithms as a fast-converging local optimizer. Hill-
climbers do not utilize individual operators for the initialization of the single
starting point. Thus, it is typically selected at random in the valid search space

or based on prior knowledge.

38

2.4. The Definition of Intuitive Algorithm Classes

The variation of the last observed selected candidate generates new candi-
dates, commonly in the current solution’s vicinity. For example, the stochastic
hill climber utilizes random variation with a small step size compared to the
range of the complete search interval. Gradient-based methods directly compute
or approximate the gradients of the objective function to find the best direction
and strength for the variation. Algorithms such as Nelder-Mead create new
candidates by computing a search direction using simplexes.

The most common selection methods are elitist strategies, which evaluate
the new candidate, compare it to the old solution, and keep the one with the
best fitness as a new solution. Always selecting the best is known as a greedy
search strategy, as it tries to improve as fast as possible. This greedy strategy
leads to the outlined hill-climbing search, which performs a trajectory of small,
fitness-improving steps, which forms in the ideal case a direct line to the nearest
optimum. In general, these algorithms search locally for an optimum and do
not exploit or use global function information.

The most critical control parameter is the variation step size, which directly
influences the speed of convergence. As a result of this, state of the art is to
use an adaptive variation step size that changes online during the search, often
based on previous successful steps, for example, as defined in the famous 1/5

success rule [Rechenberg] [1973].

2.4.2 Trajectory Class: "The Sightseer"

Intuitive Description 2 (The Sightseer)

The intuitive idea of this class is a single hiker looking for interesting places.
During the search, the sightseer takes into account that multiple places of interest
exist. Thus, it explores the search space or systematically visits areas to gather

information about multiple locations and utilizes it to find the most desired ones.

Trajectory class algorithms still focus on exploitation but are supported by
defined exploration methods. This class encompasses algorithms that utilize
information from consecutive function evaluations. These algorithms are the

connecting link between the hill-climbing and population class. While trajectory

39

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

algorithms are a step towards population-based algorithms and allow the sam-
pling of several solutions in one iteration, they use the principle of initializing
and maintaining a single solution. This solution is the basis for variation in
each iteration. Again, this variation forms a trajectory in the search space over
consecutive iterations, similar to the hill-climbing class. Thus these methods
are known as trajectory methods |[Boussaid et all [2013]. While the initialization
and generation of the trajectory class are similar to those of the hill-climbing
class, the main differences can be found during the selection, as they utilize
operators to guide the search process in a global landscape in specific directions.

Two different strategies can be differentiated, which define two subclasses:

(i) The exploring trajectory class utilizes functions to calculate a probability

of accepting a candidate as the (current) solution.

(ii) The systematic trajectory class utilizes a separation of the search space

into smaller sub-spaces to guide the search into specific directions.

These different strategies are susceptible to the correct parametrization, which

must be selected adequate to the underlying objective function.

2.4.2.1 Exploring Trajectory Algorithms

The exploring trajectory subclass encompasses algorithms that implement
selection operators to balance exploration and exploitation to enable global
optimization. The introduction of selection functions that allow the expansion
of the search space and escape the region of attraction of a local optimum
achieves exploration. Simulated annealing (SANN) [Kirkpatrick et al.| [1983)],
which is known to be a fundamental contribution to the field of metaheuristic
search algorithms, exemplifies this class. The continuous version |Goffe et al.)
1994; |Siarry et al.,[1997; Van Groenigen and Stein) (1998 of the SANN algorithm
extends the iterated stochastic hill-climber. It includes a new element for the
selection, the so-called acceptance function. It determines the probability of
accepting an inferior candidate as a solution by utilizing a temperature (T)

parameter, in analogy to metal annealing procedures. This dynamic selection

40

2.4. The Definition of Intuitive Algorithm Classes

allows escaping local optima steps by accepting movement in the opposite
direction of improvement, which is the fundamental difference to a hill-climber
and ultimately allows the global search. At the end of each iteration, a cooling
operator adapts the temperature. This operator can be used to further balance
the amount of exploration and exploitation during the search [Henderson et al.
2003]. A common approach is to start with a high temperature and steadily
reduce T according to the number of iterations or to utilize an exponential
decay of T'. This steady reduction of T" leads to a phase of active movement and
thus exploring in the early iterations, while with decreasing T', the probability
of accepting inferior candidates reduces. With approaching a T value of zero,
the behavior becomes similar to an iterative hill-climber. Modern SANN
implementations integrate self-adaptive cooling-schemes which use alternating
phases of cooling and reheating |Locatelli, [2002]. These allow alternating phases

of exploration and exploitation but require sophisticated control.

2.4.2.2 Systematic Trajectory Algorithms

This subclass encompasses algorithms, which base their search on a space
partitioning utilizing the exposed knowledge of former iterations. They create
sub-spaces that are excluded from generation and selection, or attractive sub-
spaces, where the search is focused on. These search space partitions guide the
search by pushing candidate generation to new promising or previous unexplored
parts of the search space. An outstanding paradigm for this class is Tabu Search
|Glover], [1989]. A so-called tabu list contains the last successful candidates and
defines a sub-space of all evaluated solutions. In the continuous version, [Siarry
and Berthiau| [1997]; [Hu [1992]; |Chelouah and Siarry| [2000], small (hypersphere
or hyperrectangle) regions around the candidates are utilized. The algorithm will
consider these solutions or areas as forbidden for future searches, i.e., it selects
no candidates situated in these regions as solutions. This process shall ensure
to move away from known solutions and prevents identical cycling of candidates
and getting stuck in local optima. The definition of the tabu list parameters
can control exploration and exploitation by, e.g., by the number of elements or

size of areas. The areas of search can also be pre-defined, such as in variable

41

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

neighborhood search (VNS) [Hansen and Mladenovic, 2003}, [Hansen et al., 2010c}
Mladenovié et al.l [2008]. The search strategy of VNS is to perform sequential
local searches in these sub-spaces to exploit their local optima. The idea behind
this strategy is that by using an adequate set of sub-spaces, the chance of

exploiting a local optimum, which is near the global optimum, increases.

2.4.3 Population Class: "The Team"

Intuitive Description 3 (The Team)
The intuitive idea of this class is a group of individuals, which team up to
achieve their mutual goal together. They split up to explore different locations

and share their knowledge with other members of the team.

Population class algorithms utilize distributed exploration and exploitation. The
idea of initializing, variation, and selection of several contemporary candidate
solutions defines this class. The algorithms are commonly metaheuristics
whose search concepts follow processes found in nature. Moreover, it includes
algorithms building upon the population-based concept by utilizing models
of the underlying candidate distributions. Due to utilizing a population, the
generation and selection strategies of these algorithms differ significantly from
the hill-climber and trajectory class. We subdivide this class into the regular
population and model-based population algorithms, which particularly differ in

how they generate new candidates during the search:

(i) The regular population (Section [2.4.3.1]) generate and maintain several

candidates with specific population-based operators.
(ii) The model-based population (Section [2.4.3.2)) generate and adapt models
to store and process information.
2.4.3.1 Regular Population Algorithms

Well-known examples of this class are particle swarm optimization (PSO)
|Kennedy and Eberhart], [1995; [Shi and Eberhart], [1998] and different evolution-
ary algorithms (EA). We regard EAs as state of the art in population-based

42

2.4. The Definition of Intuitive Algorithm Classes

optimization, as their search concepts dominate this field. Nearly all other
population-based algorithms use similar concepts and are frequently associated

with EAs. [Fleming and Purshouse| [2002] go as far to state:

In general, any iterative, population-based approach that uses selec-
tion and random variation to generate new solutions can be regarded
as an FA.

EAs follow the idea of evolution, reproduction, and the natural selection concept
of survival of the fittest. In general, the field of EC goes back to four distinct
developments, evolution strategies (ES) [Rechenberg, |1973; [Schwetel, |1977], evo-
lutionary programming [Fogel et all [1966|, genetic algorithms |Holland, |1992],
and genetic programming |Kozaj, [1992|. The naming of the methods and opera-
tors matches with their counterparts from biology: candidates are individuals
who can be selected to take the role of parents, mate and recombine to give birth
to offspring. The population of individuals is evolved (varied, evaluated, and
selected) over several iterations, so-called generations, to improve the solutions.
Different overview articles shed light on the vast field of evolutionary algorithms
[Béck et al., [1997; [Eiben and Smith, 2015b].

EAs generate new solutions typically by variation of a selected subset of
the entire population. Typically, competition-based strategies, which also often
include probabilistic elements, select the subsets. Either random variation of
this subpopulation or recombination by crossover, which is the outstanding
concept of EAs, generates new candidates. Recombination partly swaps the
variables of two or more candidates, aggregated or combined to create new
candidate solutions.

The population-based selection strategies allow picking solutions with inferior
fitness for the variation process, which allows exploration of the search space.
Several selection strategies exist. For instance, in roulette wheel selection, the
chance of being selected is proportional to the ranking while all chances sum
up to one. A spin of the roulette wheel chooses each candidate, where the
individual with the highest fitness also has the highest chance of being selected.

Alternatively, in tournament selection, different small subsets of the population

43

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

are randomly drawn for several tournaments. Within these tournaments, the
candidates with the best fitness are selected based on comparisons to their
competitors. This competition-based selection also allows inferior candidates to
win their small tournaments and participate in the variation.

EAs usually have several parameters, such as the selection intensity (i.e.,
the percent of truncation), variation step size, or recombination probability.
Parameter settings, in particular adaptive and self-adaptive control for evolu-
tionary algorithms is discussed in |Angeline| [1995]; |[Eiben et al.| [1999]; Lobo|
let al.| [2007]; Doerr et al.| [2020]; [Papa and Doerr| [2020].

2.4.3.2 Model-based Population Algorithms

The model-based population class encompasses algorithms that explicitly use
mathematical or statistical models of the underlying candidates. These algo-
rithms generally belong to the broad field of EAs (Section and use
similar terminology and also operators.

Estimation of distribution algorithms (EDAs) are a well-known example for
this class |[Larranaga and Lozano), 2001} [Hauschild and Pelikan, 2011]. Com-

pared to a regular population-based approach, a distribution model of selected

promising candidates is learned in each iteration, which is then utilized to
sample new candidates. The sampling distribution will improve and likely
converge to generate only optimal or near-optimal solutions over the itera-
tions. EDASs utilize models from univariate, over bivariate, to multivariate
distributions, e.g., modeled by Bayesian networks or Gaussian distributions
with typical parameters, such as mean, variance, and covariance of the modeled

population. The search principle of EDAs was first defined for discrete domains

and later successfully extended for continuous domains [Hauschild and Pelikan,

2011]. Popular examples for EDAs are population-based incremental learning
(PBIL) [Balujal |1994; |Gallagher et al., [1999|, the estimation of Gaussian net-
works algorithm (EGNA)|Larranaga et al.l [1999|, the extended compact genetic
algorithm (eCGA) [Harik et all [1999], and the iterated density estimation
evolutionary algorithm (IDEA) [Bosman and Thierens, [2000]. The surrogate

class distinction is that the underlying learned distribution models are directly

44

2.4. The Definition of Intuitive Algorithm Classes

utilized to sample new candidates instead of substituting the objective function.

A well-known and successful model-based algorithm is the covariance matriz
adaption - evolution strategy (CMA-ES) [Hansen et al., [2003]. While it also
utilizes a distribution model, its central idea extends the EDA approach by
learning a multivariate Gaussian distribution model of candidate steps, i.e., their
changes over iterations, instead of current locations [Hansen, 2006|. Moreover,
instead of creating a new distribution model of selected candidates in each
iteration, the model is kept and updated. This principle of updating the model
is similar to applying evolutionary variation operators, such as recombination or
mutation, to the candidates in a regular population-based algorithm. However,
in the CMA-ES, the variation operators’ target is the distribution model and
not individual candidates.

Again, this class has several control parameters, which are often designed to
be adaptive or self-adaptive. For example, the CMA-ES utilizes a sophisticated
step-size control and adapts the mutation parameters during each iteration
following the history of prior successful iterations, the so-called evolution paths.
These evolution paths are exponentially smoothed sums for each distribution

parameter over the consecutive prior iterative steps.

2.4.4 Surrogate Class: "The Surveyor"

Intuitive Description 4 (The Surveyor)

The intuitive idea of the surveyor is a specialist who systematically measures
a landscape by taking samples of the height to create a topological map. This
map resembles the actual landscape with a given approrimation accuracy and is
typically exact at the sampled locations and models the remaining landscape by
regression. It can then be examined and utilized to approximate the quality of an
unknown point and further be updated if new information is acquired. Ultimately

it can be used to guide an individual to the desired location.

Surrogate class algorithms utilize distributed exploration and exploitation by
explicitly relying on landscape information and a landscape model. These

algorithms differ from all other defined classes in their focus on acquiring,

45

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

gathering, and utilizing information about the fitness landscape. They utilize
evaluated, acquired information to approximate the landscape and also predict
the fitness of new candidates. As illustrated in Section [2.2.3] the surrogates
depict the maps of the fitness landscape of an objective function in an algorithmic
framework. A surrogate algorithm utilizes them for an efficient indirect search
instead of performing multiple, direct, or localized search steps. We divide this

class into two subclasses:

— Surrogate model-based algorithms utilize a surrogate model for all variation

and selection processes.

— Surrogate-assisted algorithms utilize surrogates partly for supporting

spezific search operators.

The distinction between the two subclasses is motivated by the different use
of the surrogate model. While a SMBO algorithm generates new candidates
solely by optimizing/predicting the surrogate, surrogate-assisted algorithms use
it to support spezific search elements, e.g., selection.

For both classes, the surrogate model is a core element for the optimiza-
tion. A perfect surrogate provides an excellent fit to observations while ideally
possessing superior interpolation and extrapolation abilities. However, many
available surrogates have significantly differing characteristics, advantages, and
disadvantages. Model selection is thus a complicated and challenging task. If
no domain knowledge is available, such as in real black-box optimization, it is
often inevitable to test different surrogates for their applicability.

Common models are: linear, quadratic or polynomial regression, Gaussian

processes (also known as Kriging) [Sacks et al. |1989} [Forrester et al., |2008],

regression trees |[Breiman et al.| [1984], artificial neural networks and radial basis

function networks [Haykin| 2004} [Hornik et al., [1989] including deep learning
networks |Collobert and Weston| 2008} [Hinton et al., 2012, 2006] and symbolic
regression models [Augusto and Barbosa, 2000; Flasch et al., 2010b; McKay|
[1995], which are usually optimized by genetic programming 1992].

Further, much effort in current studies is to research the benefits of model

ensembles, which combine several distinct models [Goel et al., 2007; [Miiller and|

46 |

| 2.4. The Definition of Intuitive Algorithm Classes|

[Shoemaker] [2014} [Friese et al., 2016]. The goal is to create a sophisticated pre-

dictor that surpasses the performance of a single model. The drawback of these
ensemble methods are model complexity, computation times and challenging

tuning concerning efficient model selection, evaluation, and combination.

2.4.4.1 Surrogate Model-Based Algorithms

SMBO algorithms explicitly utilize a global approximation surrogate in their
optimization cycle by following the concept of efficient global optimization (EGO)
[Jones et al., [1998] and Bayesian Optimization (BO) [Mockus| 1974} 1994} [2012].

They are either fixed algorithms designed around a specific model, such as

Kriging, or algorithmic frameworks with a choice of possible surrogates and

optimization methods sequential parameter optimization |Bartz-Beielstein et al.)

20052} Bartz-Beielstein, 2010|. Further well-known examples for continuous

frameworks are the surrogate management framework (SMF) |Booker et al.
1999] and the surrogate modeling toolbox (SMT) |Bouhlel et al., [2019]. Versions
for discrete search spaces are mized integer surrogate optimization (MISO)
and efficient global optimization for combinatorial problems
(CEGO) |Zaefferer et al., 2014b]. The basis for our descriptions of surrogate-
based algorithms is mainly EGO, and it is to note that the terminology of

BO differs partly from our utilized terminology. A general surrogate-based
algorithm can be described as follows (cf. Section [2.2.3)):

1. The initialization is done by sampling the objective function at k positions
with y; = f(x;),1 < i < k to generate a set of observations D; =
{(x4,¥i),1 < ¢ < k}. The sampling design plan is commonly selected

according to the surrogate.

2. Selecting a suitable surrogate. The selection of the correct surrogate type
can be a computational demanding step in the optimization process, as

often no prior information indicating the best type is available.

3. Constructing the surrogate s(x) using the observations.

47

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

4. Utilizing the surrogate s(x) to predict n new promising candidates {x3,,},
e.g., by optimization of the infill function with a suitable algorithm. For
example, it is reasonable to use algorithms that require a large number
of evaluations as the surrogate itself is (comparatively) very cheap to

evaluate.

5. Evaluating the new candidates with the objective function y¥ = f(x}),1 <

7 =

1 < n.

6. If the stopping criterion is not met:

Updating the surrogate with the new observations Dyy1 = DU{(x},47),1 <
i < n}, and repeating the optimization cycle (4.-6.)

For the initialization, the model building requires a suitable sampling of the
search space. The initial sampling has a significant impact on the performance
and should be carefully selected. Thus, the initialization commonly uses candi-
dates following different information criteria and suitable experimental designs.
For example, it is common to built linear regression models with factorial designs
and preferably couple Gaussian process models with space-filling designs, such
as Latin hypercube sampling [Montgomeryl 2017; [Sacks et al.| [1989].

The generation has two aspects: the first is the choice of surrogate itself, as
it is used to find a new candidate. The accuracy of a surrogate strongly relies on
the selection of the correct model type to approximate the objective function. By
selecting a particular surrogate, the user makes certain assumptions regarding
the characteristics of the objective function, i.e., modality, continuity, and
smoothness |Forrester and Keane} 2009]. Most surrogates are selected to provide
continuous, low-modal, and smooth landscapes, rendering the optimization
process computationally inexpensive and straightforward. The second aspect
is the optimizer which variates the candidates for searching on the surrogate
and the approximated fitness landscape. As the surrogates are often fast to
evaluate, exhaustive exact search strategies, such as branch and bound in EGO
Jones et al.| [1998] or multi-start hill-climbers, are often utilized, but it is also

common to use sophisticated population-based algorithms.

48

2.4. The Definition of Intuitive Algorithm Classes

The surrogate prediction for the expected best solution is the basis of the
selection of the next candidate solution. Instead of a simple mean fitness pre-
diction, defining an infill criterion or acquisition function is common. Typical
choices include the probability of improvement [Kushner} [1964], expected im-
provement |Jones et al. [1998] and confidence bounds [Cox and Johnl [1997].
Expected improvement is a common infill criterion because it is a balance of
exploration and exploitation by utilizing both the predicted best mean value of
the model and the model uncertainty. The optimization of this infill criterion
then selects the candidate. Typically, in each iteration for evaluation and the
model update, the algorithm selects only a single candidate. Multi-infill selection
strategies are also possible. SMBO algorithms include a large number of control
elements, starting with necessary components of such an algorithm, including
the initialization strategy, the choice of surrogate, and optimizer. In particular
the infill criteria have an enormous impact on the performance. Even for a fixed
algorithm, the amount of (required) control is extensive. The most important

are the model parameters of the surrogate.

2.4.4.2 Surrogate-assisted Algorithms

Surrogate-assisted algorithms utilize a search strategy similar to the population
class, but employ a surrogate particular in the selection step to preselect candi-
date solutions based on their approximated fitness and assist the evolutionary
search strategy |Ong et al., |2005; [Jin, 2005; [Emmerich et al., [2006; Lim et al.
2010; Loshchilov et al., 2012]. Ouly parts of the new candidates are preselected
utilizing the surrogate, while another part follows a direct selection and evalu-
ation process. The generation and selection of a new candidate are thus not
based on optimizing the surrogate landscape, which is the main difference to the
SMBO algorithms. The surrogate can be built on the archive of all solutions or
locally on the current solution candidates. An overview of surrogate-assisted
optimization is given by [Jin| [2011], including several examples for real-world
applications, or by [Haftka et al.| [2016] and [Rehbach et al.| [2018], with focus on

parallelization.

49

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

2.4.5 Hybrid Class: "The Chimera"

Intuitive Description 5 (The Chimera)
A chimera is an individual, which is a mizture, composition, or crossover of
other individuals. It is an entirely new being formed from existing parts of

various species and utilizes their strengths to be versatile.

We describe the explicit combination of algorithms or their components as
the hybrid class. Hybrid algorithms utilize existing components and concepts,
which have their origin in an algorithm from one of the other classes, in
new combinations. They are mainly present in current research regarding
the automatic composition or optimization of algorithms to solve a specific
problem or a problem class. Hyperheuristic algorithms also belong to this class.
Overviews of hybrid algorithms were presented by [Talbi| [2002]; Blum et al.
|2011]; Burke et al|[2013|. There are two kinds of hybrid algorithms:

1. Predetermined Hybrids (Section [2.4.5.1]) have a fixed algorithm design,

which is composed of certain algorithms or their components.

2. Automated Hybrids (Section [2.4.5.2)) use optimization or machine learning

to search for an optimal algorithm design or composition.

The hybrid class contains many algorithms, and it can be challenging to dis-
tinguish a particular class. However, mainly the predetermined hybrids can be
additionally described by their main components so that their origin remains
clear, e.g., an evolutionary algorithm coupled with simulated annealing could be
defined as population-trajectory hybrid. For automated hybrids, this definition is
no longer possible, as they couple a large number of different components, and
also, the algorithm structure is part of their search so that the final algorithm

structure can differ for each problem.

2.4.5.1 Predetermined Hybrid Algorithms

The search strategies of this class improve or tackle algorithm weaknesses or

amplify their strengths. The algorithms are often given distinctive roles of

50

2.4. The Definition of Intuitive Algorithm Classes

exploration and exploitation, as they are combinations of an explorative global
search method paired with a local search algorithm. For example, population-
based algorithms with remarkable exploration abilities pair with local algorithms
with fast convergence. This approach gives some benefits, as the combined
algorithms can be adapted or tuned to fulfill their distinct tasks. Also well
known are Memetic algorithms, as defined by [Moscato| [1989], which are a class
of search methods that combine population-based algorithms with local hill-
climbers. An extensive overview of memetic algorithms is given by [Molina et al.
[2010]. They describe how different hybrid algorithms can be constructed by

looking at suitable local search algorithms regarding their convergence abilities.

2.4.5.2 Automated Hybrid Algorithms

Automated hybrids are a special kind of algorithms, which do not use pre-
determined search strategies, but a pool of different algorithms or algorithm
components, where the optimal strategy can be composed of |[Lindauer et al.)
2015} Bezerra et al., [2014]. Hyperheuristics belong to this class, particularly
those that generate new heuristics [Burke et al. 2010} Martin and Tauritz, [2013].
Automated algorithm selection tries to find the most suitable algorithm for a
specific problem based on machine learning and problem information, such as
explorative landscape analysis |[Kerschke and Trautmann) 2019]. Instead of se-
lecting individual algorithms, it is tried to select different types of operators for,
e.g., generation or selection, to automatically compose a new, best-performing
algorithm for a particular problem [Richter and Tauritz, [2018|. Similar to our
defined elements, search operators or components of algorithms are identified,

extracted, and then again combined to a new search strategy.

Generation, variation, and selection focus in this class on algorithm com-
ponents,; instead of candidate solutions. The search strategies on this upper
level are similar to the presented algorithms; hence, for example, evolutionary

or Bayesian techniques are common |Guol [2003} ivan Rijn et al., 2017].

o1

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

algorithm
o single candidate set of candidates components
Initialization| chosen at random or by function j)) chosen at random
chosen at random or by function knowledge or by design of experiments .
knowledge or predefined
or| surrogate multi-stage
. single/multiple candidates based on selected set distribution based on single /
Generation bage d on la s’t’ pest/selected distribution combined with | optimization of distribution /
based on adaptive model fitted globally fitted surrogate /
fitted to set surrogate surrogate algorithm components
improving the can‘;’ter’:i::e?l/)est best set r:;ittzgiet best predicted
best ! P based combined set
. . single best selected due to surrogate- g . . -
Selection single best o s onselected infill improving, predicted, selected
. selected (probabilistic) assisted Y
candidate . - :) criteria for the set
p candidate for next selection function selection
for next iterate . . surrogate
iterate function
B advanced L S,OP.h'S“CEtEd . . most sophisticated
basic S initialization, population, sophisticated -)
P initialization, o N - . requires algorithm control
initialization, L . variation, selection, sampling methods, population,
Control o variation step size, N . o) hyper-control parameters for
variation,) adaptive, self-adaptive, variation, adaptive, surrogate)
- adaptive, f - . - every selected algorithm
adaptive selection function online control selection, optimizer selection component
i Hill-Climber Trajectory Population Surrogate Hybrid
ass i ” i ” “Team” “Surveyor” “Chimera”

Figure 2.3: Overview of defining algorithm features per search element and class.
Overlapping features indicate the close connection between the individual classes.

2.4.6 Taxonomy: Summary and Examples

Figure illustrates an overview of all classes and connected features. It
outlines the initialization, generation, selection, and control of the individual
components for each class. The algorithm features are partly distinct and define
their class, while others are shared. The figure shows the strong relationship
between the algorithm classes; for example, the hill-climbing and trajectory class
share similar characteristics. The algorithms of these classes are similar in their
search strategy and built upon each other. The presented scheme is intended to
cover most concepts. However, available algorithms can also have characteristics
of different classes and do not fit the presented scheme. For example, some
components of the more complex classes can also be utilized in the less complex
classes, e.g., self-adaptive control schemes also apply for hill-climbers but are
typically found in the population class. Table describes examples for each
of the defined algorithm classes and outlines their specific features. Again, the

table is not intended to present a complete overview; instead, for each class and

92

2.5. Algorithm Selection Guidelines

subclass, at least one example is given to present the working scheme. Other

algorithms can be easily classified utilizing the scheme presented in Figure 2.3

2.5 Algorithm Selection Guidelines

The selection of the best-suited algorithm poses a common problem for practi-
tioners, even if experienced. In general, it is nearly impossible to predict the
performance of any algorithm for a new, unknown problem. We thus recommend
first gathering all available information about the problem if confronted with
a new optimization problem. The features of a problem can be an excellent
guideline to select at least an adequate algorithm class, where the users’ choice
and experience can select a concrete implementation.

Our guideline is strongly connected to the idea of exploratory landscape
analysis (ELA) [Mersmann et al., 2011], which aims to derive problem features
with the final goal of relating those features to suitable algorithm classes. For
example, these features include information about convexity, multi-modality,
the global structure of the problem, problem separability, and variable scaling.
ELA’s final goal is to provide the best-suited algorithms to previous unknown
optimization problems based on the derived landscape features. This goal
requires rigorous experimentation and benchmarking to match algorithms or
algorithm classes to the landscape features [Kerschke and Trautmann, 2019].
As this information is not yet available, we extracted a small, high-level set
of these features for our guideline, considering mainly the multi-modality and
unique function properties as being expensive to evaluate.

Moreover, our selection is based on the available resources, both in terms of
available evaluations and computational resources. To help with the selection,
we developed a small decision graph that builds upon these significant features.
The provided guideline is experience-based and utilizes basic concepts; it is not
intended to serve as an absolute policy; instead, as the first recommendation if
a new problem is considered. The graph is outlined in Figure 2:4]

A hill-climbing algorithm is in the first place suitable for unimodal functions

or to exploit local optima or for cases where gradient information can be derived

53

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based

Optimization for Global Search

Table 2.1: Summary of example algorithms for each class of the presented taxonomy

name class specifics

1+1-Evolution Strategy hill-climber probabilistic, adaptive muta-
|Rechenberg, [1973; |Schwefel| tion rates

1977)

" L-BFGS [Liu and Nocedal, | hill-climber approximating gradient

1989,

CG |Fletcher, [1976|

Variable " Neighborhood | trajectory separation of search space

Search (systematic) in individually searched sub-

|[Hansen and Mladenovic), 2003| spaces

Tabu Search |Glover,771989; trajectory Tabu-list of search restricted

Siarry and Berthiaul, [1997] (systematic) solutions/areas

Simulated Annealing trajectory control variable: tempera-

|Kirkpatrick et al.| [1983] (exploring) ture to define exploration
strength

Evolutionary Algorithms | population different variation and se-

|Back, 1996; |[Eiben and Smith) | (regular) lection strategies, general

2015bljb] framework

" Particle Swarm Optimiza- | population exploration and exploitation
tion (regular) strategy based on behavior
|Kennedy and Eberhart), [1995] in swarms
Estimation of Distribution population probabilistic distribution
Algorithms (model) model of underlying popula-
|Larranaga and Lozano, [2001} tion
Hauschild and Pelikan| 2011]

" Covariance Matrix Adap- | population modeling search steps, adap-
tion - ES (model) tive or pre-defined parame-
|[Hansen et al, [2003] ters

" Efficient Global Optimiza- | surrogate kriging models, expected im-
tion (based) provement
|[Jones et al., |1998|

" Bayesian Optimization surrogate general framework
[Mockus, 1974} 11994, 12012] (based)

~ Surrogate-Assisted EAs surrogate general framework, assisting
[Ong et al., |2005; |Lim et al., | (assisted) evolutionary algorithms with
2010] surrogates

" Memetic Algorithms hybrid combining EAs with hill-
[Moscato), [1989] (predetermined)| climber class unimodal

search algorithms
Hyperheuristics hybrid automatic selection of en-
|Burke et al., [2003| (automated) tire heuristics or individual

o4

search operators

2.5. Algorithm Selection Guidelines

from the objective function. Gradient-based algorithms are incredibly successful
in optimizing large-scale optimization problems, such as frequently found in
Al However, they always have a high risk of getting stuck in local optima. It
can be applied for global optimization to multimodal landscapes if an adequate
multi-start strategy is employed. These multi-start strategies typically demand
a high number of function evaluations and are most reasonable to be used if
objective functions are not expensive.

Ezxploring trajectory algorithms are suitable for searches in unimodal and
multimodal problems. As they do not rely on stored information of former
iterations during their search, they are also an excellent choice to handle dynamic
objective functions|Carson and Marial [1997; |Corana et al., [1987; Faber et al.
2005|. However, the rather simplistic utilization of exploited global information
renders them inefficient for challenging and expensive optimization problems.
Moreover, the control parameters have a significant effect on the performance
of these algorithms. We thus advise to tune them in an offline or online fashion.

The central concept of systematic trajectory algorithms is to use the in-
formation of evaluated solutions and to direct the search to former unknown
regions to avoid early convergence to a non-global optimum. The strategic use
of sub-spaces allows precise control of exploration and exploitation and mainly
ensures a high level of exploration. They include a large number of parameters,
such as the number or size of sub-spaces, which makes them very vulnerable
to false setups and less good universal solvers. If correctly tuned, algorithms
from this class are suitable and efficient for multimodal problems. Algorithms
using a pre-defined separation of the search space, such as VNS, can utilize
domain knowledge for the initial definition of the sub-spaces. This pre-defined
separation renders them useful for problems where the region of the global
optimum is roughly known but not particularly suitable for black-box problems.

Population-based algorithms are very flexible in their implementation and
adaptable by tuning. They are robust and suitable to solve a large class of
problems, including multimodal, multi-objective, dynamic, and black-box prob-
lems, even with noise or discontinuities in the fitness landscape |[Jin and Branke,
2005; [Marler and Aroray, [2004]. Further, they have successfully been applied

95

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

to a large number of different industrial problems [Fleming and Purshouse,
2002| but typically require a relatively large number (3> 100 x dim) of function
evaluations to be successful. This inefficiency makes them not the first choice for
expensive problems, where the number of evaluations is sharply limited. Differ-
ent mechanisms and strategies for controlling the balance between exploration
and exploitation cause flexibility and robustness. A good overview is presented
in the survey by |Crepingek et al|[2013]. The detailed survey classifies the dif-
ferent available evolutionary approaches and presents an intensive discussion on
which mechanisms influence exploration and exploitation. Theoretical aspects
of evolutionary operators are discussed by Beyer| [2013]|. Parameter tuning and
control influence the performance of EAs, e.g., by the setting of population
size, mutation strength, and selection probability. An extensive overview of
the different on- and offline tuning approaches for parameter control in EAs
was published by [Eiben et al.| [1999]. Further common strategies of controlling
exploration and exploitation and multimodal optimization are so-called niching
strategies, which utilize sub-populations to maintain the diversity of the pop-
ulation, investigate several regions of the search space in parallel or conduct
defined tasks of exploring and exploiting [Shir and Béck] 2005} [Filipiak and
Lipinskil 2014].

One step further, model-based algorithms try to combine the benefits of
statistical models and their capability of storing and processing information with
population-based search operators. They are high-level metaheuristics intended
to be flexible, robust, and applicable to a large class of problems, particularly
those with unknown function properties. This generalizability makes them very
successful in popular black-box benchmarks |[Hansen et al., [2010b|. For example,
the design of the CMA-ES seeks to make the algorithm performance robust
and not dependent on the objective function or tuning. The various control
parameters of the algorithm were pre-defined based on theoretical aspects and

practical benchmarks.

SMBO algorithms were created to solve expensive problems with the help of
a surrogate. Their focus on high evaluation efficiency renders them particularly

suitable for problems where only a small number of function evaluations are

o6

2.5. Algorithm Selection Guidelines

possible, such as real-world optimization or physical simulations. The downside
of surrogate modeling is that it can impose a high computational complexity in
the surrogate fitting and prediction process. This cost is usually low compared
to the resource cost of a real-world function or an expensive simulation, but it
can get significant compared to a cheap (i.e., fast to evaluate, low cost) objective
function. A SMBO approach is not the best choice for problems that need very
fast optimizations or allow large numbers of functions evaluations (>> 100 x n).
Moreover, solving high-dimensional problems or those with a large number of
samples requires unique strategies or specialized models |[Regis and Shoemaker),
2013|. In general, the selection of an adequate model, experimental design,
and optimizer requires both domain knowledge and expertise. [Forrester and
Keane| [2009] and |Bartz-Beielstein and Zaefferer| [2017] give overviews of SMBO,
different surrogate models, and infill criteria and match surrogates to problem
classes and give hints about their applicability. SMBO was successfully applied
to different applications, including expensive optimization problems [Lizotte,
2008; Khan et al., 2002] and machine learning [Snoek et al., [2012; Swersky et al.|
2013; |Stork et al., 2019bt |Gaier et al., 2018] Surrogate-assisted optimization is
more flexible, as it combines the strength of population-based algorithms with

the evaluation efficiency of the surrogate.

Hybrid algorithms apply to a large class of problems, dependent on the origin
of their algorithms or components. The most recent algorithms from this hybrid
class search for the best algorithm design and composition automatically, even
at different problem stages or search stages. The method of automatic algorithm
selection has shown to be able to outperform a single algorithm on a set of
benchmark functions [van Rijn et all |[2017}; [Vermetten et al.l [2019]. However,
this procedure also requires either a large amount of function knowledge or
a large evaluation budget and computation time. Their immense complexity
includes the risk that the automatic composition does not lead to improved
performance due to the problematic balancing and required tuning of the distinct
algorithms. Further, their sophisticated search strategies with a large number of
control parameters can make them difficult to tune. For the automatic algorithm

selection, numerous operators influence the convergence behavior, and the search

o7

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

strategy itself becomes a black-box that is challenging to comprehend.

The guideline in Figure[2:4] can be utilized in the following way: If features of
the objective function are known (e.g., it is unimodal as the sphere function), a
suitable algorithm can be selected based on these features, e.g., a hill-climber. If
no information about the function is known, e.g., it is a complete black-box, we
recommend using algorithms with a high generalization ability, e.g., a CMA-ES.
Another essential decision regards the number of possible function evaluations
and the costs of the objective function. If the number of available function
evaluations is low and the objective function is costly, SMBO algorithms are
a robust choice. Recent algorithms based on automated algorithm selection

aim to optimize this selection process by extracting problem features while

optimizing and adapting the search strategy to them [van Rijn et all [2017;
Kerschke and Trautmann, 2019].

landscape .
properties < known / obtainable
. uni/multi-modal, noisy,
f:é”‘::;gs (unimodal) (m"émn ;nnc;gal < multi-objective,
prop y complex fitness landsc:
available
evaluation small medium to hlgh high to very high small to high
budget
Hill-Climber Trajectory Population Hybrid Surrogate
Line Search, Simulated Annealing, Evolutionary Algorithms, Memetic Bayesian Optimization,
Quasi-Newton, Tabu-Search, Particle Swarm Optimization, Algorithms, Efficient Global
. Iterative Hill Climber Neighborhood Search Estimation of Distribution Hyperheuristics Optimization
computational
complexity .
and very low low to medium medium to high ezigx;mh? h
algorithm y higl
complexity

Figure 2.4: Algorithm selection guideline. The figure connects landscape and function
properties, as well as the available budget to a suitable algorithm class and outlines
their computational complexity.

2.6 Conclusion and Outlook

We presented a comprehensive overview of global optimization algorithms by
creating a new taxonomy in this work. We set a particular focus on covering a

broad range of optimization algorithms, including surrogates, metaheuristics,

o8

2.6. Conclusion and Outlook

and algorithm combinations, because existing taxonomies do not cover these well.
Based on a generalized algorithm scheme, we defined four characteristic elements
of optimization algorithms, i.e., how they initialize, generate, and select solutions,
how these solutions are evaluated, and finally, how these algorithms can be
parametrized and controlled. With these elements, we created a generalized
view on optimization algorithms by identifying their specific components. These
components were then used to divide algorithms in the hill-climber, trajectory,
population, surrogate and hybrid class and to identify similarities and differences

in their search strategies.

We can conclude that most algorithms and algorithm classes have a close
connection and share similar components, operators, and a large part of their
search strategies. Current research for the automated design of algorithms
builds upon this fact. It generalizes algorithms by breaking them down into
their components and again combining these components into algorithms. This
design process can be fully automatic, selecting components based on known
features of the problem. Recent research aims in this direction [Lindauer et al.,
2015} [Kerschke and Trautmann, [2019; Bezerra et al. 2014} van Rijn et al., [2017].
These automatic methods can benefit from classifications of algorithms to build
their design spaces of suitable algorithms classes. Our classes and identified
elements can be utilized to create a design scheme for each class. For example,
employ an algorithm generator for hill-climbers or population-based algorithms.
Thus, our taxonomy is particularly useful for these automatic methods, as it
includes a broad set of current developments in the presented classification
scheme. Based on the human behavior in pathfinding, our set of accompanying
analogies mainly helps novices comprehend the algorithm search strategies’
fundamentals. We further outlined an algorithm selection guideline with best
practices for more advanced practitioners, which can support them if they face
a new problem and choose a suitable optimization algorithm class.

Our taxonomy has several limitations, which are part of future work: The
first is that our current taxonomy cannot cover all available algorithms, partic-
ularly those that handle specific problem characteristics, e.g., multi-objective,

noisy, or dynamic objective functions. The second limitation concerns the

99

Chapter 2. An Introduction to Evolutionary and Surrogate Model-Based
Optimization for Global Search

missing benchmarking evidence for our algorithms selection guideline: There
are excellent structured collections of (test) problems, e.g., the black-box opti-
mization benchmark (BBOB)|Hansen et all|2010a]. Here we offer a system for
algorithms providing a structured way of positioning algorithms. Combining
the two facilitates systematic empirical studies on problem type and algorithm
type combination. In other words, systematic benchmarking: To enable fair
comparisons, each algorithm from a selected algorithm class has to be compared
to several algorithms not belonging to this class. This implies a large amount of
work on a long term done by the research communities, going far beyond this
chapter’s scope.

Exciting challenges for future algorithm design arise from problems in
several categories. The first is industry 4.0. Digitalization in manufacturing and
engineering, particularly the rapid development of communicating sensors and
machines in engineering, requires new designs. Suitable optimization algorithms
need to be directly included in the production cycle, adapting to generate robust
solutions in challenging dynamic environments in an online manner, robustly
improving themselves over a long-time period in the field. The second category
is machine learning techniques, particularly training models with a massive
amount of parameters, such as deep learning networks. They require algorithm
designs that combine sampling and computation time efficiency, which is a
challenging optimization problem. Further, the field of structural optimization
or hyper-parameter optimization of neural networks is advancing. In this area,
interesting research is dedicated to neuroevolution [Stanley et al. 2019 or
population-based training |[Jaderberg et al., [2017]. Moreover, surrogate-based
algorithms are considered to optimize neural networks |Gaier et al., 2018} [Stork
et al) [2019b]. Finally, algorithms arising from new computing paradigms,
such as quantum computing [Pittenger, 2012] or neuromorphic computing
|Schuman et al., |2017], might completely change our current perspective on how

optimization algorithms work.

60

Comparison of Evolutionary and
Surrogate Model-Based Optimization of
Neural Network Weights

Chapter [3| was published as:

Stork J, Zaefferer M, Fischbach A, Rehbach F, & Bartz-Beielstein T (2017)
Surrogate-assisted learning of neural networks. In Proceedings of the 27. Workshop
Computational Intelligence (pp. 195-210), KIT Scientific Publishing. DOI:
10.5445/KSP /1000074341

61

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

3.1 Introduction

Surrogate model-based optimizatiorﬂ has proven to be very successful if applied
to expensive industrial problems. Using a data-driven surrogate model of an
objective function during an optimization cycle has many benefits, such as
being cheap to evaluate and further providing information about the objective
landscape and the parameter space. In preliminary work, it was researched
how SMBO can help to optimize the structure of an artificial neural network
controller [Flasch et al| [2010a]. In this work, we will focus on how surrogates
can help to improve the direct learning process of a transparent feed-forward
ANN controller. As an initial case study, we will consider a manageable real-
world control task: the elevator supervisory group control (ESGC) problem
using a simplified simulation model [Bartz-Beielstein et al., [2005b]. We use this
fast-to-evaluate simulation model as a benchmark to indicate the applicability
and performance of SMBO to this kind of task. Complex ESGC simulators
have huge computation costs, which allows only a few function evaluations.
The results indicate that SMBO is capable of outperforming metaheuristic
optimization methods for this low number of evaluations. Furthermore, we
demonstrate that the surrogate is helpful for the significance analysis of the
inputs and ANN weights.

