16,476 research outputs found

    A weather forecast model accuracy analysis and ECMWF enhancement proposal by neural network

    Get PDF
    This paper presents a neural network approach for weather forecast improvement. Predicted parameters, such as air temperature or precipitation, play a crucial role not only in the transportation sector but they also influence people's everyday activities. Numerical weather models require real measured data for the correct forecast run. This data is obtained from automatic weather stations by intelligent sensors. Sensor data collection and its processing is a necessity for finding the optimal weather conditions estimation. The European Centre for Medium-Range Weather Forecasts (ECMWF) model serves as the main base for medium-range predictions among the European countries. This model is capable of providing forecast up to 10 days with horizontal resolution of 9 km. Although ECMWF is currently the global weather system with the highest horizontal resolution, this resolution is still two times worse than the one offered by limited area (regional) numeric models (e.g., ALADIN that is used in many European and north African countries). They use global forecasting model and sensor-based weather monitoring network as the input parameters (global atmospheric situation at regional model geographic boundaries, description of atmospheric condition in numerical form), and because the analysed area is much smaller (typically one country), computing power allows them to use even higher resolution for key meteorological parameters prediction. However, the forecast data obtained from regional models are available only for a specific country, and end-users cannot find them all in one place. Furthermore, not all members provide open access to these data. Since the ECMWF model is commercial, several web services offer it free of charge. Additionally, because this model delivers forecast prediction for the whole of Europe (and for the whole world, too), this attitude is more user-friendly and attractive for potential customers. Therefore, the proposed novel hybrid method based on machine learning is capable of increasing ECMWF forecast outputs accuracy to the same level as limited area models provide, and it can deliver a more accurate forecast in real-time.Web of Science1923art. no. 514

    Road pollution estimation using static cameras and neural networks

    Get PDF
    Este artículo presenta una metodología para estimar la contaminación en carreteras mediante el análisis de secuencias de video de tráfico. El objetivo es aprovechar la gran red de cámaras IP existente en el sistema de carreteras de cualquier estado o país para estimar la contaminación en cada área. Esta propuesta utiliza redes neuronales de aprendizaje profundo para la detección de objetos, y un modelo de estimación de contaminación basado en la frecuencia de vehículos y su velocidad. Los experimentos muestran prometedores resultados que sugieren que el sistema se puede usar en solitario o combinado con los sistemas existentes para medir la contaminación en carreteras.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Waste Management Using a Multilevel Distributed System and Data Mining

    Get PDF
    Administration is conducted through the control of events and management of problems in the territory. Economical growth and nowadays technologies lead to difficult problems related to environmental protection against pollution and to people safety against various direct threats from air soil, food. In this respect, an increasing importance get the collection of information and its processing and interpretation just to understand and discover threats and potential disturbance of the environment and health. The paper proposes a multilevel system for the administrative bodies involved in environment matters at local regional and national levels, which may collect and scrutiny data on waste generation, spread and reuse/elimination, and provide sound instruments to assist decision makers of the corresponding levels, using Data Mining and Business Intelligence.Management, environment, information system, business intelligence, data mining.

    MODELING NITROGEN LOADING RATE TO DELAWARE LAKES USING REGRESSION AND NEURAL NETWORKS

    Get PDF
    The objective of this research was to predict the nitrogen-loading rate to Delaware lakes and streams using regression analysis and neural networks. Both models relate nitrogen-loading rate to cropland, soil type and presence of broiler production. Dummy variables were used to represent soil type and the presence of broiler production at a watershed. Data collected by Ritter & Harris (1984) was used in this research. To build the regression model Statistical Analysis System (SAS) was used. NeuroShell Easy Predictor, neural network software was used to develop the neural network model. Model adequacy was established by statistical techniques. A comparison of the regression and neural network models showed that both perform equally well. Cropland was the only significant variable that had any influence on the nitrogen-loading rate according to both the models.Environmental Economics and Policy,

    The role of earth observation in an integrated deprived area mapping “system” for low-to-middle income countries

    Get PDF
    Urbanization in the global South has been accompanied by the proliferation of vast informal and marginalized urban areas that lack access to essential services and infrastructure. UN-Habitat estimates that close to a billion people currently live in these deprived and informal urban settlements, generally grouped under the term of urban slums. Two major knowledge gaps undermine the efforts to monitor progress towards the corresponding sustainable development goal (i.e., SDG 11—Sustainable Cities and Communities). First, the data available for cities worldwide is patchy and insufficient to differentiate between the diversity of urban areas with respect to their access to essential services and their specific infrastructure needs. Second, existing approaches used to map deprived areas (i.e., aggregated household data, Earth observation (EO), and community-driven data collection) are mostly siloed, and, individually, they often lack transferability and scalability and fail to include the opinions of different interest groups. In particular, EO-based-deprived area mapping approaches are mostly top-down, with very little attention given to ground information and interaction with urban communities and stakeholders. Existing top-down methods should be complemented with bottom-up approaches to produce routinely updated, accurate, and timely deprived area maps. In this review, we first assess the strengths and limitations of existing deprived area mapping methods. We then propose an Integrated Deprived Area Mapping System (IDeAMapS) framework that leverages the strengths of EO- and community-based approaches. The proposed framework offers a way forward to map deprived areas globally, routinely, and with maximum accuracy to support SDG 11 monitoring and the needs of different interest groups

    Environmental risk assessment in the mediterranean region using artificial neural networks

    Get PDF
    Los mapas auto-organizados han demostrado ser una herramienta apropiada para la clasificación y visualización de grupos de datos complejos. Redes neuronales, como los mapas auto-organizados (SOM) o las redes difusas ARTMAP (FAM), se utilizan en este estudio para evaluar el impacto medioambiental acumulativo en diferentes medios (aguas subterráneas, aire y salud humana). Los SOMs también se utilizan para generar mapas de concentraciones de contaminantes en aguas subterráneas simulando las técnicas geostadísticas de interpolación como kriging y cokriging. Para evaluar la confiabilidad de las metodologías desarrolladas en esta tesis, se utilizan procedimientos de referencia como puntos de comparación: la metodología DRASTIC para el estudio de vulnerabilidad en aguas subterráneas y el método de interpolación espacio-temporal conocido como Bayesian Maximum Entropy (BME) para el análisis de calidad del aire. Esta tesis contribuye a demostrar las capacidades de las redes neuronales en el desarrollo de nuevas metodologías y modelos que explícitamente permiten evaluar las dimensiones temporales y espaciales de riesgos acumulativos
    corecore