1,004 research outputs found

    Review on Advanced Control Technique in Batch Polymerization Reactor of Styrene

    Get PDF
    Polymerization process have a nonlinear nature since it exhibits a dynamic behavior throughout the process. Therefore, accurate modeling and control technique for the nonlinear process needs to be obtained

    Application of AI in Chemical Engineering

    Get PDF
    A major shortcoming of traditional strategies is the fact that solving chemical engineering problems due to the highly nonlinear behavior of chemical processes is often impossible or very difficult. Today, artificial intelligence (AI) techniques are becoming useful due to simple implementation, easy designing, generality, robustness and flexibility. The AI includes various branches, namely, artificial neural network, fuzzy logic, genetic algorithm, expert systems and hybrid systems. They have been widely used in various applications of the chemical engineering field including modeling, process control, classification, fault detection and diagnosis. In this chapter, the capabilities of AI are investigated in various chemical engineering fields

    Neural network applications in polymerization processes

    Get PDF
    Neural networks currently play a major role in the modeling, control and optimization of polymerization processes and in polymer resin development. This paper is a brief tutorial on simple and practical procedures that can help in selecting and training neural networks and addresses complex cases where the application of neural networks has been successful in the field of polymerization.401418Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Dynamic process modeling and hybrid intelligent control of ethylene copolymerization in gas phase catalytic fluidized bed reactors

    Get PDF
    BACKGROUND: Polyethylene (PE) is the most extensively consumed plastic in the world, and gas phase‐based processes are widely used for its production owing to their flexibility. The sole type of reactor that can produce PE in the gas phase is the fluidized bed reactor (FBR), and effective modeling and control of FBRs are of great importance for design, scale‐up and simulation studies. This paper discusses these issues and suggests a novel advanced control structure for these systems. RESULTS: A unified process modeling and control approach is introduced for ethylene copolymerization in FBRs. The results show that our previously developed two‐phase model is well confirmed using real industrial data and is exact enough to further develop different control strategies. It is also shown that, owing to high system nonlinearities, conventional controllers are not suitable for this system, so advanced controllers are needed. Melt flow index (MFI) and reactor temperature are chosen as vital variables, and intelligent controllers were able to sufficiently control them. Performance indicators show that advanced controllers have a superior performance in comparison with conventional controllers. CONCLUSION: Based on control performance indicators, the adaptive neuro‐fuzzy inference system (ANFIS) controller for MFI control and the hybrid ANFIS–proportional‐integral‐differential (PID) controller for temperature control perform better regarding disturbance rejection and setpoint tracking in comparison with conventional controllers. © 2019 Society of Chemical Industr

    Model Predictive Control Strategy for Industrial Process

    Full text link
    Model Predictive control (MPC) is shown to be particularly effective for the self-tuning control of industrial processes. It makes use of a truncated step response of the process and provides a simple explicit solution in the absence of constraints. Here we use Dynamic Matrix Control (DMC). DMC uses a set of basis functions to form the future control sequence. The industrial success of DMC has mainly come from its application to high dimension multivariable system without constraints. Here main objective of DMC controller is to drive the output as close to the set point as possible in a least square sense with the possibility of the inclusion of a penalty term on the input moves. Therefore, the manipulated variables are selected to minimize a quadratic objective that can consider the minimization of future error. Implementation of the internal model control is also shown here. The control strategy is to determine the best model for the current operating condition and activate the corresponding controller. Internal model control (IMC) continues to be a powerful strategy in complex, industrial processes control application. This structure provides a practical tool to influence dynamic performance and robustness to modeling error transparently in the design. It is particularly appropriate for the design and implementation of controllers for linear open loop stable system. A simulated example of the control of nonlinear chemical process is shown. The nonlinear chemical process study in this work is the exothermic stirred tank reactors system with the first order reaction. The reaction is assumed to be perfectly mixed and no heat loss occurs within the system. Using internal model control and dynamic matrix control has simulated control of the total process in CSTR. Simulation example provided to show the effectiveness of the proposed control strategy

    Control of solution MMA polymerization in a CSTR

    Get PDF

    Evaluation of biomass as bio-additive in 3D printing

    Get PDF
    The petrol-based polymer has been widely applied in current daily life. The end-of-life of polymeric products has drawn environmental concerns. One of the solutions to such issues is to use bio-renewable materials to replace or reduce the use of petrol-based materials. Lignocellulosic materials are one of the potential candidates. Along with the features of 3D printing and the unique properties of biomass, 3D-printed biomass-based materials could be promising in preparing sustainable alternatives. In this dissertation, lignin and other biomass were applied to various 3D printing techniques for sustainable composites. Stereolithography (SLA) was first used, and the kraft softwood lignin was incorporated into the commercial clear resin. The printed composites showed a reinforcing effect after fully curing. Inspired by such a reinforcement, wood flour, where lignin is isolated, was also applied as a biomass filler. The 3D-printed wood flour composites showed a unique stress-whitening phenomenon, which displayed a potential for stress indicators. To further improve the loading amount of lignin in 3D printing, fused depositional modeling (FDM) was also involved. To improve the interfacial interaction between lignin and the polymer matrix, organosolv hardwood lignin was demethylated with improved phenolic hydroxyl groups. Enriched phenolic hydroxyl structures improved the interfacial interaction, thereby promoting tensile performance. A similar demethylation was executed on the softwood lignin. Due to the inherent difference in the functional groups, the obtained enriched polyphenol structures showed different but positive influences on tensile properties. In addition, the enhanced phenolic structures also showed great anti-aging performance, which brings more functions to the resultant composites, making lignin/polymer composites a promising functional and renewable material for the sustainable materials world

    Advanced Process Control

    Get PDF
    The debutanizer column is an important unit operation in petroleum refining industries. The top product is liquefied petroleum gas and the bottom product is light naphtha. This system is difficult to handle. This is because due to its non-linear behavior, multivariable interaction and existence of numerous constraints on its manipulated variable. Neural network techniques have been increasingly used for a wide variety of applications. In this book, equation-based multi-input multi-output (MIMO) neural network has been proposed for multivariable control strategy to control the top and bottom temperatures of the column. The manipulated variables for column are reflux and reboiler flow rates, respectively. This neural network model are based on multivariable equation, instead of the normal black box structure. It has the advantage of being robust in nature while being easier to interpret in terms of its input-output variables. It has been employed for set point changes and disturbance changes. The results show that the neural network equation-based model for direct inverse and internal model approach performs better than the conventional proportional, integral and derivative (PID) controller
    corecore