3.2 Motivation

Recent advancements in control and robotics have shown that computational
intelligence methods are becoming more and more significant. Robot control
policies are no longer just trained by machine learning algorithms. Instead,
robots learn how to solve a specific task by themselves, e.g., by methods of
evolutionary robotics or reinforcement learning [Bongard} [2013|. In a real-world
environment, evolutionary optimization of control policies can be costly, as the

fitness of a particular robot action can only be evaluated after a sequence of time

1To follow the term definitions in Chapter 1 and harmonize, the original term “surrogate-
assisted optimization” was changed to “surrogate model-based optimization”

62

3.3. Elevator Supervisory Group Control

steps, which can easily be in minutes or hours. Thus, these real-world processes
pose a complex optimization problem, and standard methods are not suitable
for the time requirements of these tasks. ANNs are a well-established type
of controller in evolutionary robotics. Here, the coefficients and the topology
of the network need to be optimized for optimal performance. More recent
and sophisticated approaches for developing and learning controllers, such
as neuroevolution of augmenting topologies [Stanley and Miikkulainen, 2002]
were invented to handle these optimization processes, but they still need many
evaluations to adapt the ANNs.

— We hypothesize that enhancing this learning process by employing SMBO,
which has proven to be able to perform significantly well for expensive
industrial optimization tasks [Ong et al.| 2003; Queipo et al.| 2005], should

be beneficial.

— As a second hypothesis, we assume that surrogate models can help re-
trieve additional useful information about the objective function, e.g., the

importance of certain inputs.

We want to test this hypothesis based on empirical experiments with a small
real-world task simulator, implemented as a simple ANN and cheap and fast
to evaluate. The results can be transferred to more sophisticated tasks, like a
real-world process. The results should indicate the applicability and essential
performance of SMBO methods in comparison to state-of-the-art EC algorithms.
The variable importance information provided by the surrogate models is also
analyzed concerning their usefulness. For instance, variable importance could be
helpful to identify especially important or defective inputs sensors of a physical

controller, e.g., in an evolutionary robotics task.

3.3 Elevator Supervisory Group Control

Today, elevator systems are present everywhere in urban areas. They need to
be optimized to achieve the desired service quality in terms of waiting time

for the customers, as well as in terms of energy efficiency. They are controlled

63

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

by an elevator group controller, which assigns the elevator cars to particular
floors and destinations based on the customer service calls. The ESGC problem,
as introduced by [Bartz-Beielstein et al., 2005b| is a so-called destination call
system, where the customer can choose their desired destination on the floor
level outside the elevator cars. In the introduced problem instance, the controller
is implemented as a sophisticated ANN, where the specific structure and weights
depict a certain control strategy. The optimization of these weights imposes a
set of challenges, which render this task highly complex:
— The topology of the fitness function is, to a high extent, non-linear as well
as multi-modal.
— The traffic load is dynamic and stochastic, as customers do not arrive in
a deterministic manner.
— Classic gradient-based optimization cannot be applied efficiently due to
the complex objective functions.
— The simulator is computationally expensive, which limits the number of
function evaluations.
As a consequence of the complexity of such simulators, [Bartz-Beielstein et al.
[2005Db| utilizes a simplified validation model of an ESGC system, the sequential
ring (S-Ring).

3.3.1 S-Ring Perceptron Simulator

The S-Ring was introduced to benchmark different ESGC algorithms indepen-
dent of elevator-floor configurations. It uses a simplified ANN perceptron to
control the elevators, where the connection weights can be modified and repre-
sent the variables of an optimization problem. Each weight setting will result
in a specific control strategy tested on simulations of different traffic situations.
The S-Ring has low computational costs, which allows us to use an ESGC
instance as a benchmark for a large variety of algorithms. Using different traffic
situations will lead to a fitness function that is subject to noise. The S-Ring
optimization problem is defined by the number of elevators n, the number of

floors m, the probability of an arriving customer per floor p and (2 x m) — 2

64

3.4. Methods for Optimization of Neural Network Controllers

states s. The target of the optimization is the ANN weight vector w with
length s, which depicts the control policy. This objective function evaluates
the average waiting time of all customers c;,i = 1,..., s during a simulated
traffic situation with ¢ steps. For a given set of n, m, p, the performance is only
influenced by the weight vector w of the ANN controller. Thus, as further used
during this paper, the simplified problem can be written as argmin f(w). The
parameters n,m,p were set as shown in Table[3.1] The table also displays the

Table 3.1: S-Ring Configuration

nFloors (nStates) nElevators probNewCustomer nTimeSteps
6(10) 2 0.3 10000

number of time steps for a single simulation run, which was set relatively high
to simulate an extended period. For each simulation run, the same period was
used, resembling a specific fixed time frame, e.g., a particular day in a year.
By choosing a fixed time frame, we removed the noise of the problem, which
renders the problem simpler to optimize. Moreover, the problem was adapted
by setting the desired customer service quality of the ground floor to a high
priority, while the second floor was set to a lower priority. This should simulate
a typical real-world hotel scenario, where it is wanted to immediately serve
customers arriving in the lobby. The second floor displays an internal service

area, which is of low priority for the quality of service.

3.4 Methods for Optimization of Neural Network

Controllers

A standard method to optimize the ANN controller in a supervised learning
process is gradient-based back-propagation. In back-propagation, the weights
are optimized by utilizing a set of training data with labeled output data. The
differences between the actual and desired outputs allow computing a loss

function and further gradient information. In the case of the S-ring simulator,

65

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

labeled training samples to compute gradient information are not (directly)
available. We receive a fitness value only after evaluating the weights in a
designated simulation run and can not utilize supervised learning by defined
input-output pairs. The problem can be considered a reinforcement learning
task but without per-state reward information. Instead, only the performance
of a complete simulation is acquired at the end of each run. We thus rely on

metaheuristic optimization and SMBO.

3.4.1 Metaheuristic Optimization

Metaheuristics are sophisticated heuristics, which are often inspired by nature.
They utilize stochastic processes (randomization) and usually do not require
any (direct) gradient information. Metaheuristics are known to be general
solvers who apply to a large variety of global problems without needing a priori
information. They are suitable for highly non-linear and multi-modal problems
and so-called black-box problems, where no information about the topology of
the objective function is known. No algorithm can deliver its best performance
for every problem without adapting its control parameters; By parameter tuning
|Bartz-Beielstein et al., |2005a; [Eiben et al., [1999], we can exploit beneficial
parameter settings is very time-demanding. To provide reliable results without
putting much effort into algorithm tuning, we selected four different state-
of-the-art R implementations of common metaheuristics from the range of
simulated annealing methods and evolutionary algorithms for our comparison.
Simulated annealing |[Kirkpatrick et al. |1983] is inspired by annealing processes
in metallurgy, where materials are heated and cooled to change their physical
structure. Simulated annealing follows the base principle of a greedy stochastic
algorithm but implements a control strategy that allows accepting solutions with
lesser fitness. This allows to escape local optima and establishes a global search
strategy. EAs |[Back, [1996] are based on the principles of natural selection:
in each generation, a population of individuals (e.g., solutions w) is evolved
by mutation, recombination, and selection steps. The selected R packages are
DEoptim, GA, GenSA and genoud:

66

3.4. Methods for Optimization of Neural Network Controllers

— DEoptim [Mullen et al [2011] is an R implementation of the differential
evolution algorithm [Storn and Price, [1997], which belongs to the class of

EC algorithms. It is designed for global optimization.

— GA [Scrucca, 2013] is a package which implements a genetic algorithm

that allows optimization of real and integer problems.

— GenSA provides a version of generalized simulated annealing [Xiang
et al. [2013].

— rgenoud |[Mebane Jr and Sekhon| |2011} |[Sekhon and Mebane, 1998] is
an R package which provides and implementation of a so-called hybrid
algorithm. This algorithm combines EAs with the derivative-based quasi-
Newton method Broyden-Fletcher-Goldfarb-Shanno (BFGS).

DEoptim and GA were chosen due to personal preference, while the two
latter (GenSA and genoud) were selected based on the survey on continuous
global optimization in R by Mullen| [2014] in which they performed best on a

set of different optimization problems.

3.4.2 Surrogate-Model-Based Optimization

SMBO algorithms employ data-driven models to lighten the burden of expensive
objective function evaluations. One framework for SMBO is sequential parameter
optimization (SPO) [Bartz-Beielstein et all 2005a]. SPO provides a flexible
framework that employs methods from the design of experiments, optimization,
and statistics. In essence, SPO starts by generating an initializing and evaluating
a design, then builds a surrogate model. Then, the surrogate model is optimized
to suggest a promising candidate solution, which is afterward evaluated by
the expensive objective function. The steps model building, optimization, and
evaluation are iterated until a selected evaluation budget is exhausted. Figure
1] shows the SMBO cycle for the underlying ESGC problem.

67

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

Optimization
[y
Surrogate Prediction
v
Objective Function . .
Information / Variable [«— Surrogate Model Best Predicted Weight
Importance Vector
)

Fitting and Updating Model
l

S-Ring Simulation Model
Pre-defined Structure
Neural Network

Complex ESGC
Simulator

Figure 3.1: SMBO Cycle. The S-Ring simulator approximates the ESGC Simulator.
The fitness topology is fitted by the surrogate based on the initial design and sequential
updates. Optimization of the surrogate computes the sequential weight vectors.

For this study, we have chosen to investigate three different surrogate models
within the SPO framework.

— Second order model with stepwise regression: Firstly, we build
second-order linear regression models. The model is first built with all
first-order effects, quadratic effects as well as second-order interactions.
E.g., for two parameters z; and x5 a model of the form y(z) = f1z1 +
Boxa + B3x? + Bax3 + Bsx12 is determined. This entire model is further
refined by backward, stepwise variable selection based on the Akaike
information criterion. The stepwise variable selection is skipped whenever
the data size is insufficient. While the resulting models are comparatively

simple, one advantage is the comparatively low computational effort.

— Random Forest: Secondly, we use a random forest |Breiman) [2001]
model. Random Forests are ensembles of decision trees. We use the default
settings of the randomForest R-package [Liaw et al.l[2002]. Random forests
can learn non-linear dependencies in the data, are typically numerically

robust, fast to compute, and can handle discrete input variables.

68

3.4. Methods for Optimization of Neural Network Controllers

— Kriging: Thirdly, a Kriging model (also known as Gaussian process
regression) is employed. Kriging assumes that the observed data is the
result of a stochastic process. We use an implementation from the R-
package SPOT. The implementation is loosely based on Matlab code

by [Forrester et al.| [2008]. The correlation of samples is modeled via
Pq)

an exponential correlation function cor(z,z’) = exp(— > 1, b;|z; — @
The vectors x and 2’ are samples, or candidate solutions of the optimization
problem. The parameters 6; > 0 and 1 < p; < 2 are determined by
maximum likelihood estimation. [Forrester et al.| [2008] provide a detailed
and easy-to-follow description of Kriging and related methods. Kriging
requires the most significant computational effort out of the three models

yet produces the potentially most accurate model.

3.4.3 Variable importance

Most optimization algorithms deliver only the best-found parameter settings.
Hence, these algorithms do not provide any information on what they have
learned about the importance of the input variables during the optimization
process. An advantage of the SMBO techniques is that the surrogate provides
additional information beyond the best-found parameter setting. For exam-
ple, the estimated model coefficients may serve as strong indicators for the

importance of each input variable.

— Linear Regression Models: In linear regression models, the effect
of each coefficient can be tested against the null hypothesis, resulting
in a set of so-called p-values. However, a large p-value does not alone
indicate a significant effect of the variable on the result. The values of the
regression coefficients can be compared instead but must be standardized
first to enable a valid comparison due to different scales. Larger (scale
normalized) coefficient values account for a more considerable impact of

the corresponding variable.

69

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

— Random Forest: Variable importance can be estimated by computing
the mean decrease in model accuracy by excluding (or permutation) of a
certain input variable. As a metric, commonly, the mean squared error

(MSE) is utilized.

— Kriging: The kernel parameter 6; determines how far the influence of
each sample point spreads in dimension ¢. In detail, the larger the width
parameter is, the faster are the potential changes in the predicted value.
The smaller the width parameter is, the slower are the potential changes
in the prediction. The descending order of the # values gives an indicator

of the variable importance.

3.5 Experiments

Our stated hypothesis is tested by performing empirical benchmarks with the
S-Ring simulator. The performance of a random search algorithm is added as a
baseline comparison. All four metaheuristic algorithms and the SMBO with the
three different models are compared. The best-achieved performance (cumulated
customer waiting time) after a fixed number of objective function evaluations is
reported. The lower limit is set to 100 evaluations to simulate the optimization
of a very expensive objective function. For the metaheuristics, the maximum
number of evaluations is set to 1,15 to see the convergence behavior. The
maximum number of evaluations for SMBO is limited to 1000. SMBO utilizes
ten percent of the available budget for the initial latin hypercube sampling.
SMBO can become computationally expensive for large sample sizes due to
model fitting, model optimization, and prediction. As all tested algorithms
are stochastic, each experiment is repeated 20 times. For all tested algorithms,
the parameter settings, besides the iterations and population size to set an
exact number of evaluations, are not changed and use default settings. The

experimental setup is summarized in Table 3.2

70

3.6. Results and Discussion

Table 3.2: Experimental Setup

Algorithm No. Evaluations popSize maxlIter
RandomSearch 100 100 1
RandomSearch le+3,1e+5 le+3,le+b 1
Metaheuristics:

GenSA 100, 200, 500 / /
GenSA le+3,1e+5 / /
D FEoptim 100, 200, 500 5,5,10 9,19,24
D FEoptim le+3, le+5 10,100 49,499
GA 100, 200, 500 10,10,20 10,20,25
GA le+3,1le+5 50,50 20,2e+3
genoud 100, 200, 500 10,10,20 10,20,25
genoud le+3,1le+b 50,1e+3 20,100
Surrogates:

Model No. Evaluations initDesign ~ Optimizer
SecondOrder LM 100,200, 500, le+3 10,20,50,100 DEoptim
RandomForest 100, 200, 500, 1le+3 10,20,50,100 DEoptim
Kriging 100, 200, 500, le+3 10,20,50,100 DEoptim

3.6 Results and Discussion

3.6.1 Benchmark Comparison

Figure shows the benchmark results for the different combinations of algo-

rithms and the number of evaluations:

— Metaheuristics: For 100 evaluations, GA and genoud perform better
than random search, while DFoptim and GenSA show inferior results.
The methods significantly improve with a rising number of evaluations.
For 1000 evaluations, most methods (except GenSA) perform better than
the random search method, which is also the case for le+5 evaluations.
The long-run results (1le+5) also indicate that GenSA and DFEoptim seem

to converge to a global optimum, while genoud and GA show significantly

71

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

inferior results. A large number of evaluations seems to benefit GenSA
the most. The performance of the metaheuristics is likely connected to

their chosen default parameter settings.

— SMBO: For 100 evaluations, the SMBO outperforms all metaheuristics
significantly. Particular Kriging performs on a level equivalent to this of
1000 random search evaluations and near 500 metaheuristic evaluations.
This picture becomes even more apparent for 200 evaluations, where
Kriging again improves and surpasses random search with 1000 evaluations.
For 1000 evaluations, Kriging reaches the level of le+5 random search
evaluations, again outperforming all metaheuristic algorithms on this level.
The second-order linear model cannot show considerable improvements
over the metaheuristics. Random forest shows poor results for large

evaluation sizes, performing inferior to random search.

The good results of the Kriging surrogates can be explained by their strong
ability to fit non-linear landscapes and their general good interpolation ability.
While the second-order linear model can fit non-linear landscapes to a certain ex-
tent, they are not fit to build global surrogates of highly multi-modal landscapes.
The poor performance of random forest is due to its inferior interpolation

abilities given the continuous nature of the problem.

3.6.2 Model Variable Importance

To check the usefulness of the variable importance, we analyzed the importance
values of the best models fitted with 1000 evaluations.

— The second-order linear model has a multiple R-squared of 0.869 and
an adjusted R-squared of 0.8611. It contains many 60 model terms,
including main effects, interactions, and quadratic effects, where the p-
values indicate high importance. Due to this high number of terms, we
regard a detailed importance analysis as less useful.

— The random forest model has a mean of squared residuals of 0.129 and
explains 71.44 percent of the variance. The mean decrease in MSE is
shown in Table and compared to the results of Kriging (theta values).

72

3.6. Results and Discussion

RS.100000
GenSA.100000
genoud.100000

GA.100000

DEoptim.100000
surrS0.1000
surrRF.1000
surrKR.1000
RS.1000
GenSA.1000
genoud.1000
GA.1000
DEoptim.1000
surrS0.500
surrRE.500
surrKR.500

GenSA.500

genoud.500
GA.500
DEoptim.500
surrS0.200
surrRF.200
surrKR.200

GenSA.200

genoud.200
GA.200
DEoptim.200
surrS0.100
surrRF.100
surrKR.100
RS.100
GenSA.100
genoud.100
GA.100
DEoptim.100

I : I I
230 235 240

2.45 2.50

Figure 3.2: S-Ring Simulator Benchmark Results. The algorithms with their respec-
tive number of evaluations are shown on the y-axis, the x-axis shows the achieved
fitness (avg. customer waiting time). SurrSO uses the second-order model, SurrRF the
random forest model, and SurrKR the Kriging model. The vertical lines represent the
baseline, where the solid line is the median random search fitness for 100, the dashed
line for 1000, and the pointed line for 100 000 evaluations.

73

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

Table 3.3: Variable importance.

Weight RF Mean MSE Decrease Kriging theta values

1 117.31366 3.82746
2 9.83143 le-04
3 59.79332 1.15356
4 17.86245 0.4643613
5 11.06656 0.2711343
6 14.05440 0.001178616
7 64.32869 2.221088
8 64.86968 1.164819
9 34.63966 1.8983
10 47.50249 3.45285

Table indicates that at least the most crucial weight (No. 1) and the
least essential weight (No. 2) are the same for both the Kriging and random
forest model. The other weights also show some rank correlation. The variable
importance comparison shows that the models can extract information beyond
the best-found parameter setting. To validate the given results, we will need to

use a designated experimental design, which will be part of future research.

3.6.3 Computation Time Comparison

An important aspect of every optimization technique is the total computation
time. Table[3.4]shows approximated values for the metaheuristics and the SMBO
with the respective models. As the problem itself has nearly no computation
time, the indicated values are mainly caused by the optimization algorithms. As
the values indicate, SMBO is rather expensive. The model fitting, updating, and
optimization process are computationally demanding, particularly for a higher
number of samples. This is especially visible for Kriging, which is sensitive to

higher sample sizes.

74

3.7. Conclusion and Outlook

Table 3.4: Algorithm computation time. All values are approximated.

Algorithm No. Evaluations Computation Time

S-Ring Problem C 1 < 0.001 seconds
S-Ring Problem R 1 < 1 second
Metaheuristics 100 0.1 second
Metaheuristics 1000 1 second
Metaheuristics 1lets 1-2 minutes
surrRF 100 1 minute
surrSO 100 4 minutes
surrKR 100 8 minutes
surrRF 1000 1 hour
surrSO 1000 4 hours
surrKR 1000 > 1 day

We also have to consider theSPOT R-framework implementation, which
might be inferior to C or C++-based implementations. For instance, a (not
optimized) re-implementation of the S-Ring simulator in R, which is implemented
in C, is about 1000 times slower. We can assume that an optimized version of
SMBO would be significantly faster. Furthermore, SPO performs only sequential

optimization, while the metaheuristics can conduct evaluations in parallel.

3.7 Conclusion and Outlook

According to our hypotheses, the results show that SMBO is a beneficial
approach for the underlying ANN control optimization task. The tested SMBO
algorithm was capable of outperforming metaheuristic optimization methods
in terms of sampling efficiency. Furthermore, the surrogate is helpful for the
significance analysis of the inputs. We can thus assume that SMBO can provide
a greater understanding of the learning process. The apparent downside of
SMBO is the considerable computation time, which is more than 10000 times

larger than these of the fastest metaheuristics. However, this vast downside

7

Chapter 3. Comparison of Evolutionary and Surrogate Model-Based
Optimization of Neural Network Weights

becomes less significant in scenarios where the objective function evaluations
become very expensive, e.g., in real-world optimization. The model fitting
and optimization process could be conducted simultaneously with the real-
time evaluations. Furthermore, parallel SMBO approaches could considerably
improve the computation time. In this study, we used the default parameters
for all given algorithms. An extended study to identify generally good settings

for a large set of problems could further improve general performance.

76

Custom Distance Metrics for Surrogate

Model-Based Optimization

Chapter [4]is based on two published papers:

Zaefferer M, Stork J, Friese M, Fischbach A, Naujoks B, & Bartz-Beielstein T (2014,
July). Efficient global optimization for combinatorial problems. In Proceedings of the
Genetic and Evolutionary Computation Conference (pp. 871-878). ACM, New York.
and

Zaefferer M, Stork J, & Bartz-Beielstein T (2014, September). Distance measures for
permutations in combinatorial efficient global optimization. In International Conference
on Parallel Problem Solving from Nature (pp. 373-383). Springer, Cham.

7

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

4.1 Introduction

The optimization of costly objective functions, such as expensive simulations, is a
frequently arising issue if real-world problems are considered. A well-established
method to reduce the number of required evaluations is the employment of
data-driven models in surrogate model-based optimization methods, such as
efficient global optimization |Jones et al., [1998| or sequential parameter opti-
mization [Bartz-Beielstein et al., [2005a]. While SMBO methods are frequently
and successfully applied in continuous spaces, they are less prominent for com-
binatorial optimization problems. However, combinatorial problems are well
present in several real-world settings, e.g., production process scheduling and
machine sequencing [Voutchkov et all 2005]. It is thus desirable to transfer
successful SMBO approaches to combinatorial spaces.

A study by |Moraglio and Kattan|[2011a] provides a generalization of distance-
based models to combinatorial spaces for radial basis function networks. Their
core idea is to replace continuous distance measures, such as a Euclidean or
Manhattan distance, with distance or similarity measures from combinatorial
spaces, for example an edit distance or the Hamming distance.

We advance on these ideas by presenting research on
1) an extension of Kriging models and Kriging-based SMBO to allow custom
distance measures, and
2) a performance comparison of different permutation distance measures in

combinatorial optimization.

4.2 Surrogate Model-Based Optimization[|

Generally speaking, a surrogate model Mis a (coarse-grained or cheap) model
that replaces a (fine-grained or expensive) model M with higher complexity.
The reader may consider a computational fluid dynamics (CFD) model that
replaces a real-world problem. A simplified analytical model can replace this

CFD model itself. CFD models are considered surrogates in the former case,

1Based on |Zaefferer et al [2014b| Section 2

78

4.2. Surrogate Model-Based Optimization

whereas, in the latter, they are considered fine-grained models that are replaced
by a surrogate. However, we concentrate our work on data-driven Kriging
models. They replace the simulation model M, which is given by a function f,
see Algorithm Here, it is assumed that function evaluations dominate
the time consumption (or cost), i.e., most time is spent in lines two and six of
Algorithm Stopping criteria can be a given budget of function evaluations,
a specified time limit, or a fitness value to be reached. The set A, contains all
underlying parameters of Algorithm e.g., number of initial solutions, type,

and parameterization of the search strategy (line 5) or the type of model.

Algorithm 4.2.1: Surrogate model-based optimization

Input: Function f, stopping criteria, parameter set A,
Output: Best solution found y*, final model M+
Create initial solutions (randomly or with design of experiment);
Evaluate solutions with f;
while Stopping criteria not reached do

Build /update M;

Find best solution(s) predicted by M;

Evaluate solution(s) with f;
end

b BN BNV U

Jones et al.|[1998| introduced EGO, which uses the predicted mean and
variance provided by a Kriging surrogate to compute the expected improvement
(EI) of a candidate solution. Without loss of generality, we will consider the case
of minimization. Following the notation in |[Forrester et al.,[2008], we consider an
expensive function f and a related surrogate of f, denoted f . Gaussian process
models allow the determination of the mean squared error §2(x) as described
in [Sacks et al., [1989|. Let ymin denote the best found function evaluation so
far, ®(-) and ¢(-) denote the cumulative distribution function and probability
density function, respectively. If §(x) > 0, then the expected improvement can

be determined as

79

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

otherwise EI(x) = 0. EI determines how much improvement can be expected
from the candidate solution to be predicted. Thus, EGO uses EI instead of the
mean prediction to determine a promising candidate solutions. Besides saving
evaluations of the expensive function f, this approach also provides an infill
criterion (i.e., EI) that balances exploitation versus exploration. Our SMBO

variant for combinatorial optimization adapts this principle.

4.3 Kriging for Combinatorial Problemﬂ

Li et al| [2008] proposed radial basis function network (RBFN) models for
optimization in non-Euclidean spaces by replacing the employed distance mea-
sure. Their RBFN models were applied to mixed-integer problems using a
mixed-integer evolution strategy. Another approach to a mixed problem is
taken by [Hutter| [2009], who describes a Kriging model based on a weighted
Hamming distance to model categorical variables for algorithm tuning. In a
very similar way, [Moraglio and Kattan| [2011a] suggested a generalization of
distance-based models from continuous to combinatorial spaces.

The core idea of combinatorial Kriging to employ distance measures, which
are inherent to the combinatorial problem representation (e.g., edit distance).
Such problem representations can be binary strings (e.g., binary knapsack, NK-
Landscapes) permutations (e.g., assignment and scheduling problems), trees
(e.g., symbolic regression), or any non-standard combinatorial representation.

The critical issue is to replace the Euclidean or per-variable distances by
distance measures, which directly work for the inherent problem representation.
Depending on the model type under consideration, other changes may become
necessary. For instance, there is no guarantee that a given distance matrix
will be invertible in the context of arbitrary distance measures, as required by
RBFN. Therefore, Moraglio and Kattan| [2011a] suggested replacing the matrix
inversion with the pseudoinverse.

Kriging is a method for interpolation and regression based on Gaussian

process modeling. The following notation is adopted from [Forrester et al.| [2008].

2Based on |Zaefferer et al., [2014b| Sections 2 and 3

80

4.3. Kriging for Combinatorial Problems

Given a set of n solutions X = {x(i)}izl,,,n in a k-dimensional continuous
search space with observations y = {y(i)}izl__in, Kriging is a method to find an
expression for a predicted value at an unknown point by interpreting the observed
responses y as if they are realizations of a stochastic process. The following set
of random vectors Y = {V (x(¥)},_1. ., is used to define this stochastic process.

The random variables Y'(-) are correlated as follows |Forrester et al., 2008|:

k
cor [Y(x(i))7 Y(x(l))} =exp | — ZGﬂxy) — x§-l)|p1 . (4.1)
j=1

Equation (4.1)) defines a non-Euclidean distance measure, which uses a
weighted per-element distance. The weights 6; and the shape parameter p;
have to be estimated. The matrix that collects correlations of all pairs {(i,1)}

is called the correlation matrix W. It is used in the Kriging predictor

§(x) = p+ " (y — 1), (4.2)

where §(x) is the predicted function value of a new sample x, [is the
maximum likelihood estimate of the mean and 1) is the vector of correlations
between training samples X and the new sample x. The error of the prediction

can be estimated with

$#(x)=6"(1 -y YT, (4.3)

2

where ¢° is a model parameter to be estimated. The (usually small) contri-

bution of error due to estimation of & is omitted.

The width parameter 8 determines how far the influence of each sample
point x spreads. If the correlation structure differs in different directions of the
search space, fitting different 6; values for each direction of the search space
is desirable. This is the so-called anisotropic case. Isotropic models are better
suited for combinatorial search spaces because direction is a vague concept for

combinatorial optimization problems. Therefore, Eq. (4.1]) is transformed to

81

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

become isotropic, i.e., with scalar 6 and p, i.e.:

cor Y(x(i)),Y(x(l))} = exp(—0d(x, xD)P), (4.4)

where d(-) can be any distance measure for the given problem representation.
Now, the samples x are not restricted to continuous values and may consist of
various types, e.g., binary strings, permutations, or trees.

Maximum likelihood estimation (MLE), which comprehends an optimization
procedure, is used to determine the model parameters, i.e., 8, p, ¢ and f.
MLE requires a matrix inversion (also later in the prediction step, see (4.2)),
usually performed directly or via Cholesky decomposition. A non degenerated
or positive-semidefinite matrix is required for this inversion. We employ the
more stable inversion via Cholesky decomposition, which requires a positive

semi-definite correlation matrix.

4.4 Distance Measures for Permutation|

The choice of distance measure can also be understood as a (categorical) pa-
rameter of the model. Hence, we suggest performing MLE for each distance
measure separately. Afterward, the distance measure with maximum likelihood
is chosen for the model. This procedure repeats every time the model is built,
i.e., in each iteration of a single SMBO run. In the experimental study, this
will be referred to as “All”.

A wrong decision may occur, especially while data is still very sparse.
Therefore, we expect the performance of choosing a distance measure with MLE
to be equal to or worse than the best single measure. An exception would be the
case where the underlying optimization problem has a dynamic behavior. Then,
different measures may be preferable in different phases of the optimization run.

Distance measures for permutations were investigated in other domains,
such as for landscape analysis |[Schiavinotto and Stiitzle, 2007] or diversity

preservation [Sevaux and Sorensen| 2005]. These previous studies illustrate that

3Based on [Zaefferer et all [2014a] Section 3

82

4.4. Distance Measures for Permutation

Table 4.1: Investigated distance measures. Second column lists runtime complexity.
Third column lists median runtime of 1000 evaluations for permutations of length 30.

Name complexity runtime [us] | Abbrev.
Levenshtein O(n?) 7 Lev
Swap O(n?) 6 Swa.
Interchange O(n?) 14 Int.
Longest Common Subsequence O(n?) 8 | LCSeq
Longest Common Substring O(n?) 8 | LCStr
R O(n?) 5 R
Adjacency O(n?) 6 Adj.
Position O(n?) 6 Pos.
Position? O(n?) 6 Posq.
Hamming O(n) 2 Ham.
Euclidean O(n) 6 Euc.
Manhattan O(n) 4 Man.
Chebyshev O(n) 3 Che.
Lee O(n) 6 Lee

a large array of distance measures is available. In this study, we will analyze
14 different distance measures, as summarized in Table The given runtime
complexity refers to the employed implementations. More eflicient variants
may be available. All distance measures are scaled to yield values from [0; 1]
to avoid scaling bias. In the following, we describe the basic features of these
distance measures. Since the naming of measures in the literature varies, this
clarification is useful to avoid confusion.

— Levenshtein and edit distance are sometimes used as synonyms. Leven-
shtein is only one example of an edit distance. It counts the minimum
number of deletions, insertions, or substitutions required to transform one
string (or here: permutation) into another.

— A swap operation is the transposition of two adjacent elements in a
permutation. The swap distance is defined as the minimum number of
swaps required to transform one permutation into another. It has also been
called Precedence distance |Schiavinotto and Stiitzle, [2007], or Kendall’s
Tau [Kendall and Gibbouns! |1990; |Sevaux and Sorensen, [2005].

— An interchange operation is the transposition of two arbitrary elements.

83

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

Respectively, the interchange (also: Cayley) distance is the minimum
number of interchanges required to transform one permutation to an-
other [Schiavinotto and Stiitzle, [2007].

— The longest common subsequence distance counts the largest number
of elements that follow each other in both permutations, with interruptions.
We use the algorithm described in [Hirschberg] [1975].

— The longest common-substring distance counts the largest number of
elements that follow each other in both permutations, without interruption,
i.e., all elements are adjacent.

— The R-distance [Campos et al. 2005} [Sevaux and Sérensenl 2005 counts
the number of times that one element follows another in one permutation,
but not in the other. It is identical with the uni-directional adjacency
distance [Reeves| [1999].

— The (bi-directional) adjacency distance [Reeves, [1999; [Schiavinotto and
Stiitzlel |2007] counts the number of times two elements are neighbors in
one, but not in the other permutation. Unlike R-distance (uni-directional),
the order of the two elements does not matter.

— The position distance [Schiavinotto and Stiitzle| [2007] is identical with
the deviation distance or Spearman’s footrule [Sevaux and Sorensen), [2005]

— The squared position distance is Spearman’s rank correlation coeffi-
cient [Sevaux and Sorensen, 2005].

— The Hamming distance or Exact Match distance counts the number of
unequal elements in two permutations.

— The Euclidean distance is dgy.. (7, 7") = m

— The Manhattan distance is dpqn. (7, 7') = >0, |m — 7.

— The Chebyshev distance is dope. (7, 7') = 1rélia<xn(|7ri —mi]).

— The Lee distance |Lee}, [1958] can be adapted to permutations with
Spee(m, ') = Y0 min(|m; — 7|, n — |m; — 7).

The reversal distance (number of reversals required to transform one per-

mutation to another) was not used, even though it is especially promising for
the traveling salesperson problem (TSP). Calculating the reversal distance for

unsigned permutations is NP-hard |Capraral, [1997].

84

4.5. Experiments and Results

4.5

Experiments and Resultd

For all further experiments, five permutation problem classes are used.

Four instances of the quadratic assignment problem (QAP) [Burkard, [1984]
from the QAPLIB [Burkard et al., [1997] are chosen (nug30, nugl2, tho30
and kra32). In the QAP, n facilities have to be assigned to n locations.
Assignment cost is minimized based on the flow between facilities and the
distance between locations.

Four instances of the flow-shop scheduling problem (FSP) [Taillard), {1990]
are chosen (reC05, reC13, reC19, reC31 [Reeves| |1995]) from the OR-
Library |Beasley} [1990]. Here, the finishing time of the last of n jobs
sequenced on m machines is minimized.

Three TSP instances are chosen from the TSPLIB [Reinelt} [1991] (bayg29,
fri26, gr24). In the TSP, the cost or length of a route through several
locations is minimized. Each location has to be visited once.

Three instances of the asymmetric TSP (ATSP) are generated (atspl0,
atsp20, atsp30). For each instance, a distance matrix is created randomly
with a uniform distribution. The three instances are of sizes 10, 20, and 30.
In contrast to TSP, the cost of traveling between two locations depends
on the direction.

Finally, four instances of the single-machine total weighted tardiness
problem (WT) |Abdul-Razaq et al.,[1990] are chosen, also from the OR-~
Library |Beasley, 1990] (the first four of length 40, i.e., wt40a, wt40b,
wtd0c, wt40d). Here, n jobs are sequenced on one machine that can handle
one job at a time. The tardiness of a schedule for all jobs, weighted by a
set of n given weights, is minimized. It depends on the given processing

times and due dates of each job.

For QAP, TSP, ATSP, and WT, the length of the permutation n are given by
the number in the instance name. For FSP, n is 20, 20, 30 and 50 for reC05,
reC13, reC19 and reC31 respectively.

We use this benchmark set under the artificial assumption of costly target

4Based on [Zaefferer et all) [2014a] Section 4 and 5

85

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

function evaluation. While some of these problems have actual real-world
relevance (e.g., based on real-world data), none may be considered expensive.
This allows for a more in-depth study, providing first results, which of course
should be validated with actually expensive problems in future studies.

We compare the optimization performance of SMBO, a model-free genetic
algorithm (GA), random search (RS), and a simple 2-opt local search are
employed with a strictly limited budget of 200 function evaluations. GA, RS,
and 2-opt are baselines in this comparison.

The GA uses cycle crossover, and the mutation operator is an interchange
of arbitrary elements. Furthermore, the algorithm employs a population size of
ten, crossover rate 0.5, mutation rate 1/n, tournament selection with size two,
and probability 0.9. The SMBO algorithm will start with an initial set of ten
solutions. Kriging parameter p is set to one, while the others are determined
with MLE. Internally, SMBO will perform optimization of the (assumed to
be cheap) surrogate model. Hence, the same GA is used with 10,000 model
evaluations and population size of 20.

For an ideal comparison of actual competitors, most of the mentioned
parameters would require tuning. The SMBO variants use identical settings,
thus yielding a fair comparison among themselves.

Figure shows the results of the optimization experiments. The SMBO
variants are referred to by the name of the employed distance measure. Results
of 2-opt are not shown for the sake of brevity. 2-opt usually ranks worse than
GA and only outperforms GA for the three TSP instances. Still, it can not
compete with the model-based approaches. Chebyshev distance (Che.) and RS
are consistently outperformed by the GA and not included in the plot.

Three main groups with similar structures can be identified: first, the QAP
instances, second, the TSP and ATSP instances, and third, the WT and FSP
instances. Members of each group have a similar pattern, although the best
performing method may not be identical for all members. Overall, the model-
free GA is consistently outperformed by at least five SMBO variants. Choosing
the wrong distance measure may, however, lead to perform worse than the

model-free GA. Choosing a distance measure with MLE (All) never ranks worse

86

4.5. Experiments and Results

265 tho30 kra32 7750 nug30
) 7500 |
1.2e5 |
1.9e5 | 7250 |
1.8e5 | 1.1e5 | 7000 |
1.7e5 | 6750 |
1.665 165
720 nug12 reC05 reC13
680 | 1350 | 2200 |
640 | 1300] 2100 |
600 1250 1 2000 |
reC19 reC31 bayg29
3600 | 4000 |
2400 1 3500
3500 | 7
3400 4 2500
2200 3300 | 2000 |
2250 fri26 gr24 3 atspl0
2000 2500 _| 2.5 |
1750 | 2
1500 | 2000 | g
1250 | 1500 | 1.5 |
atsp20 12 atsp30 6000 wt40a
6| .
5] 10 | 5000
4] 8] 4000 |
3] 6] 3000 |
2] 4| 2000 |
wt40b wt40c 7000 wt40d
4000 | 8000
6000 |
3500 6000 |
2500 | 4000 | 4000 |
2000 | 3000 |
T 1T 1 11 rri UL L L L T rr 11 1rr1rr1rrrT rrr1rrrrrrrrrrriT
ESESES=RE S =L ESESES=RE S =L ECSE X G=TE5 S =L
8353 SIPIESTe SR EERAGEEISO BRI SRRAZIESO
3 a |

Figure 4.1: Optimization performance: Dots are median, black bars are interquartile
range, thick grey bars are range from minimum to mazimum. Smaller values are better.

87

Chapter 4. Custom Distance Metrics for Surrogate Model-Based Optimization

than third best, making it the most robust method in this testbed. All ranks
first place in 7 of 18 instances. It seems that the underlying problem does
profit from a dynamic choice of distance measure. The single best distance
measure is Hamming distance, yielding best results in 6 of the 18 test problems
but receiving lower ranks for other instances. For each problem class, the
single best distance measures are Ham for QAP, Lev for FSP, Adj for TSP,
R for ATSP, and Pos for WT. While the scheduling problems instead reflect
the importance of relative order, TSP or ATSP are more concerned with the
adjacency of neighboring cities. Hence, it makes sense that a bi-directional
adjacency measure is used for TSP, while uni-directional adjacency (R-Distance)
is used for the ATSP instances. In ATSP, direction matters, whereas in TSP, it

does not.

4.6 Conclusion and Outlook

We demonstrated that SMBO could be successfully applied to combinatorial
optimization problems, and that this Kriging-based approach was able to
outperform a model-free GA. However, finding the global optimum solution of
the EI landscape requires a surrogate-optimizer that can search multi-modal
landscapes. Stochastic, population-based methods like GA are most suitable
for this purpose and are also employed in our SMBO approach.

Furthermore, the permutation distance measures were revealed to have a
substantial impact on the results. It was shown that each permutation problem
class or instance might require a different distance measure. The excellent
and robust performance of choosing a distance measure with MLE makes for a
promising result. Here, the only issue is to carefully avoid numerical problems,
i.e., to use matrix inversion via Cholesky decomposition. Should the increased
computational effort necessitate a smaller set of distance measures, Hamming

distance should always be included due to good performance and lowest cost.

88

Comparison of Distance Metrics for
Surrogate Model-Based Optimization in

Genetic Programming

Chapter [5] was published as:

Zaefferer M, Stork J, Flasch O, & Bartz-Beielstein T (2018, September). Linear
combination of distance measures for surrogate models in genetic programming. In
International Conference on Parallel Problem Solving from Nature (pp. 220-231).
Springer, Cham.

89

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

Surrogate models are a well-established approach to reduce the number of
expensive function evaluations in continuous optimization. In the context of
genetic programming, surrogate modeling still poses a challenge due to the
complex genotype-phenotype-fitness relationships. We investigate how different
genotypic and phenotypic distance measures can be used to learn Kriging
models as surrogates. We compare the measures and suggest using their linear
combination in a kernel.

We test the resulting model in an optimization framework, using symbolic
regression problem instances as a benchmark. Our experiments show that the
model provides valuable information. Firstly, the model enables an improved
optimization performance compared to a model-free algorithm. Furthermore, the
model provides information on the contribution of different distance measures.
The data indicates that a phenotypic distance measure is vital during the early
stages of an optimization run when less data is available. In contrast, genotypic

measures, such as the tree edit distance, contribute more during the later stages.

