
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 8

Advanced Process Control

Nasser Mohamed Ramli

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70704

Abstract

The debutanizer column is an important unit operation in petroleum refining industries.
The top product is liquefied petroleum gas and the bottom product is light naphtha. This
system is difficult to handle. This is because due to its non-linear behavior, multivariable
interaction and existence of numerous constraints on its manipulated variable. Neural
network techniques have been increasingly used for a wide variety of applications. In
this book, equation-based multi-input multi-output (MIMO) neural network has been
proposed for multivariable control strategy to control the top and bottom temperatures
of the column. The manipulated variables for column are reflux and reboiler flow rates,
respectively. This neural network model are based on multivariable equation, instead of
the normal black box structure. It has the advantage of being robust in nature while
being easier to interpret in terms of its input-output variables. It has been employed for
set point changes and disturbance changes. The results show that the neural network
equation-based model for direct inverse and internal model approach performs better
than the conventional proportional, integral and derivative (PID) controller.

Keywords: distillation column, artificial neural network, equation-based method,
multivariable process control

1. Introduction

Controlling two compositions require more complex instrumentation. The top and bottom

composition loops interact and dynamic stability problems can arise. Holding heat input or

reflux constant simplifies the control system and avoid interaction problem. Composition of the

column are based on online measurement performance variable directly related to composition.

The common measurement is temperature. However, temperature-composition relationship is

influenced by column pressure control. If temperature is used as a control variable, the sensing

element is usually not placed directly in the product stream. Often, product streams are relatively

pure so that boiling point is relatively insensitive to small changes in concentration. Instead of
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investigating the steady state column temperature profile, the sensing element should be located

at the tray from the end, at a point where the gradient is large. At this point, a fixed change in

product composition causes a larger temperature change. Controlling the temperature gives

tight control on product composition despite wide variations in other factors such as internal

reflux ratio [1]. The variables that need to be controlled are the top and bottom temperatures and

the variables that need to be estimated is top and bottom compositions. Application of composi-

tion control to both ends of a debutanizer column has been considered with generally little

success. The difficulty results because two individual control loops interact. The top loop controls

the heavy key in the overhead stream and the bottom loop controls the light key in the bottom

stream. Some disturbances cause the light key concentration in the bottom stream to increase.

The lower loop acts to reduce the concentration by adding heat. This action lowers the light key

concentration sends more heavy key up the column. If both loops are tuned tightly, the column

becomes unstable, and the system can be stable by detuning one loop. Processes with only one

output being controlled by a single manipulated variable are classified as single-input single-

output (SISO) system. Many processes do not conform to such a simple control configuration. In

the process industries, any unit operation cannot do so with only a single loop. In fact each unit

operation requires control over at least two variables, product rate and product quality. Systems

with more than one control loop are known as multi-input multi-output (MIMO) or multivari-

able control system. There will therefore be a composition control loop and temperature control

loop. Minimization of energy usage is achievable if the compositions of both the top and bottom

product streams are controlled to their design values, which are called dual composition control

[1]. A common scheme to overcome this problem is to use reflux flow to control top product

composition while the heat input is used to control bottom product composition. Loop interac-

tion may also arise as a consequence of process design, typically the use of recycle streams for

heat recovery purposes. Changes in the feed temperature will in turn influence bottom product

composition. It is clear that interaction exists between the composition and pre heat control

loops. The simple approach in dealing with loop interactions is by the design of multivariable

control strategies. This is to eliminate interactions between control loops [1]. The outline in the

book for this chapter is the multivariable controller used consists of neural network equation

based for the forward model and inverse model. The multivariable control system is to control

the top and bottom temperature and estimating the top and bottom composition. The use of the

neural network-based controller compared to conventional PID controllers is because all the

process variables surrounding the debutanizer column are non-linear in nature and PID could

not handle non-linearities.

The use of neural network models and controllers from available literature involve the use of

black box models. This method is non-versatile and non-robust in nature and difficult to

handle due to the relationship between the inputs and outputs of the system, which are

important for industry. In this book, the main contribution and novelty, the proposed is to use

an equation based inverse neural network models in a multi-input multi-output (MIMO)

system to control the top and bottom temperature of the column simultaneously. The control

structure is by using the direct inverse control (DIC) and internal model control (IMC)

approach. Neural network equation-based models have also been used for the column to

estimate the compositions as estimator. The other contribution of this book is that it utilizes a
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mixture of online close loop and open loop data that are available from industry for training

the neural network models.

