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a b s t r a c t 

The multiobjective knapsack problem (MOKP) is an important combinatorial problem that arises in vari- 

ous applications, including resource allocation, computer science and finance. When tackling this problem 

by evolutionary multiobjective optimization algorithms (EMOAs), it has been demonstrated that tradi- 

tional recombination operators acting on binary solution representations are susceptible to a loss of di- 

versity and poor scalability. To address those issues, we propose to use artificial neural networks for gen- 

erating solutions by performing a binary classification of items using the information about their profits 

and weights. As gradient-based learning cannot be used when target values are unknown, neuroevolution 

is adapted to adjust the neural network parameters. The main contribution of this study resides in de- 

veloping a solution encoding and genotype-phenotype mapping for EMOAs to solve MOKPs. The proposal 

is implemented within a state-of-the-art EMOA and benchmarked against traditional variation operators 

based on binary crossovers. The obtained experimental results indicate a superior performance of the 

proposed approach. Furthermore, it is advantageous in terms of scalability and can be readily incorpo- 

rated into different EMOAs. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The knapsack problem is a well-known combinatorial optimiza-

ion problem. It comprises a knapsack of certain capacity and a

et of items characterized by weights and profits. The aim is to fill

p the knapsack by a collection of items so that the total profit

s maximized and the total weight does not exceed the given ca-

acity. There are several variants of a knapsack problem. The most

ommon variant is the 0-1 knapsack problem, where the number

f copies of each item is either zero or one. The bounded knap-

ack problem allows multiple copies of each item to be selected.

hough, the maximum number of copies of each item is limited.

n the contrary, the unbounded knapsack problem removes the

estriction on the number of copies of each item. Generalizations

f knapsack problem include multiple knapsack and multiobjec-

ive knapsack problems. The former arises when several knapsacks

f given capacities are available and the total profit of all knap-

acks is maximized. The latter implies simultaneous maximiza-

ion of profits of several knapsacks, where for each knapsack dif-

erent profit and weight are associated with each item. Knapsack

s an important problem because it frequently occurs in practi-
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al applications including cryptography ( Diffie & Hellman, 1976 ),

esource allocation in distributed computer systems ( Gavish &

.Pirkul, 1985 ), cargo loading ( Pisinger, 1995 ), project and invest-

ent selection ( Kellerer, Pferschy, & Pisinger, 2004 ). 

Due to its practical and theoretical importance, the knapsack

roblem has been intensively investigated. There have been de-

eloped different exact and approximate algorithms. Exact meth-

ds are based on dynamic programming ( Gilmore & Gomory, 1966;

eingartner & Ness, 1967 ), branch-and-bound ( Gavish & H.Pirkul,

985; Shih, 1979 ), and statistical analysis ( Fontanari, 1995 ). The

napsack problem is NP-hard ( Martello & Toth, 1990 ). In prac-

ice, this means there is no algorithm that exactly solves the

roblem in polynomial time. As a result, exact algorithms can

e efficiently applied only to instances of moderate sizes. This

act has motived the use of heuristic and metaheuristic meth-

ds to find approximate solutions. There are various approx-

mate solution developments such as greedy ( Dantzig, 1957;

pielberg, 1969 ) and local search strategies ( Petersen, 1974 ),

abu search ( Glover & Kochenberger, 1996 ), simulated anneal-

ng ( Drexl, 1988 ), genetic algorithm ( Martins, Fonseca, & Delbem,

014; Sakawa & Kato, 2003 ), ant colony ( Kong, Tian, & Kao, 2007 ),

armony search ( Zoua, Gaoa, Lib, & Wua, 2011 ) and artificial fish

warm ( Azad, Rocha, & Fernandes, 2014 ) algorithms. A particu-

ar advantage of many metaheuristics is the ability to efficiently

erform global search, although there is no guarantee of finding

 global solution. Besides optimization methods, machine learn-

https://core.ac.uk/display/364394666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Algorithm 1 EMOA 

1: P ← Initialization () 
2: repeat 

3: R ← MatingSelection (P ) 

4: Q ← Variation (R ) 

5: P ← EnvironmentalSelection (P ∪ Q ) 

6: until stopping criterion is met 
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a  
ing tools can be also applied to solving search problems. In par-

ticular, neural networks were employed to tackle several types

of combinatorial optimization problems ( Smith, 1999 ). The appli-

cation of neural networks to solve knapsack problems are based

on using Boltzmann machines ( Vaithyanathan, Ogmen, & Ignizio,

1994 ), mean-field ( Ohlsson, Peterson, & Soderberg, 1993 ), Hop-

field ( Yamamoto, Ohta, Ueda, Ogihara, & Fukunaga, 1995 ) and

chaotic ( Zhou, Kuang, & Wang, 2008 ) networks. Such approaches

aim at exploiting learning capabilities of neural networks. They use

a gradient-based learning to minimize the network energy function

defined to be equivalent to the objective function of the knapsack

problem. 

The present study considers the 0-1 multiobjective knapsack

problem. This is an important variant of knapsack problem that

naturally arises in various application domains due to a multi-

criteria character of most real-world problems. MOKP inherits chal-

lenges of its single objective counterpart and the complexity of

the objective space defined by multiple knapsacks. This study aims

to address difficulties experienced by evolutionary multiobjective

optimization algorithms on MOKPs such as the scalability and

the loss of diversity ( Ishibuchi, Akedo, & Nojima, 2010a; 2015;

Ishibuchi, Narukawa, Tsukamoto, & Nojima, 2008; Sato, Aguirre, &

Tanaka, 2007; Y.-Y. Tan, 2013 ). The main focus is on the mecha-

nism for generating solutions to MOKP. For this, the use of neu-

ral networks is suggested. This idea attempts to exploit the ability

of neural networks to compute a nonlinear model for given data

and to perform classification. In the context of MOKP, the prof-

its and weights of items are used as input. This input is propa-

gated through the network to compute a scalar value in the output

layer that classifies the item as either selected or not. Contrary to

a traditional classification task, there are no target values that can

be used for training. Therefore, traditional gradient-based learning

cannot be performed and neuroevolution is suggested for setting

the network parameters. In addition to the values of connection

weights and biases, neuroevolution can learn the topology of neu-

ral network, thereby reducing the user’s labor. 

The remainder of this paper is organized as follows.

Section 2 reviews the research concerned with the application of

EMOAs to solve MOKPs. Section 3 formally defines the problem

to be investigated. Section 4 presents the concepts exploited in

this current study. Section 5 describes the proposed approach.

Section 6 reports and discusses the results of the experimental

study. Section 7 concludes the study and outlines some possible

future work. 