5.1 Introduction

Genetic programming (GP) automatically evolves computer programs that aim
to solve a task. This idea goes back to fundamental work by [Koza) [1992] and
follows the principles of evolutionary computation. Computer programs are
individuals subject to an evolutionary process, which improves them based
on their fitness, i.e., their ability to solve a problem. Examples for GP tasks
are symbolic regression (SR), classification, and production scheduling [Flasch,
2015; Nguyen et al.l |2017].

Expensive fitness functions pose a challenge to evolutionary algorithms,
including GP. This occurs, e.g., when the fitness function requires laboratory
experiments or extensive simulations. Frequently, surrogate model-based op-
timization is used to deal with expensive evaluations [Bartz-Beielstein and
Zaefterer| 2017]. Most SMBO research focuses on problems with continuous vari-
ables, where many competitive regression models are available. In the context

of GP, the use of surrogates is not well researched. This might seem surprising,

90

5.2. Related Work

as the computational bottleneck of most GP applications is the evaluation of
fitness cases. Unfortunately, surrogate modeling of GP tasks, such as SR, is
intricate because it subsumes modeling a complex genotype-phenotype-fitness
mapping. Recent work in deep learning suggests that this mapping can be
approximated, at least in specific domains of program synthesis [Parisotto et al.)
2016]. In the last years, combinatorial search spaces were treated successfully
with SMBO by using distance-based models [Moraglio and Kattan, 2011a} |Za;
efferer et al., [2014b]. However, there is no generic way to choose an adequate
distance measure. For complex tree-shaped structures, which occur in GP, it is
challenging to select a suitable distance measure and find a feasible modeling
approach. For that reason, we will focus on the following research questions
regarding SMBO for GP and tree-shaped structures:

1. How do different distance measures compare to each other?

2. What impact do these distances have on the model?

3. How does SMBO based on a linear combination of these distances compare

to a model-free evolutionary algorithm and random search?

To answer these questions, we will utilize bi-level optimization problems based
on different SR tasks as test functions. While these test functions are not
that expensive to evaluate (and hence are not a natural use-case for surrogate
models), they present a challenging benchmark for the proposed models. They
allow us to gain insights into the topics summarized by our research questions.
We expect our result to be transferred to other problems with tree-shaped
structures, such as program synthesis for general purpose or domain-specific

languages.

5.2 Related Work

In the following, we will differentiate between two approaches, which will be

further referred to as a) SMBO and b) SAEA.

a) Sequential SMBO generates new candidate solutions by performing a search
procedure on the surrogate model, e.g., as described for the efficient global

optimization algorithm by |[Jones et al.|[[1998].

91

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

b) Approaches utilize surrogates to assist an EA (SAEA), e.g., as described by
Jin| [2011]. For example, the surrogate is utilized to support the selection

process of an EA by predicting the fitness of the proposed offspring.

Most studies on GP and surrogate modeling focus on SAEA. [Kattan and
Ong [2015] describe an SAEA approach with two distinct radial basis function
network (RBFN) models (semantic and fitness). The conjunction of both models
is used to evolve a subset of the population. They report the superiority of

their approach over standard GP for three different tasks, including SR.

Hildebrandt and Branke| [2015] present a phenotypic distance. They optimize
job dispatching rules with an SAEA approach. Their surrogate model is a
nearest neighbor regression model based on the phenotypic distance. They
demonstrate that their model allows for faster evolution of reasonable solutions.

This approach is also discussed and extended by Nguyen et al|[2014} [2016].

To the best of our knowledge, only [Moraglio and Kattan|[2011b] describe
an SMBO approach to GP where a minimal number of function evaluations
is allowed. They use an RBFN with appropriate distance measures. Their
results did not indicate a significant improvement over the use of a model-free

optimization approach.

In contrast to these works, we aim to learn Kriging models (following the
idea of EGO [Jones et al.| [1998]) and employ them in an SMBO framework
with a severely limited number of 100 fitness function evaluations. Our models
are based on a linear combination of three diverse distances. Like several of
the above-described studies, we use SR as a test case. We want to show that
the relation between complex structures and their associated fitness can be
learned and exploited for optimization purposes. Although SR is not particularly
expensive, we argue that it presents a complex and challenging test case to
investigate whether our proposed models can learn such a complex search

landscape.

92

5.3. A Test Case for SMBO-GP: Bi-level Symbolic Regression

5.3 A Test Case for SMBO-GP: Bi-level Sym-

bolic Regression

In SR, a regression task is solved by evolving symbolic expressions. In essence, SR
searches for a formula that best represents a given data set. Trees can represent
the formulas. Each tree consists of nodes and leaves and the discrete labels
on the nodes (mathematical operators, e.g., +, —, x, /) and leaves (variables
and real-valued constants). Figure shows the tree structure of the symbolic
expression /c; — z2 + (z1¢2). Our goal is to develop models that learn the
relation between discrete tree structures and their fitness. For now, we are not
interested in the influence of the real-valued constants. Hence, we suggest a

bi-level problem definition.

5.3.1 Problem Definition

The upper level is the optimization of the discrete tree structure. For each
fitness evaluation of the upper level, the lower level optimization problem has
to be solved, which comprehends the optimization of the constants. Therefore,
the upper level problem is defined by
min F(z, ¢) subject to ¢ € argmin f(z, ¢),
z c

where x is the tree structure representation, ¢ € R? is the set of d. constant
values, and f(z,c) is the lower level objective function. Note, that the number
of constants d. depends on z. In extreme cases, the tree x may not contain any

constants (d. = 0), which eliminates the lower level problem. The fitness will

be determined as
f(z,e) =1 —|cor(g(z,c),y)l, (5.1)

where §(z, c) denotes the output of the symbolic expression for the data set,
y is the corresponding vector of true observations, and cor(-,-) is the Pearson
correlation coefficient. If §(x,) becomes infeasible (e.g., due to a negative

square root or division by zero), we assign a penalty value. To that end, we

93

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

use the upper bound of our fitness function, fpenaity(®,c) = 1. An example of
an upper-level candidate’s evaluation is visualized in Figure If not stated

otherwise, fitness evaluations refer to evaluations of the upper level function F'.

lower level: optimization of constants c;

oy
X: tree representation of a —I ﬂf(x,{G.Z,Ol})=0.4

symbolic expression Z 0.1
—
“ — t —
*
st e St %0 M {89,25) =03
- ! Z; 25
C,1_ _Z|2 s

rt *
5 T [ik {30n) =01

Figure 5.1: Ezample for the upper level candidate x = \/c1 — z2+(z1¢2). To estimate
its fitness F(xz,c), a lower level optimizer (step 1) estimates the fitness f(x,c) for
different constants (step 2) and returns the best to F(x,c) (red circle).

5.3.2 Surrogate Model-Based Optimization

The SMBO approach we employ for the upper-level optimization is loosely based
on the EGO algorithm . Initially, the search space is randomly sampled. The
resulting data is used to learn a suitable regression model. This surrogate model
is subject to a search via an optimization algorithm (e.g., an EA), optimizing
an infill criterion based on the model. An iteration ends with evaluating the
actual (upper level) fitness of the new individual. Then, the surrogate model is
updated with the new data, and the procedure iterates.

As in standard EGO, we utilize a Kriging regression model, which assumes
that the observed data is derived from a Gaussian process |Forrester et al.)
2008]|. Ome reason for the popularity of Kriging in SMBO is that it allows
estimating its uncertainty. The uncertainty estimate can be used to calculate the
expected improvement infill criterion, which allows for balancing exploitation
and exploration in an optimization process [Mockus| [1974; |Jones et al., [1998].

Importantly, Kriging is based on correlation measures or kernels, which de-

94

5.4. Kernels for Bi-level Symbolic Regression

scribe the similarity of samples. Exponential kernels, e.g., k(z, 2") = exp(—0||x—
2'||2), with the parameter 6 determined by maximum likelihood estimation,
are often used. It is straightforward to extend kernel-based models to combi-
natorial search spaces [Moraglio and Kattan| 2011a; [Zaefferer et al., [2014b].
The core idea is to replace the distance measure, e.g., in the exponential kernel
k(z,2") = exp(—6d(z,2’)). The distance measure d(z,z’) can be some adequate
measure of distance between candidate solutions, such as an edit distance. Our
study follows this idea. We will compare different distance measures and test

how much they can contribute to Kriging models in an SMBO algorithm.

5.4 Kernels for Bi-level Symbolic Regression

We investigate four distance measures between trees or symbolic expressions

that will be embedded into an exponential kernel.

5.4.1 Phenotypic Distance

The phenotypic distance (PHD) estimates the dissimilarity of two individu-
als (trees) based on their program output/phenotype instead of using their
code/genotype. Hildebrandt and Branke| [2015] have suggested this idea for
evolving dispatching rules via GP. They defined a phenotypic dissimilarity by
comparing the outcome of a decision rule based on a small set of test situa-
tions. Our SR tasks require a different definition of the phenotypic distance.
We propose to measure the correlation between the outcomes of two symbolic
expressions, with all numeric constants set to one. Hence, we save the effort of
the optimization of the constants and compare the outputs of the expressions
g(x, 1) with
dpup(z,2') = 1 — [cor(j(z, 1), §(=’, 1))|.

If either of the two expressions is infeasible (e.g., due to division by zero), the
distance will be set to one. Setting all constants to one is, of course, arbitrary. A

random sample would also be possible but potentially problematic. A difference

in phenotype could be perceived due to a different assignment of the constants

95

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

on the leaves rather than a different symbolic expression behavior.

Instead of this definition (or in addition to it), we could also limit the number
of training data samples used to evaluate the expression, which would be closer
to the approach of Hildebrandt and Branke [2015]. For the test cases used in
this study, the cost reduction would be negligible.

5.4.2 Tree Edit Distance

As an alternative to the PHD, we will also employ genotypic distances, i.e.,
distances between trees. One possible definition of distance between trees is
the minimal number of edit operations required to transform one tree into
another. This approach is denoted as the tree edit distance (TED). We use the
TED implementation that was introduced by [Pawlik and Augsten||2016b]. It is
available in the APTED library version 0.1.1 |[Pawlik and Augsten| 2016a]. The
APTED implementation counts the following edit operations: node deletion,
node insertion, and node relabeling. Alternatively to counts, costs can be
defined for each operation, and the TED is then defined as the minimum cost
sequence, e.g., to give different weights to different operations. We use equal

weights in our study.

5.4.3 Structural Hamming Distance

The structural hamming distance (SHD) [Moraglio and Poli} |2005] has been used
to express genotypic dissimilarity for model-based GP in several studies [Moraglio
and Kattan, 2011b} [Kattan and Ong}, [2015; Hildebrandt and Branke, |2015].
Roughly speaking, it compares two trees by recursively checking each node that
the two trees have in common. It uses the hamming distance (HD) to compare
nodes, which has a value of one if two labels are different and zero otherwise.
The original SHD (SHD1) is defined as

96

5.4. Kernels for Bi-level Symbolic Regression

1, if arity(zo) # arity(x()
dsup1(z,2") = § HD(zg,z(), if arity(zo) = arity(zf) = 0
Az, '), if arity(zo) = arity(xf) = m,

with

m+1

1
A(x,x') = — (HD JJ(),.’L‘O ZdSHDl Ti, T > . (52)

Here, x and z’ are trees, xg indicates a root node of x, x; with ¢ > 1 is the
i-th subtree of x, and arity(z) implies the number of subtrees linked to the
corresponding node. We use a slight variation, which we refer to as SHD2. For
the sake of simplicity, we define it for trees with a maximum arity of two. SHD1
and SHD2 are identical, except for the case arity(zg) = arity(x) = m > 1.
Then, Eq. becomes

1
m+1

min {dsup2 (21, 2}) + dsup2(®2, 25), dsape (21, ©5) + dsup2 (22, 37/1)})

(HD(xO, xy)+

That means, when two subtrees x1, xo are compared with their counterparts
x},), we use the pairing or alignment between z and z’ which yields the
smaller distance. Potentially, this is more accurate since it does not depend
on the (arbitrary) initial alignment of the two trees. However, SHD2 requires

additional computational effort, even more so for larger arities.

The reason for using this modified variant lies in the nature of our SMBO
algorithm. SAEAs yield datasets where some individuals will have common
ancestors (or are ancestors of each other), and hence, are inherently more likely
to be aligned with each other. Contrarily, SMBO generates new trees via a
randomly initialized search that avoids direct ancestor relationships among
individuals. This implies that two trees are more likely to have different

alignments. Then, SHD2 is a potentially more accurate (but costly) measure.

97

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

100~

0 25 50 75

Figure 5.2: Image plot of the four different tree distance measures. Fach image cell
is an element of a distance matriz. The trees are sorted by their complezity (tree depth
and the number of nodes). Trees in the lower-left corner are less complex than those
in the upper right. The tree depth is annotated in red at the bottom of each plot.

5.4.4 Comparison and Linear Combination of Distances

To compare the four different distance measures, we first calculated the distance
matrices for 100 randomly generated trees (symbolic expressions). We used
the same random tree-generation method as in Section We computed the
Pearson correlation between the different distance matrices. For this sample,
the SHD variants yielded a strong correlation of 0.99, which indicates that they
reflect very similar information. For the remaining samples, the correlation was
0.51 (PHD, SHD2), 0.29 (PHD, TED), and 0.37 (TED, SHD2). That is, the
largest diversity was observed between PHD and TED.

Figure visualizes the corresponding distance matrices. It shows that
the SHD does have problems with differentiating between trees of different

complexity. Several large blocks of the SHD matrices have a value of one,

98

5.4. Kernels for Bi-level Symbolic Regression

indicating that the respective trees are at maximum distance. This lack of
perceiving a more fine-grained difference is problematic. It implies that any
model based on SHD is potentially inaccurate for trees of a complexity that
has not been observed so far. TED and PHD tend to see larger distances for
more complex trees. This is obvious for TED, as complex trees require more
operations to be transformed into each other. For PHD it is clear that complex

trees can produce more diverse phenotypic behavior.

With regards to the computational effort, we note that TED is by far the
most expensive measure. The PHD follows it, and the cheapest measure is
SHD1. While the specifics strongly depend on the implementation, we note
that the TED required at least an order of magnitude more computation time
than the others. This is not surprising, as determining the minimal number of

edit operations requires solving an optimization problem.

The PHD measure seems most promising in terms of generalizability. Most
GP problems involve some phenotypic behavior that may be measured /compared.

SHD and TED are limited to problems with tree structures and discrete labels.

The diversity of the different distances suggests that it is promising to
combine them. We propose a linear combination of the PHD, TED, and SHD2.
We decided to focus on one of the SHD variants due to their similarity and chose
the SHD2 variant due to its potentially increased accuracy. Also, its increased
computational cost disappears compared to the more considerable costs of the

TED. The linear combination in the kernel is

k(z,2") = exp {—B1dsup2(z, 2’) — Badpup(z,2") — Bzdrep(z,2)}. (5.3)

Each distance receives a weight 3; € R* that is determined by MLE. The linear
combination allows for a potentially more accurate Kriging model. As we do
not know a-priori which distance measure is appropriate for a specific problem
(or whether they complement each other), the combination shifts this decision
problem to the model. Furthermore, the weights provide insights into when and

how much each distance contributes to the model.

99

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

5.5 Case Study

We performed a case study, testing the SMBO algorithm with six SR tasks.

Symbolic Regression Test Problems: We chose the Newton, sine-cosine,
Kotanchek2D, and Salustowicz1D problems as used in |Flasch| [2015] and the
sqr and sqr-+log problem as used in [Kattan and Ongj, 2015]. All problem
configurations remained unchanged, i.e., operator set, data set size, and bounds
for variables. We did not evaluate the derived symbolic expressions on an
additional test set since our goal was to determine the ability of the SMBO

algorithm to learn the connection between candidate solutions and fitness.

Lower level optimization of the constants: To optimize the lower level
objective function, we decided to use the locally biased version of the dividing
rectangles (DIRECT) algorithm |Gablonsky and Kelleyl 2001| for a global search.
DIRECT uses 1000 x d. evaluations of the objective function. The result of the
DIRECT run is further refined with a Nelder-Mead local search |[Nelder and
Mead, |1965] (also 1000 x d. evaluations).

Upper-level optimization of the structure: All algorithms received a budget
of 100 upper-level objective function evaluations to emulate an expensive opti-
mization problem. We used random search and a model-free EA as baselines.
All operators were taken from the rgp package |Flasch et al.,|2014]. For creating
new individuals, both baselines used randfuncRampedHalfAndHalf, parameter-
ized with a maximum tree depth of 4 and a probability to generate constants
of 0.2. Furthermore, the EA employed crossoverexprFast for recombination,
which randomly exchanges subtrees. For mutation, mutateSubtreeFast was
used. The parameters of the mutation operator are as follows: 0.1 (probability
to insert a subtree), 0.1 (probability to delete a subtree), 0.1 (probability of
creating a subtree instead of a leaf), 0.2 (constant generation probability), and 4
(maximum tree depth). Since constant values were not considered at the upper
level, the respective bounds in the operator are both set to one. We employed
a standard EA (based on optimEA in the CEGO package |Zaeferer| 2017]) that
used the above described operators. The EA used truncation selection and a

fixed number of children in each generation. The population size and number

100

5.5. Case Study

of children were tuned (see Section [5.5.1)).

The SMBO algorithm also solved the upper-level problem. We used the
Kriging model from the CEGO package, with the kernel given in eq. . The
model was trained within 1,000 likelihood evaluations (via DIRECT). The EA
searched on the surrogate model with 10,000 evaluations of the EI criterion in
each iteration. The SMBO search was initialized with 20 random trees.

For the analysis, we recorded the best individual for each run. In addition,
we recorded the weights used for the linear combination of the distances in each
iteration to evaluate the contribution of each distance function over time. Each

algorithm run was repeated 20 times.

5.5.1 Algorithm Tuning

We decided to tune some potentially sensitive parameters to allow for a more
fair comparison between the model-based and model-free algorithm. The model-
free GP algorithm’s population size p and number of children A produced
in each iteration were tuned. All combinations of p = {5,10,15,20} and
A =1{1,2,3,4,5} were tested. The optimization performance was expected to
be sensitive to these parameters due to the minimal fitness evaluation budget.

For the SMBO algorithm, we did not tune ¢ and A. Due to the overall more
significant complexity, we decided to set the parameters based on experience
only, without a detailed tuning. In fact, due to the larger number of evaluations
(of the surrogate model) the algorithm should be less sensitive to u and related
parameters. Since 10,000 evaluations of the surrogate model were allowed,
a (relative to the model-free EA) large ¢ = 200 was given to the EA and
correspondingly larger A\ = 10.

We also performed preliminary experiments with the mean square error
(MSE) instead of the correlation-based fitness measurement in Equation (5.1)).
The MSE-based experiments yielded relatively poor results with SMBO. This
may be explained by the penalty for infeasible candidates. The penalty value
is challenging to set for the MSE case. A poor choice may severely impair the

ability to train a good Kriging model because of strong jumps or plateaus in the

101

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

Newton sine—cosine Kotanchek2D
0.4 o 0.3-
LN]
0.6- .
0.3-
04- " 0.2-
0.2-
.
0.2-
0.1-
L
= =L .
S 0.0 " 0.0- "o 1 T —— evaluations
(S RS EA SMBO RS EA SMBO RS EA SMBO *50
IS} ,
o Salustowicz1D sqr sqr+log - 100
‘l| B 0.00100- . 0.0100 - .
0.0020 -
0.00075- — 0.0075 -
0.0015 - e
0.00050 - 0050 -
0.0010- 0.0050 .
0.0005 - , 0.00025- i. 0.0025-" .
i S e
0.0000-)] 0.00000-) "':-'- 0.0000- ~,] -'T'-
RS EA SMBO RS EA SMBO RS EA SMBO

method

Figure 5.3: Boxplot of best found values after 50 and 100 evaluations respectively.

fitness landscape. While our preliminary experiments were not very detailed,
they can be counted as additional tuning efforts since they influenced the choice

of the correlation measure used in the phenotypic distance.

5.5.2 Analysis and Discussion

Boxplots of the best observed fitness after 50 and 100 evaluations of the objective
function F' are shown in Figure [5.3] We report results of the tuned, model-free
EA that achieved the best mean rank on all problems (u = 15, A = 1). The
minimal A makes sense, as it allows to perform a large number of iterations
despite the small budget. We tested for statistical significance of the observed
differences via the non-parametric Kruskal-Wallis rank sum test and Conover
posthoc test for each problem and number of evaluations, with a significance
level of 0.05. SMBO was significantly better than its two competitors in most

cases, except for Salustowicz1D and Kotanchek2D after 100 evaluations, where

102

5.5. Case Study

Salustowicz1D sqr

= =

.% o _| -% e _]

E z°

o he}

(3] — (7] —

N N

® ®

E 3 E 3

Q =}

c o

o | o |

8 o | 8 Q|

© T T T T T © T T T T T
20 40 60 80 100 20 40 60 80 100
iteration iteration

Figure 5.4: Awverage normalized weights for the different kernels/distances. Solid
line: PHD, dashed line: TED, dotted line: SHD2.

no evidence for significant differences to the model-free EA is found. The EA
was significantly better than the plain RS, except for Newton and sine-cosine

(50 and 100 evaluations) as well as Kotanchek2D (50 evaluations).

To determine which distance measures contributed to these results, the
weights of the linear combination are shown in Figure 5.4 The weights are
normalized so that they sum up to one. We show results for two problems
since they are similar in the other four cases. Usually, the PHD received the
largest weights in the beginning, whereas the importance of the TED increased
throughout the run, sometimes overtaking the PHD. SHD usually does not
contribute as much, except for the sqr problem instance. Here, SHD overtakes
both other distances at the end of the run. The generally more significant
importance of the PHD compared to SHD is in agreement with previous results
by Hildebrandt and Branke [2015], where a similar distance achieved better
results than SHD.

We confirmed these results by additional optimization experiments for every
single distance (i.e., without a linear combination). Runs with PHD tended to
suggest reasonable candidate solutions early, whereas TED and SHD performed
better later on. The linear combination performed at least as well as the best

of the single-distance models.

103

Chapter 5. Comparison of Distance Metrics for Surrogate Model-Based
Optimization in Genetic Programming

5.6 Conclusion and Outlook

We investigated whether three distance measures can be employed in an SMBO
algorithm based on a Kriging model. We tested the algorithm with SR tasks.
Concerning the research questions stated in Section [5.1} our results can be
summarized as follows:

1. The distance measures PHD, SHD, and TED are quite diverse. The SHD
differentiates poorly between trees with different complexities. Especially
the TED seems to be much more fine-grained, but it requires the most
computational effort. On the other hand, the PHD is comparatively cheap
to evaluate and independent of the genotype.

2. Interestingly, the PHD seemed to contribute most, followed by the TED.
This was especially true for small data sets at the beginning of an op-
timization run. Later on, TED and, to a lesser extent, SHD gained
importance.

3. A Kriging model based on a linear combination of the three distances
seems beneficial for SMBO. The SMBO algorithm outperformed a model-
free algorithm and random search. All algorithms used no more than 100
fitness evaluations.

In future work, we would like to determine how well these results apply to
other problem classes. Furthermore, alternatives to the linear combination of

distances should be investigated.

104

Comparison of Genotypic and
Phenotypic Distance Metrics for
Modeling Neural Networks

Chapter [6] was published as:

Hagg A, Zaefferer M, Stork J, & Gaier A (2019, July). Prediction of neural network
performance by phenotypic modeling. In Proceedings of the Genetic and Evolutionary
Computation Conference (pp. 1576-1582). ACM, New York.

105

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

Surrogate models are used to reduce the burden of expensive-to-evaluate ob-
jective functions in optimization. By creating models which map genomes
to objective values, these models can estimate the performance of unknown
inputs and so be used in place of expensive objective functions. Evolutionary
techniques such as genetic programming or neuroevolution commonly alter
the structure of the genome itself. A lack of consistency in the genotype is a
fatal blow to data-driven modeling techniques: interpolation between points is
impossible without a common input space. However, while the dimensionality
of genotypes may differ across individuals, in many domains, such as controllers
or classifiers, the dimensionality of the input and output remains constant.
In this work, we leverage this insight to embed differing neural networks into
the same input space. To judge the difference between the behavior of two
neural networks, we give them both the same input sequence and examine the
difference in output. This difference, the phenotypic distance, can then be used
to situate these networks into a common input space, allowing us to produce
surrogate models that can predict neural networks’ performance regardless of
topology. In a robotic navigation task, we show that models trained using
this phenotypic embedding perform as well or better as those trained on the
weight values of a fixed topology neural network. We establish such phenotypic
surrogate models as a promising and flexible approach that enables surrogate

modeling even for representations that undergo structural changes.

6.1 Introduction

Optimization of real-world engineering problems is a demanding task. Frequently,
expensive simulations are needed to determine the quality of a solution. For
example, to determine whether a car model produces low wind resistance, a
numerical simulation of the airflow needs to be performed, which can take
many hours or even days. In robotics control, we need to run physics-enabled
simulations or run real-world experiments. Iterative optimization requires many
of these evaluations to reach a satisfactory solution.

One of the most helpful techniques is to replace most evaluations with the

106

6.1. Introduction

predictions of a surrogate model [Jin| [2011} [Jin et al.; [2019]. The surrogate
model is an efficient computational model trained with examples from the
real objective function but takes orders of magnitude less time to predict the
objective function’s value for a specific candidate solution. Commonly used
models such as Gaussian processes (also known as Kriging) or support vector
machines [Rasmussen, [2004; [Jinl [2011] are based on the similarity of candidate
solutions. Similarity-based surrogate models have been used in such varied
domains as: shape optimization in fluid dynamics |[Ong et al.l 2003; |Daniels
et al.l [2018], the discovery of new drugs |[De Grave et al., |2008], the placement
of hospital trauma centers [Wang et al.| [2016], and even to the optimization
of other machine learning methods [Snoek et al., 2012} [Stork et al. 2017].
To produce a prediction, these models interpolate based on the distance of a
candidate solution to known examples. They assume that the objective function
is smooth: the closer a candidate is to a known example, the closer its function

value will be to that example.

A prerequisite for similarity-based surrogate models is that a distance metric
is defined to encode a solution. Surrogate models are, therefore, usually applied
to solution representations that encode a fixed number of parameters. Recently,
more complex encodings have been developed that do not have a constant
input space. Prime examples of such encodings are compositional pattern
producing networks (CPPN) [Stanley, [2006], that encode complex shapes or
behaviors indirectly, neuroevolution [Stanley and Miikkulainen| 2002|, in which
the topology of neural networks can be evolved, or genetic programming [Koza,
1992|, which evolves the topology of graphs or trees representing computer code
or mathematical equations. The non-uniform input space of these encodings
frustrates typical ways of measuring distance as the dimensionality and even the

meaning of these dimensions varies from one individual to the next (Figure [6.1]).

A second problem arises when the quality of a solution depends on inter-
action with its environment. This behavior might vary significantly even if
the parameterization of the encoding is changed only a tiny amount. If we
trained a similarity-based model to predict the quality of such an encoding, a

parameterization that is close to a training example would be assigned a similar

107

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

different topologies genotypes cannot
be compared

Q0
8 X<

R 1Nl
o

Figure 6.1: Two networks with different topologies cannot be compared based on their
genotypes.

fitness, although its actual fitness might be very different.

To enable SMBO of these kinds of encodings, we investigate the idea of mea-
suring distances not of the encoding, the genotype, but instead of the expression
of the encoding, the phenotype. The phenotype may include morphological as
well as behavioral aspects [Dawkins| [1982], and so can give us more information
about how similar two individual solutions are than the genotype alone [Stork
et al., [2019a]. Our main insights are that (1) regardless of a network’s internal
composition, the size of the output in relation to the input is constant, and
(2) the relation between input and output describes the behavior and thus is a
valuable proxy for the similarity between networks. To measure the difference
in the behavior of two networks, we can give them the same input sequence
and measure the difference in the output sequence using a standard metric like
Euclidean distance. Using randomly selected but fixed input sequences, we do
not have to run an actual simulation to get the output sequence. Instead, we
sample the input/output relation and use the ad hoc difference in the output
sequences of two individuals to measure their distance. This distance measure
can now be used to build a similarity-based surrogate model.

In this chapter, we evaluate whether we can model the phenotype of ANNs
using a phenotypic distance metric and whether the models are competitive to
those using a genotypic distance metric based purely on the neural network’s
weights. We qualify the results with a more in-depth analysis of the complexity of
the phenotypic modeling problem, which shows that the intrinsic dimensionality

of the phenotypic data is much lower than that of the genotypic data.

108

6.2. Related Work

6.2 Related Work

Similar to phenotypic distances, semantic distances are used in genetic program-
ming. These semantic distances can be defined as a distance of the outputs of
GP individuals, determined with the same measure that is used in the fitness
function [Moraglio et al., 2012 . Semantic distances are applicable where the
fitness function can be computed as a distance between the optimal target
vector and the candidate outputs, such as in supervised classification or sym-
bolic regression. In these cases, the semantic distance has a fitness distance
correlation of exactly one and can be utilized to construct specific mutation

and crossover operators, rendering the problem uni-modal.

Phenotypic distances have also been employed in a surrogate modeling
context for GP. Hildebrandt and Branke| [2015] suggested a phenotypic distance
for dynamic job shop scheduling problems. Their definition of phenotypic
distance compares individuals according to the results of evolved dispatching
rules on a small set of test situations. Unlike semantic distances, their phenotypic
distance is not identical to the measure used in the actual fitness function. This
is necessary in the context of surrogate modeling for expensive fitness functions.
If the fitness function is expensive to compute, it would also be expensive to
use the same evaluation to compute a distance between candidates. Such an

approach would render the surrogate model itself expensive.

Zaeflerer et al|[2018| compare different genotypic and phenotypic distances
for surrogate models in symbolic regression. Here, the underlying measure is not
identical to that used in the fitness function. Specifically, the fitness function
considers fixed coefficients in the symbolic expression. These coefficients are
otherwise optimized during an actual fitness evaluation, which may become
costly. In both of these cases, the phenotypic distance was reported to yield
better results than genotypic distances [Hildebrandt and Branke| 2015} [Zaefferer
et al. [2018].

Doncieux and Mouret| [2010] discuss the use of behavioral similarity in evolu-
tionary robotics to employ a diversity measure for a multi-objective optimization

approach. They compare different distances based on the states, outputs, and

109

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

trajectories given concrete robot tasks. They outline that using these behavioral
distances as the second objective in multi-objective optimization can enhance
overall performance.

A first approach utilizing a surrogate model for evolving neural networks
given complex control tasks was discussed by |Gaier et al.| [2018]. An evolutionary
algorithm was combined with a surrogate model based on a hereditary distance
defined in the context of neuroevolution of augmenting topologies (NEAT)
as compatibility distance. The approach is able to improve the evaluation
efficiency significantly. Stork et al.| [2019a] also investigated surrogate models
for neuroevolution. They examined simple classification tasks and compared a
phenotypic distance measure to genotypic distances in surrogate-based cartesian
genetic programming. The use of a phenotypic distance was shown to be very
promising in terms of evaluation efficiency.

In this work, we build on the ideas about using the output of network
representations and investigate whether sampling the phenotypes allows us to
measure distances between networks. We evaluate whether we can use this
distance metric to model the behavior of neural networks in a robot control

task and predict their fitness.

6.3 Methods for Modeling Neural Networks

6.3.1 Kriging

To perform interpolation or regression on a given data set, Kriging models
assume that the underlying data is sampled from a Gaussian process. For an in-
depth introduction to Kriging and its application in model-based optimization,
we refer to Forrester et al. [Forrester et al.2008]. We give only a rough overview,
focusing on the issues relevant to this work.

Here, the training data of the model is denoted as a set of n solutions X =
{x(i)}izlmn in a k-dimensional search space. The corresponding n observations
are denoted with y = {y(i)}izL,,n. For an unknown point in our search space,

x*, Kriging intends to estimate the unknown function value §(x*). In its core,

110

6.3. Methods for Modeling Neural Networks

the model assumes that the observations at each location x are correlated via a

kernel function. We consider kernel functions of the following type:
k(x,x") = exp (—0d(x,x")). (6.1)

This essentially expresses the correlation of two samples x a x’, based on their
distance d(x,x’), and a kernel parameter # € RT. Kernel parameters are usually
determined by maximum likelihood estimation; that is, they are chosen such
that the data has the maximum likelihood under the resulting model. MLE
usually involves a numerical optimization procedure |Forrester et al. [2008]. The
distance measure d(x, x’) can potentially be any measure, though not all ensure
that the kernel is positive semi-definite, a common requirement [Forrester et al.)
2008]. In this chapter, we use the Manhattan distance, which is less affected by
issues related to high-dimensional data [Aggarwal et al.| [2001], defined as:

dMan(X7 X,) = Z |zz - l’“ (62)

Rather than a single parameter 0, a different 6 can be used for each dimension
1 of the input samples, enabling the model to estimate the influence of each
dimension on the observed values. However, in the interest of simplicity and

computational efficiency, we opt for an isotropic kernel with a single 6.

Once the pairwise correlations between all training samples are collected in

a matrix K, the Kriging predictor can be specified with
J) = i+ KK (y — 14), (6.3)

where fi is another model parameter (estimated by MLE), k is the vector of
correlations between training samples X and the new sample x*, and 1 is a

vector of ones. The error or uncertainty of the prediction can be estimated with

(x) =61 - kTK'ET), (6.4)

2

where 6° is a further model parameter to be estimated by MLE.

111

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

6.3.2 Genotypic vs Phenotypic Distance

k quasi-random comparison phd output
samples .
mpmhidder?mput k * [output]|
ek
e P IO
> 3 00
L 0o e > FEEmmEEE
-1 inpgt 1 weights =4

Figure 6.2: Sampling the phenotype to compare two individual networks.

The networks that we investigate in this work are results of optimization
runs with fixed network topologies. This allows us to evaluate and compare the
efficiency of models based on both genotypic and phenotypic distance measures.
To define a genotypic distance we consider the vector of weights of the neural
networks. Let wyx = {w1, ws,...,w;} be the weight vector of length j associated
with a solution x, then we can calculate the genotypic distance by the related
weights of two samples: d(w,w’).

The disadvantage of genotypic distance measures is their lack of applicability

when changing topologies are considered. If, in these cases, no clear concept

to compare genotypic changes exists (as applied in |Gaier et al. [2018]), the

genotypic distance comparison is difficult, misleading, and even destructive
[Stork et al.| [2019a; Doncieux and Mouret), 2010]. The ability to compare non-

uniform topologies makes phenotypic distances a valuable technique, especially
in cases when typical distances are not a viable option.

The phenotype displays the behavior of a neural network given a certain
set of inputs. For example, in the case of neural networks used as controllers
for robots, the phenotype can be defined as the control commands that are
issued in response to different sensor inputs. We define a phenotypic distance
as follows: Let s = {s1, 89, ..., Sk} be the vector of inputs with length k, then
0x = {01,092, ..., 0k } is the associated processed output vector, or phenotype,
for a neural network x with length k x z, where z is the number of neural

network output neurons. The phenotypic distance is employed by calculating

112

6.3. Methods for Modeling Neural Networks

the difference in the outputs of two samples: d(o,0’). Figure illustrates the

sampling of phenotypes and Figure [6.3] shows a comparison of both distances.

weight distance phenotypic distance
I El |H|
norm of two norm of two phenotypic
weight vectors output vectors

Figure 6.3: Weight models are based on weight vectors for fized-topology networks.
Phenotypic distance models are based on fixed-length sampled phenotypic output vectors
for any-topology networks. We use the L1 norm (Manhattan distance) for interpolative
modeling.

The phenotypic distance is always task sensitive, i.e., a comparison of two
samples x and x’ requires the definition of an adequate input vector s. In
the context of model-based optimization, this input vector needs to fulfill two

requirements:

a) the input should be representative for the underlying task, i.e., in the
case of robot control, it should follow the given sensor ranges or depict a

trajectory of states present in the task.

b) the dimensionality of the phenotype needs to be considered; the length of
the input vector for generating the phenotypes might significantly affect
the modeling performance as well as the computation time for querying

the networks.

Given a carefully selected input vector, the phenotypic distance should be able
to provide a clear impression of how the behaviors of two candidate networks
compare to each other. A possible disadvantage of our definition of a phenotypic
distance is that depending on the underlying task, the real behavior cannot
be defined by the output of the neural network controller alone. For example,
a robot is further influenced by the structure of the environment and its own

body. Two robots with different controllers and phenotypes, one that uses

113

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

four legs for movement and the other that uses three legs, might behave the
same if the 4th leg is disabled due to damage |[Doncieux and Mouret} 2010].
However, a representative set of samples of the input/output relationship should
be descriptive enough to capture the behavioral differences and so allow the

construction of surrogate models.

6.4 Experimental Setup

The goal of our experiments is two-fold. Firstly, to determine whether we can
learn reasonable surrogate models based on a diverse set of phenotypic vectors.
Secondly, to compare these results to a genotypic model. Our experiments are

constructed as follows, we:

1. Run model-free optimization algorithms that optimize the weights of fixed

topology neural networks for robot control;

2. Archive a selection of several hundred diverse neural networks from the

results of these runs;

3. Train different genotypic and phenotypic surrogate models on a subset of

these networks;

4. Test the performance of the surrogate models by predicting the perfor-

mance of the remainder of the networks.

Problem Setup: Maze and Robot We design robot controllers for the
multi-modal maze problem depicted in Figure The environment consists
of multiple rings and openings (Figure) The robot begins in the center
of the maze. Here we are not interested in the typical case of finding the best
solution to escape the maze. Instead, we seek to establish to what degree we
can sample the behavior (or phenotype) of neural network controllers and then
derive fitness from those behaviors. This problem is much more fundamental
and challenging than predicting fitness alone. To produce this data set of as

many different high-performing behaviors as possible, we build up an archive

114

6.4. Experimental Setup

out of robot controllers that reach every point in the maze in the shortest path
possible (b). To force diversity of ending positions, a grid-like diversity measure
is defined (c). At the end of the optimization, every niche should contain a
robot that could reach it using a short path. This way, we can evaluate the

distance measures over a diverse set of optimal behaviors.

a. environment b. quality measure

N

(#

final position

-
\/ W
=== high fitness = = low fitness
c. diversity measure d. robot control

== range finder
= home orientation

Figure 6.4: Evaluation takes place in a maze environment (a) with a robot starting
in the center. The distance of the path of a Tobot to its final position defines its quality
(b), whereby a diversity measure allows us to train robots to reach all cells in the map
(¢). Robots can sense the orientation quadrant of the start position and uses three
range finders to perceive the distance to the nearest wall (d).

Simple feedforward controllers (see Figure consisting of either 2 or 5

hidden neurons are sought that traverse the maze. Evaluation is performed

using the simulation that was created in [Mouret and Doncieux], 2012|. The

robot is equipped with three laser sensors that are able to detect the distance
to the nearest walls and are set at 45-degree angles around the front (d). In
addition, each robot has a home beacon that detects the direction of the robot’s

start position.

115

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

Data Generation We generate data sets to test the quality of our surrogate
models. To that end, we record the data of model-free optimization experiments.
Here, optimization is performed with a quality diversity (QD) algorithm. These
algorithms are not only used to find reasonable solutions but also are intended to

find as many diverse and high-performing solutions as possible. We choose MAP-

Elites [Mouret and Clune| [2015|, which builds up an archive of high-performing

elites, one within each niche. Here, niches are defined as cells in the grid shown
in Figure [6.4] Parents are selected from the archive at random and their genes
mutated with 5% probability to form the next generation of controllers. These
child controllers are tested and assigned the cell which corresponds to their end
position. If the child arrived at that cell with a shorter path than the current

occupant, it replaces the current occupant.

<y

o
log(distance)

X—r

Figure 6.5: Distance map generated by MAP-Elites (lower distance equals higher
fitness). Each niche in the map contains a robot controller that is optimized towards
reaching that niche in the shortest path possible.

Figure [6.5] shows an example distance map after 5000 generations, with
almost every niche filled with a high-performing controller. The distance values
grow the further they are from the center, which is to be expected. Several
controllers end up driving around the maze in circles, which explains the high

distance values in some niches.

116

6.4. Experimental Setup

Data Used for Modeling Data generation was performed either with networks
with 2 or 5 hidden neurons. We performed 20 replications; that is, we received
data from 20 different QD runs for each experiment configuration, each with
a different random number generator seed. This leads to 40 data sets (20 for

each number of hidden neurons).

nhidden=2 nhidden=5
Linear (weight model) Linear (weight model)
22 [52 o +--[]---
512 r--[I34 o o ° 512+ k- _—F------- 4
256 o 256 | bo-CXJ-+4
128 -~ -+ 128 -1+
64 — o r-{I1}--40 64 - o F[[]-40
5 32 oL TF---4 32 s
= 16 F---CI]--+4 16 F---{ -4
g 8 e 8 e i n 2
S 44 o r-CHF--o = == Ry
£
¢ 22 - Kriging re-F 52 7 Kriging F-Od--+
£ Slz—Krl - r--[1 -+ | ctrl 512_Kr1 10, be-{L 1-4 | ctrl
T 256] iy A 256 Fo-L-+
2 128 F--{TH4 128 re-{I1-4 |
g 64 e BT 64 Fe-{1-4
32] iaiyte B R 32 7 fiels 0 RSB o
16 o kLI o 16 el B I o
5 - I L 5 (0 e R S
4 o kM- o 4 o S i EEE -
T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
rank correlation rank correlation

Figure 6.6: The model quality in terms of correlation (z-azis), for linear and Kriging
models and different input spaces, and different numbers of hidden neurons (nhidden).
Here, the numbers at the start of each y-axis label denote the dimensionality of the
iput vector for the corresponding model. Gray fill color indicates a model based on the
weights or genotype. The white fill color indicates phenotypic models. The y-axis labels
on the right-hand side indicate p-values from a statistical test that compares each of
the Kriging models against the model marked with ctrl (*: p < 0.05,%*: p < 0.01, ***:
p < 0.001).