2. Application of artificial neural network

Artificial neural network (ANN) is a reliable and popular tool when dealing with problems

involving prediction of variables in engineering at the present age. Details of the ANN application

can be found in literature [2–7]. Themain advantage of ANN is in its ability to estimate an arbitrary

function mechanism that learns from data that is input to the network. However, it is not an easy

step to apply neural network for control purposes. Good understanding of the underlying theory is

essential and important. The first important criteria are the model selection which depends on the

data representation and its application. A significant number of experiments are required for

selecting and tuning an algorithm for training. The other criteria that are involve for training is

robustness analysis. For the model, cost function and learning algorithm are important to be

selected appropriately, so that the ANN final result can be robust. Neural network has been

extensively used for a wide of chemical engineering applications which involve identification,

control and prediction. Work has been done of various applications using neural network for

control simulation and online implementation for chemical processes can be seen in literature [2].

As for today feed forward neural network (FANN) architecture is the widely used neural

network architecture. It has a global approximation model for a multi-input multi-output

function for fitting a low-order polynomial through a set of data. Various collection of different

learning and network algorithms are available [8, 9] but the network is important to be selected

as the basic building block. The formula describing the networks in mathematical form takes

the following equation

y ¼ Fi
X

nk

j¼1

W i, j:f j

X

nϕ

l¼1

wj, lϕl þ wj:0

 !

þW i:0

2

4

3

5 (1)

where ϕ is the external input, nϕ is the number of input in an input layer, nk is the number of

hidden neurons in a hidden layer,W and w are the weights. The activation functions for hidden

layer and output layer are f and F, respectively.

In order to model the system dynamically using recurrent neural network (ELMAN) or neural

network with ARX, in this book neural network with non-linear autoregressive network with

exogenous inputs (NARX) structure which are used to model the dynamic system based on

time-series data gives optimum result. The equations describing the NARX structure can be

expressed as follows

Y ¼ f Y1;Y2;…;Yn; U1;U2;…;Umð Þ (2)

where Y = [y1(k + 1) y2(k + 1)]
T; Y1 = [y1(k), y1(k� 1), … , y1(k� ny1)] , … ,Yn = [yn(k), yn(k� 1), … ,

yn(k� nyn)]; U1 = [u1(k),u1(k� 1), … ,u1(k� nu1)] , … ,Um = [um(k),um(k� 1), …, um(k� num)] and
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m is number of input variables n is number of output variables and ny and nu are the history

length for output variables and input variables, respectively. The model was trained, validated

and test for different number of neurons together with the ny and nu values. The time lags in the

input and manipulated variables, that is, ny and nu are chosen based on trial and error and the

values are give to be ny = 3 and nu = 2, respectively, on the combination that gives the lowest

RMSE values with the least lag time. It is observed that the lowest RMSE for the top and bottom

temperature during training, validation and test occurs at same configuration. This is also based

on experience from various literatures on dynamic modeling using NN-based models for non-

linear chemical processes [10, 11].

However, the applications used previously have neural network utilized as a black box model,

which has its own disadvantages. This limitation using black box model is due to robustness.

In this book, the proper choice of the activation function and the neural network model can be

represented by equation in form of algebraic. The equation used to approximate the output

from the neural network model can estimate for a two layer network as follows

y ¼ f 2 LW2,1f 1 IW1,1pþ b1
� �

þ b2
� �

(3)

where IW1 , 1 = weight at layer 1; b1 = bias value at layer 1; LW2 , 1 = weight at layer 2 (hidden

layer); b2 = bias value at layer 2; p = inputs to the neural network; y = outputs from the neural

network; f = activation function at layer i.

By multiplying the matrix input layer and the biases value with the matrix hidden layer, the f 1

and f 2 are simplified. By choosing the activation function to be linear, the equation can be

simplified in the form of

y ¼
y1
y2

� �

¼ LW2,1 IW1,1pþ b1
� �

þ b2
� �

(4)

where the matrix definition LW2,1, IW1,1, b1 and b2are given as

IW1 , 1 = weight at layer 1 (input layer); b1 = bias value at layer 1; LW2 , 1 = weight at layer 2

(hidden layer); b2 = layer 2 bias value.

These representations can also be used in this book to estimate the top and bottom composi-

tions. While the multivariable controllers are used to control the top and bottom temperatures

simultaneously that will be shown in the next sections.

3. Control strategies neural network

There are two types of control strategies which are direct inverse control (DIC) and internal

model control (IMC) methods are to be implemented for neural networks, which is the inverse

model-based control schemes. These methods are described briefly in Figures 1 and 2.
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Figure 1. Control loop of neural network-based direct inverse model control (DIC).