2. Solving MOKPs by EMOAs 

Following the seminal work of Zitzler and Thiele (1999) , there

has been a significant amount of research in the field of evolution-

ary multiobjective optimization involving 0-1 MOKPs. This section

starts by giving a general outline of EMOA and then discusses ad-

vances in the design of EMOAs for solving MOKPs. The discussion

is organized according to constraint handling, selection and varia-

tion procedures. 

2.1. EMOA framework 

For the purpose of our discussion, we outline a general frame-

work of EMOAs in Algorithm 1 . 

The initialization procedure is applied to initialize a population

of solutions. This can be done uniformly at random within the fea-

sible space. Thereafter, the population undergoes an evolutionary

process that consists of the sequential application of the mating

selection, variation and environmental selection procedures. The

mating selection procedure picks up parents from population for
eproduction giving a higher probability for fitter individuals, ac-

ording to multiple criteria. The variation procedure is used for

roducing offspring. This is performed by evolutionary operators

hat are applied to the chromosomes of parent individuals. The en-

ironmental selection procedure forms the population of the next

eneration from the multiset of the current and offspring popu-

ations relying on the concept of the survival of the fittest from

atural evolution. Most existing EMOAs can be described by the

bove algorithm, with major differences lying in the design of its

rocedures, as highlighted in the following subsections. 

.2. Constraint handling 

As the definition of MOKP involves a set of constraints, the fea-

ibility of solutions must be ensured. This can be addressed by pe-

alizing an individual’s fitness depending on the extent to which it

iolates the constrains. Another popular method consists of repair-

ng an infeasible individual so that a feasible one is generated and

sed for fitness assignment. A common repair procedure for MOKP

onsists of removing items until all the constraint conditions are

atisfied. The order in which items are removed is determined by

 profit/weight ratio calculated for each item. This implies items

aving lower values are removed first. In MOKP, there are several

rofit/weight ratios associated with a single item, which compli-

ates the repair procedure. 

There have been proposed different ways to derive a scalar

rofit/weight ratio for an item. Zitzler and Thiele (1999) sug-

ested a greedy repair mechanism where the maximum value

mong different profit/weight ratio was assigned to each

tem. Jaszkiewicz (2002) proposed a weighted scalar repair

echanism where a weighted sum of different profit/weight

or each knapsack was assigned to each item (a weight vector

s randomly generated each time an infeasible solution is re-

aired). Ishibuchi and Kaige (2003) investigated the effects of the

wo above mechanisms and the third where items are removed in

he increasing order of the profit/weight ratio with respect to a

andomly chosen knapsack. The results of this study showed that

he performance of MOEAs on MOKPs is significantly affected by

he type of repair mechanism. 

In general, the repair procedure for dealing with infeasible solu-

ions can be characterized by Lamarckian and Baldwinian schemes.

he former implies that after the evaluation a feasible solution

enerated by the repair procedure replaces an infeasible solu-

ion in the population. The latter only repairs an infeasible so-

ution for evaluation and assigns the corresponding fitness to

he infeasible solution that remains unchanged in the popula-

ion. Ishibuchi, Kaige, and Narukawa (2005) performed the com-

arison between both schemes in the context of multiobjective

napsack problem. The results of the study showed some superior-

ty of Baldwinian scheme, although the tests have been performed

nly on a problem with two knapsacks and the authors suggested

 further investigation in order to generalize the results. 

.3. Selection 

There are mating and environmental selection procedures. They

ct relying on the fitness values of different population members
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nd a mechanism for their assignment. The selection and fitness

ssignment play an important role in addressing a major issue in

ultiobjective optimization - the balance between the convergence

nd diversity of solutions. With this regard, there can be identified

wo major strategies. The first is based on decomposing the ob-

ective space into a number of single objective subproblems. The

tness for individuals is calculated based on the parameters defin-

ng the location of a particular subproblem in the objective space.

OEA/D ( Li & Zhang, 2009; Zhang & Li, 2007 ) is a popular algo-

ithm adopting this idea. The second imposes some quality mea-

ure on a particular set of solutions and seeks solutions improving

hat measure. This is commonly achieved by using performance in-

icators ( Zitzler & Künzli, 2004 ) or ranking solutions on the basis

f the Pareto dominance relation ( Deb, Pratap, Agarwal, & Meyari-

an, 2002; Zitzler & Thiele, 1998a ). The latter approach is typically

sed in combination with a diversity preserving mechanism that

sually relies on distances between solutions ( Zitzler, Laumanns, &

hiele, 2001 ) or quality measures ( Beume, Naujoks, & Emmerich,

007 ). It is noteworthy that both strategies can be used in combi-

ation ( Li, Deb, Zhang, & Kwong, 2015; Liu, Gu, & Zhang, 2014 ). 

It has been observed that dominance-based algorithms often

uffer from the loss of diversity when handling MOKPs. This can

e attributed to the combinatorial nature of the problem and the

ype of recombination operator in use. Most studies use a bi-

ary encoding together with traditional recombination operators

uch as one-point, two-point and uniform crossovers. To improve

he performance of MOEAs, several studies suggest restricting the

ating selection so that similar parents are used for recombina-

ion ( Ishibuchi et al., 2008; Sato et al., 2007 ). The similarity be-

ween individuals is, in general, measured in the decision and/or

he objective space using Hamming and Euclidean distances, re-

pectively. 

As opposed to many EMOAs, which necessitate modifications

n order to control the similarity of parents, multiobjective evo-

utionary algorithm based on decomposition (MOEA/D) has an in-

rinsic mechanism enabling mating restriction and selection of

imilar parents. This mechanism is based on the neighborhood

tructure defined using the distances between weight vectors.

ue to this feature, MOEA/D often exhibits promising perfor-

ance on MOKPs ( Ishibuchi, Akedo, & Nojima, 2015; Ishibuchi,

akane, Tsukamoto, & Nojima, 2009; Zhang & Li, 2007 ). How-

ver, a special care may be required with respect to setting con-

rol parameters ( Ishibuchi et al., 2009 ) and the choice of scalar-

zing function ( Denysiuk & Gaspar-Cunha, 2017; Ishibuchi, Sakane,

sukamoto, & Nojima, 2010b ), since inadequate settings can lead to

oor results. 

Another important issue for the performance relates to the

ombinatorial nature of the problem. Ishibuchi, Yamane, and No-

ima (2012) showed that a discrete objectives with a coarse gran-

larity can slow down the search process. Also, some scalarizing

unctions can work well when the dimensionality of the objec-

ive space is low and experience the loss of diversity in higher

imensions. Sato (2014) addressed this issue by proposing an in-

erted penalty-based boundary intersection method for scalariza-

ion. Nonetheless, Ishibuchi et al. (2015) further pointed out the

eed to keep the population diversity. 