Each data set consists of roughly 900 neural network controllers. We received
nine different data subsets for each of those controllers: one with the weights and
eight with phenotypes of different sizes (4,8, ...,512). Note that the phenotypes
are derived from the two outputs of the networks; if the network is fed with
four input samples, we observed eight phenotype values. We can now describe
each of the 900 controllers either by its weights or by phenotype vectors (of
different lengths).

During modeling, these data sets are split as follows. Four hundred controllers

are used to train a model, and the remainder is used to test the model quality.

117

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

Note that the observed values y will be log-scaled before modeling, as the data

contains strong outliers which might deteriorate the models.

Quality Measures To judge the quality of our models, we use Kendall’s rank
correlation coefficient [Kendall and Gibbons, 1990|. In contrast to Pearson
correlation, this measure only considers ordinal correlation, i.e., the ranks of two
compared sets of samples. Kendall correlation is, therefore, an excellent measure
to estimate the accuracy of a model when used in rank-based evolutionary

optimization methods.

Kriging Model We generate the Kriging model with the R-package CEGO |Za;
efferer| 2017 as follows. For MLE, the optimization of the likelihood is per-
formed via the locally biased variant of the dividing rectangles (DIRECT)
algorithm [Gablonsky and Kelley, 2001]. It is configured to stop after 2000
likelihood evaluations or when a relative decrease in function values between
iterations drops below 10716, The nugget effect (regularization) of the model is
turned on to potentially account for noise in the data or ill-conditioned kernel
matrices. The model uses the Manhattan distance (see Section [6.3.1]).

Comparison Baseline: Linear Model We include a linear regression model
in our experiments as a comparison baseline for the Kriging model. Like the
Kriging model, the linear model is trained with the weight or the phenotype
data. Since the generated data is potentially very high dimensional, we need
some form of variable selection to generate reasonable models. We decided on a
forward selection approach via the Aikake information criterion (AIC) [Venables
and Ripleyl, 2002|, starting from a model that only consists of an intercept. The
most complex linear model may include main effects for all variables, but no

interactions or higher-order terms are considered.

6.5 Results and Discussion

Figure[6.6] shows the Kendall correlation achieved by each of our models. Firstly,

it can be observed that the Kriging model outperforms the linear model in most

118

6.5. Results and Discussion

cases, as expected. Secondly, the variants based on phenotypic data are able to
perform at least as well as the weight models if the number of elements in the
phenotype vector is at least 32 or more. The larger phenotype vectors do not
seem to yield much further improvement.

We confirmed these observations by applying statistical tests for each number
of hidden neurons. Firstly, we tested for the global presence of significant
differences via the non-parametric Kruskal-Wallis rank-sum test [Kruskal and
Wallis|, [1952], which yielded p-values of less than 10~® in both cases, indicating
that differences are present. Afterward, we performed Conover’s non-parametric
many-to-one comparison test [Conover and Iman| [1979], comparing each of the
Kriging models against a single model (control group). The chosen control
group was the most complex model with phenotype data of dimensionality 512.
The implementations of the employed tests were taken from the stats and the
PMCMRplus R packages |R Core Team), 2018} |Pohlert), 2018|: kruskal.test and
kwManyOneConoverTest. The respective cases with indications for significant
differences are marked on the right-hand side of each plot in Figure [6.6] The
statistical test essentially confirms the visual evaluation. No evidence for
differences is found between the control group and the model with the genotypic
weight data. Only models with phenotypic data of dimensionality of 16 or less
are deemed to be different from the control group.

Notably, the results suggest that we can use phenotypic surrogate models
instead of those based on the genotype or weights. The phenotypic data is
largely unaffected by the number of hidden neurons and, hence, the number
of weights. Where standard models would struggle to compare the weights of
differently structure networks, a phenotypic comparison would still be possible.

The baseline linear model shows some peculiar behavior. The model’s
performance drops off for models with phenotype vectors of more than 256
elements. This behavior can be primarily explained with a number of coefficients
selected by the AIC forward selection procedure, as shown in Figure Clearly,
the selection procedure will not select more than n variables. The required
number of variables seems to increase non-linearly with the dimensionality of
the data.

119

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

o nhidden=2 nhidden=5
= 2244 (weight model) 524 § (weight model)
it s
Iy — 4 G 4
‘7128 W 128 HH
S ea b 647 ¥
- P i
£ 3274 3278
5 16]] H 167 H
+-— 8_‘ 8_'
S 4 4
o T T T T T T T T T T
g 0 100 200 300 400 0 100 200 300 400

model coefficients # model coefficients

Figure 6.7: The number of linear model coefficients selected via forward selection
based on AIC. Gray fill color indicates a model based on the weights or genotype, the
remainder are based on phenotype data.

Notably, the Kriging model does not show such a performance drop, and in
fact, performs exceptionally well even for the very high dimensional phenotype
vectors. This may be counter-intuitive at first: Kriging is usually not suggested
for high-dimensional data. We suggest two reasons for this: Firstly, we use
an isotropic model which avoids the complex optimization of fitting numerous
kernel parameters (). Secondly, there may be some correlation in the observed
phenotypes. Increasing the number of samples used to generate the phenotype
vector will increase the dimension yet also increase the density in the sampled
space. In that sense, a new phenotype observation added to a large set of
existing observations is likely to be quite similar to the existing observations.
Essentially, we assume that the latent dimensionality of the data is much lower.

To verify this, we considered a principal component analysis (PCA) of the
input data (that is, excluding the dependent variable). For each of our data
sets, we performed a PCA on the weight data, as well as on the phenotype
data. In each case, we recorded the number of principal components required to
explain 90% of the variation in the data set. This number is shown in Figure
There are two interesting observations here. Firstly, the number of components
levels off for the largest phenotype vectors. The median stays at 7 (nhidden=2)
and 9 (nhidden=5), despite data sets with several hundreds of variables. It
seems that this confirms our assumption that the additional columns due to

higher-dimensional phenotype vectors describe a much lower-dimensional latent

120

6.6. Conclusion and Outlook

nhidden=2 nhidden=5
> weight model weight model
= 224 (g»——[[j-c) 52 (welg »-|:[|-|)
g 512 -1 512 -
© 256 [B 256 H+
31281 +-LCIO 128 HH
§ 644 W~ 4- MR
& 32 . I 32 1]
= 16 -~ 16- v
5 §la' iy
% T T T T T T T T T T T T T
- 2 4 6 810 14 5 10 20 30

principal components # principal components

Figure 6.8: For each data set, the number of principal components required to explain
90% of the variation in the data. This only concerns the respective input data of the
surrogate models; the observed output (i.e., quality of the controller) is not considered
here. Gray fill color indicates weight or genotype data, the remainder is based on
phenotypic data.

space. Secondly, we can see that the number of principal components for the
weights is much larger. However, this does not coincide with better models

based on the weight data.

6.6 Conclusion and Outlook

In this chapter, we evaluated the use of phenotypic data of neural networks as a
basis for surrogate modeling. We have shown that models based on phenotypic
data can perform at least as well as those based on genotypic (weight) data.
This was true both for a baseline, linear model, and a non-linear Kriging model.
Our analysis further indicates that even high dimensional phenotypes with
several hundreds of observations can yield sound Kriging models. A principal
component analysis reveals that these high dimensional data sets can be very
well reproduced with only very few components. A much larger number of
components is required for the genotype data. This success of a phenotypic
model is promising since a model based on genotypes becomes infeasible if the
compared networks have different structures or topologies.

In the context of evolutionary algorithms that can change the structure and

size of the solution encoding, e.g., in surrogate-based neuroevolution. Measuring

121

Chapter 6. Comparison of Genotypic and Phenotypic Distance Metrics for
Modeling Neural Networks

the behavior of neural networks without using actual simulations not only seems
to be possible but also a practical way to compare networks.

Phenotypic distances can be used successfully as kernels to build surrogate
models that predict the fitness of networks with varying sizes and topologies.
Whereas previous approaches to construct surrogate models of neural networks
with non-uniform structure rely on the peculiarities of the evolutionary algo-
rithm |Gaier et al., 2018|, our approach is independent of the optimization
approach. In fact, a phenotypic distance approach to modeling is independent
even of encoding: a neural network grown with NEAT, a fixed topology network
optimized with particle swarm optimization, and a controller evolved with
genetic programming could all share the same surrogate model.

In future work, we plan to take the obvious next step: to actually use the
developed models as surrogates in an optimization framework. In addition, we
want to investigate the generation of phenotype vectors in more detail. As
the PCA showed, as well as the diminishing returns for models with more
phenotype samples, a lower-dimensional data set may suffice to produce good
models. Creating better, more condensed phenotype samples with less redundant
information is hence of interest to reduce the load of distance calculations.

Being able to successfully model the performance of a robot controller
by observing its behavior provides a computationally efficient and effective
approach for surrogate modeling of varying-length representations. We show
that modeling the behavior of networks avoids some complexities that are caused
by genotypic comparisons. SMBO of non-uniform representations will allow a
much more diverse set of solutions to be calculated with a limited number of

real evaluations.

122

Comparison of Distance Metrics for

surrogate Model-Based Neuroevolution

Chapter [7| was published as:

Stork J, Zaefferer M, & Bartz-Beielstein T (2019, April). Improving neuroevolution
efficiency by surrogate model-based optimization with phenotypic distance kernels. In
International Conference on the Applications of Evolutionary Computation (Part of
EvoStar) (pp. 504-519). Springer, Cham.

123

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

In neuroevolution, the topologies of artificial neural networks are optimized with
evolutionary algorithms to solve tasks in data regression, data classification, or
reinforcement learning. One downside of neuroevolution is the large number
of necessary fitness evaluations, which might render it inefficient for tasks
with expensive evaluations, such as real-time learning. For these expensive
optimization tasks, surrogate model-based optimization is frequently applied as
it features a good sampling efficiency. While a combination of both procedures
appears as a valuable solution, the definition of adequate distance measures
for the surrogate modeling process is complex. In this study, we will extend
cartesian genetic programming of artificial neural networks using SMBO. We
propose different distance measures and test our algorithm on a replicable
benchmark task. The results indicate that we can significantly increase the
sampling efficiency and that a phenotypic distance based on the behavior of the

associated neural networks is most promising.

7.1 Introduction

Artificial neural networks are utilized in many different fields, such as data
regression, data classification, or reinforcement learning [Basheer and Hajmeer,
2000]. In each of these tasks, the network topology is significant for the
ANNSs performance. Often, only parameters such as the edge weights, number
of hidden layers, and number of elements per layer are considered during the
optimization of an ANN. In neuroevolution, ANNs are generated by evolutionary
algorithms. NE allows severe modifications of networks, such as individual
connections between neurons and different neuron transfer functions, leading
to a large search space of potential topologies. Two example algorithms of
this category are neuroevolution of augmenting topologies (NEAT) [Stanley
and Miikkulainen) 2002| and cartesian genetic programming of artificial neural
networks (CGPANN) [Miller and Thomson| [2000; Turner and Miller| 2013].
Both NEAT and CGPANN may require numerous (>1000) fitness evaluations to
find adequate topologies in the large search space. This makes them inefficient

for applications with expensive function evaluations such as simulations or real-

124

7.2. Related Work

world experiments, e.g., when an ANN is the controller of a robot that operates
in a complex real-time environment. SMBO is frequently used for data efficient
optimization of real-world processes, as it has a high sampling efficiency [Koziel
and Leifsson| [2013]. Surrogates models are commonly employed in continuous
optimization, where Euclidean spaces and distance metrics exist. The more
complex discrete search spaces are less often investigated |Zaefferer et al.| 2014b].
In this work, we want to extend CGPANN to employ surrogate model-based
neuroevolution (SMB-NE) to reduce the load of fitness evaluations. For this
task, we defined several distances based on the CGPANN genotypes and a
distance that measures, instead of the structure, the difference in behavior of
the ANNs. Our approach allows the definition of a phenotypic distance that is
indifferent to the size or topology of an ANN. It only requires a representative
input set to model the input to output correlation.

Our main research questions are:

1. Is SMB-NE able to outperform CGP neuroevolution in terms of sampling

efficiency without loss of accuracy?
2. How can we create a representative input set for the phenotypic distance
in SMB-NE?

For all experiments, we utilize data-mining classification tasks as a controllable
and cheap to evaluate benchmark for the learning efficiency of SMB-NE using
few fitness evaluations. This chapter is structured as follows: Section [7.2]
discusses related work. Section [[.3] illustrates the utilized methods and the
SMB-NE algorithm. Section [7.4] introduces the different distance measures for
SMB-NE. In Section the experimental setup and the results are shown and
further discussed. Finally, in Section [7.6] we conclude the chapter and give an

outlook to future work.

7.2 Related Work

This work is an extension of an unpublished study presented at an informal
workshop [Stork et al., 2018|. A recent study by |[Zaefferer et al.|[[2018] investi-
gated the use of SMBO in genetic programming with genotypic and phenotypic

125

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

distance measures. In contrast to this study, they performed tests comparing
an EA with SMBO for a bi-level symbolic regression optimization problem.
They concluded, that the SMBO approach is able to outperform the EA in
terms of sampling efficiency. Moreover, the phenotypic distance performed best
and was very fast to compute. A first surrogate model for ANN optimization
was applied to NEAT by |Gaier et al|[2018]. They use a surrogate-assisted
optimization approach by combining an EA with a surrogate distance-based
model, employing a genotypic compatibility distance that is part of NEAT. With
this approach, they are also able to increase the sampling efficiency. To our
best knowledge, nobody else used a SMBO approach for the task of neuroevolu-
tion. Phenotypic distances are also used in other applications, for example, the
optimization of job dispatching rules. For this tasks, [Hildebrandt and Branke
[2015] utilize a surrogate-assisted EA, which is able to increase the evolution
towards good solutions. The use of surrogates including genotypic distances is
more often discussed, e.g., for optimization of fixed neural network topologies

in reinforcement learning |Stork et al., [2017].

7.3 Data Efficient Neuroevolution

7.3.1 Neuroevolution by Cartesian Genetic Programming

For NE with CGP, we use the C library CGP by A. TurneIEI, which also allows
the application of NE |Turner and Miller| [2015]. The CGP library was modified
with function interfaces to the statistical programming language R, distance
measures described below, and additional fitness functions. The genotype of
a CGPANN individual consists of a fixed number of nodes. Each node has
a number of connection genes based on the pre-defined arity with adjacent
weight genes and a single categorical function gene. Nodes are only connected
to preceding nodes. Duplicate connections to nodes are possible and if present,
adjacent weights will be added to form a single connection in the resulting ANN.

Moreover, each node has a Boolean activity gene, which signals if it is used

Lhttp:/ /www.cgplibrary.co.uk - accessed: 2018-01-12

126

7.3. Data Efficient Neuroevolution

Genotype

) Node Inputs
Node Number and ,, ‘ @ @
Active Nodes
(colored I(;)/reen:active)
@ @ Input Weights
Inactive Node -
[5G [1]®

Transfer Function

Topology

-------- -0

Figure 7.1: A CGPANN genotype with two inputs, eight nodes, an arity of three
and different transfer functions. Each node has a transfer function, a boolean activity
gene and several inputs with adjacent weights. Green nodes are active and part of the
encoded ANN.

in the active ANN topology. Figure displays an example for a CGPANN
genotype and the encoded ANN with two inputs, eight nodes and an arity of
three. In CGP NE, the network topology and weights are optimized using an
evolutionary approach, utilizing a (1+4)-evolution strategy, i.e., one parent and
four new individuals in each generation. In contrast to the standard selection
in ES, the rank-based selection process favors the offspring, and thus the new
solution, over a parent with the same fitness. Different mutation operators are
available, the default is probabilistic random mutation. Inactive genes will not
influence the fitness of an ANN.

7.3.2 Kriging

Our SMBO algorithm is based on a Kriging regression model, which assumes

that the observations are samples from a Gaussian process [Forrester et al., 2008].

127

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

Kriging is a kernel-based model, i.e., the model uses a kernel, or correlation
function, to measure the similarity of two samples. One typical kernel for
real-valued samples is the exponential kernel, i.e., k(x, 2") = exp(—0||z — z’||2).
Here, the kernel parameter 6 expresses how quickly the correlation decays to
zero, with increasing Euclidean distance ||z — 2/||2 between the samples. The
parameter is determined by maximum likelihood estimation, optimized by using
numerical optimization algorithms [Forrester et al., [2008]. It is straightforward
to extend kernel-based models to combinatorial search spaces [Moraglio and
Kattanl 2011a; [Zaefferer et al) 2014b|. Essentially, the Euclidean distance
is replaced by a corresponding distance that applies to the respective search
space, with the exponential kernel k(x,z’) = exp(—0d(z,z’)). The design of
appropriate distances d(z, ') for neural networks is in the focus of this paper.

Kriging is frequently employed in SMBO algorithms, because in addition to
relatively accurate predictions, it also provides an estimate of the uncertainty of
each prediction. The predicted value and the uncertainty estimate are used to
compute infill criteria. These infill criteria are supposed to express how desirable
it is to evaluate a new candidate solution x. To that end, the uncertainty estimate
is integrated to push away from known, well-explored areas, instead preferring
solutions that have large uncertainties, yet promising predicted values. One
of the most frequently used criteria is expected improvement |[Mockus| [1974;
Jones et al.l|1998]. We employ the Kriging implementation of the R package
CEGO |Zaefferer], 2017} |Zaeflerer et all [2014b|. It uses distance-based kernels to

model data from structured, combinatorial search spaces.

7.3.3 Surrogate Model-based Neuroevolution (SMB-NE)

We extend CGPANN with an SMBO approach, leading to the surrogate model-
based neuroevolution strategy outlined below. The strategy is intended to
perform a data efficient search by predicting the fitness of candidate solutions
with the help of a Kriging surrogate. The algorithm is outlined in The
SMB-NE process starts by creating a random initial set of individuals, in our

case ANNs, and evaluates them with the objective function.

128

7.3. Data Efficient Neuroevolution

Algorithm 7.3.1: Surrogate Model-based Neuroevolution

1 begin

// phase 1: initialization

t=1

initialize k neural networks (z;) at random

evaluate their fitness on the objective function

build Kriging surrogate model utilizing s¢(z;) and distance measure
d(zi, z;);

// phase 2: optimization

oUW N

6 while not termination-condition do
7 if ¢ > 1 then
8 ‘ rebuild surrogate model s; with a set M,; € D of observations
9 end
10 optimize EI with a (1+4)-ES to discover improved z;
11 evaluate network x; fitness y: on the objective function
12 add evaluated networks to archive Diy1 = {Dx, (z+,y:)}
13 t=t+1
14 end
15 end

The resulting data is used to learn a Kriging model. For learning the model,
we define different genotypic and phenotypic distance measures for ANNs in
Section [7.4] With the model, we are able to estimate the EI of an individual. In
each following iteration, the model is utilized to suggest new promising ANNs by
optimizing the EI criterion with the (1+4)-ES algorithm of CGP. The (1+4)-ES
is used to introduce the ability to directly compare CGPANN to SMB-NE,
without an additional optimization algorithm with a different operator set,
or parametrization influencing the results. In each iteration, the single most
promising individual is evaluated and added to the archive D;. As the archive
grows during the optimization process, the computational effort of creating the
Kriging model rises with O(m?), where m is the surrogate model sample size.
To keep the computational effort on a feasible level, a subset M; € D; of size m

is used for the modeling process. This modeling set M, is formed by selecting

% of the best and 4”;)m randomly drawn individuals out of the archive in each

iteration. We chose the fractions in the strategy to ensure a balance between

exploration and exploitation. If the size of the archive D; is smaller or equal

129

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

to the size of My, all individuals are selected. The influence of the size of the
modeling set M, is investigated in Section [7.5.2}

7.4 Proposed Kernels and Distances

In the following, we always use an exponential kernel k(x, z") = exp(—6d(z,2")).
Here, x and 2’ represent ANNs. They consist of the weights x,,, input labels z;,
activity labels x4, and transfer function labels ¢, i.e., x = {Zw, x;, zq, ¢ }. All
distances d(x,2’) are scaled to [0,1]. In addition, we also considered employing
the graph edit distance, but decided against it due to its complexity. Computing
the graph edit distance is NP-hard [Zeng et al.l |2009].

We illustrate the different distances by providing an example that compares
two specific ANNs, with a similar structure as outlined in Figure For the
sake of simplicity and comparability, all weights are set to 1. The two ANNs
only differ with respect to two nodes. The transfer function and connections of

one active (node 3) and one inactive node (node 8) are changed.

7.4.1 Genotypic Distance (GD)

The genotypic distance is based solely on the genotype of a CGPANN individual.
As the CGPANN genotypes have a fixed structure, the distance of two individuals
can be calculated by a row-wise comparison of their nodes. By combining the
distances of weights, inputs, activity of nodes, and transfer functions we obtain
a distance d(z,2') = ||xw — 20,15 + H(zs, ;) + H(2a,) + H(xf, 1), where
H(a,b) denotes the Hamming distance, i.e., H (2, 2) is 0 if the transfer function
is identical, else H(xy,2%) is 1. The GD is further normalized by the total
number of possible comparisons for the given genotypes. Figure [7.2] illustrates
an example for calculating the GD distance. Although taking the non active
nodes into account, the normalized GD is rather small. We further extended
the GD by ordering the inputs of each ANN before the calculation to match
the weight distances to the correct input if (and only if) two nodes have similar

connections, but a different ordering of inputs in the genotype.

130

7.4. Proposed Kernels and Distances

Chromosome 1

Chromosome 2

GD Distance
HOHOEO HOHOEO | [2]
HOHGIIONN [€3NONCGICINENE
HONeHS BIOHOEIO | o
[6] Ca) [s]O[IOL IO | [6] () [BIO[EIOHO o]
Henene OLCHO o

|2 |

denene,

Herene

2

GD: 4/48= 0.08

1 Inpu5

2 Input

Figure 7.2: Example calculation the GD distance for two distances. By introducing
only small changes to the genotype, the normalized GD stays rather small.

7.4.2 Genotypic ID Distance (GIDD)

The GIDD is intended to solve an important issue of the genotypic distance:
different nodes and adjacent functions and weights in one row of a CGPANN
genotype are not easily comparable, if their influence on the resulting ANN and
also phenotype is considered. The idea behind the GIDD is to only compare
those nodes, which are placed in the same position in the ANN and to solve
the problem posed by competing conventions, i.e., that a certain ANN topology
can be expressed by numerous genotypes. The distance is based on the active
topology and creates IDs which are designed to be unique for an equal placement
of a node in the ANN. Inactive nodes do not influence the GIDD. Thus, each
active node in the ANN is given an ID based on the connections to prior nodes
or inputs and the number of non-duplicate connections of this node. Then,
the distance of nodes can be calculated by a pairwise comparison of all node
IDs. If a certain node ID matches for both ANNs, the subgraph prior to this

131

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

Chromosome 1 ID Chromosome 2 ID
2 i
3 D GIDD Distance
OHOEO 2 FOMORIO Zev |2+2|

BoROOM0 & | BeEROZ0MN0 & | ool
Bl(soEOM0RI0 He | B EIOT0R0 e | o)
GlcoHeHene &) @mEOEIOE0
B G000 Tete | @ GO0 Zemee | 22

[<OBICOIO IOBIOHO

2a 6b 12ac 72abbc 6b 6b 36bbc 216bbbc

“

Figure 7.3: Example calculation for GIDD. The IDs are based on multiplication of
prior node or inputs IDs (set to prime numbers) and the number (a=1, b=2, c=3)
for non-duplicate connections. The calculated distance is high because of the different
node IDs, which are based on their relative position in the ANN.

node is analyzed recursively for validation of the ANN up to the position of
the matching nodes. If all IDs in the subgraph are identical, we assume that
the corresponding nodes have an equal position in the ANN topology. For all
nodes that are matched in this way, the Euclidean distance of the weights (z,,)
and Hamming distance of the transfer functions (xs) is computed. A node pair
can only be used once for this comparison, as node IDs may be present several
times in each individual. If all node IDs of both individuals z and z’ are equal,
the GIDD is simply the distance d(z, z') = ||z, — 2/ ||5 + H(zy,2;) between
all weights and transfer functions. If nodes do not match, for each node not
present in the compared ANN, a fixed distance is assigned (in our example 2).
Again, the GIDD is normalized by the maximum distance of two individuals.
Figure [7.3] illustrates the calculation in an example. Contrary to the GD, the

GIDD reacts strongly to the introduced changes, as they have a large influence

132

7.4. Proposed Kernels and Distances

on the node relations, which results in different node IDs and puts them to

maximum distance.

7.4.3 Phenotypic Distance (PHD)

PhD: |y1 — 92|
10.9/30 =0.36

tan sin si sin

'
2 Inp

NANE

Figure 7.4: PHD example with continuous inputs and trigonometric transfer func-
tions. Two input samples, from a sine and linear function of length 30 are fed to two
ANNs, which differ in their transfer functions and a single connection. The phenotypic
distance is the normalized absolute difference of their output signals.

The phenotypic distance does not utilize any genotypic information of the
ANNSs to compute the distance. Instead, it utilizes solely their behavior. In
our definition, the phenotype of a neural network is how it reacts to a certain
input set, i.e., which outputs are produced. This output is then compared to
resolve in a distance measure, which is indifferent to changes to the underlying
genotype, including transfer functions, weights or connections, which result
in the same behavior. More importantly, it is insensitive to the size of the
genotype. The PHD distance utilizes the L1 norm distance to account for large
dimensions of the input and output vector and is further normalized by the

input set length. While it is indifferent to the network topology in terms of

133

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

encoding, size, number of connections etc., it is very sensitive to the choice
of the input set. Thus, these input sets have to be carefully selected to be
representative for the underlying task and/or environment. In Section we
examine the influence of the input set for the task of classification. An example
calculation for the distance of small ANNs utilizing PHD is given in Figure [7.4]
In the example, two continuous input samples, from a sine and linear function of
length 30 are fed to two ANNs, where they differ in their transfer functions and
a single connection. As this example is intended for understanding the change
in the output signals, simple trigonometric functions have been used, which
are commonly utilized in genetic programming. The small example shows that
minor changes in the network topology can result in a large difference in the
phenotype. The disadvantage of the PHD is, that it utilizes the ANN outputs
that have to be computed for each new candidate. Thus, in the SMB-NE model
search process, the required ANN evaluations might take a considerable amount
of computation time, particular for complex ANNs. This renders the PHD
particular interesting if on assumption regarding the objective function is met:
that is, that the function calls to evaluate the fitness are, compared to the

surrogate model search steps, significantly more expensive.

7.4.4 Mixed Distance (MD)

Similar to linear combination distance in [Zaefferer et all 2018], we utilize a
mixed distance of GD, GIDD, and PHD, where each distance receives a weight
B; € R* determined by MLE. As the performance of each distance is unknown
a-priori, the idea behind the MD is that allows an automatic selection of the

most adequate distance measure in each optimization step.

7.5 Experiments

To assess the ability of SMB-NE to improve the efficiency of optimizing the
topologies of ANNs, we decided to perform experiments with classification

tasks. Classification is well understood, easily replicable, and does not introduce

134

7.5. Experiments

complex problems with the selection of environments or tasks as in general
learning (e.g. reinforcement learning). We limited the experiments to a small
budget of function evaluations, which provides a realistic scenario for problems
with expensive fitness evaluations, such as real-time learning. The experiments

are twofold:

— First, we estimate the ability of SMB-NE to learn an elementary data set
comparing the introduced distance measures GD, GIDD, PHD and MD.

— Second, we further research how SMB-NE using the PHD reacts to different

inputs sets and surrogate model sizes.

7.5.1 Comparison of Distance Measures for SMB-NE

Experimental Setup: For the first set of experiments, the well-known IRIS
data set is used as an elementary and fast to compute benchmark problem. RIS
has n = 150 samples, 4 variables, and 3 evenly distributed (n = 50 for each)
classes of different flower types (Iris setosa, Iris virginica and Iris versicolor).
The focus of this benchmark is the capability of SMB-NE to learn the best
network topology to classify the data set with only 250 fitness evaluations. The
fitness function is the adjusted classification accuracy: acc = Y., a;, where
a; = 1 if the predicted class is true, otherwise, a; is the predicted probability for
the true class. ANN optimized with random search and the inbuilt (1+4)-ES
of CGPANN with different mutation rates are being used as baselines. For
SMB-NE, all above described distance measures are compared, while for PHD
four different input sample sets are tested. As a baseline, we used the complete
IRIS data set and additional factorial designs (FD) with small (15) and a
large (60) sizes as well as latin hypercube sampling (LHS) with 150 samples.
Both the FD and LHS are based on the IRIS variable boundaries. Further,
the output of the PHD is adapted by computing the softmazx, which yields
the class probabilities. In this experiment, for the (1+4)-ES of CGPANN and
SMB-NE pure probabilistic random mutation is used with a strength of 5%. In
SMB-NE, the (1+4)-ES is used in each consecutive iteration alternating between

exploitation (local search=L) and exploration (global search=G). Parameters

135

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

are listed in Table The ANNSs in this benchmark were kept rather small with
a maximum of 40 nodes and 200 connections. This was intended to keep the
search space small, but sufficient for the IRIS data set. Algorithm parameters

were not tuned and all experiments were replicated 30 times.

Table 7.1: Parameter setup, where evaluations denote the initial candidates plus the
budget for consecutive evaluations. 40 nodes were used to keep the search space small,
but sufficient for the IRIS problem given this small budget. Evaluations of CGP-ANN
are due to the underlying (1+4)-ES, where in each iteration 4 new candidates are
proposed. SMB-NE proposes only a single one.

arity nodes weight range | function set

5 40 [-1,1] tanh, soft, step, sigmoid, gauss
method mutation rate | evaluations surrogate evaluations
Random 250

CGPANN | 5%/15% 14+4-63

SMB-NE L:5% G:15% 50-+200 L:10+400 G:1000-+400

Results: Figure visualizes the results. Firstly, the results show that the
standard (144)-ES of CGPANN performs better than random search, even with
the small number of evaluations. A low mutation rate, which depicts a rather
local search, seems to be beneficial in this case. SMB-NE utilizing the GD and
GIDD distance measures performs only slightly better than the basic CGPANN.
With the use of PHD, a significant performance increase is observed, while the
PHD with the complete input set performs the best and the LHS the worst.
The mixed distance, which also utilizes PHD with complete input sets, cannot
benefit from the linear combination, but is able to deliver a close performance
to the sole use of PHD. Most runs seem to end up at a local optimum around
an accuracy of 66%, which can be explained by the fact, that at this point two
out of three classes of the IRIS data set are predicted correctly.

Discussion: An important insight of this experiment is that in comparison to
the PHD, the genotypic distances (GD, GIDD) show a poor performance, even
for the small genotype size. This fact might be explained by the small correlation
between changes to the genotype and the resulting phenotype: small changes to

the genes can have a massive impact on the behavior. Moreover, the GD has the

136

7.5. Experiments

Random Search- ,;' * + Q
CGP (15% Mutation)- =l e
CGP (5% Mutation)- &
SMB-NE GIDD- r
SMB-NE GD- @ 1 ® o s

SMB-NE PhD LHS150-

® 66 Q @

SMB-NE PhD FD15- - oog
SMB-NE MD- e e
SMB-NE PhD FD60-

SMB-NE PhD Full-

0.4 08 1.0

Adjusted Accuracy

Figure 7.5: Results after 250 fitness evaluations with 30 replications, comparing
random search, original CGPANN ((1+4)-ES) and different SMB-NE variants. The
numbers behind the FD and LHS variant depict the length of the ANN input samples to
calculate the PHD. The results were ranked (top down) by median values. Red circles
depict outliers.

problem that the calculated distances do not consider that aligned row-paired
nodes in the genotype can have different, not similar placements in the ANN
topology. This results in a misleading distance calculation of weights, inputs and
transfer function for these nodes. However, even the more complex GIDD, which
may be able to avoid this issue, does not seem to provide significantly better
results. Further given the fact that the GIDD is computationally very expensive
to calculate and has also shown numerical problems for large genotypes (as
it utilizes several recursions over the complete ANN), it is further considered
as not suitable for the task of SMB-NE. In contrast, the PHD distances show
very promising results by directly exploiting the ANN behavior. Importantly,
the small factorial input sample, which is very fast to compute, shows a good
performance. Given the poor performance of GD and GIDD, the MD is able to
automatically select the PHD distance measure and deliver equal performance.
For the second set of experiments, we thus focus on exploiting features of
SMB-NE utilizing the PHD distance measure.

137

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

7.5.2 Influence of the Input Set and Surrogate Model Size
using SMB-NE with PHD

Table 7.2: Algorithm parameter setup for the second set of experiments. The size of
the genotypes and the number of evaluations was significantly increased.

arity nodes weight range function set

25 100 [-1,1] tanh, soft, step, sig, gauss
method mutation evaluations surrogate evaluations
CGPANN | single active | 1+4-137 (x10, x100)

SMB-NE | single active | 50+500 L:10+400 G:1000+400

Experimental Setup: To assess the performance of PHD, we discarded the
GD, GIDD, and MD distance and introduced two more complex data sets,
the glass and the cancer data setﬂ Both data sets were preprocessed by
normalization and subsampling. Glass has 9 variables (material composition), 6
unevenly distributed classes of different glass types and 214 samples, while cancer
has 9 variables, 2 classes (cancer yes/no) and 699 samples. Two benchmarks
were conducted. The first benchmark investigated the influence of the input
sample set used for generating the PHD distance measure. For the benchmark,
different input samples were created by design of experiments (DOE) methods.
All DOE sets are based on the known variable ranges and are not subsamples
of the original data sets. The lengths of the samples are identical for both data
sets, as they have the same number of variables. We compared the following:
1. Small and large factorial designs, including main, interaction and quadratic
effects, with 55/157 samples each.
2. Small and large Latin Hypercube samples, with 55/110 samples each.
3. The complete datasets as baseline input set, with 214/699 samples each.
4. As algorithm baseline, CGPANN with an increasing number of evaluations
(5.5 x 100, 5.5 x 1,000, and 5.5 x 10,000).
The motivation of this benchmark is as follows: in real-world optimization tasks,

often a priori information of the the task and/or environment is sparse, as

2 Available in the UcCl machine learning repository:
https://archive.ics.uci.edu/ml/index.php

138

7.5. Experiments

the underlying problem is a black-box problem. Thus, initially no data set is
available to serve as an input set and the user has to rely on design of experiment
methods to create input data for the PHD. Further, several changes were made

to the algorithm setup to account for the more complex classification problems:

— The genotype size was significantly enlarged to 100 nodes with 25 arity,

resulting in a maximum of 2500 weights,/connections.

— For all compared algorithms, the mutation operator is changed to Gold-
mans single mutation, which mutates exactly one active node in the

genotype (and an arbitrary number of inactive nodes).

— The number of total function evaluations was raised to 550, while fixing
the surrogate model set My size to a value of 100. Each sample hereby
consists of 80% random and 20% of the most fit individuals from the

solution archive D;.

Table [7.2] shows the adjusted algorithm parameter setup. In the second, con-
nected benchmark, the influence of the surrogate model size, which is used in
each iteration of SMB-NE, to the overall optimization performance is analyzed.
The glass data set with the complete input set and cancer with the factorial
input set are compared for different model set M sizes

Results: Figure shows the results of the benchmarks with SMB-NE using
PHD for different input sets created by experimental design techniques. For
glass, the SMB-NE with the complete input set performed best and on one level
with CGPANN with 100 times more real function evaluations. This indicates
that SMB-NE is clearly able to improve the sampling efficiency, if the (best
possible) input data set is selected. All DOE input sets performed on an equal
level similar to CGPANN with 10 times the evaluations. They are thus also
able to significantly increase the sampling efficiency, while utilizing an input set,
which requires (nearly) no a priori information. The results for cancer firstly
indicate that the underlying problem seems to include strong local optima,
as we can identify certain clusters of different levels of the adjusted accuracy
(around 0.8, 0.86, and 0.95).

139

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

Glass Cancer
Small Factorial- -“-
Large Factorial- =R =
Small LHS- -*-
@

Large LHS-

I

. - Io - . -.
CGP (x10 Evals)- —-——*] —
CGP (x100 Evals)- ——*—’— 3 *‘

025 030 035 040 045 0.7 0.8 0.9 1.0
Adjusted Accuracy Adjusted Accuracy

CGP Base-

Complete Data Set-

Figure 7.6: Violin plot of the benchmarks with SMB-NE using PHD for different
input sets created by experimental design techniques. The results are compared to the
complete dataset and CGPANN using a different number of total function evaluations

Glass with Complete Input Set Cancer with Factorial Input Set

Modelsize: 25- * 1 *
Modelsize: 50- D—’*—d 1 **
Modelsize: 100- ——*—— 1 —"_‘
Modelsize: 150~ .-‘—‘ 1 _’—‘
Modelsize: 200- ———*—‘ 1 _’*

0.30 0.33 0.36 0.39 0.7 0.8 0.9
Adjusted Accuracy Adjusted Accuracy

Figure 7.7: Results with different surrogate model sizes during sequential optimization
run for SMB-NE using PHD. Compared datasets are glass with complete input set for
PHD, cancer with factorial input set for PHD.

140

7.6. Conclusion and Outlook

If we only consider only the best cluster, again we can identify that again the
complete set performs best, together with CGPANN x100, while the DOE sets
are again on one level with CGPANN x10. Figure [7.7] shows the results of the
benchmark with different surrogate model sizes during sequential optimization
runs. In contrast to our expectations, the benchmarks show that the model
sample size does not seem to have a significant impact on the performance.
Even the small sample sizes perform on the same level.

Discussion: The second set of experiments significantly shows two features
of SMB-NE using the PHD. As expected, the choice of input set has a strong
influence on the algorithm performance. The different designs and input sample
sizes show a similar performance, which is an unexpected finding, as we would
have anticipated that more samples and a larger design would lead to a more
precise representational distance for the complete dataset and thus an improved
performance. As the complete dataset shows the best performance, a represen-
tatively measured dataset of the original task seems to be the best choice, if
initially available or producible by experiments. For the surrogate model size,
we anticipated that the large model, which has more information, would be
beneficial to the search process, but the smaller, more local models also worked

well. Thus, it can be held on a feasible level which is fast to compute.

7.6 Conclusion and Outlook

In this chapter, we proposed a new surrogate-based approach for the task of
neuroevolution. Further, we investigated the influence of different distance
measures for constructing the surrogate during the optimization process. We
have shown that SMBO is a valuable extension for CGPANN, which is able
to improve the NE of ANNs in case of small evaluation budgets. Regarding
research question 1, we can conclude that SMB-NE with phenotypic distance
kernels shows significantly better results than basic CGPANN. Utilizing the
PHD with a perfect input set, we were able to reach a sampling efficiency
which is on one level with CGPANN with 100 times more function evaluations.

Further, the comparison indicates that SMB-NE utilizing genotypic distances

141

Chapter 7. Comparison of Distance Metrics for Surrogate Model-Based
Neuroevolution

does not provide significant performance increases. This fact can be explained
by the low correlation of changes in the genotype to the resulting ANN behavior.
Regarding research question 2, the experiments have shown that the choice of
input sets for computing the PHD has a significant influence on the algorithm
performance. Input sets created by DOE methods show a reduced performance
in comparison to a perfect input set. Finally, we can conclude that the PHD,
which is insensitive to the ANN size, is very promising. A similar study could be
conducted with NEAT instead of CGP and it would be interesting to compare
the phenotypic distance to the inbuilt compatibility distance in terms of the
evaluation performance. Former considerations include how we can employ the
PHD in complex tasks, such as evolving robot controllers, which pose additional
challenges how to select a representative input vector to compute and compare
the behaviors of the ANNs.

142

Surrogate Model-Based Optimization for
Behavioral Neuroevolution in

Reinforcement Learning

Chapter [g] was published as:

Stork J, Zaefferer M, Bartz-Beielstein T, & Eiben AE (2019, July). Surrogate models for
enhancing the efficiency of neuroevolution in reinforcement learning. In Proceedings of
the Genetic and Evolutionary Computation Conference (pp. 934-942). ACM, New York.

143

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

In the last years, RL received much attention. One method to solve RL tasks
is NE, where neural networks are optimized by evolutionary algorithms. A
disadvantage of NE is that it can require numerous function evaluations while
not fully utilizing the available information from each fitness evaluation. This
is especially problematic when fitness evaluations become expensive. To reduce
the cost of fitness evaluations, surrogate models can be employed to replace
the fitness function partially. The difficulty of surrogate modeling for NE is
the complex search space and how to compare different networks. To that end,
recent studies showed that a kernel-based approach, particularly with phenotypic
distance measures, works well|Gaier et al.|[2018]. These kernels compare different
networks via their behavior (phenotype) rather than their topology or encoding
(genotype). In this chapter, we discuss the use of surrogate model-based
neuroevolution using a behavioral distance for reinforcement learning. In detail,
we investigate a) the potential of SMB-NE with respect to sampling efficiency
and b) how to select adequate input sets for the behavioral distance measure in
a RL problem. The results indicate that we are able to considerably increase

the sampling efficiency using dynamic input setsEI

8.1 Introduction

Neuroevolution is a technique concerned with the construction of artificial
neural networks via evolutionary optimization algorithms. Omne important
application of NE is to generate control policies in RL, where it is a considerable
challenge to evolve competitive ANN policies with evolutionary methods. The
mapping from the genotypical representation to its phenotype and behavior,
and finally to the fitness measurement (i.e., its ability to solve a learning task)
can become extremely complex. Evolutionary algorithms will need to spend
a significant amount of fitness function evaluations to find well-performing
networks. This may become an issue if fitness evaluations are expensive and

dominate the optimization process’s overall time or resource consumption.

