756 research outputs found

    APPRAISAL OF TAKAGI–SUGENO TYPE NEURO-FUZZY NETWORK SYSTEM WITH A MODIFIED DIFFERENTIAL EVOLUTION METHOD TO PREDICT NONLINEAR WHEEL DYNAMICS CAUSED BY ROAD IRREGULARITIES

    Get PDF
    Wheel dynamics play a substantial role in traversing and controlling the vehicle, braking, ride comfort, steering, and maneuvering. The transient wheel dynamics are difficult to be ascertained in tire–obstacle contact condition. To this end, a single-wheel testing rig was utilized in a soil bin facility for provision of a controlled experimental medium. Differently manufactured obstacles (triangular and Gaussian shaped geometries) were employed at different obstacle heights, wheel loads, tire slippages and forward speeds to measure the forces induced at vertical and horizontal directions at tire–obstacle contact interface. A new Takagi–Sugeno type neuro-fuzzy network system with a modified Differential Evolution (DE) method was used to model wheel dynamics caused by road irregularities. DE is a robust optimization technique for complex and stochastic algorithms with ever expanding applications in real-world problems. It was revealed that the new proposed model can be served as a functional alternative to classical modeling tools for the prediction of nonlinear wheel dynamics

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Neuro-Fuzzy Based High-Voltage DC Model to Optimize Frequency Stability of an Offshore Wind Farm

    Get PDF
    Lack of synchronization between high voltage DC systems linking offshore wind farms and the onshore grid is a natural consequence owing to the stochastic nature of wind energy. The poor synchronization results in increased system disturbances, grid contingencies, power loss, and frequency instability. Emphasizing frequency stability analysis, this research investigates a dynamic coordination control technique for a Double Fed Induction Generator (DFIG) consisting of OWFs integrated with a hybrid multi-terminal HVDC (MTDC) system. Line commutated converters (LCC) and voltage source converters (VSC) are used in the suggested control method in order to ensure frequency stability. The adaptive neuro-fuzzy inference approach is used to accurately predict wind speed in order to further improve frequency stability. The proposed HVDC system can integrate multiple distributed OWFs with the onshore grid system, and the control strategy is designed based on this concept. In order to ensure the transient stability of the HVDC system, the DFIG-based OWF is regulated by a rotor side controller (RSC) and a grid side controller (GSC) at the grid side using a STATCOM. The devised HVDC (MTDC) is simulated in MATLAB/SIMULINK, and the performance is evaluated in terms of different parameters, such as frequency, wind power, rotor and stator side current, torque, speed, and power. Experimental results are compared to a conventional optimal power flow (OPF) model to validate the performance.© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Control techniques for power system stabilisation

    Get PDF
    The conventional PSS was first proposed earlier based on a linear model of the power system to damp the low frequency oscillations in the system. But they are designed to be operated under fixed parameters derived from the system linearized model. Due to large interconnection of power system to meet the load demand brings in deviations of steady-state and non-linearity to power system. The main problem is that PSS includes the locally measured quantities only neglecting the effect of nearby generators. This is the reason for the advent of Wide area monitoring for strong coupling between the local modes and the inter-area modes which would make the tuning of local PSSs for damping all modes nearly impossible when there is no supervisory level controller. Wide area control addresses these problems by proposing smart topology changes and control actions. Dynamic islanding and fast load shedding are schemes available to maintain as much as possible healthy transmission system. It is found that if remote signals from one or more distant locations of the power system can be applied to local controller design, system dynamic performance can be enhanced. In order to attain these goals, it is desirable to systematically build a robust wide area controller model within an autonomous system framework

    Simulation method of impact load for vehicle drivetrain on durability test rig

    Get PDF
    Fatigue and durability tests are important to develop or to optimize the vehicle drivetrain system. Using the vehicle drivetrain road load simulation test rig to reproduce the longitudinal driving load of the vehicle on the real road and the vertical impact load caused when the vehicle is on a bumpy pavement. In order to improve the control accuracy and convergence speed, an iterative learning control (ILC) method is presented. After 10 times of learning, the control error of iterative learning control method is 4.8 %, it is better than the 7.1 % error achieved by proportional-integral-derivative (PID) control. The simulation results demonstrate that the ILC can improve the convergence rate and increase the tracking accuracy than the PID control method

    Efficiency enhancement strategy implementation in hybrid electric vehicles using sliding mode control