.4. Variation 

Variation is a stochastic operator that acts on the genotype of

opulation members to produce new individuals. It is responsible

or the exploration of the search space and plays a crucial role in

he performance of EMOAs. Naturally, numerous studies have fo-

used on the development of variation operators to improve the

erformance on MOKPs, which is also the main concern of the

resent study study. 
The design of a variation operator depends on the type of

olution representation. Although various schemes have been in-

estigated ( Mumford, 2003 ), a binary solution representation is

ost frequently used for handling MOKPs, in part because it is

asy to implement and understand. Some algorithms that suc-

eeded in continuous domain were extended specifically to deal

ith binary search spaces, including a discrete differential evolu-

ion ( Kafafy, Bounekkar, & Bonnevay, 2012 ) and a binary cuckoo

earch ( Layeb, Lahouesna, & Kireche, 2013 ). 

Numerous studies investigated performance improvement 

trategies for binary genetic algorithms, which are popular and can

e applied in a straightforward way to solve MOKPs. Aghezzaf and

aimi (2009) improved the recombination procedure by intro-

ucing a two-stage crossover. In the first stage, the offspring

s initialized in the way the similar genes of parents are in-

erited. In the second stage, the remaining genes are selected

rom parents based on a fitness information. Disruptive effects

f crossover on MOKPs often manifest in the loss of diver-

ity. Ishibuchi et al. (2010a) showed that the genetic diversity

an be lost since traditional crossovers always generate offspring

n the segment between two parents. A nongeometric binary

rossover was proposed to produce offspring outside that seg-

ent. As a result, a significant improvement in the diversity

f solutions was observed, without the convergence being de-

eriorated. Sato, Aguirre, and Tanaka (2013) suggested to limit

 number of parent genes that are exchanged during recombi-

ation. Ishibuchi, Tanigaki, Masuda, and Nojima (2014) further

xamined this idea controlling the distance to offspring by a

ser-defined parameter during recombination. Good results for a

mall parent-offspring distance were obtained due to the increase

n diversity. However, the approach slows down the convergence

n many-objective instances. The major shortcoming of such

pproaches lies in the need to specify parameters introduced for

ontrolling the parent-offspring distance and the restricted mating.

Similarly to single-objective optimization, local search and hy-

ridization strategies proved effective in improving the perfor-

ance of MOEAs. Knowles and Corne (20 0 0) showed that memetic

lgorithms exhibit better performance than a baseline algorithm

n MOKPs. Li, Zhang, Tsang, and Ford (2004) improved the results

resented by Jaszkiewicz (2002) using a local search strategy in

he estimation of distribution algorithm. Such approaches aim to

eap advantages of different search strategies and have downsides

elated to the increased complexity and the need to balance local

nd global search. 

Aiming at improving the scalability and the effectiveness of

earch, this study proposes solving MOKPs by neuroevolution in

n attempt to reduce the size of the search space and to bene-

t from the learning capability of neural networks. Neuroevolution

efers to the application of evolutionary algorithms to evolve neu-

al networks ( Floreano, Dürr, & Mattiussi, 2008 ). Neuroevolution

s represented by a variety of algorithms ( Yao, 1999 ) that are of-

en categorized by the type of encoding. Direct encodings trans-

ate each component of the genome to a specific part of the neural

etwork ( Stanley & Miikkulainen, 2002 ). They are simple to under-

tand and can be used with traditional variation operators. Their

ajor disadvantage is that the length of chromosome grows with

he size of network. Indirect encodings attempt to overcome this

imitation by using genes multiple times ( Stanley, D’Ambrosio, &

auci, 2009 ). The reuse of genes takes its inspiration from the de-

elopment of embryos in nature ( Stanley & Miikkulainen, 2003 ).

lthough indirect encodings provide the potential to evolve large

eural networks, they are more complex and may necessitate

pecifically designed operators. This study uses a direct encoding

f the neural network with a real number representation. Heidrich-

eisner and Igel (2009) showed that such type of neuroevolution

an be advantageous. 
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3. Multiobjective knapsack problem 

Zitzler and Thiele (1999) originally suggested 0-1 multiobjective

knapsack problem for benchmarking the performance of EMOAs. A

general single objective knapsack problem was extended by allow-

ing an arbitrary number of knapsacks. Formally, this problem can

be defined as follows. 

maximize 
x ∈{ 0 , 1 } n 

f j ( x ) = 

n ∑ 

i =1 

x i p i j 

subject to 

n ∑ 

i =1 

x i w i j ≤ c j ∀ j ∈ { 1 , . . . , m } (1)

where 

p i j is profit of the i -th item w.r.t. the j-th knapsack 
w i j is weight of the i -th item w.r.t. the j-th knapsack 
c j is capacity of the j-th knapsack 

m and n are the number of knapsacks and items, respectively. 

A solution to the problem is encoded as a binary string x such

that ∀ i ∈ { 1 , . . . , n } : 

x i = 

{
1 if the i -th item is selected 

0 otherwise. 

An instance of MOKP can be defined by randomly generating

integer values for the profits and weights. Using a feasibility ration

r j , the capacity of the j -th knapsack can be determined by 

c j = r j 

n ∑ 

i =1 

w i j . (2)

From the mathematical formulation, it can be understood that

the simultaneous maximization of profits in different knapsacks is

in general conflicting. As a consequence, a set of Pareto optimal

solutions is expected to the problem defined in (1) . 

4. Concepts 

This section outlines key concepts necessary for the subsequent

discussion in the paper. We use the notation where x is the deci-

sion vector, � ⊆ R 

n is the feasible decision (or solution) space and

f ( x ) is the objective vector defined in the objective space R 

m . The

MOKP formulation given in (1) implies the maximization of the ob-

jective functions. For convenience, in the following, the optimiza-

tion problem is considered in terms of minimization by changing

the sign of the objectives to negative. 

Since multiple objectives are simultaneously optimized, solu-

tions are partially ordered in the objective space. Under the given

circumstances, the comparison of different solutions can be per-

formed on the basis of the Pareto dominance relation. 

For two solutions a and b from �, a solution a is said to dom-

inate a solution b (denoted by a ≺b ) if 

∀ i ∈ { 1 , . . . , m } : f i ( a ) ≤ f i ( b ) ∧ ∃ j ∈ { 1 , . . . , m } : f j ( a ) < f j ( b ) . 

(3)

The presence of multiple conflicting objectives gives rise to a

set of optimal solutions. The concepts of optimality for multiobjec-

tive optimization are defined as follows. 