IFor clarity, the term “phenotypic distance”, used in the published version, was changed
to “behavioral distance”.

144

8.1. Introduction

Surrogate model-based optimization is one way to deal with this issue [Jin
2011]. Here, data-driven models partially replace the expensive fitness function.
Except for a few recent studies |Gaier et all 2018} [Stork et al., 2017, 2018,
, SMBO has found no application in the context of NE.

Following these recent developments, we intend to design surrogate models
that allow us to learn a cheap yet accurate representation of the genotype-
phenotype-fitness mapping. In that context, we also focus on kernel-based
Kriging models. The approach of kernel-based modeling with Kriging for
complex, combinatorial structures is discussed in more detail by .
For graphs, such as ANNs, this can become a difficult task. Specific graphs,

such as trees, may allow computing kernels based on measures like the tree edit

distance |Pawlik and Augsten, [2015]. Such distances on the genotype can be

plugged into the kernel function (i.e., replacing the Euclidean distance) and

used to model the genotype-fitness mapping [Zaefferer et al., [2018|. However,

the same is not as simple for graphs like neural networks, as the computation

of edit distances is NP-hard in the general case. At best, approximate distances

can be used, such as the compatibility distance employed by |Gaier et al. [2018§].

[Stork et al|[2017] discuss the use of surrogates of fixed ANN topologies in

control tasks using genotypic distances.

As an alternative to genotypic distances, it is often possible to compute the

distance on some form of behavior or phenotype. This idea was first discussed

by [Hildebrandt and Branke| [2015] in the context of genetic programming for

dynamic job shop scheduling problems. It was later also tested for symbolic

regression by |Zaefferer et al.| [2018]. The key idea of this approach is that

complex structures can be compared by observing their output (phenotype)
rather than their structure (genotype).

In terms of NE, different distance measures were recently tested for classifi-
cation problems by [Stork et al.|2018| |2019a]. They concluded that phenotypic

distances for ANNs are promising if the correct input signal is chosen. A

reasonably different model has been used for an RL problem in the context of

NE by [Koppejan and Whiteson| [2011]. Their goal was not to replace the fitness

function (as is usually done in SMBO). Instead, they intended to reduce the

145

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

sample cost involved in testing a controller within different instances of a specific
problem class. Instead of a purely data-driven model, they employ a model
that is mainly based on understanding the physical system under consideration
(a hovering helicopter). In terms of the classification by Bartz-Beielstein and
Zaefferer| [2017], this can be seen as a customized modeling strategy. A transfer
to other problem domains is not straightforward. Most approaches considered
in our study can be seen as similarity-based strategies or mapping strategies.

In contrast to the related work, we focus on applying surrogate model-based
neuroevolution for RL and the unique needs that arise from solving such tasks,
particularly considering the computation of a behavioral distance. In summary,
we investigate the following questions:

Q-I How can we learn the mapping from a neural network to its performance

in terms of solving RL tasks?
Q-II How does a model-based NE compare to model-free NE on RL problems?
Q-III How should behavioral distances be configured to generate well-performing
surrogate models?

We describe the corresponding models and algorithms for NE and RL in
Section 8.2l SMB-NE in the context of RL is described in Section B3l Our
experimental setup is described in Section [8.4] and the results are discussed in
Section Section concludes the work.

8.2 Methods for Model-Based Search

The application of model-based search for RL problems introduces a set of

challenges. In general, we want to distinguish between three possible scenarios:

S-1 New task: We want to solve a new task, i.e., no prior experiments were
conducted, and no data is available. Here, no information from prior runs
can be used to accelerate the current run, and initial experiments have to

be conducted to gather information.

146

8.2. Methods for Model-Based Search

S-2 Same task, different instance: Data and optimized controllers from former
experiments are available, and a different problem instance of the same
environment (e.g., different start parameters) has to be solved. For many
cases, the ANN controller trained for prior runs may be reused if it is
not overfitted and provides a robust solution performance. If not, the
existing ANN controller can be subject to further optimization, where a

fast convergence to a good solution is anticipated.

S-3 Same task, different environment: Data from former experiments is avail-
able, but a different yet similar environment needs to be solved. For example,
changes to the environment, such as a different maze (in a maze solving
problem) or the different physical shape of a robot or appliance, could be
considered. In this case, a prior optimized ANN controller could provide a
good starting solution. An available data model of the optimization run

could still provide valid information.

In this work, we will focus on the first scenario (S-1), whereas for (S-2), different
instances will be tested, and a robust controller is part of the benchmark target.
(S-3) will be part of future work.

Our model-based approach for solving RL tasks is a combination of existing
algorithms: cartesian genetic programming for neural networks (CGP-ANN),
SMBO, and specific Kriging models utilizing behavioral distance (BD) kernels.
We describe these algorithms in the following.

8.2.1 Cartesian Genetic Programming

In this work, the ANNs are encoded as in the CGP-ANN algorithm [Khan et al.|
20105 Miller and Thomson), 2000; [Turner and Miller| 2013]. Each individual
consists of a fixed number of nodes, as visualized in Figure Besides the
input nodes, which represent the data inputs, each node has a single transfer
function, a fixed number of inputs, and associated weights based on their arity.
Nodes are always connected to proceeding nodes, and multiple connections to
the same node are possible. Only those nodes which are directly or indirectly

connected to an output are evaluated during a run, while all other remain

147

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

Genotype
Node |
Node Number and ®@@

onored greons (sn)
Node active) @@@
HOO N O

Transfer Functions

Inactive Node _

ANN Topology

Figure 8.1: A CGPANN genotype with two inputs, eight nodes, an arity of three
and different transfer functions. FEach node has a transfer function, a boolean activity
gene and several inputs with adjacent weights. Green nodes are active and part of
the encoded ANN. In the related topology only active nodes are included and duplicate
connections are aggregated. Taken from [Stork et all, |2019d).

passive and do not influence the behavior of a network. Thus, very small active
ANN topologies and also those only using specific inputs are possible, even if
the genotype has numerous nodes. In CGP-ANN, the networks are optimized
using mutation, following the concept of an evolutionary strategy. A typical
choice is a (1+4)-ES, whereby the elitist is always the current best individual
(e.g., if an individual achieves the same fitness as the elitist during evolution,
the more recent is selected). The C library CGP by A. Turnelﬂ extended by

interfaces to R, was used to perform the experiments.

2http://www.cgplibrary.co.uk - accessed: 2018-01-12

148

8.2. Methods for Model-Based Search

8.2.2 Kiriging for modeling ANNs

In this study, we focus on an SMBO approach that employs Kriging (Gaussian
process regression) |Forrester et al. [2008]. The main question in this context is
how Kriging can model the complex dependencies between a neural network’s

topology and its fitness.

At its core, Kriging is based on kernels such as the exponential kernel
k(z,2') = exp(— >, 0;(z; — «})?). In this example, z € R" is a vector of
real values, and #; € R' is a non-negative parameter of the kernel. If x is
not a real-valued vector but rather represents a candidate ANN, we need to
change the kernel such that it compares networks rather than vectors. For
instance, the weighted distance measure — -, 6;(z; — 2)* may be replaced
with some distance between ANNs. To that end, previous work suggested
evaluating distances that are based on observations of network behavior (or
phenotypes) |[Hildebrandt and Branke) 2015} |Zaefferer et all [2018; [Stork et al.|
2019a]. More details on the computation of phenotypic distances are given
in Section B2.3

One complication of using such phenotypic distances in Kriging is dimen-
sionality. Specifically, Kriging is often suggested for problems with less than 20
variables (e.g., see Table 3.1 in |Forrester et al., 2008|). At the same time, the
vectors of phenotypes we consider in the context of ANNs may quickly grow
to lengths of 100 or more elements. Hence, the combination of Kriging and

phenotypic distances may appear to be a poor choice.

We propose to tackle this in two manners, each related to two different aspects
that affect problems with high-dimensionality in Kriging. One problem of high-
dimensional data is the determination of the kernel parameters such as 6;. These
are usually determined by maximum likelihood estimation, using numerical
optimization algorithms [Forrester et all 2008]. In MLE, the parameters are

chosen to maximize the likelihood determined by the Kriging model.

Clearly, the number of parameters increases with the dimensionality of the
data. Optimizing many parameters by numerical optimization may pose a tough

problem. A straightforward fix is to set all parameters 6; to the same value,

149

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

that is, to use k(z,2") = exp(—0 Y1, (z; — x})?), where only a single parameter
0 has to be determined by MLE. That is, we choose an isotropic rather than
anisotropic model.

A second problem is the behavior of distances in high-dimensional spaces.
Roughly speaking, when measuring Euclidean distances of different data points
in a high dimensional space, nearly all points will have the same distance |Ag;
garwal et all 2001]. This is undesirable for any model that is based on such
distances. |Aggarwal et al|[2001] state that other distances are less affected by
this issue, especially the Manhattan distance (based on the Ly norm). For that
reason, we finally propose to use an isotropic kernel based on the Manhattan

distance to measure the distance between behavior vectors, i.e.,

n

kpp(z,2’) = exp(—0 Z |z; — x]). (8.1)
i=1

Figure [B:2] illustrates an example model for a one-dimensional case. Besides

dimensionality, another essential aspect of kernels for Kriging is their definiteness.

Usually, kernels are required to be positive semi-definite. The kernel kpp from

Eq. is definite, as it is a special case of the positive semi-definite Gaussian

kernel |[Forrester et al., 2008].

8.2.3 Behavioral Distance Measure for ANN Topologies

Evolved ANN topologies do not have fixed structures regarding hidden layers,
weights, connections, or functions. Measuring the distance between these
complex structures is thus a challenging task. In detail, it is difficult to measure

a distance directly on these structures due to several problems:

P-1 Competing Conventions: A famous problem that arises in the context
of ANNs are competing conventions |Schaffer et al., [1992], i.e., different

genotypes can result in the same topology, as well as the same phenotype.

P-2 Incomparability: Even ANNs with fixed genotypic structures (e.g., as
produced by CGP) are often not directly comparable. When comparing

150

8.2. Methods for Model-Based Search

T

Figure 8.2: Ezample for Kriging modeling: distances between ANNs (blue circles) in
one dimension x; of a behavior output. The bold line is the model prediction, while the
thin lines display the uncertainty of the model.

P-3

P-4

two genotypes, elements such as specific nodes maybe not be aligned in the
same way, despite having the same effect on the outcome. In other words,
it is not always straightforward to decide which pairs of nodes should be
aligned with each other when comparing two different networks. This could
be handled by complex and computationally expensive sorting and aligning
processes, but this would pose an optimization problem in itself and render
the comparison computationally expensive [Stork et al.| [2019a]. This issue

becomes more problematic with the increasing size of the ANNs.

Lack of Smoothness: In some cases, small changes in the genotype can
have a significant effect on the final behavior. For instance, removing a
single connection may change the fitness of the network dramatically. That
means small distances in the search space may lead to large distances
between fitness values. Essentially, this implies that the search space is
not smooth under a genotypic distance. This presents a severe problem to

every optimization or modeling algorithm.

Distance Balancing: Different types of changes in a network have different

meanings and impacts. For example, changing a weight has a different

151

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

impact than changing the transfer function of a node. It is thus difficult
to provide a meaningful distance that correctly balances (or weights) such
changes. For example, it is unclear whether two networks that only differ
in a single weight are at the same distance as two networks that only differ

in a single transfer function.

Due to these issues, genotypic distances do not seem to be ideal for the compu-
tation of high-performing surrogate models in SMB-NE. Thus, we follow the
idea of comparing the behavior of ANNs and employ a behavioral distance for
modeling the dependencies of ANNs [Hildebrandt and Brankel {2015} [Zaefferer
et all [2018; |Stork et al., 2019a]. In the context of ANNs, we consider the
reaction (output) of an ANN to an input signal to be its behavior or phenotype.
In detail, we compute the BD by first selecting a representative input vector
for a given task. Then, these inputs are fed into the ANN, and we observe a
vector of output values. In terms of RL, the input vectors are typically vectors
of consecutive observed environment states. The observed outputs are then
directly compared via the kernel described at the end of Section [8.2:2]

The clear advantage of the BD is that the output length and structure
are not dependent on the genotype or topology of the compared ANNs. The
computation of the input to output mapping can be performed independently
of different structures (e.g., it does not matter whether the network has 10 or
1000 active connections or different transfer functions). Moreover, the observed
outputs of the BD give a clear impression of how the networks react and

explicitly account for granular changes in how ANNs differ in solving a task.

The potential disadvantages of the BD are the computation times for gener-
ating the output vectors. For complex, large ANNs topologies (genotype size
does matter much less), they can sum up to a significant amount. This issue is
not significant if we consider the task itself to be computationally expensive,
especially for expensive simulators or even real-time experiments. In this study,
we thus concentrate on enhancing the sampling efficiency and not the overall

computation time, which is strongly related to solving a specific task.

152

8.2. Methods for Model-Based Search

8.2.4 Behavioral Distances: Input Vector Selection

The BD is, in contrast to genotypic distances, strongly task and environment-
dependent. One critical aspect of employing phenotypic distances is thus that
their design needs to be adapted to each specific application. For our purpose
of modeling ANNs in RL, we first need to define how the input of the networks
is chosen. These inputs can then be used to generate the output of the ANNs,
which will be compared by the distance measure.

Choosing the input vectors involves multiple issues, such as distribution of
the state data, size of the data set, and many more. In this paper, we focus on

four different types of input vectors:

— Precomputed set (Pre): As a comparison baseline, we use the set
of states that are observed by optimal or near-optimal solutions. A
number of state vectors from previously successful runs are stored and
used as a precomputed input set. This is an artificial baseline for our
outlined scenario (S-1), where the knowledge about these states is initially

unavailable. This could be seen as a best-case scenario.

— Static initial set (Init): We extract the observation vectors s;—; from
the initial dataset Dy;—; to form the input vector v;—1, which is not altered
during the run. The possible downside of this approach is that the initial,
randomly generated solutions typically have poor fitness. Inadequate
solutions may see quite different states than successful, near-optimal
solutions. They may cover only a tiny subset of all possible observable
states. As these initial input vectors are thus not representative, the

resulting distance may not help predict reasonable solutions.

— Sampling set (LHS): Furthermore, input vectors can also be deter-
mined by the design of experiment methods, such as Latin hypercube
sampling [McKay et al., [1979]. The idea is to distribute the data in a
space-filling manner between known bounds for the inputs. In contrast to
the initial static approach, these inputs cover the whole state space; they

are artificial and do not represent the observed states of actual runs.

153

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

— Dynamic set (Dyn): Finally, we may update v; at each iteration if the
SMBO algorithm finds a new best ANN. The observed states s; of this new
solution will replace the worst in the input vector v;. This implies that the
input vectors are changed dynamically over time and may approximate the
baseline if the algorithm converges to the optimum. This also means that
the employed distance measure changes in each iteration. Models trained

in different iterations of the algorithm are hence not directly comparable.

Further considerations include the number of observations in the input vector
and the maximum size of the overall input vector. Large size for v; increases
the computation time for generating the phenotypes of the ANNs, and further
may introduce problems with too high dimensionality (Section . On the
other hand, a larger input vector including the states of different runs may lead
to a more representative behavior and thus distance. Another challenge is the

over-time changing sizes of the dynamic input set.

8.3 Surrogate Model-based Neuroevolution for

Reinforcement Learning

In this work, we employ SMB-NE, which was first introduced by [Stork et al.
|2018, [2019a] and tested by evolving neural networks for classification problems.
The SMB-NE algorithm follows the principles of efficient global optimization
[Jones et al.l [1998], which was introduced in the context of expensive real-world
optimization problems. In the case of SMB-NE for RL, we require additional
steps due to the complex ANN structures. The complete procedure is outlined
in Figure [83] and Algorithm [8:3.1]. The detailed steps of the algorithm are:

Initialization of model set: The algorithm starts by sampling an initial
set with k candidates Dy = {(z1.x,y1:x)}. The initial set is generated entirely
at random, so the included genotypes can differ in their size, the number of
genes, connections, functions, and weights. The active ANN topologies are then
compiled with CGP to be evaluated with the underlying RL task.

154

8.3. Surrogate Model-based Neuroevolution for Reinforcement Learning

1. Initialize ANNs
CHH] CHH]
-|‘| -|‘| Evaluate
ANN Reinforcement Learning
3] 2. Compute Reward
R CHH]
- y
Archive

3. Extract Observations 6.Suggest new Candidate

O O ““‘ by Optimization
¢
o*o] (@B [ooud™

y

4. Behavioral 5. Surrogate Model
Distance

SR

Figure 8.3: SMB-NE Cycle for Reinforcement Learning

Evaluation with RL task: Each ANN is evaluated over several time
steps, which are defined by the RL task. In each time step, the ANN computes
actions based on the currently observed state inputs. Each action is then given
a reward. Some actions lead to a negative reward, such as a robot bumping in a
wall or expending some resources. Positive rewards are given for accomplishing
a specific goal. The fitness of a so-called episode is typically the sum of all
rewards over the executed time steps. The fitness information is thus limited,
as it includes only the final reward of an episode and does not reveal which

single action was beneficial or not.

Extraction of observed states: If the input vector v; is not given upfront
or precomputed by DOE methods, it needs to be extracted from the RL
experiment. For each experiment, all observed system states are stored in
a vector s;. The set of state observation vectors is sorted according to the
determined fitness values for each experiment. From this set, the best numsg,

observation vectors (according to the fitness of the respective ANN) are selected.

155

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

They are combined in the order of their fitness to form a single input vector v;
with length len,, = nums, * len,,. If the observation vector length is beyond a
specific size, a subset of each s; is selected before combining them to v;. This
intends to keep the number of elements in the vector from becoming too large.

Kriging model construction: The Kriging model is constructed as de-
scribed in Section We utilize the R-package CEGO |Zaefferer, 2017] to
train the Kriging model. At the start of the process, the model is trained with
the initial set of solutions D;—;. The state input vector v; is used to compute
the phenotype of each ANN, which is required to calculate the BD. A subset
M; is selected from D; to build the model in the later modeling steps. This
subset selection intends to avoid issues with growing data sizes, which may
render the Kriging model too time-consuming to compute. This set M; contains
num,, of all archived solutions. It is typically set to num,, > 100, so for runs
with fewer than 100 evaluations it has no effect. M; is formed by combining a
number (typically % * num,,) of the best-found solutions, with the rest being
sampled at random from the archive (without replacement, thus duplicates are
not possible). This process further influences the balance between exploration
and exploitation, as, in each iteration, a different set of ANNs is considered for
the model construction.

Surrogate Optimization: The sequential optimization steps are con-
ducted by optimizing the expected improvement of the surrogate model to
suggest new promising ANNs. The EI criterion delivers a balance between the
predicted fitness and the uncertainty of a solution, leading to a balance between
exploration and exploitation in den model-based search [Jones et al., [1998]. We
utilize the same (1+4)-ES of CGP-ANN to generate new candidates for the
model optimization. To predict the fitness of new candidates, their BD needs
to be computed, which requires their ANN outputs, based on the selected input
vector v;. The identified candidate with the highest EI on the surrogate model
is again evaluated with an RL run and added to the archive Dj.

Dynamic state vector update (optional): If the dynamic strategy for
the input vector v; is chosen, it is updated if the new candidate solution has a

better fitness than the best-known solution. During this update, the observed

156

8.4. Experiments

states s; of the related RL run replace the ones of the worst candidate solutions

in the input vector v;.

Cycle: If the stopping criterion is not met, the next iteration is started.

Algorithm 8.3.1: SMB-NE for Reinforcement Learning

1 begin

2 t=1

3 initialize kK CGP genotypes (z;) at random

4 evaluate their fitness with the objective function to get initial solutions
Dy = {(z1:4, y1:6) }

5 extract state vectors to create BD input vector v

build Kriging surrogate model m; with D; using input vector v; to
compute ANN behaviors for BD ;
7 while not termination-condition do
if t > 1 then
‘ rebuild surrogate model m,; with selected subset M; C D;
10 end

11 optimize EI estimated by s; with evolution strategy to discover
promising x;41

12 evaluate network x;y1 with the objective function

13 if y:41 < y: then

14 update input vector v;+1 with states of successful run (dynamic
input vector)

15 end

16 update archive Di11 = { D¢, (Te41, yr+1)}

17 t=t+1

18 end

19 end

8.4 Experiments

We chose two problems from the OpenAl Gym toolkit as a benchmark for our
experiments because they are well-known in the community. Specifically, we
chose the classic RL problems CartPole-vl and MountainCar-v0, displayed in
Figure[8.4]. They are implemented in python, and the reticulate package in
R was used to create an interface between SMB-NE and openAl Gym.

157

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

8.4.1 OpenAi Gym Benchmarks

Figure 8.4: OpenAl Gym CartPole-vl and MountainCar-v0

The CartPole-v1 environment is a classic cart-pole balancing problem, where
a pole is placed with an un-actuated joint to a cart moving on a frictionless
track. It has four observations per state, the cart position, cart velocity, pole
angle, and the pole velocity at its tip. Based on these observations, two discrete
actions can be chosen by a controller, either pushing the car to the left or the
right. The goal is to keep the pole balanced and the cart near the center of
the track. Each episode of the environment is evaluated over 200 time steps
and terminated if the pole or cart moves out of pre-defined ranges. For each
time step, a reward of 1 is given, and the environment is considered solved if an
average reward of 195 is achieved per episode over 100 trials.

In the MountainCar-v0 environment, a car situated between two hills on a
one-dimensional track has to be driven up a mountain, whereby the acceleration
of the car is not strong enough to drive up directly. Thus, a swinging forward
and backward behavior is needed to succeed. The observation space consists of
only two variables, the current position, and velocity. The action space has three
discrete options: drive left, do nothing and drive right. Again, an environment
episode is run over 200 steps but terminated if the goal is reached. A negative
reward -1 is given for each step, and the environment is considered solved if a

reward larger than -110 is achieved over 100 trials.

158

8.4. Experiments

While for CartPole the fitness function is set to direct negative reward
(as we utilize minimization during optimization), the MountainCar fitness
function is altered for the optimization to a mixture of achieved maximum

height (maxHeight) and reward by

Rewardepisode

fit . = — Height .
ness : y(x) (max Height, ;g + 100)

(8.2)

This modification was chosen to compute a more granular fitness. Without this,
most initial solutions get the worst reward. An initial data-set where nearly
all solutions have the same poor fitness would be detrimental for training a

surrogate model. The stopping criterion remains unchanged.

8.4.2 Parameter Tuning and Setup

Due to the considerable runtimes, we were not able to perform exhaustive
tuning of the parameter space for CGP-ANN and SMB-NE but conducted some
preliminary tests to acquire information about the algorithm parameter space
and the significance of specific variables. For CGP-ANN, two mutation operators
(single active mutation and random mutation), as well as different mutation
strengths, were tested. The preliminary tests have shown that CGP-ANN with
a single active mutation, wherein each iteration the genotype is mutated until
at least a single active genome (and an arbitrary number of non-active genomes)
is altered, was not able to deliver competitive performance. Moreover, the
choice of the mutation strength in random mutation has a significant impact
on the performance. Thus, we decided to conduct experiments with different
mutation strengths of two, five, and ten percent, which were selected based on
former experiments to show the influence of this parameter and conduct realistic
comparisons. SMB-NE includes an even more extensive set of parameters, such
as the choice of input vectors (for the BD), their number and dimensions, and
an optimizer and its parameters during the surrogate model optimization. Thus,
most of these parameters were set by the authors’ experience and the small
set of preliminary tests. We identified that the number of different observation

vectors num;g for creating the input vector v; might be a crucial tuning factor

159

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

Table 8.1: Algorithm Parameter Setup for the Ezperiments

Problem Weight Range Nodes Arity
CPole/MCar [-1,1] 200/100 20/10
CGP-RS Max Episodes

CPole/MCar 3000/5000

CGP-ANN Mutation rate Max Episodes

CPole 2/5/10 20+ 7504

MCar 2/5/10 20 41250 - 4

SMB-NE BD Input Sets Max Episodes Surr Evals
CPole Pre, Init, LHS 20 + 3000 1000 per iter
CPole Dyn: nums = 2/5/10 20 + 3000 1000 per iter
MCar Pre, Init, LHS 20 + 5000 1000 per iter
MCar Dyn: num, = 2/5/10 20 + 5000 1000 per iter
MCar Dyn** numg = 5 20 + 5000 4000 per iter

and thus added different variants to the experiments. Although we expect
that the chosen parameters for both algorithms do not reflect the best possible
options, they should still provide valuable insights on the performance level
of both algorithms. Table shows the parameter setup for the benchmarks.
CGP-ANN genotypes for CartPole/MountainCar are set to an arity of 20 or
10, with 200 or 100 nodes, resulting in up to 4000 or 1000 connections between
nodes. We perform all tests with a large set of activation functions: tanh,
softsign, step, sigmoid, and gauss. Both the maximum size of the genome and
the function were set by the authors’ experience. This displays a typical scenario
in NE, where we do not know upfront which size for the genotypes is best.

All inputs are, if possible, normalized to the [-1,41] range, and the connection
weight range was also set to [-1,+1]. The setup considers a maximum runtime
of 3000 or 5000 episodes, whereby the run is stopped as soon as the stopping
criterion (environment solved) is met. The size of the initial data set D;—; is
set to 20 for all algorithms. CGP-ANN starts the normal evolution with the
best-found solution of the initial set and computes four candidates per iteration.
SMB-NE selects a single new candidate per iteration and utilizes 1000 search
steps for the model optimization. All SMB-NE setups use the same mutation
rate during the model search (5%). The tested setups include all variants
introduced in Section (Pre, LHS, Init and Dyn). For the dynamical

160

8.5. Results and Discussion

approach, different numbers of observation vectors numg to create the input
vector v; are tested. The input vectors generated by LHS are based on the
(theoretical) bounds of the state observations for each environment and have 800
elements. All experiments are repeated 30 times with different random number
generator seeds. Different algorithms/configurations are tested with the same
set of seeds to be comparable. A CGP-ANN configuration that only generates
random solutions is included in the experiments as a baseline (RS). For assessing
the performance of an exhaustive model search, we test an additional variant
(Dyn**) of SMB-NE with the dynamic set for MountainCar-v0, where we set the
size of the surrogate model evaluations to 4000. Due to the computational effort,
this variant is only repeated 20 times. The statistical significance of the observed
differences is evaluated using the Kruskal-Wallis rank sum test |[Kruskal and
Wallis| [1952] and a posthoc test for multiple pairwise comparisons according to

Conover and Iman| [1979).

8.5 Results and Discussion

Figure [8:5] and Table [8:2] show the results of all conducted experiments with
both benchmark problems. For easier comparison, the results of the box plots
are logl0 scaled and colored according to the type of algorithm. The numbers
indicate either the utilized CGP-ANN mutation rate in percent or the number
of utilized state observation vectors numg for computing the BD in SMB-NE.

CartPole-v1: For CartPole-v1, all algorithms are able to find successful
solutions but show a high variation in solution quality over the different random
seeds. This variation relates to the different starting conditions for the RL
environment and different initial data sets. On the one hand, the environment
might rarely be solved by pure random chance during the initialization of the
algorithms. On the other hand, even CGP-ANN sometimes fails to find solutions
within the specified budget of 3020 total fitness function evaluations. In contrast,
all SMB-NE variants can discover ANNs that solve these environments within
the given budget. The statistical tests indicate an overall significance of the

results (Kruskal-Wallis rank-sum test). However, no evidence for significant

161

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

RS.Base-

CGP.MutRate 2-

CGP.MutRate 5-

CGP.MutRate 10-

SMBNE.PreSet 5-

SMBNE.LHS-

SMBNE.InitSet 5-

SMBNE.DynSet 2-
SMBNE.DynSet 5-

SMBNE.DynSet 10-

20 50 100 200300 500 1000 3000
CartPole-v1

RS.Base-

CGP.MutRate 1-

CGP.MutRate 2-
CGP.MutRate 5-
CGP.MutRate 10-
SMBNE.PreSet 5-
SMBNE.LHS-
SMBNE.InitSet 5-
SMBNE.DynSet 2-

SMBNE.DynSet 5-
SMBNE.DynSet 10-

SMBNE.DynSet 5 **- —
50 100 200 300 500 1000 3000 5000

MountainCar-v0

Figure 8.5: FExperimental results. The number of required function evaluations
(episodes) to solve the environments is Log10 scaled. Algorithms have different colors
and specific setups are attached to the algorithm names. The numbers indicate either
the utilized mutation rate in percent (CGP-ANN) or the number of utilized state

observation vectors nums (SMB-NE). Red circles depict outliers.

162

8.5. Results and Discussion

differences between any CGP variant and random search is discovered by the
statistical test procedure (posthoc), while all SMB-NE variants are evaluated
to be different from CGP and random search. There is insufficient evidence
to indicate a significant difference between the tested input sets for SMB-NE;,
according to the respective posthoc test. The results show that the best tested
SMB-NE variants can outperform the best tested CGP-ANN variant and require
about 70% (median) or 80% (mean) fewer function evaluations (or environment

episodes).

Table 8.2: Result tables for both environments, reported mean and standard deviation,
sorted by CartPole-v1 ranking

Algorithm Setup Evaluations (Required Episodes) + sd ‘
CartPole-v1 MountainCar-v0
SMBNE DynSet 5 ** not tested 180.67 £ 76.90
SMBNE DynSet 10 57.57 + 22.79 218.96 + 129.70
SMBNE PreSet 5 63.17 £+ 41.88 198.70 £+ 152.10
SMBNE DynSet 5 64.83 + 32.43 179.40 + 105.05
SMBNE InitSet 5 64.97 + 34.43 327.22 + 235.47
SMBNE DynSet 2 66.67 + 43.98 320.67 + 240.68
SMBNE LHS 80.41 + 44.19 219.05 + 152.43
CGP MutRate 5 328.00 + 508.28 916.13 + 1146.07
CGP MutRate 10 487.20 + 626.35 1830.40 + 1612.21
CGP MutRate 2 541.73 + 897.50 320.67 + 240.68
CGP MutRate 1 not tested 462.13 £+ 667.98
RS Base 1271.07 + 1139.16 5020.00 + 0.00

MountainCar-v0: As the results indicate, the MountainCar-v0 is more
challenging to solve, and CGP with random search cannot discover a single
valid solution. Overall, more evaluations are required to solve the task. The
mutation rate in CGP-ANN has a noticeable influence on the performance. The
tested configuration with a mutation rate of 2% performed best. Based on these
results, additional runs with even smaller mutation rates were conducted (1%
is reported) but showed no improvements. For the sake of brevity, they are not
shown in the result plots. Again, the Kruskal-Wallis rank-sum test indicates that
significant differences are present. The posthoc test shows that all algorithms

performed statistically different from random s earch (except for CGP with 10%

163

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

mutation rate). Only the SMB-NE DynSet** variant, which features a more
extensive surrogate model search, shows evidence for a significant difference to
CGP-ANN. From the input sets, the Init set variant performed worst. Still, the
best standard dynamic variant DynSet § requires 45% fewer evaluations than
CGP-ANN and the dynamic variant DynSet** performs even better (60-70%
less required function evaluations).

Discussion The presented experimental results provide substantial insights
on the performance potential of utilizing model-based search in NE. For both
test cases, SMB-NE outperforms the basic (144)-ES integrated into CGP-ANN.
First, we focus on the results of the model-free CGP-ANN with the (1+4)-ES.
Particularly for MountainCar-v0, significant performance differences in the
choice of mutation rate are visible. This shows the need for either exhaustive
tuning of this parameter or the development of an adaptive strategy.

Secondly, no apparent statistically significant differences were observed
for the different choices of how the state input vector for the BD distance is
generated. Thus, we cannot support the different assumptions raised in the
introduction of the input sets (Pre, Init, LHS, and Dyn). Given the current
experimental design with large input vectors, we can state that SMB-NE is
reasonably robust to the choice of the input vector. However, the MountainCar-
v0 results show a slight preference towards the dynamic input sets. Thus we still
assume that it is preferable if the computed distance is based on state vectors
that were actually observed rather than artificially created or precomputed.
Especially if a further dimension reduction of the BD is considered, the dynamic
input vector thus seems the best choice.

In comparison to CGP-ANN, SMB-NE is, in general, able to produce more
stable results, rendering it a promising choice for new tasks, as in the outlined
scenario (S-1). For example, Figure shows the convergence of the SMB-NE
using a dynamic input vector with numg; = 5 in comparison to the CGP-ANN
with a mutation rate of 5%. The mean reward over the 30 repeats of the current
candidate is shown for each iteration. As can be observed, the model-based
search shows a substantial increase in reward after the initial set and then a

steady convergence, while CGP-ANN also improves steady but slower.

164

8.6. Conclusion and Outlook

105

150-
g LA f"\'\\r"‘/‘./ p17
5100 /\4" [-/*\'N
© ot e LWy

A JMey \
50- ‘\'
O (= |
0 20 40 60 80 100 120 140
Episode

Figure 8.6: Convergence plot of SMBNE.DynSet 10 (solid blue) and CGP.MutRate
5 (dashed red) on CartPole-vl, mean reward of current candidates (not best solution)
aggregated over repeats with standard deviation (colored areas), the environment is
solved by reaching a reward of 195 per episode.

8.6 Conclusion and Outlook

In this work, we investigated how a surrogate model-based search can be utilized
to enhance the efficiency of NE, given the complex task of evolving artificial
neural networks for reinforcement learning. Our surrogate models are based
on phenotypic distance measures, which utilize the observed differences in the
outputs of an ANN. We discovered that our SMB-NE for RL could significantly
outperform a model-free evolutionary strategy, which answers the initially
raised research question Q-II. We proposed different approaches to generating
state vectors for the ANN’s input space regarding Q-I and Q-III. The current
empirical results do not provide evidence for solid differences between the input
sets generation methods. SMB-NE thus seems relatively robust towards this

choice. Still, we regard the dynamic input sets as the most promising approach.

Of course, this work and the results raised further questions. The first is
how to set the parameters of the SMB-NE algorithm optimally, particularly

regarding the dimension of the input sets. Up to now, we do not know which

165

Chapter 8. Surrogate Model-Based Optimization for Behavioral
Neuroevolution in Reinforcement Learning

length of the state vector is required to generate a well-performing model and,
thus, reasonable optimization performance. The length of the state vector is also
related to the computation costs, particularly for computing the BD measure.
The computation costs are a potential drawback of SMB-NE, but the clear and
robust improvements of the sampling efficiency render it notably attractive for
tasks where the fitness evaluations themselves are costly. For instance, consider
a robot controlled by an ANN. Testing that robot in a real environment may be
very expensive, while computing only the outputs of the ANN are considerably
cheaper. In ongoing work, we will furthermore attempt to generalize our results
to more environments from the Gym toolkit as well as tests with real-world
problems. We plan to investigate the underlying mechanics. In particular, the
significance of specific algorithm parameters is of interest and may require more

attention to algorithm tuning.

166

Analysis of the Behavioral Space in

Context of Reinforcement Learning

Chapter [9 was published as:

Stork J, Zaefferer M, Bartz-Beielstein T, & Eiben AE (2020). Understanding the behavior
of reinforcement learning agents. In Bioinspired Optimization Methods and Their
Applications: 9th International Conference, (pp. 148-160). Springer Nature, Cham.

167

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

Reinforcement learning is the process of training agents to solve specific tasks,
based on measures of reward. Understanding the behavior of an agent in its
environment can be crucial. For instance, if users understand why specific
agents fail at a task, they might be able to define better reward functions, to
steer the agents’ development in the right direction. Understandability also
empowers decisions for agent deployment. If we know why the controller of
an autonomous car fails or excels in specific traffic situations, we can make
better decisions on whether/when to use them in practice. We aim to facilitate
the understandability of RL. To that end, we investigate and observe the
behavioral space: the set of actions of an agent observed for a set of input states.
Consecutively, we develop distance or similarity measures in that space and
analyze how agents compare in their behavior. Moreover, we investigate which
states and actions are critical for a task, and determine the correlation between
reward and behavior. We utilize two basic RL environments to investigate
our measures. The results showcase the high potential of inspecting an agents’

behavior and comparing their distance in behavior space.

9.1 Introduction

In reinforcement learning, agents are learning policies to solve a specific task. For
example, we can consider a robot as an agent who has to navigate a particular
environment and react to certain obstacles. At first, a user is interested in
these robots’ performance, which is commonly evaluated by their ability to
solve the task and further based on a user-defined reward function. Besides
this performance assessment, the trained robot’s behavior, such as the action it
takes for individual states, is the only observable part, as the internals of the
policy remains indistinguishable by an external observer. Thus, users desire to
analyze and compare the behavior to exploit how the robot reacts in certain
situations or if it behaves as intended. Even a well-performing robot may have
developed a specialized behavior not intended by the user, such as only driving
backward. This chapter compares agents based on their behaviors, which span

a new space, the behavior space. This chapter’s primary motivation is to create

168

9.1. Introduction

a better understanding of this behavior space and develop valuable measures
for the comparisons of agents without knowing the inner details of their policies.
Moreover, these measures could allow us to identify how agents in a learning
set differ, not concerning their reward, but with regard to their behavior. It is
particularly interesting to identify situations (states) in which an agent behaves
differently than expected. As this is a broad topic, we will start by tackling the

following research questions:

Q-1 How does an agent’s behavior with good performance compare to simi-

larly performing agents or inferior agents?
Q-II Which input states are important or problematic for the task?

Q-IIT Is there a correlation between an agent’s reward and behavior, and how

do changes in the behavior affect their reward?

Comparing agents in the behavior space has some prerequisites: Individual
agents will not visit the entire state space for most RL environments and thus
not learn the optimal action for these unobserved states. Unobserved states are,
for instance, present in environments with continuous state spaces or exclusive
paths. Nevertheless, as we investigate agents that map a policy from state to
action space (i.e., artificial neural network policy controllers), we can compute
an agent’s behavior to any state, even if not observed or observable by the
agent itself. This property allows us to compare two agents in the behavior
space on a mutual state set and investigate differences. However, state sets are
usually not initially known but based on processing the RL tasks and discovered
during each agent’s learning process. Thus, the individual state sets’ contents
are based on the state trajectory each agent follows, for example, an absolute
path for a robot in a maze. Each agent in a learning set will likely have different
trajectories, which renders it challenging to select input states to compute a
proper behavior space to compare many agents.

Behavior spaces have previously been investigated in the RL literature. Most
frequently, they were utilized to measure diversity and enforce explorative search

strategies. For instance, Doncieux and Mouret| [2010] used behavioral similarity

169

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

measures to encourage the diversity of evolved agents in an evolutionary search.
Ollion and Doncieux| [2011] suggested to measure and enforce exploration
in the behavioral space. |[Meyerson et al.| [2016] investigated how behavior
characterizations can be learned automatically for novelty search. Quality
diversity algorithms also depend on effective behavior comparison [Pugh et al.)
2016]. Similar directions have been investigated in the field of surrogate model-
based optimization. Here, the term phenotypic space has been used, defining
a space that encompasses behaviors and outcomes of individuals rather than
their encoding (genotype). Distances in the phenotypic space are used to train
surrogate models. For instance, this has been investigated in the context of tree-
coded genetic programming |[Hildebrandt and Branke, 2015} [Nguyen et al.| 2016
Zaeflerer et all 2018]. Similar work focused on graph-coded representations
of neural networks. Here, phenotypic spaces and distance measures have been
investigated for tasks like classification, reinforcement learning, or for evolving
neural network controllers for robotic navigation [Stork et al.|2019b} Hagg et al.|
2019]. Unlike these previous investigations, we aim to look at the behavior
space not primarily to improve the performance of optimization or modeling
algorithms. Instead, we aim for the understandability of agents’ behavior. To
do so, we utilize two RL environments, a designed maze with different mutual

exclusive paths and the inverted pendulum, with a large real-valued state space.

9.2 Methods for Analyzing Behavior

9.2.1 Behavior Space in Reinforcement Learning

The behavior of an RL agent encompasses its (re-)actions based on its environ-
ment and observed input states. The actions an agent takes for a specific state
s € S is defined by a policy w: S — B. The agents get a reward r € R for each
state transition. The discussed methods apply to a wide range of RL agents.
The only prerequisite is their ability to calculate a behavior for states that those
agents themselves have not observed. More precisely, we define behavior as the

set of actions for a set of input states. For an agent A, we denote its behavior

170

9.2. Methods for Analyzing Behavior

as By, with By = ma(S). Here, S is a set containing n input state vectors,
wa(S) is the policy function computing the actions of agent A for all states in S.
Consequently, the behavior space B is the set of all possible behaviors (or the
behavior of all possible agents) for an RL task, that is, B4 € B.

