This paper presents a recurrent neural circuit for solving linear programming problems. The objective is to minimize a linear cost function subject to linear constraints. The proposed circuit employs non-linear feedback, in the form of unipolar comparators, to introduce transcendental terms in the energy function ensuring fast convergence to the solution. The proof of validity of the energy function is also provided. The hardware complexity of the proposed circuit compares favorably with other proposed circuits for the same task. PSPICE simulation results are presented for a chosen optimization problem and are found to agree with the algebraic solution. Hardware test results for a 2–variable problem further serve to strengthen the proposed theory