A solution x ∗ ∈ � is Pareto optimal if and only if 

� y ∈ � : y ≺ x ∗. (4)

For a multiobjective optimization problem, the Pareto optimal

set (or Pareto set, for short) is defined as 

PS ∗ = { x ∗ ∈ � | � y ∈ � : y ≺ x ∗} . (5)
For a multiobjective optimization problem and the Pareto opti-

al set PS ∗, the Pareto optimal front (or Pareto front, for short) is

efined as 

F 

∗ = { f ( x ∗) ∈ R 

m | x ∗ ∈ PS ∗} . (6)

The outcome of a multiobjective optimization algorithm is con-

idered to be a set of nondominated solutions while all obtained

ominated solutions are discarded being of no interest due to their

nferiority with respect to the Pareto dominance relation. This is

ormalized by the notion of an approximation set ( Zitzler, Thiele,

aumanns, Fonseca, & Grunert da Fonseca, 2003 ). 

A set of objective vectors A ⊆ R 

m is called an approximation set

f any element of A does not dominate any other objective vector

n A . 

The comparison of multiobjective optimization algorithms is

ypically conducted assessing the quality of produced approxima-

ion sets. For this purpose, quality indicators can be used. They

enerally map approximation sets to the set of real numbers. This

s a useful feature that allows for the application of statistical test-

ng procedures. Following suggestions of Knowles, Thiele, and Zit-

ler (2006) , we use the Pareto compliant quality indicators. 

The epsilon indicator is based on the concept of additive ε-

ominance ( Zitzler et al., 2003 ). It gives the minimum factor ε
uch that any objective vector in a reference set R is ε-dominated

y at least one objective vector in A 

 ε = inf 
ε∈ R 

{∀ r ∈ R ∃ a ∈ A : a �ε r } . (7)

his quality indicator mainly assesses the convergence of A , with

maller values of I ε being preferable. 

The hypervolume indicator ( Zitzler & Thiele, 1998b ), also re-

erred to as S metric, measures the volume of the objective space

hat is dominated by an approximation set and is bounded by a

eference point. It can be defined as the Lebesgue measure � of

he union of hypercuboids in the objective space as 

 H = �

( ⋃ 

a ∈ A 
{ f 1 ( a 

′ ) , . . . , f m 

( a 

′ ) : a ≺ a 

′ ≺ r } 
) 

(8)

here A = { a 1 , . . . , a | A | } is an approximation set and r is an appro-

riately chosen reference point. This quality indicator can measure

oth the convergence and diversity of A , with higher values of I H 
eing preferable. 

In this work, we develop neuroevolutionary multiobjective opti-

ization algorithm for solving instances of MOKPs defined by (1) .

euroevolution is the optimization of neural networks by using

volutionary computation techniques. It offers a way for both

earning the parameters and determining the optimal topology of

eural networks. 

Using a representation, an optimization problem can be sepa-

ated into a genotype-phenotype mapping and phenotype-fitness

apping ( Rothlauf, 2006 ). The notions of genotype and phenotype

re borrowed from nature. The genotype space �g defines a search

pace where stochastic evolutionary operators act during reproduc-

ion. A solution representation in this space is given by a chromo-

ome of the length l . The phenotype space �p represents a space

f actual solutions to the problem at hand. The phenotype repre-

entation is used to compute the objective values for the given so-

ution. The evaluation of a given individual can be expressed as a

omposite function f p ◦ f g , where the function 

f g : �g � −→ �p (9)

erforms the genotype-phenotype mapping with �p corresponding

o the decision space R 

n and the function 

f p : �p � −→ � f (10)

erforms the phenotype-fitness mapping with �f being equivalent

o the objective space R 

m . 
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Table 1 

Results for evolutionary and neuroevolutionary approaches. The values refer to median and interquartile range of ep- 

silon (eps) and hypervolume (hv) indicators. Best performance is highlighted with gray background. The symbol † 

indicates a statistical difference between the respective and best performing algorithm. 

One-point crossover Two-point crossover Uniform crossover Neuroevolution 

2 knapsacks 

500 items eps 4.26e+00 (1.7e-02) † 4.26e+00 (1.8e-02) † 4.25e+00 (1.6e-02) † 4.10e + 00 (1.1e-02) 

hv 5.92e-01 (2.3e-02) † 6.02e-01 (1.4e-02) † 6.25e-01 (2.0e-02) † 7.91e-01 (8.9e-03) 

10 0 0 items eps 4.13e+00 (2.1e-02) † 4.13e+00 (1.7e-02) † 4.12e+00 (1.1e-02) † 3.88e + 00 (1.4e-02) 

hv 5.72e-01 (1.8e-02) † 5.81e-01 (1.4e-02) † 5.96e-01 (1.1e-02) † 8.35e-01 (6.1e-03) 

20 0 0 items eps 4.26e+00 (1.8e-02) † 4.25e+00 (2.1e-02) † 4.23e+00 (1.6e-02) † 3.97e + 00 (1.0e-02) 

hv 4.76e-01 (9.3e-03) † 4.88e-01 (1.0e-02) † 5.15e-01 (1.0e-02) † 8.03e-01 (1.0e-02) 

50 0 0 items eps 4.13e+00 (1.0e-02) † 4.11e+00 (1.4e-02) † 4.06e+00 (7.1e-03) † 3.76e + 00 (1.4e-02) 

hv 4.40e-01 (4.7e-03) † 4.62e-01 (9.5e-03) † 5.21e-01 (5.0e-03) † 8.54e-01 (5.7e-03) 

10 0 0 0 items eps 4.62e+00 (8.9e-03) † 4.58e+00 (1.2e-02) † 4.44e+00 (6.9e-03) † 4.06e + 00 (1.8e-02) 

hv 2.28e-01 (6.2e-03) † 2.62e-01 (7.3e-03) † 4.11e-01 (5.2e-03) † 8.24e-01 (8.7e-03) 

3 knapsacks 

500 items eps 3.42e+00 (2.4e-02) † 3.42e+00 (1.7e-02) † 3.42e+00 (1.9e-02) † 3.22e + 00 (3.0e-02) 

hv 4.07e-01 (1.2e-02) † 4.19e-01 (1.4e-02) † 4.21e-01 (9.8e-03) † 6.33e-01 (1.5e-02) 

10 0 0 items eps 3.71e+00 (1.1e-02) † 3.71e+00 (2.3e-02) † 3.70e+00 (2.0e-02) † 3.41e + 00 (3.0e-02) 

hv 3.25e-01 (9.2e-03) † 3.32e-01 (8.3e-03) † 3.46e-01 (4.2e-03) † 6.18e-01 (2.4e-02) 

20 0 0 items eps 3.68e+00 (1.6e-02) † 3.68e+00 (1.5e-02) † 3.65e+00 (1.3e-02) † 3.33e + 00 (3.2e-02) 

hv 2.62e-01 (7.9e-03) † 2.71e-01 (9.7e-03) † 2.98e-01 (5.8e-03) † 6.27e-01 (2.0e-02) 