    Get PDF
    Introduction. Hybrid electric vehicles are offering the most economically viable choices in today's automotive industry, providing best solutions for a very high fuel economy and low rate of emissions. The rapid progress and development of this industry has prompted progress of human beings from primitive level to a very high industrial society where mobility used to be a fundamental need. However, the use of large number of automobiles is causing serious damage to our environment and human life. At present most of the vehicles are relying on burning of hydrocarbons in order to achieve power of propulsion to drive wheels. Therefore, there is a need to employ clean and efficient vehicles like hybrid electric vehicles. Unfortunately, earlier control strategies of series hybrid electric vehicle fail to include load disturbances during the vehicle operation and some of the variations of the nonlinear parameters (e.g. stator’s leakage inductance, resistance of winding etc.). The novelty of the proposed work is based on designing and implementing two robust sliding mode controllers (SMCs) on series hybrid electric vehicle to improve efficiency in terms of both speed and torque respectively. The basic idea is to let the engine operate only when necessary keeping in view the state of charge of battery. Purpose. In proposed scheme, both performance of engine and generator is being controlled, one sliding mode controllers is controlling engine speed and the other one is controlling generator torque, and results are then compared using 1-SMC and 2-SMC’s. Method. The series hybrid electric vehicle powertrain considered in this work consists of a battery bank and an engine-generator set which is referred to as the auxiliary power unit, traction motor, and power electronic circuits to drive the generator and traction motor. The general strategy is based on the operation of the engine in its optimal efficiency region by considering the battery state of charge. Results .Mathematical models of engine and generator were taken into consideration in order to design sliding mode controllers both for engine speed and generator torque control. Vehicle was being tested on standard cycle. Results proved that, instead of using only one controller for engine speed, much better results are achieved by simultaneously using two sliding mode controllers, one controlling engine speed and other controlling generator torque.Вступ. Гібридні електромобілі пропонують найбільш економічно доцільний вибір у сучасній автомобільній промисловості, надаючи найкращі рішення для дуже високої економії палива та низького рівня викидів. Швидкий прогрес та розвиток цієї галузі підштовхнули людей до переходу від примітивного рівня до дуже високого індустріального суспільства, де мобільність була фундаментальною потребою. Однак використання великої кількості автомобілів завдає серйозної шкоди довкіллю та життю людини. Нині більшість транспортних засобів покладаються на спалювання вуглеводнів задля досягнення потужності руху на провідних колесах. Отже, необхідно використовувати чисті та ефективні транспортні засоби, такі як гібридні електромобілі. На жаль, раніше стратегії управління серійним гібридним електромобілем не враховували збурення навантаження під час роботи автомобіля і деякі зміни нелінійних параметрів (наприклад, індуктивність розсіювання статора, опір обмотки і т.д.). Новизна запропонованої роботи заснована на розробці та реалізації двох надійних контролерів ковзного режиму (SMC) на серійному гібридному електромобілі для підвищення ефективності з точки зору швидкості та моменту, що крутить, відповідно. Основна ідея полягає в тому, щоб дозволити двигуну працювати тільки тоді, коли це необхідно з урахуванням стану заряду акумулятора. Мета. У пропонованій схемі контролюються характеристики як двигуна, так і генератора, один контролер ковзного режиму регулює швидкість двигуна, а інший регулює крутний момент генератора, а потім результати порівнюються з використанням режимів 1-SMC і 2-SMC. Метод. Силова установка серійного гібридного електромобіля, що розглядається в даній роботі, складається з акумуляторної батареї та установки двигун-генератор, яка називається допоміжною силовою установкою, тяговим двигуном та силовими електронними схемами для приводу генератора та тягового двигуна. Загальна стратегія заснована на роботі двигуна в області оптимальної ефективності з урахуванням рівня заряду акумуляторної батареї. Результати. Математичні моделі двигуна та генератора були прийняті до уваги для розробки регуляторів ковзного режиму як для керування частотою обертання двигуна, так і для керування крутним моментом генератора. Транспортний засіб випробовувався за стандартним циклом. Результати показали, що замість використання лише одного регулятора частоти обертання двигуна набагато кращі результати досягаються при одночасному використанні двох регуляторів ковзного режиму, один з яких керує частотою обертання двигуна, а інший - моментом, що крутить, генератора