9.2.2 Behavior Comparison and State Importance

For the comparison of two agents A and A’, we can calculate the distance of
their behaviors, which can then be denoted by d(Ba, Bas). Because the distance
depends on the state space, we consider the distance of two behaviors concerning
the same state set S. The employed distance function can be chosen according
to the data type of Ba, Bas. That is, if they contain continuous values, we
might use the Euclidean distance. If they are ordinal integers, we can choose
the Manhattan distance instead, with d(Ba, Bas) = Y_; |ma(s;) — mas(s;)|. The
comparison of actions for individual states can provide interesting insights into
the specific behavior of an agent and further the importance of that state for the
task. In particular, we analyze the effects of unobserved states (UOS), which
are not present in the state set of a specific agent, and the influence of states
with degrees of freedom (DFS), where several actions lead to the same or similar
reward. In general, we consider a state as important (or problematic) if the
correct action for this state is essential for getting a good reward (or challenging
to learn, e.g., a majority of agents in a learning set fails to learn the correct
action). For the impact of states on the reward, we utilize the action reward
rank: All performed actions of the agents are compared for each state, and
the best ranking agent who took this action is outlined. Hence, this action is

related to the final best-performing agent in the set.

9.2.3 Reward Behavior Correlation

To understand the benefits of comparisons in the behavior space, the correlation
between reward distance and behavior distance is attractive. Therefore, we
investigate a set of m agents {41, ..., A, }, their behaviors {Ba,, ..., Ba,, }, and

their accumulated rewards {R4,, ..., Ra,, }. We compute the reward behavior

171

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

correlation (RBC) for all pairwise comparisons:
RBCaH = COor (d({BAl g esny BAm}) y d({RAl g ooy RAm })) .

Here, d({B Ays - B Am}) calculates all pairwise distances of the present agents
using the behavioral distance d(Ba,, Ba,). Correspondingly, d({Ra4,, ..., Ra,.})
calculates all pairwise distances of the present agents using a distance of their
accumulated rewards d(Ra,, Ra;). The correlation cor(.,.) may be computed
rank-based, if desired, or with standard linear correlation (Pearson correlation).
Similarly to RBCai, we can also compare each agent to the optimum agent Aqp
(the agent with the largest reward) instead of performing all pairwise compar-
isons. We denote this as RBCopy. A large RBC means that minor/substantial
differences in reward coincide with slight /significant differences in behavior.
Hence, a large RBC is a good indicator that the behavior space is easier to
traverse for search algorithms and easier to learn for surrogate models.

This property has a close connection to the fitness distance correlation
(FDC) used in evolutionary computation to rate problem difficulty |Jones and
Forrest|, [1995]. There, differences in fitness are correlated with distances in the
search space. RBC, considers all pairwise distances while RBCyp¢ and FDC
consider distances only between candidate solutions and the global optimum

(or best-known solution [Kallel and Schoenauerl, {1996]).

9.3 Experiments

9.3.1 Deterministic Maze

The deterministic maze was designed with mazelab |Zuo, [2018] as a comprehensi-
ble problem where correct actions are known and behavior is manually rateable.
The environment, visualized in Figure (a)7 consists of a 10 x 7 matrix (shown
in figures as 9x6, excluding external walls) with different encoding for accessible
ways, walls, the agent, and goal. The target is to find the shortest path to the

goal. The agent is allowed to take only deterministic actions for each observed

172

9.3. Experiments

agent position in each cardinal direction. Thus they can get stuck against a
wall. Agents get a small negative reward for each movement, a larger negative
reward if running against a wall or moving backward, and a positive reward for
reaching the goal. The maximum step size of each agent is fixed to 30, whereas
only 11 are needed to follow the shortest path. We manually designed the maze
to feature DFS and UOS: The maze has four paths to the goal and 22 unique
agent positions, but these are partly exclusive, and successful agents always
have UOS. Moreover, the lower fork is a DFS, while the upper one is not. The
intention was to construct a problem where agents with the same reward can
have different behavior, cause of the forks, and different paths. Moreover, to
analyze the effect of different exclusive paths and the UOS on the pairwise

behavior comparison.

9.3.2 Continuous Inverted Pendulum

9 GOAL oo
s LUL
L i 1
7 ti:@q’ L?\Dﬁi
6
. =il
IT'mm!
4 B
8 kj:\Aﬁﬂ?ﬁ\,,/ig
; START
2 3 4 5 6
(a) Deterministic Maze (b) Inverted Pendulum

Figure 9.1: FEnvironments. For the maze environment, external walls are not
displayed. Different ways: A and B are equal in reward, while D is slightly worse than
C.

The inverted pendulum is a time-dependent physics simulator with a contin-
uous input space (Figure [9.1(b)). The target is to balance the pendulum on a

car in the upright position for most time steps, starting at a random downwards

173

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

position by moving the car. The environment is evaluated over 500 timesteps
but discontinues if the base car moves out of designated limits. The action space
was made deterministic for more comprehensible behavior comparisons. The
pendulum environment has no exclusive paths, i.e., all states are observable,
but agents will have an enormous number of UOS because of the real-valued
input space. We also consider the environment to include multiple DFS, e.g.,
multiple correct behaviors are possible. The environment allows a large number

of behaviors and different sized sets of observed states per agent.

9.3.3 Generating Reinforcement Learning Agents by Neu-

roevolution

The RL agents’ policies are created and trained by utilizing neuroevolution
to learn ANN policies in an evolutionary process. The underlying algorithm
is the graph-based cartesian genetic programming CGP by A. Turnerﬂ [Khan
et al., 2010} Turner and Miller| 2013|. For the maze problem, ANNs with 70
inputs and four outputs were evolved, where the softmax function computes the
resulting action. The pendulum ANN has six inputs (5 4+ 1 bias) and a single
output. For an output value > 0.5, the action is drive left; otherwise, drive
right. The ANNs are evolved in terms of connection weights and structure,
i.e., the number and placing of connections, nodes, and transfer functions. The
maximum number of nodes and connections for each ANN was set to 100
(maze) and 1000 (pendulum). This leads to a vast amount of different ANN
topologies. The inner workings of the ANNs are complex and very difficult to
compare |Gaier et al., 2018; [Stork et al., 2019b|. Thus, only the reward and the
behavior of the agents using these ANNs are considered observable.

Table [0.1] summarizes the parameters and outcomes of the neuroevolution.
The pendulum agents’ rewards were aggregated over 30 different instances
for reducing the impact of the random start positions; all states and actions
from these instances are included in the agents’ state sets. The agents of each

environment were merged into one data set. Agents with equal state-input

Lhttp://www.cgplibrary.co.uk - v2.4 - accessed: 2018-01-12

174

9.3. Experiments

Table 9.1: Parameters and results of the neuroevolution run for both environments

maze pendulum maze pendulum
repeated runs 12 1 total agents 48e3 4020
evaluations per run 4020 | 4020 X 30 unique agents 43 3648
observed states 30 | max 15e3 unique states 22 30e6

sets (i.e., those following precisely the same path) were filtered to acquire a
feasibly sized data set. Due to the small number of input states for the maze
environment, its amount of agents is significantly reduced. Conversely, the
majority of trajectories in the pendulum experiment are unique. The cleaned-up
data for each environment consist of all unique agents; the input states they
observed, the corresponding actions, and their rewards. The agents were ranked,
where equal performance leads to a shared rank. The maze problem has two
best-ranked (rank 1) agents. For the following experiments, we arbitrarily chose

one of these two as a reference agent (denoted as “best agent”).

9.3.4 Experimental Setup for the Behavior Measures

Behavior Comparison: First, explorative data analysis is conducted to analyze
the behaviors and visualize them in the environment. We analyze the behavior
for individual input states, particularly for the maze problem, as we can manually
identify wrong actions and understand their impact on the reward. Furthermore,
we use a one-to-one comparison of agents with similar rewards to see the influence
of UOS and DFS. For the pendulum problem, we analyze and reveal different
behavior based on specific inputs and compare the influence of using different
state sets as input for the behavior comparison. The denoted “best agent” for
this problem is the best found.

State Importance: The maze environment has designed DFS and UOS, i.e., the
forks with different importance and different exclusive paths to reach the goal.
The goal of the importance analysis is to discover these states by comparing
the behavior of all agents. We take a best-ranked agent as the reference for

correct actions and calculate the percentage of different actions for each state by

175

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

one-to-many comparisons, weighted by the difference in rank for these agents,
by d(Ba, Bar) x d(ranka,rankas)/sum(rank, rank). Further, we calculate
and visualize the action reward rank (Section for each state.

Reward Behavior Correlation: The main challenge in computing the RBC,j
and RBC,y is selecting a suitable state set to compare the behavior. With
the previous experiments’ experience, we defined different options to select a

suitable state set and analyze which of them leads to the best overall RBC:

Input set A: Random states sampled from all known states of all agents.

Input set B: All known states of an environment.

— Input set C: The observed states of the best agent.

Input set D: The observed states of both compared agents.

— Input set E: The observed states of one compared agent.

For the pendulum problem, we calculate the RBC,); on an equidistant sampled

(each 15th) subset of agents to significantly reduce the computation time.

9.4 Results and Discussion

9.4.1 Behavior Comparison

The comparison of the best agent against all and selected inferior agents for the
maze environment on different state sets (B, C, D) is illustrated in Figure
Interestingly, the best agent does not choose the best action in all states. It
only chooses correctly for the states it observed by itself. The agent would run
into walls if placed in certain positions (e.g., 5,5 or 4,9).

The behavior distance is amplified by different actions for states that were
not observed by the compared agents, i.e., UOS lead to a larger distance, in
particular visible in Figures [0.2(b) and [9.2|(c), where red cells highlight the
UOS. If the state input set of both agents are used instead of all, the influence
of UOS is smaller, as at least one of the agent has observed these states (blue

line/cells). However, it is still evident for the higher ranks.

176

9.4. Results and Discussion

State Set: *' All = Best = Both

-
[
'

10-

Mean Behavior Distance

(a) Behavior Distance,

9 GOALM ﬁ : Ag M 9 GOALM j:j : ::I BFLE
o T 1 T
O
7 71|r d i LN f ﬁr ﬁ — fT
e Ly 7 A
. 1IF . 1r
. = r ; ' . - m T
Lo, e .
[RETEEN |, e
2 L, 2 i
2 3 4 5 6 2 3 4 5 6

(b) 2z Rank 1 Comparison, (c) Best vs Rank 13,

Aggregated Mean by Rank d= All 5, Both 2, Best 1 d= All 4, Both 1, Best 1

Figure 9.2: One-to-one behavior comparison of the best agent against all agents,
computed with different state input sets (a) and two selected examples (b, ¢) Green:
differences on input set C (BEST). Blue: differences on input set D (BOTH, includes
C). Red: differences on input set B (ALL, includes C and D). Grey cells: agents act the
same. a) Summary of behavior distance of best against all. Shaded areas illustrate the
input set differences. b) Trajectories: best rank 1 (white) vs. another rank 1 (yellow)
¢) Trajectories: best (white) vs. Rank 13 (yellow)

177

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

A remarkable observation is shown in Figure ¢), for a comparison between
the best agent and a medium-rank agent (rank 13). They have a behavior
distance of only one if compared on their mutual state set, and four with UOS
considered. Their behavior on their mutual state set is nearly identical, despite

the significant difference in rank.

10-
o 0- ° T 4-
[} (5] 5- [0} .
(7] [(5]
Q. Q. Q.
(%) %) %]
] 5 O]
S 5- = s 0
(=2 (=2} [=2]
c € -5- c
< < <
-10- -10- —4-
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Trajectory Timestep Trajectory Timestep Trajectory Timestep

(a) Trajectory from best, (b) Trajectory rank 2000,(c) Trajectory rank 3500,
total difference is 33% total difference is 24% total difference is 4%

Figure 9.3: Behavior comparison for the pendulum. The behavior difference from
best versus rank 1000 is shown (Green cross= same action, red dot= different action)
for the angular speed wvalue over the first 1000 states of state sets from best, rank
2000, and rank 3500. As visible, the behavior difference is influenced by the state sets.
Particularly, the dissimilarity in (c) is smaller.

The number of acquired states for the pendulum is enormous and unsuitable
for complete comparisons as we visualized for the maze. However, we computed
behavior differences of smaller state subsets and visualized them using a selected
input, the angular speed of the pendulum, which is nearly zero if the pendulum
is balanced in the upright position. Figure a) shows the behavior of the best
agent against the rank 1000 (of 3648) agent by calculating it on best, as well as
on rank 2.000 (b) and rank 3500 (c) input sets. Figure[0.3|(a) shows that for time-
steps 250-300 and 750-800, the rank 1000 agent behaves consequently differently.
These timesteps illustrate a situation of a falling pendulum shortly after it was
balanced. While the best agent countersteers this movement, the rank 1000
agent accelerates it. Consequently, we were able to identify a situation where
the lower-ranked agent fails to learn the correct actions. However, as the actions

are based on all inputs and the angular speed is just one of them, finding these

178

9.4. Results and Discussion

situations manually remains challenging. Figure (c) shows what happens
if the behavior of the two agents is compared on the input set of a distant
ranked agent. The state input set of the rank 3500 is considerably different:
Each recorded trajectory is only some time steps long, presumably caused by
the agent quickly driving the base car to the horizontal limit, which leads to
termination. For such extreme situations, both compared agents (best vs. rank
1000) seem to behave similarly. Conversely, their difference in reward seems to
be related to smaller differences in critical situations. We can summarize these
observations to identify some properties of the behavior space:
I) Agents with the same reward/rank can have a considerable behavior distance,
mainly if compared on state-input sets with UOS and DFS.
IT) Small behavior differences (e.g., d < 3) can cause significant rank changes.
IIT) The input set has a significant impact on the behavioral distance comparison.
These observations reflect a central challenge of behavioral comparisons: We
need to find essential states and a suitable state set for conducting behavior
comparisons. We argue that comparing the behavior on input sets with UOS
can help distinguish between agents of similar reward, but is presumably
overestimating their behavior distance on task level and further influenced
by significant variances due to random actions in UOS. Moreover, comparing
agents on state sets of other agents, even without considering the influence
of UOS, might not reveal proper behavior distances, as these states represent

situations not suitable for telling apart good behavior.

9.4.2 State Importance

For the state importance, we illustrate the percentage of agents with behavior
differing from the best agent for each state, weighted by their differences in
rank. In case of the maze, Figure a) shows this statistic only for agents
reaching the goal, while Figure b) concerns all agents. Here, highly valued
states are considered to be more important, as most agents behave dissimilarly
to the presumed “correct” action. For the comparison between the best agents,

many states show no importance, i.e., similar behavior in this set.

179

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

9 | GOAL 0 100 100 0 9 | GOAL /1 S 9V3 ! 27 ! 9 ! 16
8 100 0 42 35 42 42
7 0 0 100 100 0 g I's 1 5 1
17119
6 0 5 na
5 0 0 100 1 5 17 1 1
4 0 0 7 (227124 9 1 3 X161 3 (11110
42 42
3 50 50 0 119 42 na
2 0 6 22 124
2 3 4 5 6 42
5 1 1
(a) 5 2211 (227119} 1 33
9 | GOAL 85 33 63 59 31 25 7
8| 75 44 1 1
4 33113 33[133
7 3 8 81 74 61 6@35 bo
6 47 1 41 1
5 59 47 68 3 3 9 14391137
4 37 20 42 412 na
3 58 56 14 2 na | 143
2 3 na
2 3 4 5 6 2 3 4 5 6
(b) (c)

Figure 9.4: (a) State importance calculated using either the best agents or (b) all
agents. Higher values depict higher importance, colored by value quarters for easier
comparison. (c) Action reward rank. Shows the best rank choosing each action for each
state. Green=rank 1, blue=rank 3, red= worst action rank. The two rank 1 agents
choose different actions in (4,3) and (5,5). (4,3) is DFS, and (5,5) an UOS for the
best agent.

180

9.4. Results and Discussion

The maze was designed such that the importance of the DFS fork in (4,3),
should be less than the no-DFS fork in (4,7). Our importance measure represents
this, as (4,7) has a twice as high value in Figure a) and (b). However, the
importance measure also provides other states with a high importance value,
particularly visible in the maze’s upper part. This can be explained by the type
of behavior comparison (all states) and the influence of UOS for each agent.
Agents can have ‘wrong’ behavior for these states, even if they can solve the
environment. This is observable in Figure (c), where for each state, the
best agent choosing a specific action is shown. While for the state (4,3) and
also for (4,7), we see a correct identification of different ways, (5,5), (4,9), and
(5,9) give the wrong idea of correct actions, as the supposedly best-outlined
action is surprisingly to run against a wall. This effect of UOS is amplified if
all agents are considered. For example, the lowest-ranked agent runs directly
against a wall. However, we compute and compare its behavior (intensified by
its low rank) in all states. We assume that if we compare a broad set of agents,
the UOS, with their presumably random actions, does not strongly affect the
importance. Thus, the shown importance is presumably higher in the states
of the upper part of the maze, as only a minority of agents reach this part of
the maze. For the rest, we are comparing their behavior on UOS. Thus, our
importance measures could also help identify states of an environment rarely

reached by any agent in a set.

9.4.3 Reward Behavior Correlation

For the RBC analysis, the previous results have shown that it is essential to
choose a suitable state set for each pairwise comparison. The results are displayed
in Figure and Table Figures (a) and b) shows the resulting RBC,y
and RBC,p¢ values, respectively. For both, the overall correlation is notably
positive. In b) it differs between good agents (rank 1-800), medium agents
(800-3100), and poor agents (3100-3600). The other input sets (A, B, C, and E)
lead to an inferior RBC,pt for both problems.

181

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

©
o
=)

o
>

@

w
I
N}

Pairwise Behavior Distance
Behavior Distance to Optimum

o
o
o

0 10 20 30 40 0 1000 2000 3000 4000

Pairwise Rank Distance Rank of Agent
(a) Pairwise RBCqy for maze, (b) Pairwise RBCop: for pendulum,
Correlation=0.72, Input set E Correlation=0.70, Input set D

Figure 9.5: (a) RBCyy plot for the maze environment (b) RBC,p: plot for the
pendulum problem. Computed on input set E and D, respectively. A decent correlation
is visible.

Moreover, set D and E lead to the highest RBCy;;, with a very significant
difference for the maze problem. We assume that the best correlation would be
achieved if agents are compared in their mutual behavior space. The presumed
cause for the higher RBC,;; is the reduction of the influence of unobserved states
in the comparison. In particular, the maze environment agents have less UOS
where they likely act randomly if sets D or E are considered. Including UOS in a
behavior comparison does not lead to a more detailed behavior distance, but one
with higher overall variance, leading to an inferior RBC. This is visible for the
pendulum, which for all sets, has a large amount of UOS due to the continuous
state space, which leads to a smaller difference in the variants to compute the
RBC,y. The overall positive RBC,j; outlines the potential of agent comparisons

in the behavior space to improve the search for good ranking agents.

Table 9.2: RBCu of all agents for different input sets

environment | A) random | B) all | C) reference | D) both | E) one

maze 0.27 0.29 0.28 0.62 0.72
pendulum 0.36 na 0.34 0.45 0.36

182

9.5. Conclusion and Outlook

9.5 Conclusion and Outlook

In this chapter, we investigated the properties of the behavior space of RL agents
and how this space can help to compare agents in learning sets to gain valuable
insights. Regarding our research questions, we can conclude for Q-1, that even
small changes in the behavior can have considerable effects on the reward.
At the same time, agents achieving the same reward can show quite different
behavior. We believe that focusing only on the reward of an agent might not
be the optimal choice. Instead, the agents’ behavior can give valuable insights
into how agents achieve that reward. This can reveal agents with surprising
behavior or help to improve the learning process. For instance, reward functions

can be designed to enforce or suppress specific behavior.

The analysis of Q-2 has shown that accessing the variable importance is
challenging and highly dependent on the underlying set of agents and the
environment. These challenges are mainly caused by comparing an agent on
states, which were not observed by it, or are even not observable by this agent
due to environmental restrictions, e.g., mutually exclusive paths. For these cases,
an agent’s behavior can be random, even for the ones with the best reward. A
comparison of behavior in these states might deliver misleading results. Only
if multiple agents observed states could we access their real importance. This
finding is further stressed when considering Q-3. The RBC is highest if we
consider pairwise behavior comparisons on those states that both compared
agents have observed. The reasonable positive RBC demonstrates that the

behavior space is promising and searching in that space may be beneficial.

For future work, we aim to take a close look at how the understanding of
behavioral spaces can be exploited, e.g., by new reward measures, direct search

in the behavior-space, and specialized search operators:

Reward measures: Ideally, reward measures help to steer the search into
desirable areas of the search space. Understanding which states are critical to
receiving a good match between behavior and reward may help design better
reward measures. The importance of developing proper reward measures for

RL is stressed in a review by |[Doncieux and Mouret| [2014].

183

Chapter 9. Analysis of the Behavioral Space in Context of Reinforcement
Learning

Search in behavior space: The usage of agents’ behavior distance as an addi-
tional search criterion seems very attractive. It can be used to preserve diversity
in evolutionary search procedures [Doncieux and Mouret|, 2010|. Further, the
search for a specific behavior may be of interest, independent, or in addition
to reward-driven search, e.g., by modeling the reward to behavior space with
surrogate models. An example application would be inverse reinforcement learn-
ing |Ng et al., 2000]. The search in behavior space allows using entirely different
agent topologies or even comparing agents trained by different algorithms.

Search operators: Finally, a good understanding of the latent, behavioral
space may help to define better search operators. For instance, search operators
could be designed to search directly in the behavior space rather than the policy

or topology space.

184

10

A Framework for Behavioral

Optimization in Reinforcement Learning

Chapter [10] was published as:

Stork J, Zaefferer M, Eisler N, Tichelmann P, Bartz-Beielstein T, & Eiben AE (2021).
Behavior-based neuroevolutionary training in reinforcement learning. (to appear) In 2021
Genetic and Evolutionary Computation Conference Companion. ACM, New York. DOI:
10.1145/3449726.3463171

185

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

In addition to their undisputed success in solving classical optimization
problems, neuroevolutionary and population-based algorithms have become an
alternative to standard reinforcement learning methods. However, evolutionary
methods often lack the sampling efficiency of standard value-based methods that
leverage gathered state and value experience. If reinforcement learning for real-
world problems with significant resource costs is considered, sampling efficiency
is essential. The enhancement of evolutionary algorithms with experience
exploiting methods is thus desired and promises valuable insights. This work
presents a hybrid algorithm that combines topology-changing neuroevolutionary
optimization with value-based reinforcement learning. We illustrate how policies’
behavior can be used to create distance and loss functions, which benefit from
stored experiences and calculated state values. They allow us to model behavior
and perform a directed search in the behavior space by gradient-free evolutionary
algorithms and surrogate-based optimization. For this purpose, we consolidate
different methods to generate and optimize agent policies, creating a diverse
population. We exemplify the performance of our algorithm on standard
benchmarks and a purpose-built real-world problem. Our results indicate that
combining methods can enhance the sampling efficiency and learning speed for

evolutionary approaches.

10.1 Introduction

In the last years, neuroevolution and population-based methods have shown
to be a valuable and scalable alternative to classic approaches in reinforce-
ment learning, as they have shown promising performance on several problems
[Salimans et al., [2017} \Jaderberg et al.l 2017; [Jung et al.l 2020; Khadka and
Tumer} 2018|. In particular, they are computationally efficient if the problem
itself is fast to evaluate and a large number of parallel evaluations are possible.
Evolutionary algorithms applied to RL often rely on an episode-to-episode
fitness evaluation, considering an RL episode’s final cumulative reward for
selection and updating. Further, they do not take advantage of the details

of individual behavioral interactions and do not leverage from the gathered

186

10.1. Introduction

experiences of state information. Thus, they often require a significant amount
of fitness evaluations to evolve well-performing agents. In particular, if artificial
neural networks with changing topologies are considered, which employ a large
search space [Stork et al., [2019b]. The resulting low sampling efficiency is a
challenge in real-world problems due to their high costs, as each action can have
a considerable duration.

This paper’s primary goal is to combine a topology-changing neuroevolu-
tionary algorithm with a behavior-based search to improve sampling efficiency.

Standard value-based and actor-critic policy gradient methods exhaust be-
havioral information for their updates and are remarkably successful in many
different domains [Sutton and Barto, |2018|. The combination of evolutionary
methods with value-based methods has recently become an active area of re-
search. Recent methods include hybrid approaches, which collect experiences by
an evolutionary part, then apply value-based learning, such as policy-gradients,
to selected population members [Khadka and Tumer;, 2018; |Khadka et al.,2019].
The use of experience-based mutation operators, e.g., which perform gradient
updates, is also promising to improve evolutionary methods [Franke et al.l|2019).

Another approach for improving the sampling efficiency is to replace the
actual problem function with a surrogate, as employed in surrogate model-based
optimization. The implementation of surrogates in neuroevolutionary algorithms
for reinforcement learning has been of increased interest |Gaier et al., 2018}
Stork et al., |2019b|. The difficulty in modeling agents is the definition of an
adequate distance between their policies. In the case of changing topologies, the
definition of genotypic differences (i.e., differences of the encoding) is algorithm-
dependent and not necessarily helpful |Gaier et al.l 2018} |Stork et al., [2019a].
One method is to utilize behavioral distances, in this context defined as the
actions of an agent taken in pre-defined states. Behavioral embeddings are also
used to maintain diversity in a population, which is essential to avoid overfitting
certain behaviors [Parker-Holder et al., [2020].

In this paper, we seize these ideas and implement a hybrid framework
for behavior-based neuroevolutionary training (BNET), which combines the

evolution of a population of agents with topology-changing neuroevolution,

187

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

employed by cartesian genetic programming |Miller and Thomson) 2000} Turner
and Miller| |2015]. Our contributions are as follows:

(1) We introduce the new algorithm where the population’s agents are opti-
mized in parallel by fitness-based search, behavior-based search, and surrogate-
based search. As a critical challenge in RL is exploration, our implementation is
focused on maintaining a diverse set of agents, each contributing to the fitness
search and sharing experiences. Different approaches to leverage from a shared
experience set exist [Schmitt et all, [2020]; we employ a selection method to
create an archive of experiences from high-performing yet diverse policies.

(2) We define a set of new advantage-weighted behavior loss functions to
conduct the behavior-based search, leveraging on principles from standard
actor-critic policy algorithms and behavior-based distances |[Sutton and Barto,
2018|. In combination, they are part of a gradient-free learning process for the
agent policies. For SMBO, we employ the surrogate model-based optimization
for neuroevolution algorithm, first introduced in [Stork et al., 2019D].

(3) We define a method for robust candidate selection to increase learning
stability. Our fitness-based search focuses on keeping a stable elitist solution,
referred to as champion, which is of central importance considering real-world
environments. As these environments frequently provide stochastic rewards, e.g.,
caused by random starting conditions, we employ a robust selection method,
which compares mean estimates of their actual performance and reduces the
probability of choosing an inferior candidate.

(4) We implement a prototype of the framework and test it on common
synthetic benchmark problems against standard value-based RL methods to
prove our concept. We also analyze the performance of each search method in
BNET. Finally, we introduce a new adaptable real-world problem featuring a
robot-controlled maze environment as a benchmark for RL algorithms.

The chapter is organized as follows: In Section [I0.2] we introduce the basics
for the algorithm and describe each of the BNET components in Section In
Section we describe our experiments, introduce the real-world benchmarks,
and further discuss the experiments’ results. We conclude the chapter in Section
[[0.5] and provide an outlook.

188

10.2. Methods

10.2 Methods

10.2.1 Reinforcement Learning and Value-based Methods

In RL, we train agents’ policies 7m,,n = 1, ..., N to solve instances of an envi-
ronment: for each environment step ¢ the agent observes an environment state
s¢ and the policy decides, which action a; is conducted. The agent receives a
reward (8¢, at, S¢41) for each observed state during its learning episode. This
leads to a trajectory with T steps. The cumulative reward R; = Zfzo Yorepat
at the end of an episode, discounted by factor ~, is typically utilized as a target
function of the policy optimization process. We refer to R; of a full episode as

fitness of a policy.

Advantage-based actor-critic methods [Sutton and Bartol [2018| have a policy
actor and estimate the advantage of an action a; in state s, by a critic. The
critic V,(s¢), with ¢ being its parameters, approximates the estimated value of
a state s, given by the value function V(s) = E.{R;|s; = s}. For a full-episode
learner, i.e., considering the complete per-state reward information R; at the
end of an RL episode, a typical approach is to compute the advantage by a
Monte-Carlo (MC) estimate,

A,(se,ar) = Re(se,a) — Vio(se), (10.1)

where V,,(s¢) is approximated by the critic. Further, the actor is updated with

help of a gradient function:
VoJ(0) =Y Vologmy(se,ar) Ay(se,ar) (10.2)
t

Here 6 are the ANN parameters, and 7y is the policy associated with these
parameters. We refer to the experience of an agent, considering the (s, az, 7t41)
triplets an agent observes during (multiple) interaction episodes in a RL envi-

ronment.

189

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

10.2.2 Neuroevolution by Cartesian Genetic Programming

CGP |Miller and Thomson, [2000] is a genetic programming method rely-
ing on grid-based encodings to realize graph representations. If applied to
ANNs [Turner and Miller| [2015], it allows to create topologies with different
transfer functions and free node-to-node connections, i.e., the generated topolo-
gies do not follow the typical layered structure. CGP, in its basic version, does
not allow the direct use of back-propagation or gradients for ANN optimization,
mainly due to the topology-changing neuroevolution process. Certain CGP
implementations allow the utilization of gradient information |Izzo et al., 2017].
However, these learn topologies and weights sequentially, not simultaneously.
The genotype-behavior mapping is complicated as distances on the genotype
level are barely related to their distance in behavior space |Stork et al., 2019a].
We optimize the CGP-ANNs with a gradient-free (1 + A\)-EA with rank-based
fitness selection [Eiben and Smith| 2015b] for the optimization of NE candidates,
utilizing behavior-based loss functions, as described in Section

10.2.3 Optimization in the Behavior Space

Each policy computes the probability p(as|s;) of taking an action a; for an input
state s;. Formally, we denote behavior as the set of probabilities corresponding
to K states S = {s1,..., s }. Further, B is denoted as the behavior space, i.e.,
the set of all possible behaviors, with 7,, € B and n =1, ..., N. In the behavior
space, two agents can be directly compared on the state set S by calculating

their mean behavior distance [Stork et al., [2019alb|, denoted by

1 T
dy(m, 7', 8) = = > lw(s) — 7' (s0)) (10.3)

As the Manhattan distance applies to both ordinal integers and continuous

values, it is preferred over the Euclidean norm. For the case of experience-based

190

10.2. Methods

policy optimization, we defined the advantage-weighted behavior distance:

T+
dwb(ﬂ_7 7_(_/’ S, A) — % Zt:l |7T(St) *_ ﬂ-l(st)| X A¢(St7 (Lt) (104)
1 T
77 2i=1 [A (st, at)

Here, S are sampled states from environment interactions with a trajectory of
T* time-steps, while A are the respective actions taken during this trajectory.
Further, A, is the precomputed approximated advantage for each of the stored
actions, see Section As a second method, we utilize the advantage-
weighted cross-entropy. The cross-entropy is defined by:

I
H(m, 7', s¢) Z mi(s¢) In (m)(s4))] (10.5)

m;(8¢) is the i-th element of the probability output of the policy 7 given the input
state s;. The cross-entropy distance (d.) is further weighted by the advantage
estimation Af (at,s:) and computed over a set of stored states S and actions

A:
.

Z [H(m, 7', s¢) x A% (se, a4)] (10.6)

t=1

1

de(m, 7', S, A) = =

Instead of the complete estimated advantage, we only consider the set of positive

advantages:

Ag(ag, se), it Ag(se,ar) >0
AL (st,a0) = e P (10.7)

0, otherwise

The positive advantages drive the search towards estimated beneficial be-
havior, while negative advantages will not affect the weighted cross-entropy
distance d.. We define our loss function for NE-EA during the behavior-based
optimization as the sum of distances (dp or d.) between the target policy =

and several stored reference behaviors m,, with m =1,..., M.

191

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

Furthermore, their sampled trajectories with states S,, and actions A,, are:

M
L(m) = Z [(7, T, Sy A (10.8)

m=1

For the loss functions, the probability distribution of the stored behaviors is
priorly adapted to maximize the performed action’s probability. The opti-
mization in the behavior space B is similar to imitation learning, i.e., fitting a
network to replicate a stored behavior. However, instead of replicating a single
reference behavior, we optimize the target policy to minimize the distance to an
advantage-weighted set of multiple reference behaviors from different policies.
The EA for the optimization is outlined in Algorithm

Algorithm 10.2.1: Neuroevolution EA

1 INPUT: Memory of M stored reference policies 7;,, states and actions
Sty AL

2 optional: pre-defined candidates w

3 preset: mutation rate, NE candidate parameters

4 begin

5 initialize new polices as candidates
6 evaluate initial candidates with loss function L(r)
7 select p parents from initial candidates
8 while not termination-condition do
9 mutate parents to get A\ offspring
10 evaluate offspring with loss function L()
11 select p next iteration’s parents with minimum loss from parents and
offspring
12 optional: update mutation rate
13 end
14 end

15 OUTPUT: best found policies

10.2.4 Optimization by Behavior Surrogates

The definition of the behavior distance between policies also allows us to create
approximation models, so-called surrogates, which predict a policy’s fitness

during optimization. The surrogates allow searching in the behavior space

192

10.2. Methods

without any additional environment interactions, which are substituted by

the surrogate. SMBO is frequently applied for costly processes with high

resource-demand for each function evaluation |Forrester et al. 2008]. Our
SMBO is based on the SMB-NE algorithm [Stork et al. [2019b|, which utilizes

a Kriging |Forrester et al., 2008 regression model. The model measures the

similarity of samples by a kernel, utilizing distance and correlation matrices
of observations. If applied to real-valued samples, the exponential kernel
k(xz,2') = exp(—0||x — 2’||2) is a typical choice. The essential kernel parameter
influences how fast the correlation decays to zero if the Euclidean distance

between two samples ||z — z’||2 increases. In our work, we follow the idea

of kernel-based models for combinatorial search spaces [Moraglio and Kattan,
2011a} |Zaeflerer et al., |2014b|. We replace the Euclidean distance ||z — 2'||2 by

the behavior distance, resulting into the kernel:

k(m,7',S) = exp(—0d(w(S),n'(S))) (10.9)

Here, one challenge is the appropriate definition of the state set S, as it has a

considerable influence on the distance. We rely on a selection approach presented

in [Stork et al., [2020], where both policies’ stored states are combined for each

pairwise distance calculation. If a new target network’s fitness without stored
states needs to be predicted, the reference policies’ stored states are applied as
reference input. The Kriging model parameters are fitted by maximum likelihood
estimation and optimized with DIRECT-L |Gablonsky and Kelley, [2001|, further
utilizing the nugget effect [Van Beers and Kleijnen| 2003]. Kriging combines

relatively accurate mean predictions with the ability to provide uncertainty
estimates of each prediction. The combination of mean and uncertainty are

used to compute infill functions, which predict the desirability of a solution. A

frequently applied infill-criterion is expected improvement [Mockus) 1974} |Jones|
1998, which integrates the uncertainty estimate to explore new solutions,
which may be farther away from observed solutions. In [Rehbach et all [2020],

the benefits and downsides of using EI for different optimization problems are

discussed. For high-dimensional cases, it is recommended to use the predicted

193

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

mean instead of EI since the increase in dimensionality leads to an inherent

increase in uncertainty (see also: [Wessing and Preuss| [2017]). In the case

of neuroevolution, the behavior space is high-dimensional. Thus, we use the
predicted mean of the Kriging surrogate as an infill function. The R package
CEGO |Zaefferer] [2017} [Stork et all [2019b} [Zaefferer et al., 2014b| is used to
train the Kriging surrogates, while the NE-EA is utilized to optimize the target

network.

10.3 Behavior-based Neuroevolutionary Training

Initialization of Candidate Evaluation
Population > Environment Interactions -
optional offline learning
4
e v v v
g Fitness Experience — =
! Cumulative States, Actions, | Candidate Archive
Candidate Episode Reward Rewards Candidates,
Re-Evaluation Fitnesses,
! 4 o Experiences ~
AN Experience — ——— e
AN ‘Selection: Experience Next
AN Elite Experience Archive Iteration
. Set -
N A 2
obust Train Fit Model
Candidate - g
S Critic Model Behavior Surrogate
Selection: .
. " State Value Critic
Fitness Champion
Compute Advantage
State Advantage
: Variation 17 ;/- \ A :
| New Population Direct i NE Optimi NE Optimization Behavior Surrogate |
| of Champion Loss Welghted Loss Weighted Optimization |
: 1- Step NE Crossentropy Behavior-distance Loss: Best Predicted | |
¥ |
| > —
! < Champion > < Mutation / Crossentropy \‘ ‘/ g?sI::‘:\fer \ Surrogate \ !
| \ |
X Candidate \ Candidate / __ Candidate _ / \ Candidate) |
: Fitness Search Behavior Search Surrogate Search ,I

Figure 10.1: BNET algorithm cycle. Quadratic boxes are methods or algorithms,
and rounded edges illustrate observed data. The candidate generation methods are
based on extracted data from the environment interactions during the fitness evaluation:
The fitness-based search selects a champion with the best overall fitness (violet). The
behavioral search utilizes a selected set of experiences, an advantage-critic model, and
the defined behavior-distance and cross-entropy loss-functions to optimize networks
and use them as new candidates (yellow). Further, a surrogate model is fitted to all
candidates’ archives and generates a candidate with SMB-NE (light-blue).

194

10.3. Behavior-based Neuroevolutionary Training

In this section, we introduce our new algorithm for population-based neu-
roevolution for the training of RL policies. The population consists of CGP-
ANNS, which are utilized as RL policies . We refer to each network instance
as a candidate. BNET is similar to a population-based evolutionary algorithm
with elitism. Nevertheless, new candidates are not merely created employing a
variation of previous candidates. Instead, new candidates are also generated by
behavior learning and by exploiting behavior-based surrogates. The algorithm
outlined in Figure [[0.]] is essentially divided into three parts, which employ
different ways to search for new candidates: fitness-based, behavior-based, and
surrogate-based. In summary, the fitness-based search selects a champion with
the best overall fitness by robust selection and creates direct mutations of this
champion. The behavior-based search utilizes a selected set of experiences, a
value-based critic model, and the loss function from Eq. to generate new
candidates. Further, a surrogate model is fitted to an archive of all candidates

and searched for new candidates.

10.3.1 Initialization and Evaluation

The first population is either initialized by NE or by optimizing a population
to fit previously evaluated policies’ behavior. We refer to the second method
as offline initialization, as it does not require any new (online) environment
interactions. If we initialize NE policies offline, the behavior search is applied,
where a stored experience set is required as a reference.

The candidates are then evaluated in the RL environment with two goals:
First, evaluate the current population’s policies to acquire their fitness; Second,
to gather new environment experiences from these policies. The policies can
be evaluated either fully deterministic, stochastic, or stochastic with explo-
ration. The deterministic policy evaluation chooses the action with the highest
probability, whereas the stochastic evaluation samples actions based on the
probabilities. Deterministic policies have equal behavior if evaluated repeat-
edly, but the achieved fitness still may differ, e.g., if the environment itself is

stochastic. Deterministic policies are most suitable for exploitation or testing.

195

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

As stochastic policies depend on probabilities, they allow for a certain level of
exploration. Additional exploration can be enforced by taking random actions

or adding a random factor to any policy behavior.

10.3.2 Fitness Search and Robust Selection

The fitness search, visualized as the leftmost, violet path in Figure focuses
on selecting a fitness champion, i.e., the candidate of the population with the
best overall fitness. Moreover, a mutation candidate is generated by applying a
small direct mutation to the champion’s policy network and used as a second
new candidate, the mutated champion. However, RL environments, such as
control tasks, typically have different starting conditions or even stochastic state
transitions, i.e., an action in a specific state may transition to different states
in the next time step. Thus, the measured fitness will be noisy, and even a

deterministic policy produces different results when evaluated repeatedly.

Therefore, we employ a robust fitness selection, including the re-evaluation
of candidates and comparing their fitness distributions. The robust selection
shall ensure that the champion is a reasonable estimate of the best policy
discovered so far, even in the presence of noisy fitness. In the first iteration, the
fitness champion, denoted as 7*, is selected as the candidate with the highest
sampled fitness so far and re-evaluated in the second iteration. Its fitness is
then set to the mean of all evaluations. Starting with the second and all future
iterations, we use the concept of challengers: A challenger is a candidate 7
that has a one-time evaluated fitness better than the mean champion fitness,
ie., if f(m) > L ZT f(7*), where n* is the number of samples of champions
performance f(7*). If a new population contains at least one challenger, this
challenger is re-evaluated to get a more robust fitness estimate and the mean
fitness values are utilized as a measure for selection. A challenger is accepted as
champion, if 2 7 f(r) > L ZT f(m*), where n is a parameter of the selection,
either set to match n* or a desired number of repeats r, by n = max(n*,r). The
value of r should be chosen according to the task and estimated noise of the

environment. If a champion was re-evaluated less than r, it is also re-evaluated.

196

10.3. Behavior-based Neuroevolutionary Training

In the case of multiple challengers, they are ordered by their fitness and
sequentially evaluated against the champion. If a new champion is selected
during the consecutive comparisons, the next challenger is only considered if it
is still superior in fitness. The selected champion is then re-evaluated in the
next iteration. The constant re-evaluation of the champion, if not changed,

leads to a stable estimate of the actual fitness value.