50 0 0 items eps 3.53e+00 (9.2e-03) † 3.51e+00 (1.2e-02) † 3.47e+00 (8.8e-03) † 3.15e + 00 (1.8e-02) 

hv 1.87e-01 (6.6e-03) † 2.03e-01 (4.1e-03) † 2.51e-01 (4.1e-03) † 6.29e-01 (1.3e-02) 

10 0 0 0 items eps 3.81e+00 (1.1e-02) † 3.78e+00 (1.2e-02) † 3.69e+00 (8.4e-03) † 3.30e + 00 (4.0e-02) 

hv 1.08e-01 (3.7e-03) † 1.23e-01 (4.8e-03) † 1.97e-01 (4.7e-03) † 6.21e-01 (2.6e-02) 

4 knapsacks 

500 items eps 3.07e+00 (1.7e-02) † 3.07e+00 (1.9e-02) † 3.06e+00 (1.6e-02) † 2.82e + 00 (2.7e-02) 

hv 2.82e-01 (7.8e-03) † 2.87e-01 (6.1e-03) † 2.99e-01 (5.4e-03) † 4.93e-01 (2.3e-02) 

10 0 0 items eps 3.28e+00 (1.2e-02) † 3.27e+00 (2.2e-02) † 3.27e+00 (1.8e-02) † 3.0 0e + 0 0 (3.5e-02) 

hv 2.08e-01 (3.3e-03) † 2.13e-01 (9.7e-03) † 2.33e-01 (5.4e-03) † 4.62e-01 (2.2e-02) 

20 0 0 items eps 3.16e+00 (1.1e-02) † 3.16e+00 (8.5e-03) † 3.13e+00 (1.1e-02) † 2.85e + 00 (1.7e-02) 

hv 1.53e-01 (5.6e-03) † 1.58e-01 (1.9e-03) † 1.83e-01 (3.2e-03) † 4.59e-01 (2.7e-02) 

50 0 0 items eps 3.34e+00 (1.7e-02) † 3.33e+00 (1.1e-02) † 3.29e+00 (3.8e-03) † 2.96e + 00 (1.9e-02) 

hv 9.63e-02 (4.5e-03) † 1.05e-01 (2.6e-03) † 1.36e-01 (2.2e-03) † 4.54e-01 (2.6e-02) 

10 0 0 0 items eps 3.51e+00 (9.0e-03) † 3.50e+00 (6.9e-03) † 3.42e+00 (1.1e-02) † 3.04e + 00 (3.0e-02) 

hv 5.01e-02 (2.4e-03) † 5.76e-02 (1.7e-03) † 9.94e-02 (2.2e-03) † 4.40e-01 (1.6e-02) 

5 knapsacks 

500 items eps 3.18e+00 (2.3e-02) † 3.18e+00 (2.4e-02) † 3.16e+00 (1.7e-02) † 2.96e + 00 (3.0e-02) 

hv 1.70e-01 (4.7e-03) † 1.74e-01 (7.8e-03) † 1.81e-01 (4.7e-03) † 3.19e-01 (2.3e-02) 

10 0 0 items eps 3.01e+00 (1.2e-02) † 3.0 0e+0 0 (8.9e-03) † 2.99e+00 (1.3e-02) † 2.77e + 00 (2.9e-02) 

hv 1.21e-01 (6.8e-03) † 1.27e-01 (4.0e-03) † 1.40e-01 (3.6e-03) † 3.22e-01 (2.5e-02) 

20 0 0 items eps 3.17e+00 (6.5e-03) † 3.16e+00 (1.0e-02) † 3.14e+00 (1.2e-02) † 2.87e + 00 (5.2e-02) 

hv 8.53e-02 (1.6e-03) † 9.08e-02 (3.6e-03) † 1.10e-01 (4.1e-03) † 3.22e-01 (2.2e-02) 

50 0 0 items eps 3.18e+00 (1.1e-02) † 3.17e+00 (1.0e-02) † 3.13e+00 (8.7e-03) † 2.85e + 00 (5.2e-02) 

hv 4.95e-02 (2.5e-03) † 5.42e-02 (2.3e-03) † 7.47e-02 (1.7e-03) † 3.08e-01 (1.6e-02) 

10 0 0 0 items eps 3.37e+00 (1.1e-02) † 3.36e+00 (1.0e-02) † 3.29e+00 (8.9e-03) † 2.93e + 00 (3.9e-02) 

hv 2.37e-02 (9.8e-04) † 2.71e-02 (9.5e-04) † 5.01e-02 (1.1e-03) † 3.03e-01 (2.4e-02) 

5
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. Neuroevolution Multiobjective Optimization 

An approach developed in our study uses the framework of

metric selection evolutionary multiobjective optimization algo-

ithm (SMS-EMOA) proposed by Beume et al. (2007) . In SMS-

MOA, the population undergoes a steady-state evolutionary pro-

ess where a single offspring is produced in each generation. The

ating selection is performed by picking up a set of different pop-

lation members uniformly at random. The variation procedure

enerates a single offspring by recombining selected parent indi-

iduals. The environmental selection procedure updates the pop-

lation by removing an individual with the smallest hypervolume

ontribution in the last nondominated front. The evolution goes on

or a user specified number of generations. 

The main idea of the proposed S metric selection neuroevo-

utionary multiobjective optimization algorithm (SMS-NEMOA) for

olving MOKPs consists of generating solutions by artificial neural

etworks (ANNs). This is implemented in the variation procedure.

NNs are computational models that attempt to mimic the struc-

ure and function of the human brain. In ANNs, neurons are the ba-

ic information processing units that communicate with each other

hrough weighted connections. By modifying the strength of the
onnections, memory and learning can be created. Thus, the ratio-

ale behind our approach is to exploit these features in order to

urpass the search process. 

We use a feedforward neural network with one hidden layer.

he standard sigmoid function is used as the activation function in

ll hidden and output neurons σ (z) = 1 / (1 + e (−z) ) . The use of sig-

oid activation functions in hidden neurons is intended to account

or nonlinearities. The sigmoid function with appropriate threshold

n the output layer allows to obtain a binary value that represents

 decision regarding the selection of a specific item. 

In order to achieve a desired behavior, the parameters of neu-

al network must be adjusted. This is known as a learning process,

hich is commonly performed by a gradient-based optimization

iming at minimizing the difference between the network outputs

nd target values. Although the realization of the herein explored

dea is based on the ability of neural networks to perform clas-

ification, there is an important distinction between a traditional

lassification task and the one employed in the context of solv-

ng MOKPs. In the former, the learning is performed based on a

ataset with known input and target variables. In the latter, there

s no such data and a gradient-based learning cannot be applied.