    Efficiency enhancement strategy implementation in hybrid electric vehicles using sliding mode control

    Get PDF
    Introduction. Hybrid electric vehicles are offering the most economically viable choices in today's automotive industry, providing best solutions for a very high fuel economy and low rate of emissions. The rapid progress and development of this industry has prompted progress of human beings from primitive level to a very high industrial society where mobility used to be a fundamental need. However, the use of large number of automobiles is causing serious damage to our environment and human life. At present most of the vehicles are relying on burning of hydrocarbons in order to achieve power of propulsion to drive wheels. Therefore, there is a need to employ clean and efficient vehicles like hybrid electric vehicles. Unfortunately, earlier control strategies of series hybrid electric vehicle fail to include load disturbances during the vehicle operation and some of the variations of the nonlinear parameters (e.g. stator’s leakage inductance, resistance of winding etc.). The novelty of the proposed work is based on designing and implementing two robust sliding mode controllers (SMCs) on series hybrid electric vehicle to improve efficiency in terms of both speed and torque respectively. The basic idea is to let the engine operate only when necessary keeping in view the state of charge of battery. Purpose. In proposed scheme, both performance of engine and generator is being controlled, one sliding mode controllers is controlling engine speed and the other one is controlling generator torque, and results are then compared using 1-SMC and 2-SMC’s. Method. The series hybrid electric vehicle powertrain considered in this work consists of a battery bank and an engine-generator set which is referred to as the auxiliary power unit, traction motor, and power electronic circuits to drive the generator and traction motor. The general strategy is based on the operation of the engine in its optimal efficiency region by considering the battery state of charge. Results .Mathematical models of engine and generator were taken into consideration in order to design sliding mode controllers both for engine speed and generator torque control. Vehicle was being tested on standard cycle. Results proved that, instead of using only one controller for engine speed, much better results are achieved by simultaneously using two sliding mode controllers, one controlling engine speed and other controlling generator torque.Вступ. Гібридні електромобілі пропонують найбільш економічно доцільний вибір у сучасній автомобільній промисловості, надаючи найкращі рішення для дуже високої економії палива та низького рівня викидів. Швидкий прогрес та розвиток цієї галузі підштовхнули людей до переходу від примітивного рівня до дуже високого індустріального суспільства, де мобільність була фундаментальною потребою. Однак використання великої кількості автомобілів завдає серйозної шкоди довкіллю та життю людини. Нині більшість транспортних засобів покладаються на спалювання вуглеводнів задля досягнення потужності руху на провідних колесах. Отже, необхідно використовувати чисті та ефективні транспортні засоби, такі як гібридні електромобілі. На жаль, раніше стратегії управління серійним гібридним електромобілем не враховували збурення навантаження під час роботи автомобіля і деякі зміни нелінійних параметрів (наприклад, індуктивність розсіювання статора, опір обмотки і т.д.). Новизна запропонованої роботи заснована на розробці та реалізації двох надійних контролерів ковзного режиму (SMC) на серійному гібридному електромобілі для підвищення ефективності з точки зору швидкості та моменту, що крутить, відповідно. Основна ідея полягає в тому, щоб дозволити двигуну працювати тільки тоді, коли це необхідно з урахуванням стану заряду акумулятора. Мета. У пропонованій схемі контролюються характеристики як двигуна, так і генератора, один контролер ковзного режиму регулює швидкість двигуна, а інший регулює крутний момент генератора, а потім результати порівнюються з використанням режимів 1-SMC і 2-SMC. Метод. Силова установка серійного гібридного електромобіля, що розглядається в даній роботі, складається з акумуляторної батареї та установки двигун-генератор, яка називається допоміжною силовою установкою, тяговим двигуном та силовими електронними схемами для приводу генератора та тягового двигуна. Загальна стратегія заснована на роботі двигуна в області оптимальної ефективності з урахуванням рівня заряду акумуляторної батареї. Результати. Математичні моделі двигуна та генератора були прийняті до уваги для розробки регуляторів ковзного режиму як для керування частотою обертання двигуна, так і для керування крутним моментом генератора. Транспортний засіб випробовувався за стандартним циклом. Результати показали, що замість використання лише одного регулятора частоти обертання двигуна набагато кращі результати досягаються при одночасному використанні двох регуляторів ковзного режиму, один з яких керує частотою обертання двигуна, а інший - моментом, що крутить, генератора
    corecore