24,744 research outputs found

    Genetic algorithms with DNN-based trainable crossover as an example of partial specialization of general search

    Full text link
    Universal induction relies on some general search procedure that is doomed to be inefficient. One possibility to achieve both generality and efficiency is to specialize this procedure w.r.t. any given narrow task. However, complete specialization that implies direct mapping from the task parameters to solutions (discriminative models) without search is not always possible. In this paper, partial specialization of general search is considered in the form of genetic algorithms (GAs) with a specialized crossover operator. We perform a feasibility study of this idea implementing such an operator in the form of a deep feedforward neural network. GAs with trainable crossover operators are compared with the result of complete specialization, which is also represented as a deep neural network. Experimental results show that specialized GAs can be more efficient than both general GAs and discriminative models.Comment: AGI 2017 procedding, The final publication is available at link.springer.co

    Solution of Linear Programming Problems using a Neural Network with Non-Linear Feedback

    Get PDF
    This paper presents a recurrent neural circuit for solving linear programming problems. The objective is to minimize a linear cost function subject to linear constraints. The proposed circuit employs non-linear feedback, in the form of unipolar comparators, to introduce transcendental terms in the energy function ensuring fast convergence to the solution. The proof of validity of the energy function is also provided. The hardware complexity of the proposed circuit compares favorably with other proposed circuits for the same task. PSPICE simulation results are presented for a chosen optimization problem and are found to agree with the algebraic solution. Hardware test results for a 2–variable problem further serve to strengthen the proposed theory

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page
    corecore