70 R. Denysiuk et al. / Expert Systems With Applications 116 (2019) 65–77 

Fig. 1. Depiction of the proposed genotype-phenotype mapping. The neural net- 

work is applied to all items in the feature space, generating a complete solution in 

{0, 1} n . This is illustrated in the matrix form. 
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Another important aspect is that the neural network performance

must be evaluated accounting for multiple objectives. 

We use neuroevolution because it provides the potential to

overcome limitations associated with traditional learning methods

and to evolve the genotype-phenotype mapping f g . The letter rep-

resents the major difference with traditional evolutionary compu-

tation approaches that seek to evolve the solutions itself when

solving MOKPs. Neuroevolution is incorporated into the framework

of SMS-EMOA by implementing appropriate encoding, reproduc-

tion and evaluation schemes. We use a direct encoding, which

means the genes composing the chromosome straightforwardly

correspond to the parameters of neural network. Each chromosome

is represented by a real-valued string. Depending on the location,

the genes encode weights, biases and a boolean mask for the hid-

den layer. Each component of the mask is determined by check-

ing the sign of the corresponding gene. The false values indicate

the neurons with all incoming and outgoing connections to be re-

moved from the neural network. This is a simple yet effective en-

coding scheme that can learn the parameters and topology of neu-

ral network. It reduces a human labor as the user only needs to

specify the maximum number of hidden neurons while the opti-

mal topology is determined by evolution. It is also appropriate for

the application of traditional reproduction operators for continu-

ous optimization. We investigate the effects of different operators

in the experimental study. 

As to evaluation, a suitable function f g performing the

genotype-phenotype mapping is defined as follows. First, the items

associated with the MOKP at hand are placed into a d -dimensional

feature space, where each item is represented by the vector φ.

Then, the chromosome is decoded into the neural network with

weights A and biases b in the hidden layer and weights β and bias

c in the output layer. Next, the coordinates of each item in the fea-

ture space are fed into the neural network. For each feature vector,

the output of neural network gives the component of a solution to

MOKP. The overall genotype-phenotype mapping can be defined as

f g = o ◦ h ◦ φ. (11)

In the above equation, the function φ places the items into the

feature space. Some possible choices for φ are discussed in the ex-
erimental study. All the items stored in the rows of matrix K ∈
 

n ×d are first mapped into the hidden layer by h = σ ( K A + 1 b T )

nd then mapped to the output layer by o = round(σ ( H β + 1 c)) ,

here H is the representation of K in the hidden layer and σ is

he sigmoid function. The outcome of f g determines a solution x T 

hose objective values are calculated using the MOKP formulation,

hich concludes the evaluation procedure. 

Fig. 1 graphically illustrates the idea of the proposed genotype-

henotype mapping. It is shown that the chromosome represented

y the vector of real numbers is transformed into the neural net-

ork characterized by the weights A and β as well as the biases b

nd c . All the items in the feature space, which are stored in the

ows of the matrix K , are propagated through the neural network,

ielding a nonlinear representation in the hidden layer H and a

olution to the MOKP in the output layer x T . The process of propa-

ating different items can be parallelized, thereby allowing for the

calability of the proposed approach. 

. Computational experiments 

This section discusses the computational experiments per-

ormed to validate the proposed approach. First, it is benchmarked

gainst state-of-the-art approaches. Then, its different variants are

nvestigated. 

.1. Experimental setup 

The experimental study involves MOKP instances having be-

ween 2 and 5 knapsacks with items ranging from 500 to 10 0 0 0.

ach instance is defined by randomly generated the values of prof-

ts and weights in the interval [10,100]. Similarly to Zitzler and

hiele (1999) , the feasibility ratio of r j = 0 . 5 ∀ j ∈ { 1 , . . . , m } is

sed. Test problems are denoted in the form MOKP_m_n. As an

xample, consider MOKP_2_500 that indicates the MOKP with 2

napsacks and 500 items. 

In multiobjective optimization, there are the decision and the

bjective search spaces. In EMOAs, specific operators are imple-

ented to perform the search in each of these spaces. Mean-

ngful insights can be obtained by studying the effects of differ-

nt strategies one at a time. This also ensures the fairness of

heir comparison. Therefore, all the algorithms used in the experi-

ents share the framework outline in Algorithm 1 , with the mat-

ng and environmental selection procedures corresponding to SMS-

MOA ( Beume et al., 2007 ). As the main contribution of our study

s a scheme for generating solutions implemented in the variation

rocedure, we compare it with state-of-the-art recombination op-

rators based on a binary encoding. For better readability, we only

se EA and NEA for respectively referring to traditional evolution-

ry and neuroevolutionary variant of S metric selection multiob-

ective optimization algorithm. 

Due to the stochastic nature, 21 independent runs with differ-

nt random number initializations were performed by the algo-

ithms on each test problem. The odd number of runs was used

or an accurate estimation of median. To study the scalability, for

ll test runs the population size and the maximum number of gen-

rations were set to 100 and 10 0 0, respectively. 

For computing quality indicators, a reference set is constructed

y combining all nondominated solutions obtained in the experi-

ents. All objective values are normalized using the minimum and

aximum objective values in the reference set. The resulting ref-

rence set is used as R for calculating I ε in (7) . The vector of 1 is

sed for computing I H in (8) . 

For statistically sound conclusions, a statistical analysis of the

esults was performed ( Derrac, García, Molina, & Herrera, 2011 ).

or each problem, a pairwise testing was carried out to deter-

ine whether the observed difference in the performance is due
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Fig. 2. Two and three-dimensional Pareto front approximations obtained by evolutionary (EA) and neuroevolutionary (NEA) approaches. The plots show the results of the 

run with the median hypervolume value. 

t  

w

6

 

l  

p  

s  

s  

n  

b  

p  

p  

m  

M  

t  

g  

m  

i  

t  

o  

a

 

d  

n  

a  

I  

t  

t  

s  

d

 

5  

s  

c  

h  

f  

t  

i  

t  

t  

c  

g  

p  

t  

i  

t  

g  

t

 

s  

s  

h

	

w  

t

 

d  

g  

t  

a

 

	  

a  

b  
o chance. To this end, a nonparametric Wilcoxon rank sum test

as applied at a significance level of α = 0 . 05 . 