10.3.3 Behavior Search

The behavioral optimization of the neuroevolutionary policies builds upon
principles from standard RL algorithms, such as policy-gradients and actor
critic. The challenge in neuroevolution is the absence of any gradient information
between NE candidates if a simultaneous topology optimization is performed.
A neuroevolutionary behavior optimization thus requires metrics that allow the
comparison of policies further to establish a search direction in the behavior space.
We employ the behavior optimization with the advantage-weighted behavior
distance from Eq. or the advantage-weighted cross-entropy Eq. and
implement it in our loss function Eq. This loss application requires a
defined set of experiences, an advantage function, and an optimization algorithm.
As a reference set, we collect and store a fixed-sized set of elite experiences.
The set consists of experiences and the performance of single evaluations from
different candidates or repeated evaluations of the same candidate. In the first
iterations, the set grows until the maximum size of the set is reached. After
the robust selection, the experience is replaced with those of higher fitness
episodes in each consecutive iteration. However, the number of replacements in
each iteration is limited. The limitation prevents that the candidate set gets
dominated by the experiences of single candidates. A diverse set is thought
to help avoid overfitting and increase the chance to learn better behavior. A
diverse experience set is the first difference to classic imitation learning, where
a single policy’s behavior is adapted. The second difference is given by the
advantage weighting of each action in the distances by Eq. and The

required advantage function is predicted by a critic model, which is learned to

197

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

the complete set of all discovered experiences. Also, the advantage-weighted
cross-entropy considers only the actions with positive advantage, i.e., the policy
is trained to replicate this behavior. Both loss metrics are employed in the

NE-EA to generate new candidates.

10.3.4 Surrogate Search

Corresponding to Section [10.2.4] the surrogate search is based on a Kriging
model fitted to an archive of tested candidates with their connected mean fitness
and experiences. The distance kernel in Eq. is applied for modeling the
relations between policy behaviors and their fitnesses, where the state set S
of each comparison consists of the stored experience archive of the associated
candidate pair. The fitted surrogate is then employed to predict the fitness of
new candidates and utilized as loss-function L(7) = —f(r) during a NE-EA
optimization process. The fitness values are adapted to ensure a minimization

problem (i.e., negated in the typical reward maximization case).

10.4 Experiments

The BNET framework is flexible, as the algorithm modules for generating
candidates can be combined in several ways. For example, it can also be
employed as a pure direct neuroevolution approach by refraining from using
the behavior-based or surrogate-based search, or in contrast, as a pure behavior
search algorithm. Thus, our experiments are two-fold: first, we tested different
versions of the algorithm against a set of open-Al baselines algorithms on the
problems CartPole-V0 and MountainCar-V0. For this experiment, the focus was
to estimate overall performance, how beneficial the different proposed modules
are, and how they affect the search quality. In a second experiment, we tested
our algorithm against the same baselines on a designed real-world problem.
As comparison baselines, we employ advantage actor critic (A2C) [Mnih
et al.l 2016] and prozimal policy optimization (PPO) |Schulman et al., 2017]
from the stable baselines package [Hill et al., [2018]|. Both do not require full

198

10.4. Experiments

episodes to learn (i.e., the algorithm is trained after x time steps, not necessarily
full episodes), which might give it performance advantages over BNET. Our
performance measure, particularly concerning the real-world environment, is
the number of required time steps until a (stable) solution is found. For all
experiments, we implement a prototype version of the BNET framework using R
3.6.3, an R-interface to the CGP-ANN Library by Turner [Stork et al. 2019b] and
reticulate 1.14, Keras 2.3, OpenAl gym 0.18.0, and tensorflow 1.15.4 [Brockman
et al., [2016; [Abadi et al., 2015} [Chollet et al., 2015|. All simulated experiments
were conducted on an HPC-Cluster. More than 50,000h of total computation
time was spent during development and experimentation. The BNET prototype
was not systematically tuned for optimal parameter settings due to the high
computational effort. The used parameter setup is based on preliminary tests
and CGP-ANN or SMB-NE related publications |Stork et al.| 2019b} [2020]. The
baseline algorithms parameter were also improved (from the stable baseline
default settings) based on preliminary results for each problem at hand, e.g.,
the reward discount parameter gamma and the learning rate. One aspect of the
BNET setup was kept equal for all tested problems: The CGP-ANNs have a
maximum of 200 active nodes with arity ten and a function set including tanh,
sigmoid, gaussian, softmax, step, and rectified linear units. The direct, behavior,
and surrogate search’s mutation rates were 1%, 5% and 5%, respectively. The
NE-EA uses a (20+2) population with 1000 iterations for the behavior search
and (8+2), 500 for the surrogate. The critic network is a fully-connected feed-
forward ANN with two layers and 128/64 nodes, trained for 1000 steps in each
iteration. The prototype code and all experimental results are available in an

online repository: https://github.com/jstork/BNET-GECC021.

10.4.1 Open AI Gym Benchmark Setup

For comparing the performance of BNET against different baselines, we chose
two basic Open Al Gym standard benchmarks. They were explicitly chosen
because of their different characteristics. Moreover, both should be solvable in

less than 20,000 steps. They present a baseline for a real-world scenario, where

199

https://github.com/jstork/BNET-GECCO21

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

only a few steps are possible due to the high resource cost.

Cartpole-v1 is a standard benchmark, where the goal is to balance a pole
placed on a cart. The environment has four observable variables (z position,
x velocity, pole angle, angular velocity) and two discrete actions (drive left or
right). The target is to keep the pole upright in a slight angle range for an
average of 195 steps over 100 consecutive episodes. If the pole fails to balance
(i-e., the angle reaches a threshold) or the cart drives out of a certain x-range,
an episode is stopped. For each step, the agent receives a reward of +1.

In MountainCar-v0, a car is located between two mountains and has to
drive to the top of one of them. As the direct acceleration is not high enough, it
has to build up momentum by alternatively driving up and down the mountains.
The environment has two observable variables (x-position, velocity) and three
actions (accelerate left/right, do nothing). The target is to drive to a goal
position on the proper mountain in less than average 110 timesteps. Each step
is rewarded by -1, and the environment is stopped if either the step limit (200)
or the goal is reached. The environment requires considerable exploration to
find a solution to reach the goal point. If the exploration is unsuccessful, it
remains with a -200 reward in each episode and gains no valuable experience.
This flat reward landscape renders the environment challenging to solve in a
small number of steps. For both environments, the starting state of the pole or
car is randomly set in a small range, leading to different initial scenarios for each
episode. Therefore, each setup was repeated at least 20 times with random initial
seeds. The run was stopped if a found policy reached the required average target,
which was evaluated in an extra function to save unnecessary computation time.
The fitness or experiences of these stopping criteria evaluations were not utilized
in any other form (e.g., for the algorithm itself).

The first benchmarks include setup variants of BNET, where selected candi-
dates were generated in each iteration. The elitist was always kept and repeated
(for the robust evaluation). The setups are: Base (all proposed modules are
active), BDist (behavior distance), Cross (cross-entropy), Surr (SMBO) and
Mut (champion mutation). For each variant, the population consists of the

champion and a single candidate per active module (e.g., BDist has two candi-

200

10.4. Experiments

dates per iteration), and the maximum number of episodes was fixed to 1000,
except for the Mut variant, which served as an additional internal baseline and
was run until the environments were solved. In MountainCar-v0, we always
kept the mutation candidate in the population. Further, we added additional
random exploration (30%) to its policy. Random exploration was also added to
the environment evaluations of the initial candidates. All remaining policies are
always evaluated deterministically. Each run starts with five initial, random
candidates, while the elitist experience set contains a maximum of ten archived

episode results.

10.4.2 OpenAl Benchmark Results

Mut BNET -
0 50000 100000 150000

Cross BNET- — [|——— o e
PPO- T~ e

A2C- I - o
BDist BNET- [|— o eee
Base BNET-]
0 20000 40000 60000 80000

Surr*16/20 BNET -

10000 20000 30000 40000 50000
timesteps until solved

Figure 10.2: Results of the CartPole-v0 environment. Please mind the different
scales for the surrogate and mutation variant. The surrogate variant was only able to
finish in 16 out of 20 runs. The best results are achieved by generating all candidates
(Base median=3576, red dashed line) or only the behavior distance candidate (BDist
with median=4111).

(CartPole-v0) Figure illustrates our results from the CartPole-VO0
environment. For the plot, each algorithm was repeated 20 times, except for
the Base and BDist variants, which were repeated 50 times (in order to make
more minor differences visible). The surrogate-only variant of BNET only
succeeded in 16 out of 20 runs to find a solution in 1000 iterations. Overall, the

BDist variant only generating the behavioral distance optimized candidate (and

201

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

keeping the robust champion), and the Base version using all proposed search
methods were the most successful. As expected, the use of only direct mutation
performed slower than all other variants. The overall result was surprising for
us, as we expected that one variant beside Base would be the best performing,
as it includes a relatively large sampling overhead by the larger population.
However, the algorithm seems to leverage from a diverse set of candidates, and
each search variant seems to contribute to the overall algorithm’s performance.
To test this assumption, we tracked the candidate type with the best fitness
(mean over 100 iterations) in each iteration of the BNET Base setup. Figure
shows the results. The underlying data is from the 50 repeats of the BNET

Base runs, with 432 iterations.

S
<
2 40-
£
o 29.4% .
S 23.15% 26.39%
§ 20- 17.59%
g
g 3.47%
) 0-
Chémp Cross BDist Surr Mut

candidate type

Figure 10.3: Frequency proportion of each best performing candidate in each iteration
of Base BNET for CartPole-v0.

The plot shows two insights: first, in 77% of the iterations, one of the gener-
ated candidates was superior to the stored champion; this implies a reasonable
learning rate; second, all candidates of BNET contribute to the performance,
where only the surrogate selected candidate performs significantly worse. The
surrogate candidate’s inferiority could be due to poor parametrization or due
to the low number of evaluations, which might not be sufficient to create a
proper surrogate model for the complex search space. Interestingly, the direct
mutation also generated the best candidates and thus added significantly to the

overall performance.

202

10.4. Experiments

DQN-

MutBNET- H [}——

0 250000 500000 750000 1000000125000

Base BNET- —{ | }—— .

20000 40000 60000 80000

Surr*4/20 BNET - — 1
Cross*16/20 BNET- ——— | f—

BDist*8/20 BNET -

0 10000 20000 30000 40000 50000
timesteps until solved

Figure 10.4: MountainCar-v0 results. Please mind the different scales. The Base
variant was able to solve the environment in all cases (median=18457, gold dashed
line). The results of the unfinished runs are not comparable. In their case, the attached
number of finished runs is meaningful.

(MountainCar-v0) Due to the challenging nature of this problem, we were
not able to find working setups for our baseline algorithms A2C and PPO. All
tested parametrization showed no learning effect and got stuck at a reward
level of -200, even considering significantly large timestep budgets. We thus
tested an additional algorithm, deep @ networks (DQN) [Mnih et al.l [2013] in
available setups (double-DQN, dueling-DQN, prioritized experience replay) and

were able to solve the environment using prioritized experience replay
and high exploration constants. However, DQN still took a vast
number of steps to solve the environment and performs even inferior to the
BNET mutation variant. Figure [I0.4] displays the MountainCar-v0 results. As
visible, the BNET Base variant is dominating this benchmark and remains
the only variant that solves the environment in the 100k step limit. Still, the
other algorithms’ result is quite interesting, as they tend to either solve the

environment in a small number of steps or seem to get completely stuck.

As Figure illustrates, the percentage of successful candidates in the
Base variant per iteration is 47%, much less compared to CartPole-v0, with a

clear lead of cross-entropy and mutation. The BDist optimization clearly falls

203

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

5 52.66%

S

2 40-

s

° 29.79%

3

°

S 20-

S 13.03%
(%]

8 3.19%

S 21%% 1.33%

Chémp Cross BDist Surr Mut
candidate type

Figure 10.5: Frequency proportion of each best performing candidate in each iteration
of Base BNET for MountainCar-v0.

behind for this environment, visible in both Figures and We assume
this issue is related to the problematic value estimation due to the flat reward
landscape of MountainCar-v0. Again, the surrogate search does not perform as
desired, which is also caused by the very flat fitness landscape at the beginning,

which does not include much valuable information.

10.4.3 Real-World Robot Maze Setup

Our robot maze problem was explicitly designed to represent a costly real-world
demonstrator to test RL algorithms on different setups. We chose a classic maze
problem to track and observe an agent’s progress and performance efficiently.

The maze consists of a lego brick base plate with 250 x 250 mm, 4x2 black
brick walls, and 4x2 white tiles floor, covered by an acrylic glass cover, where
a camera is mounted on top. The camera is used to track the position of the
red marble in the maze. The system is mounted on a universal robot UR10e
6-axis robotic arm, allowing it to move the maze in all directions. The setup is
displayed in Figure The target is to move the marble to the upper left
position from the starting point. A central challenge in designing real-world
problems is learning without manual user interaction (i.e., resetting a robot

position). Our demonstrator allows the automatic resetting by flipping the

204

10.4. Experiments

Figure 10.6: Robot maze test environment mounted on a universal robots UR-10
collaborative robot.

complete maze and navigating the marble on the glass window to the start.
This reset allows episode-to-episode learning and further remote control of the
environment without any presence in the lab. The demonstrator is adaptable,
i.e., the maze can be redesigned, and the action and observation space can be
adapted to discrete or continuous values.

For this work, we restricted the action space to the discrete four cardinal
directions and defined designated robot movements, which tilt the maze by
an angle of 24,6 and then move back to its base position. Each action takes
about 10 seconds and lets the marble roll in a straight line. For the illustrated
maze setup, only 23 correct actions are required to reach the target area. The
observation space is set to a discrete matrix of 15x15, equal to the maze size,
where the marble’s current position is set to one, else zero. The reward function
forces exploration of the maze by rewarding the agent with 0.1 if he drives the
marble to a prior unseen position. If run against a wall, it is penalized by -0.75
and by -0.25 if moved to an already discovered position. Reaching the goal is
worth +10. The setup is reset if the goal, a number of 75 steps, or a cumulative

reward of -12.5 is reached. The robot maze environment should be fast to learn,

205

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

as, for most positions, only a single action is correct. However, it requires a
perfect mixture of exploration and exploitation to find and learn the correct
actions sequentially, as the probability of getting stuck is high, and only a small
number of steps is possible in each episode. Moreover, the environment fitness
is noisy, as sometimes the marble rolls to a difficult position (i.e., edges of a
brick), or the camera position detections are incorrect. Due to the natural time
constraints (each run took 8-24h) and several trials to set up the environment,
we could not run an extensive experimental design for the benchmark. Thus,
we restricted the final results to the most promising ones for this setup: the
behavior distance and cross-entropy versions. Each variant was run five times.
Regarding the algorithm setup, we set the fitness value in BNET to the number
of correctly performed steps. The behavior and cross-entropy distances were
weighted by the direct reward instead of a critic and advantage estimation. The
purpose-built reward function already delivers correct action value information,
and no additional value critic is required. As a baseline, we utilize PPO that
showed very stable results in preliminary runs. We set gamma=0.5 due to
the apparent correlation between correct actions and rewards and 50 steps per

actorbatch for frequent learning.

PPO1 -

BDist+Cross BNET - — °

BDist BNET -

900 1200 1500 1800
timesteps until solved

Figure 10.7: Maze results. Steps until the correct way is learned; The target is
consequently reached afterwards. All tested algorithms learn fast. Means (top-down) =
1580, 1156, 1013.

206

10.5. Conclusion and Outlook

Figure illustrates the results. All pre-selected algorithms were quite fast
in solving the problem, with the BDist and BDist+Cross versions performing
best. In Figure[I0.8] we visualize the learning progress of the BDist+Cross runs.
The algorithm advances quite fast and even learns to take more reward-giving
actions (>23), assumingly by taking extra detours in the maze. This behavior
is similar for PPO and caused by the definition of the rewarding of previous

unvisited positions.

30- i ° .Ol)... -
BN RETE Y DL
S -
| _‘I'%&oo s om ‘m type
20- | l. l“l_ -.) - .
2 | N 1a' o0 | = BDist
g Le@Fe ol 0 7 . champ
& oo u u ® Cross
10- :-...'o!g’%% Rt o Init/Repeat
? OO. = ¢ EHO P
&) O [) [J
?xgon o] Yo} »
oOER @& o *
0- Irﬁﬁ) ¢ O - | O mO
0 20 40 60 80
episode

Figure 10.8: Learning progress of all runs of BDist+Cross BNET on robotmaze.
Considered solved at fitness>=28 (horizontal line). BNET shows fast and stable
learning process.

However, the underlying NE-EA with the behavior-based losses demonstrates
to be capable of fitting the CGP-ANN policies excellently to the collected
experience, even given the sizeable neuroevolutionary search space, and without

the use of gradients.

10.5 Conclusion and Outlook

In this work, we investigated methods to combine neuroevolutionary search
with standard value-based RL methods. The target was to leverage gathered
experiences and create a sample-efficient RL algorithm applicable to real-world

problems. We evolve CGP-ANNs as our agents’ policies and search for the best

207

Chapter 10. A Framework for Behavioral Optimization in Reinforcement
Learning

network topologies and optimal weights simultaneously. We defined a hybrid,
population-based algorithm, called BNET, which utilizes different methods to
generate new candidates: direct NE-based mutation, behavior optimization
using gathered experience, and finally, behavior-surrogate-based learning. We
discovered that the behavior-based search significantly supports the perfor-
mance. Combining all methods in a population with shared experience and
fitness pools leads to excellent sampling efficiency and extraordinary explorative
abilities. Moreover, even elementary direct neuroevolutionary mutation steps
can contribute significantly to the overall algorithm’s performance. As our
real-world experiment demonstrates, the defined behavior-loss functions seem
well suited to optimize complex networks with changing topologies if the actions’
value is estimated correctly. Furthermore, the robust selection with an adaptive
re-evaluation of candidates significantly improves our learning progress’ stability,
as shown in the experiments with a real-world setup. They prove the ability to
learn fast and adapt the CGP-ANN policies by solely relying on a gradient-free
evolutionary algorithm for optimization. In future work, we want to tackle
several open issues:

Framework: We presented an implementation prototype of BNET. The
current version is relatively slow due to a single-thread implementation in R.
The underlying ideas need to be transferred to faster and computationally more
efficient implementations.

Analysis / Tuning: The algorithm structure and parameters need to be
profoundly analyzed, understood, and optimized.

Offtine initialization: Real-world problems can benefit considerably from
experience from prior runs or human demonstrations. We want to implement
and test offline-initialization methods.

Environments: We focused on discrete action spaces. Extending benchmarks
to continuous action spaces would be interesting.

Modified Real-World Experiment: Our real-world experiment can be adapted

to create more challenging RL problems.

208

11

Concluding Remarks

This thesis gave insights into the matter of behavioral optimization. The foci
were set on complex candidate structures, evolutionary and surrogate model-
based algorithms, paradigms for comparing solutions, establishing directed
search, and implementing behavioral optimization algorithms designed to tackle
challenging real-world tasks. This chapter concludes the contributions of this
thesis, aggregated into four parts, each dedicated to one of the central require-
ments stated in the introduction:

(I) overview of optimization algorithms for solving complex problems,

(IT) extending SMBO beyond continuous spaces,

(III) genotypic and phenotypic metrics for comparing complex structures, and
(

IV) the design and analysis of behavioral optimization in reinforcement learning.

209

Chapter 11. Concluding Remarks

(I) Chapters [2| and [3| concentrated on EC and SMBO in the context of global
optimization algorithms for solving problems with complex characteristics.
Based on an extensive literature review, a new taxonomy for global optimization
algorithms was introduced, specified by the characteristic search elements of
each algorithm class. It was determined that the considered algorithms have
close connections in their search strategies and share similar components, further
allowing the extraction and combination of these components to new hybrid
algorithm designs. EAs and SMBO were identified to be most suited to tackle
complex problem characteristics: EAs have an excellent generalization ability,
and SMBO is frequently employed to increase the sampling efficiency in case of
expensive problems. Artificial intelligence applications were highlighted as one

of the most promising fields for the application of these algorithms.

An applied study compared evolutionary and surrogate-based approaches to
optimize ANN controllers for an elevator group control problem. According to
the assumption of their high potential, the results indicated that the algorithms
could provide excellent performance for this application. In particular, SMBO
improved the sampling efficiency significantly by up to a factor of five, however,

at high computation costs for the algorithm.

(IT) Chapter [4] analyzed steps for enhancing the applicability of SMBO to
combinatorial search spaces as the basis for applying custom distances. Based
on considerations from the literature, the requirements for advancing continuous
Kriging models were investigated. Besides the improvement of Kriging for this
application, a central focus was to evaluate suitable distance measures. In
contrast to the standard vector norms (L0, L1, L2) in continuous spaces, a
large variety of commonly task-dependent, combinatorial distances exist. Thus,
an empirical study featuring 14 different measures and several standard test
functions was conducted to analyze their performance. Firstly, this study demon-
strated the capabilities of a hybrid SMBO algorithm composed of evolutionarily
optimized Kriging surrogates. Secondly, the analysis indicated that the choice
of a distance measure has a significant impact on the performance. In this
context, it was impossible to identify a generally best distance; on the contrary,

almost each test function required a different choice of distance measure.

210

Ultimately, a dynamic distance selection approach based on maximum

likelihood estimation seemed most promising. This insight further illustrates
the complexity of comparing solutions in combinatorial spaces, where a genotypic
distance requires to be inherited from the problem definition, while a general,
task-independent distance is difficult to identify.
(III) Chapters |§|, and (7| formalized and analyzed distance measures
based on the phenotype or behavior for modeling and SMBO. Three studies
featuring candidate solutions with complex structures (genetic programming tree-
structures, fixed-topology, and topology-changing neural networks) compared
the performance of genotypic and phenotypic distance measures. A part of the
research considered the selection of input data to generate behaviors for modeling
Kriging with distance-based kernels. It could be shown that behavioral distances,
based on high dimensional data sets with several hundreds of observations,
could yield sound Kriging models. Also, the behaviors generated by these high
dimensional data sets could be well reproduced with only a few components.

The benchmark results of the studies supported the benefits of employing
phenotypic distances in SMBO. They performed at least as well as genotypic
measures for graph-based trees and fixed-topology neural networks, while ap-
plied to neuroevolutionary algorithms, they illustrated clear superiority. All
employed phenotypic-based SMBO algorithms could significantly improve the
sampling efficiency by up to a factor of ten compared to a model-free approach.
The compared genotypic distances often do not correlate well to a candidate’s
fitness and in addition to that, they are often computationally expensive or
even infeasible for modeling (e.g., a total edit distance of two complex graphs).
Contrary, the phenotype and its interactions in the environment define a can-
didate’s behavior, which is quickly transformed into fitness. The experiment
illustrated that the phenotypic distance measure is insensitive to the ANN size
or topology changes.

Ultimately, a phenotypic approach to modeling is independent of a genotype:
entirely different genotypes, such as a linear model, symbolic expression, and

neural network, can be compared solely by their behavior.

211

Chapter 11. Concluding Remarks

(IV) Chapters @, and were dedicated to implementing, testing, and
analyzing behavior-based optimization for reinforcement learning process. For
this final part, topology-changing ANNs generated by CGP-ANN were used as
candidates. The genotypes were no longer considered for modeling; however,
they still build the basis for any candidate variation. A clear emphasis was
put on the implications of employing models and operators utilizing behavior
generated by querying the candidate ANN with selected data and the mechanism
and implication of this data selection. The leading research aspects were:
a) analyzing the selection of data sets for generating ANN behaviors,
b) in-depth analysis of the correlation between behavior and fitness, and
c) the performance of behavior-based SMBO compared to model-free approaches.

A first empirical study compared fixed data sets (experimental designs, stored
data) and dynamic data sets (extracted task-data, changing over consecutive
iterations) as input for the behavior distance. It did not provide evidence for
significant differences, indicating a robustness of the behavioral distance towards
this choice. Still, the best results were achieved with a dynamic task-generated
data set, including all known observations of the compared candidates. The
dimensionality of the input data has a considerable influence on the computation
time, i.e., high-dimensional data sets quadratically increase computation costs.

Behavioral optimization has a set of challenging properties due to its task
and input dependence. An in-depth analysis determined that even small changes
in the behavior considerably affect fitness, while at the same time, similar fitness
can emerge from different behaviors. However, an empirical study exposed
that a sufficient behavioral distance correlation can be achieved by selecting
an adequate data set for generating the behaviors. It was discovered that
behavior-based SMBO significantly reduces the number of required evaluations
by up to 80% compared to model-free neuroevolution. Moreover, it was exposed
that behavior delivers information that is not covered by fitness alone. Thus,
an ideal optimization algorithm should consider both fitness and behavior as
the basis for generating candidate solutions.

The final study also considered the direct behavior-based search for candi-

dates using gradient-free neuroevolution. In this case, the challenge was to first

212

identify beneficial behaviors with high fitness. Thus, based on standard methods
from reinforcement learning, each decision in the input data was weighted by
its advantage to create weighted comparisons, which favor valuable behavior.
With this, an even higher level of behavior adaption was realized, illustrating a

high performance on standard benchmarks and a real-world application.

Applicability and Proposed Future Work

Table summarizes methods introduced in this thesis. Behavioral modeling
and optimization demonstrated impressive results for enhancing evolutionary
search. Nevertheless, the current implementation is computationally expensive
and sensitive to high dimensional data, limiting their applicability. Distance-
based Kriging models are well known for their excellent interpolation ability;
however, this comes at the cost of expensive modeling. The modeling effort
scales significantly with the number of data samples, rendering it frequently com-
putationally infeasible for single node computations. A significant improvement
could be achieved by parallelizing Kriging and SMBO in different stages (i.e.,
matrix computations, parallel evaluations, and model optimization) [Rehbach
et al., [2018]. Overall, the computation time renders the outlined solution most
helpful if the underlying environments or problems themselves are expensive,
i.e., real-world optimization, reinforcement learning, and evolutionary robotics.

Phenotypic or behavioral optimization is best applied for problems with
active entities, i.e., embedded in space and time. Using the definition of the 3-fold
(genotype-phenotype-fitness) and 4-fold (genotype-phenotype-behavior-fitness)
transitions chain [Eiben and Smithl [2015b], it can be shown that many problems
allow the direct fitness evaluation of phenotypes. In this case, direct fitness
computations are often computationally more efficient than approximating
them in a surrogate-based process. However, expensive problems, such as the
hyperparameter tuning of complex data models, are an exception. In this
context, a single fact highlights the applicability of behavioral optimization for
learning data models: it is built upon metrics that are entirely independent

of the structure of the model (genotype). Ounly the environmental reactions

213

Chapter 11. Concluding Remarks

Table 11.1: Overview of introduced methods.

Method Description Ch.
SMB-C Kriging-based surrogate model-based optimization applying 4
custom distance measures.
PHD Phenotypic distance measure. The distance is based on the 5
(static) response of entities evaluated for a task input.
SMB-NE Surrogate model-based optimization for enhancing topology- 7

changing neuroevolutionary algorithms. Applies SMB-C with
PHD-based kernels.
BD Behavioral distance measure. Similar to the PHD, but focused 8

on comparing reactions to time-dependent inputs (e.g., consecu-
tive environment states in reinforcement learning).

BNET Behavior-based neuroevolutionary training of neural networks. 10
A hybrid algorithm for reinforcement learning, based on BD,
SMB-NE, and value-based RL methods.

(behaviors) are of importance. A vast potential arises from evaluating and
optimizing diverse data-model structures in a single process.

Behavioral optimization is not limited to enhancing search efficiency; it was
also successfully applied to enhance solution diversity [Hagg, [2021]. Applied in
methods such as quality diversity or novelty search, it allows producing new

surprising solutions, enhancing the creativity in engineering and arts.

Final Words

In conclusion, the thesis is a fundamental step towards exposing the potential of
behavioral optimization. The included studies demonstrate the benefits of adding
behavior-based search methods to EC and SMBO. The methods for searching
the behavioral space provide examples of how to overcome problems of genotypic
variation in optimization, such as the complex, non-linear transitions between
the genotypes and their evaluated fitness and the concomitant challenging
optimization. Behavioral optimization allows controlled adaption of individuals,
robustly steering them in the direction of high-performing individuals and

ultimately improving the sampling efficiency in optimizing complex tasks.

214

Bibliography

Abadi M, et al. (2015) TensorFlow: Large-scale machine learning on heteroge-

neous systems. URL https://www.tensorflow.org/

Abdul-Razaq T, Potts C, Wassenhove LV (1990) A survey of algorithms for the
single machine total weighted tardiness scheduling problem. Discrete Applied
Mathematics 26(2-3):235-253

Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of
distance metrics in high dimensional space. In: Database Theory — ICDT
2001: 8th International Conference, London, UK, LNCS, pp 420-434

Angeline PJ (1995) Adaptive and self-adaptive evolutionary computations. In:
Computational intelligence: A Dynamic Systems Perspective, IEEE Press,
pp 152-163

Archetti F, Schoen F (1984) A survey on the global optimization problem:
general theory and computational approaches. Annals of Operations Research
1(2):87-110

Arnold DV, Beyer HG (2003) A comparison of evolution strategies with other
direct search methods in the presence of noise. Computational Optimization
and Applications 24(1):135-159

Arnold DV, Hansen N (2012) A (141)-CMA-ES for constrained optimisation.
In: Proceedings of the 14th annual conference on Genetic and evolutionary
computation, ACM, pp 297-304

215

https://www.tensorflow.org/

Bibliography

Arora J, Elwakeil O, Chahande A, Hsieh C (1995) Global optimization methods

for engineering applications: a review. Structural optimization 9(3-4):137-159

Audet C (2014) A survey on direct search methods for blackbox optimization
and their applications. In: Mathematics Without Boundaries, Springer, pp
31-56

Augusto DA, Barbosa HJ (2000) Symbolic regression via genetic programming.
In: Proceedings. Vol. 1. Sixth Brazilian Symposium on Neural Networks,
IEEE, pp 173-178

Béck T (1996) Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university

press

Béck T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary computation.
IOP Publishing Ltd.

Baluja S (1994) Population-based incremental learning. a method for integrating
genetic search based function optimization and competitive learning. Tech.

rep., Carnegie-Mellon University Pittsburgh Department Of Computer Science

Bartz-Beielstein T (2010) SPOT: An R package for automatic and interactive
tuning of optimization algorithms by sequential parameter optimization. arXiv
preprint arXiv:10064645

Bartz-Beielstein T, Zaefferer M (2017) Model-based methods for continuous
and discrete global optimization. Applied Soft Computing 55:154 — 167,
DOI 10.1016/j.as0¢.2017.01.039

Bartz-Beielstein T, Lasarczyk C, Preuft M (2005a) Sequential parameter opti-
mization. In: McKay B, et al. (eds) Congress on Evolutionary Computation
(CEC’05), Proceedings, IEEE, pp 773-780

Bartz-Beielstein T, Preuss M, Markon S (2005b) Validation and optimization of
an elevator simulation model with modern search heuristics. Metaheuristics:

Progress as Real Problem Solvers pp 109-128

216

Bibliography

Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, com-

puting, design, and application. Journal of microbiological methods 43(1):3-31

Beasley JE (1990) OR-Library: distributing test problems by electronic mail.
Journal of the Operational Research Society 41(11):1069-1072

Beume N, Naujoks B, Emmerich M (2007) Sms-emoa: Multiobjective selection
based on dominated hypervolume. European Journal of Operational Research
181(3):1653-1669

Beyer HG (2013) The theory of evolution strategies. Springer Science & Business
Media

Beyer HG, Schwefel HP (2002) Evolution Strategies: A Comprehensive Intro-
duction. Natural Computing 1(1):3-52

Bezerra LC, Lopez-Ibanez M, Stiitzle T (2014) Automatic design of evolutionary
algorithms for multi-objective combinatorial optimization. In: International

Conference on Parallel Problem Solving from Nature, Springer, pp 508-517

Blum C, Puchinger J, Raidl GR, Roli A (2011) Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing 11(6):4135—
4151

Bongard JC (2013) Evolutionary robotics. Communications of the ACM 56(8):74—
83

Booker AJ, Dennis Jr J, Frank PD, Serafini DB, Torczon V, Trosset MW (1999)
A rigorous framework for optimization of expensive functions by surrogates.
Structural optimization 17(1):1-13

Bosman PA, Thierens D (2000) Continuous iterated density estimation evolu-

tionary algorithms within the idea framework

Bossek J, Doerr C, Kerschke P (2020) Initial design strategies and their effects
on sequential model-based optimization: An exploratory case study based on
BBOB. In: Proceedings of the 2020 Genetic and Evolutionary Computation
Conference, pp 778-786, DOI 10.1145/3377930.3390155

217

Bibliography

Bouhlel MA, Hwang JT, Bartoli N, Lafage R, Morlier J, Martins JR (2019) A
python surrogate modeling framework with derivatives. Advances in Engi-

neering Software 135:1-13

Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics.
Information Sciences 237:82-117

Breiman L (2001) Random forests. Machine Learning 45(1):5-32

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regres-

sion trees. CRC press

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J, Tang J,
Zaremba W (2016) Openai gym. arXiv preprint arXiv:160601540

Burkard RE (1984) Quadratic assignment problems. European Journal of Opera-
tional Research 15(3):283 — 289, DOI http://dx.doi.org/10.1016,/0377-2217(84)
90093-6

Burkard RE, Karisch SE, Rendl F (1997) QAPLIB — a quadratic assignment
problem library. Journal of Global Optimization 10(4):391-403, DOI 10.1023/
A:1008293323270

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-
heuristics: An emerging direction in modern search technology. In: Handbook

of metaheuristics, Springer, pp 457-474

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2010) A
classification of hyper-heuristic approaches. In: Handbook of metaheuristics,
Springer, pp 449-468

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2013)
Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society 64(12):1695-1724

Campos V, Laguna M, Marti R (2005) Context-independent scatter and tabu
search for permutation problems. INFORMS Journal on Computing 17(1):111-
122

218

Bibliography

Caprara A (1997) Sorting by reversals is difficult. In: Proceedings of the First
Annual International Conference on Computational Molecular Biology, ACM,
New York, NY, USA, RECOMB 97, pp 75-83, DOI 10.1145/267521.267531

Carson Y, Maria A (1997) Simulation optimization: methods and applications.
In: Proceedings of the 29th conference on Winter simulation, IEEE Computer
Society, pp 118-126

Chelouah R, Siarry P (2000) Tabu search applied to global optimization. Euro-
pean journal of operational research 123(2):256-270

Chollet F, et al. (2015) Keras. https://keras.io

Coello CAC (2002) Theoretical and numerical constraint-handling techniques
used with evolutionary algorithms: a survey of the state of the art. Computer

methods in applied mechanics and engineering 191(11):1245-1287

Collobert R, Weston J (2008) A unified architecture for natural language
processing: Deep neural networks with multitask learning. In: Proceedings of

the 25th international conference on Machine learning, ACM, pp 160-167

Conover WJ, Iman RL (1979) On multiple-comparisons procedures. Tech. Rep.
LA-7677-MS, Los Alamos Sci. Lab.

Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal
functions of continuous variables with the “simulated annealing” algorithm.

ACM Transactions on Mathematical Software (TOMS) 13(3):262-280

Cowling P, Kendall G, Soubeiga E (2000) A hyperheuristic approach to schedul-
ing a sales summit. In: International Conference on the Practice and Theory

of Automated Timetabling, Springer, pp 176-190

Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: A tool for rapid
prototyping in scheduling and optimisation. In: Workshops on Applications
of Evolutionary Computation, Springer, pp 1-10

Cox DD, John S (1997) Sdo: A statistical method for global optimization.
Multidisciplinary design optimization: state of the art pp 315-329

219

https://keras.io

Bibliography

Crepinsek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolu-
tionary algorithms: a survey. ACM Computing Surveys (CSUR) 45(3):35

Crombecq K, Gorissen D, Deschrijver D, Dhaene T (2011) A novel hybrid sequen-
tial design strategy for global surrogate modeling of computer experiments.
SIAM Journal on Scientific Computing 33(4):1948-1974

Daniels SJ, Rahat AAM, Everson RM, Tabor GR, Fieldsend JE (2018) A suite of
computationally expensive shape optimisation problems using computational
fluid dynamics. In: International Conference on Parallel Problem Solving
from Nature, pp 296-307

Dawkins R (1982) The Extended Phenotype. Oxford University Press Oxford

De Grave K, Ramon J, De Raedt L (2008) Active learning for high throughput

screening. In: International Conference on Discovery Science, pp 185-196

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation 6(2):182-197

Doerr B, Doerr C, Yang J (2020) Optimal parameter choices via precise black-

box analysis. Theoretical Computer Science 801:1-34

Doncieux S, Mouret JB (2010) Behavioral diversity measures for evolutionary

robotics. In: IEEE Congress on Evolutionary Computation, pp 1-8

Doncieux S, Mouret JB (2014) Beyond black-box optimization: a review of
selective pressures for evolutionary robotics. Evolutionary Intelligence 7(2):71—
93, DOI 10.1007/s12065-014-0110-x

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE com-
putational intelligence magazine 1(4):28-39

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research
12(7):2121-2159

220

Bibliography

Eiben AE, Smith J (2015a) From evolutionary computation to the evolution of
things. Nature 521(7553):476-482

Eiben AE, Smith JE (2015b) Introduction to Evolutionary Computing, 2nd
edn. Springer

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary
algorithms. IEEE Transactions on evolutionary computation 3(2):124-141

Emmerich MT, Giannakoglou KC, Naujoks B (2006) Single-and multiobjective
evolutionary optimization assisted by gaussian random field metamodels.
IEEE Transactions on Evolutionary Computation 10(4):421-439

Faber R, Jockenhovel T, Tsatsaronis G (2005) Dynamic optimization with

simulated annealing. Computers & chemical engineering 29(2):273-290

Filipiak P, Lipinski P (2014) Infeasibility driven evolutionary algorithm with feed-
forward prediction strategy for dynamic constrained optimization problems.

In: Applications of Evolutionary Computation, Springer, pp 817-828

Flasch O (2015) A modular genetic programming system. PhD thesis, TU
Dortmund, DOT http://dx.doi.org/10.17877/DE290R-7807

Flasch O, Bartz-Beielstein T, Davtyan A, Koch P, Konen W, Oyetoyan TD,
Tamutan M (2010a) Comparing CI methods for prediction models in environ-

mental engineering. In: Proc. of CEC

Flasch O, Mersmann O, Bartz-Beielstein T (2010b) RGP: An open source genetic
programming system for the R environment. In: Proceedings of the 12th
Annual Conference Companion on Genetic and Evolutionary Computation,
pp 2071-2072, DOI 10.1145/1830761.1830867

Flasch O, Mersmann O, Bartz-Beielstein T, Stork J, Zaefferer M (2014) rgp:
R genetic programming framework. URL https://CRAN.R-project.org/
package=rgp, r package version 0.4-1

Fleming PJ, Purshouse RC (2002) Evolutionary algorithms in control systems
engineering: a survey. Control engineering practice 10(11):1223-1241

221

https://CRAN.R-project.org/package=rgp
https://CRAN.R-project.org/package=rgp

Bibliography

Fletcher R (1976) Conjugate gradient methods for indefinite systems. In: Nu-
merical analysis, Springer, pp 73-89

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution. John Wiley

Fomin FV, Kaski P (2013) Exact exponential algorithms. Commun ACM
56(3):80-88, DOT 10.1145/2428556.2428575, URL http://doi.acm.org/10,
1145/2428556.2428575

Fonseca CM, Fleming PJ, et al. (1993) Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In: Proceedings of

the 5th International Conference on Genetic Algorithms, vol 93, pp 416423

Forrester A, Sobester A, Keane A (2008) Engineering Design via Surrogate
Modelling. John Wiley & Sons

Forrester AI, Keane AJ (2009) Recent advances in surrogate-based optimization.