.2. Comparative study 

First, we investigate the performance of the proposed neuroevo-

utionary approach (NEA) in comparison with the evolutionary ap-

roach (EA). Both approaches operate identically in the objective

pace and differently in the decision space. EA evolves binary

trings that represent the solutions to MOKP, whereas NEA evolves

eural networks for generating these solutions. EA is represented

y state-of-the-art crossover operators such as one-point, two-

oint and uniform crossovers. These are used with the crossover

robability of 0.8 and the mutation of 2 × 1/ l where l is the chro-

osome length. Such settings are frequently used when handling

OKPs ( Ishibuchi et al., 2010a; 2015; Ishibuchi et al., 2014 ). For

hese experiments, NEA is adopted with a real-coded genetic al-

orithm using a simulated binary crossover (SBX) and polyno-

ial mutation (PM). SBX is chosen because it attempts to operate

n a similar way one-point crossover does for binary representa-

ions ( Deb & Agrawal, 1995 ). In the following section, the effects

f different variation operators on the performance of NEA are ex-

mined. 

Table 1 shows the results obtained by both approaches. The

ominant performance of NEA can be readily observed. It gives sig-

ificantly better results with respect to both quality indicators on

ll considered MOKP instances. This is suggested by small values of

 ε and large values of I H as well as the results of statistical tests. Al-

hough the values of quality indicators provide clear insights about

he relative performance of the approaches, the cause of the ob-

erved behavior cannot be fully appreciated. This can be better un-

erstood by visually analyzing Pareto front approximations. 

Figs. 2 and 3 visualize the obtained results for problems with

0 0, 20 0 0 and 10 0 0 0 items. For two and three objective instances,
catter plots are shown in Fig. 2 . For higher dimensions, parallel

oordinates are used in Fig. 3 . The plots depict approximation sets

aving the median hypervolume value. The results for EA with uni-

orm crossover are shown, as it gives the best results among tradi-

ional crossover operators. The plots clearly indicate the superior-

ty of the proposed NEA. The obtained solutions exhibit both bet-

er convergence and diversity. With regard to diversity, the solu-

ions from NEA cover a large portion of the objective space which

ontrast with those obtained by EA that are located in a small re-

ion. This can be easily observed in scatter and parallel coordinate

lots. An important observation is that the difference in results be-

ween the two approaches becomes larger when the dimensional-

ty of MOKP increases. When considering results of EA, it is evident

hat diversity and convergence degrade when the number of items

rows. This appears to be the case for all considered dimensions of

he objective space. 

To quantitatively illustrate that the difference between the re-

ults of the two approaches becomes larger with increasing dimen-

ionality, we calculate the relative improvement in the epsilon and

ypervolume indicators ( 	I ε and 	I H ) as 

	I ε = | I 1 ε − I 2 ε | /I 1 ε
I H = | I 1 H − I 2 H | /I 1 H 

(12) 

here I i ε and I i 
H 

are the values of the corresponding indicators for

he i -th approach ( i = { 1 , 2 } ). 
Fig. 4 plots the values of relative improvements in quality in-

icators against the number of items in MOKPs. In this figure, a

eneral trend for both indicators can be readily observed. The fac-

or by which NEA outperforms EA becomes increasingly larger for

 higher number of items. 

Nevertheless, the values of 	I ε are much smaller than those of

I H and do not grow considerably with the increase in dimension-

lity. This is because I ε mainly assesses the convergence, as it can

e seen in Figs. 2 and 3 the results of EA and NEA differ the most
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Fig. 3. Four and five-dimensional Pareto front approximations obtained by evolutionary (EA) and neuroevolutionary (NEA) approaches. The plots show the results of the run 

with the median hypervolume value. 
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with respect to the diversity. This feature is suitably captured by

the hypervolume. 

For instance, the difference between I H of EA and NEA on the

MOKP with 2 knapsacks and 10 0 0 0 items is nearly equal to the

total I H of EA. For MOKP with 5 knapsacks and 10 0 0 0 items,

this difference is approximately 5 times. Such a dramatic discrep-

ancy in the performance can be attributed to shortcomings of tra-

ditional binary crossovers. The deficiency of crossover operators

grows when the size of chromosome increases. As discussed in

Section 2 , this issue is often addressed by restricting mating pool
o that similar parents undergo recombination. Alternatively, the

iversity of solutions can be ensured by a suitable selection proce-

ure in the objective space. Our results demonstrate this issue can

e also effectively addressed by neuroevolution. 

The superior performance can be explained by important fea-

ures of the proposed NEA. On one hand, the scalability stems from

he fact that the size of the search space is determined by the

umber of connections in the neural network and not by the num-

er of items, as opposed to traditional approaches. Thus, the length

f solution to a MOKP can grow while the search space needed to
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Fig. 4. Improvement in indicator values depending on the number of items. 

Fig. 5. Evolution of the hypervolume indicator for different variation operators. The plots refer to the median values. The higher the better. 
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Fig. 6. Performance of neuroevolution with different feature mappings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameter settings ( l - is the chromosome length). 

Operator Parameters 

SBX p c = 1 , ηc = 20 

PM p m = 1 /l, ηm = 20 

DE CR = 1 , F = 0 . 5 

ES τ0 = 1 / 
√ 

2 l , τ1 = 1 / 
√ 

2 
√ 

l , σ0 = 1 / 
√ 

1 / (3 l) 
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be explored by NEA can be the same. This is appealing to prac-

tical applications where instances of MOKPs often arise as large

scale problems. On the other hand, the learning capability of neu-

ral network is exploited, as the knowledge about all items is taken

into account when the network decides on a particular item. This

knowledge is accumulated during the evolution and is stored in its

weights and biases. Obviously, the proposed scheme is more com-

plex in terms of implementation and computing overhead due to

matrix multiplications, which can be regarded as its major disad-

vantage. 

6.3. Effect of variation operator 

The way in which the new individuals are generated influences

significantly the effectiveness of the search process. In neuroevolu-

tion, this is performed by the variation operator. This operator pro-

duces offspring by stochastically manipulating the chromosomes

of parent individuals, with several possibilities available to realize

this process. One of the advantages of the used real encoding is

its ability to adapt different variation operators proved effective in

algorithms for continuous search spaces. The ability to use differ-

ent search paradigms is important because there is no single strat-

egy that works the best for all the cases. Each one has its own

characteristics and can be useful in different situations. Although

some recommendations for the choice of a particular strategy can

be found, in practice for the given problem this issue is often ad-

dressed by experimentation. 
Given its importance to the overall performance of neuroevolu-

ion, we investigate the effects of three popular variation operators.

he first is a real-coded genetic algorithm (GA) operator, which re-

ies on simulated binary crossover (SBX) and polynomial mutation

PM) ( Deb, 2001 ). The second is differential evolution (DE) operator

ith rand/1/bin variant ( Storn & Price, 1997 ) and PM. The third is

volution strategy (ES) operator, which is used with a non-isotropic

utation ( Beyer & Schwefel, 2002 ). The parameter settings for the

hree operators are shown in Table 2 . 

Fig. 5 depicts the evolution of the hypervolume for the three

ifferent variation operators. For MOKP instances with different

umbers of knapsacks and items, a common trend can be readily

bserved. The best performing variant is the one using ES opera-

or. The second and third performance is provided by GA and DE,

espectively. Thus, these results show that the performance of neu-

oevolution discussed in the previous section can be improved by

sing an appropriate scheme for producing offspring. 

Both GA and ES treat the genes in chromosome independently

hen generating offspring. For this purpose, GA recombines a
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Fig. 7. Results for evolved (T1) and fixed (T2) topologies. 
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air of parent chromosomes using the SBX crossover mechanism,

hereas ES uses a single parent whose genes are perturbed by

dding a random quantity drawn from a normal distribution with

ero mean. A superior performance of ES can be explained by a

elf-adaptation of strategy parameters, such as the strengths of

utation for individual genes, which are encoded into the chro-

osome. Apparently, the evolution process benefit from discover-

ng appropriate values of these parameters. This in turn can lead to

utations accounting for coupling between the genes. DE explores

he search space using differences between chromosomes of dis-

inct population members. DE produces an offspring by perturb-

ng a particular individual in the population with a scaled differ-

nce of randomly selected population members. Such mechanism

xhibits invariant properties that are particularly useful for deal-

ng with nonseparable fitness landscapes ( Das & Suganthan, 2011 ).

uch kind of landscape is inherent the neural network because

here is an explicit coupling between its parameters. Though, an

nferior performance of DE can be explained by the need to choose

ppropriate values for the crossover probability CR and the scaling

arameter F . In general, the obtained results stress the importance

f a proper strategy for exploring the search space and suggest

seful insights for their choice. 

.4. Effect of feature mapping 

The proposed neuroevolution attempts to evolve neural net-

orks so that they produce the optimal mapping between the
eature and the solution space. While the solution space is de-

ermined by the MOKP at hand, the feature space is defined by

he user based on the profits and weights of items in the prob-

em. In this light, one can easily recognize that a successful solving

f MOKPs is also dependent on a proper definition of the feature

pace. Given that, we investigate two possible variants of the func-

ion φ : R 

2 m � −→ R 

d that for the profits and weights of each item

eturns its coordinates in the feature space. 

The first function is defined as 

1( p , w ) = (p 1 , . . . , p m 

, w 1 , . . . , w m 

) T . (13)

his is the default function that was used so far in the experi-

ents, where the profits and weights of item are simply concate-

ated in a single vector. This function is simple and provides a

traightforward information about each item to the network, with

he number of input neurons being twice the size of the objective

pace. 

The second function is defined as 

2( p , w ) = 

(
p 1 
w 1 

, . . . , 
p m 

w m 

)T 

. (14) 

his function returns a feature vector whose components are given

y the ratio between profits and weights. Such function can be

seful because the number of inputs and therefore the parameters

n neural network is reduced by half compared with φ1. 

Fig. 6 summarizes the results obtained by neuroevolution when

sing the feature maps defined in (13) and (14) . The plots show the
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median values of the hypervolume using o bar charts. These results

clearly indicate a better performance of neuroevolution when φ1

is used. A possible reason for this can be that the features repre-

sented by the ratio between profits and weights are less informa-

tive than those given by profits and weights itself. However, there

still remain possibilities of exploring more elaborated feature map-

pings that can eventually benefit the search on other MOKP in-

stances. 

6.5. Effect of network topology 

In neural networks, the topology refers to the number of neu-

rons and the way they are connected. This is an important factor

because it influences the learning and determines the expressive

capacity. As we use a feed forward neural network with one hid-

den layer, the number of neurons in the hidden layer is of ma-

jor importance. This is because a small number of neurons can

result in a low capacity of the neural network. However, a high

number of neurons can also lead to a poor performance due to

a large search space being explore by neuroevolution. Thus, there

is a trade-off and we aim to address it by encoding the topology

of the hidden layer into the chromosome and enabling the evolu-

tion to find the most appropriate one. This section examines the

effectiveness of this approach in comparison with neuroevolution

having a fixed number of neurons. 

Fig. 7 shows the distributions of the hypervolume values ob-

tained by neuroevolution with two types of topology. The box plots

in this figure suggest somewhat similar performance of the two

variants. Slightly better results in terms of the median and the dis-

persion of hypervolume values for fixed topology can be explained

by the fact that this variant only explores the space defined by

weights and biases and does not search the combinatorial space

defined by the binary mask for hidden neurons. In contrast, neu-

roevolution with evolved topology explores both of these spaces,

which naturally can be more difficult. An important observation

is that the proposed SMS-NEMOA for solving MOKPs is not very

sensitive to the choice of the network topology. Moreover, MOKP

instances can be solved reasonably well without extensive experi-

mentation to find out the most appropriate topology of neural net-

work. 

7. Conclusions 

Multiobjective knapsack problem is an important combinatorial

problem that frequently arises in a broad range of practical ap-

plications. Multiobjective evolutionary algorithms with binary so-

lution representations and traditional crossovers have become a

common choice for solving MOKPs. However, they can produce

poor solutions with respect to convergence and diversity due to

disruptive effects and a poor scalability of crossover operators. To

address these issues, we suggested generating solutions to MOKPs

by neural networks that classify items using the information about

their profits and weights. We developed SMS-NEMOA that relies

on neuroevolution to evolve neural networks and SMS-EMOA for

multiobjective search. 

The proposed approach significantly outperformed SMS-EMOA

with traditional binary crossovers, with respect to both conver-

gence and diversity, in the computational experiments involving

MOKP instances having from 2 to 5 knapsacks with the number

of items ranging from 500 to 10 0 0 0. Another advantageous feature

of SMS-NEMOA revealed by the experiments is its scalability. The

scalability is an important requirement for practical applications

because real-world MOKP instances often involve a large number

of items. The observed behavior owes to the fact that the size of

the search space being explored by stochastic recombination op-

erators in the proposed neuroevolution only slightly depends on
he size of the problem. This is a sharp contrast with a traditional

cheme based on binary encoding and crossovers where the length

f chromosome corresponds to the number of items and directly

etermines the search space size. We also investigated different

ariants of neuroevolution and gained insights that can help to im-

rove its performance. 

As future work, it would be interesting to investigate how the

roposed approach generalizes. This can encompass studies with

ifferent EMOAs, variants of knapsack problems and single objec-

ive optimization scenarios. The adaptation of control parameters

s another promising research direction. It can be studied how a

hreshold for converting neural network outputs into binary values

an be adapted during the search instead of simply rounding to

he nearest integer. Furthermore, an exciting research direction is

o investigate how the notion of transfer learning can be exploited,

s neural networks resulted from solving one MOKP can be useful

hen addressing other instances, possibly accelerating the search

rocess. 
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