Progress in Aerospace Sciences 45(1):50-79

Franke JK, Kohler G, Awad N, Hutter F (2019) Neural architecture evolu-
tion in deep reinforcement learning for continuous control. arXiv preprint
arXiv:191012824

Friese M, Bartz-Beielstein T, Emmerich MTM (2016) Building ensembles of
surrogates by optimal convex combination. In: Mernik M, Papa G (eds)

Bioinspired Optimization Methods and their Applications, pp 131-144

Gablonsky JM, Kelley CT (2001) A locally-biased form of the direct algorithm.
Journal of Global Optimization 21(1):27-37

Gaier A, Asteroth A, Mouret JB (2018) Data-efficient neuroevolution with kernel-
based surrogate models. In: Proceedings of the Genetic and Evolutionary

Computation Conference, pp 85-92

Gallagher M, Frean MR, Downs T (1999) Real-valued evolutionary optimization
using a flexible probability density estimator. In: GECCO, vol 99, pp 840-846

222

http://doi.acm.org/10.1145/2428556.2428575
http://doi.acm.org/10.1145/2428556.2428575

Bibliography

Géamperle R, Miiller SD, Koumoutsakos P (2002) A parameter study for differ-
ential evolution. Advances in intelligent systems, fuzzy systems, evolutionary
computation 10:293-298

Glover F (1989) Tabu search—part I. ORSA Journal on computing 1(3):190-206

Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struc-
tural and Multidisciplinary Optimization 33(3):199-216

Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of statistical

functions with simulated annealing. Journal of Econometrics 60(1):65-99

Guo H (2003) A bayesian approach for automatic algorithm selection. In:
Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI03), Workshop on AT and Autonomic Computing, Acapulco, Mexico,
pp 1-5

Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global
optimization with expensive functions—a survey. Structural and Multidisci-
plinary Optimization 54(1):3-13

Hagg A (2021) Discovering the preference hypervolume, an interactive model
for real world computational co-creativity. PhD thesis, Leiden Institute of
Advanced Computer Science (LIACS), Faculty of Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

Hagg A, Zaefferer M, Stork J, Gaier A (2019) Prediction of neural network
performance by phenotypic modeling. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion - GECCO’19, ACM, Prague,
Czech Republic, GECCO 19, pp 1576-1582, DOI 10.1145/3319619.3326815

Hansen N (2006) The CMA evolution strategy: a comparing review. In: Towards

a new evolutionary computation, Springer, pp 75-102

Hansen N, Miiller SD, Koumoutsakos P (2003) Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary computation 11(1):1-18

223

Bibliography

Hansen N, Auger A, Finck S, Ros R (2010a) Real-parameter black-box opti-
mization benchmarking 2010: Experimental setup. Tech. rep., INRIA

Hansen N, Auger A, Ros R, Finck S, Posik P (2010b) Comparing results of
31 algorithms from the black-box optimization benchmarking bbob-2009.
In: Proceedings of the 12th annual conference companion on Genetic and

evolutionary computation, ACM, pp 1689-1696

Hansen P, Mladenovic N (2003) Variable neighbourhood search. Handbook of

Metaheuristics, Dordrecht, Kluwer Academic Publishers

Hansen P, Mladenovié N, Pérez JAM (2010c) Variable neighbourhood search:
methods and applications. Annals of Operations Research 175(1):367-407

Harik G, et al. (1999) Linkage learning via probabilistic modeling in the ecga.
IIIiGAL report 99010

Hauschild M, Pelikan M (2011) An introduction and survey of estimation of
distribution algorithms. Swarm and Evolutionary Computation 1(3):111-128

Haykin S (2004) Neural Networks: A comprehensive foundation. Prentice Hall,
Upper Saddle River, New Jersey

Henderson D, Jacobson SH, Johnson AW (2003) The theory and practice of
simulated annealing. In: Handbook of metaheuristics, Springer, pp 287-319

Hildebrandt T, Branke J (2015) On using surrogates with genetic programming.
Evolutionary computation 23(3):343-367

Hill A, Raffin A, Ernestus M, Gleave A, Kanervisto A, Traore R, Dhari-
wal P, Hesse C, Klimov O, Nichol A, Plappert M, Radford A, Schulman
J, Sidor S, Wu Y (2018) Stable baselines. https://github.com/hill-a/

stable-baselines

Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke
V, Nguyen P, Sainath TN, et al. (2012) Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine 29(6):82-97

224

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Bibliography

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep
belief nets. Neural computation 18(7):1527-1554

Hirschberg DS (1975) A linear space algorithm for computing maximal common
subsequences. Communications of the ACM 18(6):341-343

Holland JH (1992) Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT

press

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks

are universal approximators. Neural networks 2(5):359-366

Hu N (1992) Tabu search method with random moves for globally optimal design.
International Journal for Numerical Methods in Engineering 35(5):1055-1070

Hutter F (2009) Automated configuration of algorithms for solving hard com-
putational problems. PhD thesis, University of British Columbia

Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimiza-
tion for general algorithm configuration. LION 5:507-523

Izzo D, Biscani F, Mereta A (2017) Differentiable genetic programming. In:

European conference on genetic programming, Springer, pp 35-51

Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A,
Vinyals O, Green T, Dunning I, Simonyan K, et al. (2017) Population based

training of neural networks. arXiv preprint arXiv:171109846

Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary
computation. Soft Computing-A Fusion of Foundations, Methodologies and
Applications 9(1):3-12

Jin Y (2011) Surrogate-assisted evolutionary computation: Recent advances

and future challenges. Swarm and Evolutionary Computation 1(2):61-70

Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments-a

survey. IEEE Transactions on evolutionary computation 9(3):303-317

225

Bibliography

Jin Y, Wang H, Chugh T, Guo D, Miettinen K (2019) Data-driven evolu-
tionary optimization: An overview and case studies. IEEE Transactions on
Evolutionary Computation 23(3):442-458, DOI 10.1109/TEVC.2018.2869001

Jones DR (2001) A taxonomy of global optimization methods based on response
surfaces. Journal of global optimization 21(4):345-383

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of
expensive black-box functions. Journal of Global Optimization 13(4):455-492

Jones T, Forrest S (1995) Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In: Proceedings of the 6th International
Conference on Genetic Algorithms, Morgan Kaufmann, Pittsburgh, PA, USA,
pp 184-192

Jung W, Park G, Sung Y (2020) Population-guided parallel policy search for

reinforcement learning. arXiv preprint arXiv:200102907

Kallel L, Schoenauer M (1996) Fitness distance correlation for variable length
representations. Tech. Rep. 363, CMAP, Ecole Polytechnique

Kattan A, Ong YS (2015) Surrogate genetic programming: A semantic aware

evolutionary search. Information Sciences 296:345-359

Kendall MG, Gibbons JD (1990) Rank Correlation Methods. Charles Griffin

Book Series, Oxford University Press, London

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural Networks,
1995. Proceedings., IEEE International Conference on, IEEE, vol 4, pp 1942—
1948

Kerschke P, Trautmann H (2019) Automated algorithm selection on continuous
black-box problems by combining exploratory landscape analysis and machine

learning. Evolutionary computation 27(1):99-127

Khadka S, Tumer K (2018) Evolution-guided policy gradient in reinforcement
learning. In: Proceedings of the 32nd International Conference on Neural

Information Processing Systems, pp 1196-1208

226

Bibliography

Khadka S, Majumdar S, Nassar T, Dwiel Z, Tumer E, Miret S, Liu Y, Tumer
K (2019) Collaborative evolutionary reinforcement learning. In: International
Conference on Machine Learning, PMLR, pp 3341-3350

Khan MM, Khan GM, Miller JF (2010) Evolution of neural networks using carte-
sian genetic programming. In: IEEE Congress on Evolutionary Computation,
pp 1-8, DOI 10.1109/CEC.2010.5586547

Khan N, Goldberg DE, Pelikan M (2002) Multi-objective bayesian optimization
algorithm. In: Proceedings of the 4th Annual Conference on Genetic and

Evolutionary Computation, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, GECCO’02, pp 684684

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv
preprint arXiv:14126980

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated anneal-
ing. science 220(4598):671-680

Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: New
perspectives on some classical and modern methods. SIAM review 45(3):385—
482

Koppejan R, Whiteson S (2011) Neuroevolutionary reinforcement learning
for generalized control of simulated helicopters. Evolutionary Intelligence
4(4):219-241, DOI 10.1007/s12065-011-0066-2

Koza JR (1992) Genetic programming: on the programming of computers by

means of natural selection. MIT press
Koziel S, Leifsson L (2013) Surrogate-based modeling and optimization. Springer

Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association 47:583-621

Kushner HJ (1964) A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering 86(1):97—
106

227

Bibliography

Larranaga P, Lozano JA (2001) Estimation of distribution algorithms: A new

tool for evolutionary computation, vol 2. Springer Science & Business Media

Larranaga P, Etxeberria R, Lozano J, Pena J, Pe J, et al. (1999) Optimization
by learning and simulation of bayesian and gaussian networks. Tech. rep.,

University of the Basque Country

Lawler EL, Wood DE (1966) Branch-and-bound methods: A survey. Operations
research 14(4):699-719

Lee C (1958) Some properties of nonbinary error-correcting codes. Information
Theory, IRE Transactions on 4(2):77-82, DOI 10.1109/TIT.1958.1057446

Leon A (1966) A classified bibliography on optimization. Recent Advances in
Optimization Techniques, John Wiley & Sons, Inc, New York and London pp
599-649

Lewis RM, Torczon V, Trosset MW (2000) Direct search methods: then and
now. Journal of computational and Applied Mathematics 124(1):191-207

Li R, Emmerich MTM, Eggermont J, Bovenkamp EGP, Béck T, Dijkstra J,
Reiber J (2008) Metamodel-assisted mixed integer evolution strategies and
their application to intravascular ultrasound image analysis. In: Congress on
Evolutionary Computation, IEEE, pp 2764-2771, DOI 10.1109/CEC.2008.
4631169

Liaw A, Wiener M, et al. (2002) Classification and regression by randomforest.
R news 2(3):18-22

Lim D, Jin Y, Ong YS, Sendhoff B (2010) Generalizing surrogate-assisted
evolutionary computation. IEEE Transactions on Evolutionary Computation
14(3):329-355

Lindauer M, Hoos HH, Hutter F, Schaub T (2015) Autofolio: An automatically
configured algorithm selector. Journal of Artificial Intelligence Research
53:745-778

228

Bibliography

Liu DC, Nocedal J (1989) On the limited memory bfgs method for large scale
optimization. Mathematical programming 45(1-3):503-528

Lizotte DJ (2008) Practical bayesian optimization. PhD thesis, University of
Alberta

Lobo F, Lima CF, Michalewicz Z (2007) Parameter setting in evolutionary
algorithms, Studies in Computational Intelligence, vol 54. Springer Science &

Business Media

Locatelli M (2002) Simulated annealing algorithms for continuous global opti-
mization. In: Handbook of global optimization, Springer, pp 179-229

Lopez-Ibanez M, Dubois-Lacoste J, Caceres LP, Birattari M, Stiitzle T (2016)
The irace package: Iterated racing for automatic algorithm configuration.

Operations Research Perspectives 3:43-58

Loshchilov I, Schoenauer M, Sebag M (2012) Self-adaptive surrogate-assisted
covariance matrix adaptation evolution strategy. In: Proceedings of the

14th annual conference on Genetic and evolutionary computation, ACM, pp
321-328

Marler RT, Arora JS (2004) Survey of multi-objective optimization methods
for engineering. Structural and multidisciplinary optimization 26(6):369-395

Marsden AL, Wang M, Dennis Jr JE, Moin P (2004) Optimal aeroacoustic
shape design using the surrogate management framework. Optimization and
Engineering 5(2):235-262

Martin MA, Tauritz DR (2013) Evolving black-box search algorithms employ-
ing genetic programming. In: Proceedings of the 15th annual conference

companion on Genetic and evolutionary computation, pp 1497-1504

McKay B, Willis MJ, Barton GW (1995) Using a tree structured genetic algo-
rithm to perform symbolic regression. In: Genetic Algorithms in Engineering
Systems: Innovations and Applications, 1995. GALESIA. First International
Conference on (Conf. Publ. No. 414), IET, pp 487492

229

Bibliography

McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for
selecting values of input variables in the analysis of output from a computer
code. Technometrics 21(2):239-245

Mebane Jr WR, Sekhon JS (2011) Genetic optimization using derivatives: the
rgenoud package for r. Journal of Statistical Software 42(11):1-26

Mercer RE, Sampson J (1978) Adaptive search using a reproductive meta-plan.
Kybernetes 7(3):215-228

Mersmann O, Bischl B, Trautmann H, Preuss M, Weihs C, Rudolph G (2011)
Exploratory landscape analysis. In: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, Association for Com-
puting Machinery, New York, NY, USA, GECCO ’11, pp 829-836, DOI
10.1145/2001576.2001690

Meyerson E, Lehman J, Miikkulainen R (2016) Learning behavior characteri-
zations for novelty search. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, Association for Computing Machinery, New
York, NY, USA, GECCO ’16, pp 149-156, DOI 10.1145/2908812.2908929

Miller JF, Thomson P (2000) Cartesian genetic programming. In: European

Conference on Genetic Programming, Springer, pp 121-132

Mladenovi¢ N, Drazi¢ M, Kovacevic-Vujéi¢ V, Cangalovié M (2008) General
variable neighborhood search for the continuous optimization. European
Journal of Operational Research 191(3):753-770

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Ried-
miller M (2013) Playing atari with deep reinforcement learning. arXiv preprint
arXiv:13125602

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D,
Kavukcuoglu K (2016) Asynchronous methods for deep reinforcement learning.

In: International conference on machine learning, PMLR, pp 1928-1937

230

Bibliography

Mockus J (1974) On bayesian methods for seeking the extremum. In: Proceedings
of the IFIP Technical Conference, Springer-Verlag, pp 400-404

Mockus J (1994) Application of bayesian approach to numerical methods of
global and stochastic optimization. Journal of Global Optimization 4(4):347-
365

Mockus J (2012) Bayesian approach to global optimization: theory and applica-

tions, vol 37. Springer Science & Business Media

Molina D, Lozano M, Garcia-Martinez C, Herrera F (2010) Memetic algo-
rithms for continuous optimisation based on local search chains. Evolutionary
Computation 18(1):27-63

Montgomery DC (2017) Design and analysis of experiments, 9th edn. John
Wiley & Sons, Inc.

Moraglio A, Kattan A (2011a) Geometric generalisation of surrogate model based
optimisation to combinatorial spaces. In: Proceedings of the 11th European
Conference on Evolutionary Computation in Combinatorial Optimization,
Springer, Berlin, Heidelberg, Germany, EvoCOP’11, pp 142-154

Moraglio A, Kattan A (2011b) Geometric surrogate model based optimisa-
tion for genetic programming: Initial experiments. Tech. rep., University of

Birmingham

Moraglio A, Poli R (2005) Geometric landscape of homologous crossover for
syntactic trees. In: 2005 IEEE Congress on Evolutionary Computation, IEEE,
Edinburgh, UK, vol 1, pp 427-434, DOI 10.1109/cec.2005.1554715

Moraglio A, Krawiec K, Johnson CG (2012) Geometric semantic genetic pro-
gramming. In: International Conference on Parallel Problem Solving from

Nature, Springer, pp 21-31

Moscato P (1989) On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Caltech concurrent computation
program 826:1989

231

Bibliography

Mouret JB, Clune J (2015) Illuminating search spaces by mapping elites. arXiv
e-prints ArXiv:1504.04909v1

Mouret JB, Doncieux S (2012) Encouraging behavioral diversity in evolutionary

robotics: An empirical study. In: Evolutionary Computation, pp 91-133

Mullen K, Ardia D, Gil DL, Windover D, Cline J (2011) DEoptim: An R
package for global optimization by differential evolution. Journal of Statistical
Software 40(6):1-26

Mullen KM (2014) Continuous global optimization in R. Journal of Statistical
Software 60(6):1-45

Miiller J (2016) MISO: mixed-integer surrogate optimization framework. Opti-
mization and Engineering 17(1):177-203

Miiller J, Shoemaker CA (2014) Influence of ensemble surrogate models and
sampling strategy on the solution quality of algorithms for computation-
ally expensive black-box global optimization problems. Journal of Global
Optimization 60(2):123-144

Naujoks B, Beume N, Emmerich M (2005) Multi-objective optimisation using
s-metric selection: Application to three-dimensional solution spaces. In: Evo-
lutionary Computation, 2005. The 2005 IEEE Congress on, IEEE, vol 2, pp
1282-1289

Nelder JA, Mead R (1965) A simplex method for function minimization. The
Computer Journal 7(4):308-313

Neumaier A (2004) Complete search in continuous global optimization and

constraint satisfaction. Acta numerica 13:271-369

Ng AY, Russell SJ, et al. (2000) Algorithms for inverse reinforcement learning.
In: Ieml, vol 1, pp 663670

Nguyen S, Zhang M, Johnston M, Tan KC (2014) Selection schemes in surrogate-

assisted genetic programming for job shop scheduling. In: Simulated Evolution

232

Bibliography

and Learning, 10th International Conference, SEAL, Springer Science +
Business Media, pp 656-667, DOI 10.1007/978-3-319-13563-2_ 55

Nguyen S, Zhang M, Tan KC (2016) Surrogate-assisted genetic programming
with simplified models for automated design of dispatching rules. IEEE
Transactions on Cybernetics pp 1-15, DOI 10.1109/tcyb.2016.2562674

Nguyen S, Mei Y, Zhang M (2017) Genetic programming for production schedul-
ing: a survey with a unified framework. Complex & Intelligent Systems
3(1):41-66, DOI 10.1007/s40747-017-0036-x

Ollion C, Doncieux S (2011) Why and how to measure exploration in behavioral
space. In: Proceedings of the 13th Annual Conference on Genetic and Evolu-
tionary Computation, Association for Computing Machinery, New York, NY,
USA, GECCO ’11, pp 267-274, DOI 10.1145/2001576.2001613

Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization of computation-
ally expensive problems via surrogate modeling. ATAA Journal 41(4):687-696

Ong YS, Nair P, Keane A, Wong K (2005) Surrogate-assisted evolutionary
optimization frameworks for high-fidelity engineering design problems. In:

Knowledge Incorporation in Evolutionary Computation, Springer, pp 307-331

Papa G, Doerr C (2020) Dynamic control parameter choices in evolutionary
computation: Gecco 2020 tutorial. In: Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion, pp 927-956

Parisotto E, Mohamed A, Singh R, Li L, Zhou D, Kohli P (2016) Neuro-symbolic
program synthesis. ArXiv e-prints 1611.01855,1611.01855

Parker-Holder J, Pacchiano A, Choromanski K, Roberts S (2020) Effec-
tive diversity in population-based reinforcement learning. arXiv preprint
arXiv:200200632

Pawlik M, Augsten N (2015) Efficient computation of the tree edit distance.
ACM Transactions on Database Systems 40(1):1-40, DOI 10.1145/2699485

233

1611.01855

Bibliography

Pawlik M, Augsten N (2016a) APTED release 0.1.1. GitHub, https://github|
com/DatabaseGroup/apted, last accessed: 2017-06-01

Pawlik M, Augsten N (2016b) Tree edit distance: Robust and memory-efficient.
Information Systems 56:157-173, DOI 10.1016/j.is.2015.08.004

Pearl J (1985) Heuristics. intelligent search strategies for computer problem
solving. The Addison-Wesley Series in Artificial Intelligence, Reading, Mass:
Addison-Wesley, 1985, Reprinted version

Pittenger AO (2012) An introduction to quantum computing algorithms, vol 19.

Springer Science & Business Media

Pohlert T (2018) PMCMRplus: calculate pairwise multiple comparisons of mean

rank sums extended - R package, version 1.4.1

Pugh JK, Soros LB, Stanley KO (2016) Searching for quality diversity when
diversity is unaligned with quality. In: International Conference on Parallel

Problem Solving from Nature, Springer, pp 880-889

Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005)
Surrogate-based analysis and optimization. Progress in aerospace sciences
41(1):1-28

R Core Team (2018) R: A language and environment for statistical computing

Rasmussen CE (2004) Gaussian processes in machine learning. In: Advanced

Lectures on Machine Learning, Springer

Rechenberg I (1973) Evolutionsstrategie-Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog
Rechenberg I (1994) Evolutionsstrategie '94. Frommann-Holzboog

Reeves CR (1995) A genetic algorithm for flowshop sequencing. Computers &
operations research 22(1):5-13

Reeves CR (1999) Landscapes, operators and heuristic search. Annals of Opera-
tions Research 86:473-490

234

https://github.com/DatabaseGroup/apted
https://github.com/DatabaseGroup/apted

Bibliography

Regis RG, Shoemaker CA (2013) Combining radial basis function surrogates
and dynamic coordinate search in high-dimensional expensive black-box

optimization. Engineering Optimization 45(5):529-555

Rehbach F, Zaefferer M, Stork J, Bartz-Beielstein T (2018) Comparison of
parallel surrogate-assisted optimization approaches. In: Proceedings of the

Genetic and Evolutionary Computation Conference, ACM, pp 1348-1355

Rehbach F, Zaefferer M, Naujoks B, Bartz-Beielstein T (2020) Expected improve-
ment versus predicted value in surrogate-based optimization. In: Proceedings

of the 2020 Genetic and Evolutionary Computation Conference, pp 868-876

Reinelt G (1991) TSPLIB—A traveling salesman problem library. ORSA journal
on computing 3(4):376-384

Richter SN, Tauritz DR (2018) The automated design of probabilistic selection
methods for evolutionary algorithms. In: Proceedings of the Genetic and

Evolutionary Computation Conference Companion, pp 1545-1552

van Rijn S, Wang H, van Stein B, Béck T (2017) Algorithm configuration data
mining for CMA evolution strategies. In: Proceedings of the Genetic and
Evolutionary Computation Conference, ACM, New York, NY, USA, GECCO
'17, pp 737-744, DOI 10.1145/3071178.3071205

Rozenberg G, Bick T, Kok JN (eds) (2012) Handbook of natural computing,
vol 1. Springer

Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:160904747

Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of
computer experiments. Statistical Science 4(4):409-435

Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a

scalable alternative to reinforcement learning. arXiv preprint arXiv:170303864

Santana R (2017) Gray-box optimization and factorized distribution algorithms:

where two worlds collide. arXiv preprint arXiv:170703093

235

Bibliography

Schaffer JD, Whitley D, Eshelman LJ (1992) Combinations of genetic algorithms
and neural networks: A survey of the state of the art. In: COGANN-92:
International Workshop on Combinations of Genetic Algorithms and Neural
Networks, IEEE, pp 1-37

Schaul T, Quan J, Antonoglou I, Silver D (2015) Prioritized experience replay.
arXiv preprint arXiv:151105952

Schiavinotto T, Stiitzle T (2007) A review of metrics on permutations for search

landscape analysis. Computers & operations research 34(10):3143-3153

Schmitt S, Hessel M, Simonyan K (2020) Off-policy actor-critic with shared
experience replay. In: International Conference on Machine Learning, PMLR,
pp 8545-8554

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal
policy optimization algorithms. arXiv preprint arXiv:170706347

Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME, Rose GS, Plank JS
(2017) A survey of neuromorphic computing and neural networks in hardware.
arXiv preprint arXiv:170506963

Schwefel HP (1977) Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie: mit einer vergleichenden Einfiihrung in die Hill-
Climbing- und Zufallsstrategie, 1st edn. Interdisciplinary Systems Research,

Birkhé&user

Schwefel HPP (1993) Evolution and optimum seeking: the sixth generation.
John Wiley & Sons, Inc.

Scrucca L (2013) GA: a package for genetic algorithms in R. Journal of Statistical
Software 53(4):1-37

Sekhon JS, Mebane WR, (1998) Genetic optimization using derivatives. Political
Analysis 7:187-210

236

Bibliography

Sevaux M, Sorensen K (2005) Permutation distance measures for memetic
algorithms with population management. In: Metaheuristics International
Conference, pp 832-838

Shanno DF (1970) Conditioning of quasi-newton methods for function mini-
mization. Mathematics of computation 24(111):647-656

Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Evolutionary
Computation Proceedings, 1998. IEEE World Congress on Computational
Intelligence., The 1998 IEEE International Conference on, IEEE, pp 69-73

Shir OM, Béack T (2005) Niching in evolution strategies. In: Proceedings of the
7th annual conference on Genetic and evolutionary computation, ACM, pp
915-916

Siarry P, Berthiau G (1997) Fitting of tabu search to optimize functions of con-
tinuous variables. International journal for numerical methods in engineering

40(13):2449-2457

Siarry P, Berthiau G, Durdin F, Haussy J (1997) Enhanced simulated anneal-
ing for globally minimizing functions of many-continuous variables. ACM
Transactions on Mathematical Software (TOMS) 23(2):209-228

Smit S, Eiben A (2011) Multi-problem parameter tuning using bonesa. In:
Artificial Evolution, pp 222233

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of
machine learning algorithms. In: Advances in neural information processing

systems, pp 2951-2959

Sendergaard J (2003) Optimization using surrogate models-by the space mapping
technique. PhD thesis, Technical University of Denmark

Stanley KO (2006) Exploiting regularity without development. In: Proceedings
of the AAAI Fall Symposium on Developmental Systems, AAATI Press, pp
49-56

237

Bibliography

Stanley KO, Miikkulainen R (2002) Evolving neural networks through augment-
ing topologies. Evolutionary computation 10(2):99-127

Stanley KO, Clune J, Lehman J, Miikkulainen R (2019) Designing neural

networks through neuroevolution. Nature Machine Intelligence 1(1):24-35

Stork J, Zaefferer M, Fischbach A, Bartz-Beielstein T (2017) Surrogate-assisted
learning of neural networks. In: Proceedings 27. GMA Workshop Computa-
tional Intelligence, KIT Scientific Publishing, pp 195-210

Stork J, Zaefferer M, Bartz-Beielstein T (2018) Distance-based kernels for

surrogate model-based neuroevolution. ArXiv e-prints

Stork J, Zaefferer M, Bartz-Beielstein T (2019a) Improving neuroevolution
efficiency by surrogate model-based optimization with phenotypic distance
kernels. In: International Conference on the Applications of Evolutionary

Computation (Part of EvoStar), Springer, pp 504-519

Stork J, Zaefferer M, Bartz-Beielstein T, Eiben AE (2019b) Surrogate models
for enhancing the efficiency of neuroevolution in reinforcement learning.
In: Proceedings of the Genetic and Evolutionary Computation Conference
- GECCO’19, ACM, Prague, Czech Republic, pp 934-942, DOI 10.1145/
3321707.3321829

Stork J, Zaefferer M, Bartz-Beielstein T, Eiben A (2020) Understanding the
behavior of reinforcement learning agents. In: International Conference on

Bioinspired Methods and Their Applications, Springer, pp 148-160

Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of global optimization
11(4):341-359

Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT

press

Swersky K, Snoek J, Adams RP (2013) Multi-task bayesian optimization. In:

Advances in neural information processing systems, pp 20042012

238

Bibliography

Taillard E (1990) Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research 47(1):65-74

Talbi EG (2002) A taxonomy of hybrid metaheuristics. Journal of heuristics
8(5):541-564

Talbi EG (2009) Metaheuristics: from design to implementation, vol 74. John
Wiley & Sons

Torn A, Zilinskas A (1989) Global Optimization. Springer

Turner AJ, Miller JF (2013) Cartesian genetic programming encoded artificial
neural networks: a comparison using three benchmarks. In: Proceedings of
the Genetic and Evolutionary Computation Conference, ACM, pp 1005-1012

Turner AJ, Miller JF (2015) Introducing a cross platform open source cartesian
genetic programming library. Genetic Programming and Evolvable Machines
16(1):83-91

Van Beers WC, Kleijnen JP (2003) Kriging for interpolation in random simula-
tion. Journal of the Operational Research Society 54(3):255-262

Van Groenigen J, Stein A (1998) Constrained optimization of spatial sampling
using continuous simulated annealing. Journal of Environmental Quality
27(5):1078-1086

Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th edn.
Springer

Vermetten D, van Rijn S, Béck T, Doerr C (2019) Ouline selection of CMA-ES
variants. In: Proceedings of the Genetic and Evolutionary Computation
Conference, ACM, New York, NY, USA, GECCO ’19, pp 951-959, DOI
10.1145/3321707.3321803

Voutchkov I, Keane A, Bhaskar A, Olsen TM (2005) Weld sequence optimization:
The use of surrogate models for solving sequential combinatorial problems.
Computer Methods in Applied Mechanics and Engineering 194(30-33):3535-
3551, DOI 10.1016/j.cma.2005.02.003

239

Bibliography

Wang H, Jin Y, Jansen JO (2016) Data-driven surrogate-assisted multiobjec-
tive evolutionary optimization of a trauma system. IEEE Transactions on
Evolutionary Computation 20(6):939-952

Wessing S, Preuss M (2017) The true destination of ego is multi-local op-
timization. In: 2017 IEEE Latin American Conference on Computational
Intelligence (LA-CCI), IEEE, pp 1-6

Whitley LD, Chicano F, Goldman BW (2016) Gray box optimization for Mk
landscapes (NK landscapes and MAX-KSAT). Evolutionary computation
24(3):491-519

Woeginger GJ (2003) Exact algorithms for np-hard problems: A survey. In:

Combinatorial optimization—eureka, you shrink!, Springer, pp 185-207

Won KS, Ray T (2004) Performance of kriging and cokriging based surrogate
models within the unified framework for surrogate assisted optimization. In:
Evolutionary Computation, 2004. CEC2004. Congress on, IEEE, vol 2, pp
1577-1585

Xiang Y, Gubian S, Suomela B, Hoeng J (2013) Generalized simulated annealing
for global optimization: The GenSA package. R Journal 5(1)

Zaefferer M (2017) Combinatorial efficient global optimization in R - CEGO
v2.2.0. online, URL https://cran.r-project.org/package=CEGO, accessed:
2018-01-10

Zaefferer M (2018) Surrogate models for discrete optimization problems. phdthe-

sis, Technische Universitdt Dortmund

Zaefferer M, Stork J, Bartz-Beielstein T (2014a) Distance measures for per-
mutations in combinatorial efficient global optimization. In: International

Conference on Parallel Problem Solving from Nature, Springer, pp 373-383

Zaefferer M, Stork J, Friese M, Fischbach A, Naujoks B, Bartz-Beielstein T
(2014b) Efficient global optimization for combinatorial problems. In: Proceed-

240

https://cran.r-project.org/package=CEGO

ings of the 2014 Annual Conference on Genetic and Evolutionary Computation,

pp 871-878

Zaefferer M, Stork J, Flasch O, Bartz-Beielstein T (2018) Linear combina-
tion of distance measures for surrogate models in genetic programming.
In: Parallel Problem Solving from Nature — PPSN XV: 15th International
Conference, Springer, Coimbra, Portugal, vol 11102, pp 220-231, DOI
10.1007/978-3-319-99259-4 18

Zeng Z, Tung AKH, Wang J, Feng J, Zhou L (2009) Comparing stars: On
approximating graph edit distance. Proc VLDB Endow 2(1):25-36

Zlochin M, Birattari M, Meuleau N, Dorigo M (2004) Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research
131(1-4):373-395

Zuo X (2018) mazelab: A customizable framework to create maze and gridworld

environments. https://github.com/zuoxingdong/mazelab

https://github.com/zuoxingdong/mazelab

WAY OF THE FITTEST: OPTIMIZATION BY BEHAVIORAL
EvoLuTIioON

Jorg Willi Stork

Vrije Universiteit Amsterdam

Evolutionary computation (EC) methods belong to the state-of-the-art for
solving optimization problems with complex characteristics, such as no available
analytical descriptions or no differentiability. One outstanding EC paradigm
in artificial intelligence applications is neuroevolution, a method to construct
artificial neural networks (ANN) and optimize their weights, parameters, and
topologies. Neuroevolutionary optimization can be challenging due to complex
and costly environments in which they are applied, multi-modal fitness land-
scapes, and the number of degrees of freedom necessary to generate ANNs that
can perform in these environments.

Surrogate model-based optimization (SMBO) can improve search efficiency
by approximating complex fitness landscapes and predicting high-performing
candidate solutions. Surrogate models often rely on distance metrics that
determine the correlation of a candidate solution’s fitness to that of similar
individuals. However, the employment of distances for complex-structured can-
didates, such as ANNs, is difficult due to their non-linear relationships between
their encoding (genotype) and realization (phenotype). A possible solution is
to compare candidates based on their observable behavior, i.e., an individual’s
decisions, actions, and movements in an environment. Task-dependent behavior
has a strong connection to fitness, which renders optimization in this space of
behaviors promising. The central concept of this thesis is to research, analyze
and develop methods that exploit the strong connection between an individual’s
behavior, environment, and fitness. The included publications are, in their
entirety, a fundamental step towards establishing behavioral optimization.

Initially, an extensive introduction to EC and SMBO in the greater context
of global optimization is given to allow an in-depth understanding of their con-

cepts, particularities, and various available implementations. A new taxonomy

is presented, and it is determined that global optimization algorithms have
close connections in their search strategies and share similar components, which
allows combining them into new hybrid algorithm designs. In large parts of
this thesis, data-drive Kriging models were employed for the task of SMBO
as a flexible and accurate predictor model within the SMBO paradigm. For
this purpose, Kriging was extended to allow the use of custom kernels and
non-continuous distances, i.e., combinatorial, genotypic, or behavioral measures.
Empirical studies confirmed the impact of distance measures: task-dependent
distances, which significantly correlate to the underlying problem definition,
provide the most accurate performance predictions. On this basis, different
genotypic and phenotypic distance metrics were introduced and tested in em-
pirical studies featuring tree-based genetic programming models, fixed-topology
ANNS, as well as graph-based, topology-changing ANNs in neuroevolution. In
all studies, a phenotypic distance, comparing the individuals’ outputs instead
of their encodings, provided the most accurate predictions and illustrated su-
perior performance embedded in SMBO processes compared to model-free EC
methods. Finally, the developed methods were extended to time-dependent
reinforcement learning with a new task-dependent and precise notion of an
individual’s behavior. An in-depth analysis of ways to compare, control, and
steer these behaviors was performed to design efficient behavioral optimization
algorithms. Such an algorithm was exemplified in final studies, where behavioral
optimization was included in a diverse set of neuroevolutionary optimization
and ANN training algorithms. With these methods, the sampling efficiency of
neuroevolutionary algorithms improved significantly.

In conclusion, this thesis illustrates the benefits of adding behavior-based
search methods to EC and SMBO. The methods for searching the behavior space
outlined in this work provide examples of how to overcome problems of genotypic
variation in optimization, such as the complex, non-linear transitions between
the genotypes and their evaluated fitness and the concomitantly challenging
optimization. Behavioral optimization allows controlled adaption of individuals,
robustly steering them in the direction of high-performing individuals and

ultimately improving the sampling efficiency in optimizing complex tasks.

DE WEG VAN DE STERKSTE: OPTIMALISATIE DOOR
GEDRAGSEVOLUTIE

Jorg Willi Stork

Vrije Universiteit

Evolutionaire berekeningsmethoden (EC) behoren tot de state-of-the-art
voor het oplossen van optimalisatieproblemen met complexe karakteristieken,
zoals het niet voorhanden zijn van beschikbare analytische beschrijvingen of
differentieerbaarheid. Een opmerkelijk EC paradigma in toepassingen van
kunstmatige intelligentie is neuro-evolutie, een methode om kunstmatige neurale
netwerken (ANN) te construeren en hun gewichten, parameters, en topologieén
te optimaliseren. Neuroevolutionaire optimalisatie kan een uitdaging zijn door
de complexe en kostbare omgevingen waarin ze worden toegepast, multi-modale
fitness landschappen, en het aantal vrijheidsgraden dat nodig is om ANNs te
genereren die in deze omgevingen kunnen presteren.

Surrogaatmodelgebaseerde optimalisatie (SMBO) kan de zoekefficiéntie ver-
beteren door complexe fitness landschappen te benaderen en goed presterende
kandidaatoplossingen te voorspellen. Surrogaatmodellen steunen vaak op afs-
tandsmetrieken die de correlatie bepalen tussen de kwaliteit van een kandidaato-
plossing en die van vergelijkbare individuen. Het gebruik van afstanden voor
complex gestructureerde kandidaten, zoals ANNs, is echter moeilijk omwille
van hun niet-lineaire relaties tussen hun codering (genotype) en realisatie (feno-
type). Een mogelijke oplossing is om kandidaten te vergelijken op basis van
hun waarneembaar gedrag, d.w.z. de beslissingen, acties en bewegingen van een
individu in een omgeving. Taak-afhankelijk gedrag heeft een sterk verband met
kwaliteit, wat optimalisatie in deze ruimte van gedrag veelbelovend maakt. Het
centrale concept van dit proefschrift is het onderzoeken, analyseren en ontwikke-
len van methoden die gebruik maken van het sterke verband tussen het gedrag
van een individu, zijn omgeving en kwaliteit. De opgenomen publicaties zijn, in
hun geheel, een fundamentele stap in de richting van gedragsoptimalisatie.

Eerst wordt een uitgebreide inleiding gegeven tot EC en SMBO binnen de

ruimere context van globale optimalisatie, om een diepgaand begrip mogelijk te
maken van hun concepten, bijzonderheden en diverse beschikbare implemen-
taties. Er wordt een nieuwe taxonomie voorgesteld en er wordt vastgesteld dat
globale optimalisatiealgoritmen nauwe verbanden hebben in hun zoekstrategieén
en gelijkaardige componenten delen, wat toelaat ze te combineren in nieuwe
hybride algoritmen. In grote delen van dit proefschrift werden data gedreven
Kriging-modellen gebruikt als een flexibel en nauwkeurig voorspellingsmodel
binnen het SMBO-paradigma. Voor dit doel werd Kriging uitgebreid om het
gebruik van aangepaste kernels en niet-continue afstanden, d.w.z. combina-
torische, genotypische, of gedragsmetrieken, mogelijk te maken. Empirische
studies bevestigden de impact van afstandsmetrieken: taakafhankelijke afs-
tanden, die significant correleren met de onderliggende probleemstelling, leveren
de meest accurate prestatievoorspellingen op. Op deze basis werden verschil-
lende genotypische en fenotypische afstandsmaatstaven geintroduceerd en getest
in empirische studies met boom-gebaseerde genetische programmeermodellen,
ANNSs met vaste topologie, alsook grafen-gebaseerde, topologie-veranderende
ANNS in neuro-evolutie. In alle studies leverde een fenotypische afstand, die de
outputs van de individuen vergelijkt in plaats van hun coderingen, de meest
accurate voorspellingen op en illustreerde superieure prestaties als zij wor-
den ingebed in SMBO processen in vergelijking met modelvrije EC methoden.
Tenslotte werden de ontwikkelde methodes uitgebreid naar tijdsafhankelijk
reinforcement learning met een nieuwe taakafhankelijke en precieze notie van
het gedrag van een individu. Een diepgaande analyse van manieren om dit
gedrag te vergelijken, te controleren en te sturen werd uitgevoerd om efficiénte
gedragsoptimaliseringsalgoritmen te ontwerpen. Een dergelijk algoritme werd
geillustreerd in laatste studies, waar gedragsoptimalisatie werd opgenomen in
een diverse set van neuro-evolutionaire optimalisatie en ANN training algoritmes.
Met deze methoden werd de bemonsteringsefficiéntie van neuro-evolutionaire

algoritmen aanzienlijk verbeterd.

Concluderend illustreert deze dissertatie de voordelen van het toevoegen van
op gedrag gebaseerde zoekmethoden aan EC en SMBO. De methoden voor het

zoeken in de gedragsruimte die in dit werk zijn geschetst, geven voorbeelden van

Bibliography

hoe problemen van genotypische variatie in optimalisatie kunnen worden over-
wonnen, zoals de complexe, niet-lineaire overgangen tussen de genotypes en hun
geévalueerde kwaliteit en de daarmee gepaard gaande uitdagende optimalisatie.
Gedragsoptimalisatie laat een gecontroleerde aanpassing van individuen toe,
waardoor ze robuust in de richting van goed presterende individuen gestuurd

worden en uiteindelijk de bemonsteringsefficiéntie bij het optimaliseren van

complexe taken verbetert.

249

	Contents
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Behavioral Evolution
	1.3 Scope
	1.4 Frequently Used Acronyms

	2 An Introduction to Evolutionary and Surrogate Model-Based Optimization for Global Search
	2.1 Introduction
	2.2 Modern Optimization Algorithms
	2.3 A New Taxonomy
	2.4 The Definition of Intuitive Algorithm Classes
	2.5 Algorithm Selection Guidelines
	2.6 Conclusion and Outlook

	3 Comparison of Evolutionary and Surrogate Model-Based Optimization of Neural Network Weights
	3.1 Introduction
	3.2 Motivation
	3.3 Elevator Supervisory Group Control
	3.4 Methods for Optimization of Neural Network Controllers
	3.5 Experiments
	3.6 Results and Discussion
	3.7 Conclusion and Outlook

	4 Custom Distance Metrics for Surrogate Model-Based Optimization
	4.1 Introduction
	4.2 Surrogate Model-Based OptimizationBased on zaefferer2014b Section 2
	4.3 Kriging for Combinatorial ProblemsBased on zaefferer2014b Sections 2 and 3
	4.4 Distance Measures for PermutationBased on zaefferer2014distance Section 3
	4.5 Experiments and ResultsBased on zaefferer2014distance Section 4 and 5
	4.6 Conclusion and Outlook

	5 Comparison of Distance Metrics for Surrogate Model-Based Optimization in Genetic Programming
	5.1 Introduction
	5.2 Related Work
	5.3 A Test Case for SMBO-GP: Bi-level Symbolic Regression
	5.4 Kernels for Bi-level Symbolic Regression
	5.5 Case Study
	5.6 Conclusion and Outlook

	6 Comparison of Genotypic and Phenotypic Distance Metrics for Modeling Neural Networks
	6.1 Introduction
	6.2 Related Work
	6.3 Methods for Modeling Neural Networks
	6.4 Experimental Setup
	6.5 Results and Discussion
	6.6 Conclusion and Outlook

	7 Comparison of Distance Metrics for Surrogate Model-Based Neuroevolution
	7.1 Introduction
	7.2 Related Work
	7.3 Data Efficient Neuroevolution
	7.4 Proposed Kernels and Distances
	7.5 Experiments
	7.6 Conclusion and Outlook

	8 Surrogate Model-Based Optimization for Behavioral Neuroevolution in Reinforcement Learning
	8.1 Introduction
	8.2 Methods for Model-Based Search
	8.3 Surrogate Model-based Neuroevolution for Reinforcement Learning
	8.4 Experiments
	8.5 Results and Discussion
	8.6 Conclusion and Outlook

	9 Analysis of the Behavioral Space in Context of Reinforcement Learning
	9.1 Introduction
	9.2 Methods for Analyzing Behavior
	9.3 Experiments
	9.4 Results and Discussion
	9.5 Conclusion and Outlook

	10 A Framework for Behavioral Optimization in Reinforcement Learning
	10.1 Introduction
	10.2 Methods
	10.3 Behavior-based Neuroevolutionary Training
	10.4 Experiments
	10.5 Conclusion and Outlook

	11 Concluding Remarks
	Bibliography
	Summary
	Samenvatting