Figure 2. Control loop of neural network-based internal model controller (IMC).
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3.1. Method 1: direct inverse control (DIC)

This control strategy which is placed in series with neural network inverse models acts as a

controllers. In this scheme, the outputs will predict the system input, while the desired set

point acts as the output which is then fed to the network with the past plant inputs. In this

case, the appropriate control parameter for the desired target will be predicted based on its

input. Neural networks acting as the controller has to learn to supply at its input. As shown in

Figure 1, the inverse model is then utilized in the control strategy by cascading it with the

controlled system or plant. This method depends on the accuracy of the inverse model. The

controlled variables used in this method are the top and bottom temperatures. The manipu-

lated variables are the reflux and reboiler flow rate for the DIC method.

3.2. Method 2: internal model control (IMC)

Neural network-based IMC method highlighted in this book are presented in both inverse and

forward model control scheme. The dynamic forward model of the process represents it is

placed in parallel within the system. This is important to cater for mismatches of the model

during implementation [12]. On the other hand, the inverse model could also be used as a

controller. In this scheme, the error between the plant output and the neural network forward

model is then subtracted from the set point before being fed into the inverse model, as shown

in Figure 2. With this detection feature, the internal model-based controller can be used to

move forward the controlled parameter to the desired set point even when disturbances and

noise are present. The optimum performance for controller performance is the IMC method.

The error produced by the process model could be minimized and compensated by the error

produced by the neural network forward process model [12]. The controlled and manipulated

variables used in the IMC method are similar to the DIC method.

3.3. Neural networks models

Before applying the inverse model neural network control strategies for the debutanizer

column, it is crucial to discuss the development and configuration of the forward and inverse

models. Using neural network architecture and equation-based neural network are important

fundamentals to these model-based control strategies as necessary.

3.3.1. Forward models

The procedure of training a neural network to represent the forward dynamics of a column is

by predicting the outputs using the required inputs. This method is called forward modeling.

The straightforward and good approach is to augment the network inputs data in real forms,

from the model and system being identified [13, 14]. Other fundamental variables under state

can also be fed into the network and considered as inputs. In this method, the network is fed

with the present input, past inputs as well as the past outputs to predict the desired output.

The neural network model is placed in parallel with the system. The error between the system

output and network output are the prediction error which is used as the training signal for the

network. The forward models that have been mentioned previously are used to determine the

inverse model. The forward model which is inversed to get the inverse model is then changed

to the equation based. The equation-based method has been used to replace the black box
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model neural network for IMC and DIC method. The inverse models as controllers are used in

the IMC and DIC methods. The composition forward models are used as a neural network

estimator to predict the top and bottom compositions.

The forward model for temperature is as follows

In this case, p is the input to the neural network temperature given by the vector

mv1 kð Þ mv1 k� 1ð Þ mv2 kð Þ mv2 k� 1ð Þ mv3 kð Þ½

mv3 k� 1ð Þ f kð Þ f k� 1ð Þ Ttop kð Þ Ttop k� 1ð Þ Tbot kð Þ Tbot k� 1ð Þ
�

T (5)

After pruning the neural network structure (simplifying the weights and biases values), p is

given as matrix vector are defined in Eq. (6)

y ¼
T1

T2

" #

¼
�0:16 � 0:14 0:04 � 0:002 � 0:094 � 0:95 1:03 � 0:61 � 0:71 0:81 0:16 � 0:049

0:42 0:07 0:04 0:20 � 0:30 � 0:19 0:12 � 0:28 0:35 � 0:29 � 0:48 0:168

" #

p

þ
�0:28

�0:22

" #

(6)

T1 and T2 is the output neural network top and bottom temperature prediction.

3.3.2. Neural network estimator

The forward model for neural network for composition is composition n-butane used for

control system IMC method is as follows

In this case, p is the input to the neural network composition given by the vector

mv2 kð Þ mv2 k� 1ð Þ mv3 kð Þ mv3 k� 1ð Þ f kð Þ f k� 1ð Þ ptop kð Þ ptop k� 1ð Þ pbot kð Þ pbot k� 1ð Þ
h iT

(7)

After pruning the neural network structure (simplifying the weights and biases values), Eq. (7)

can further be simplified to give the composition Eq. (8)

y1

y2

� �

¼
�0:26 0:15 0:37 0:23 0:38 0:40 � 0:50 0:97 0:12 � 0:31

�0:09 0:006 0:31 � 0:10 0:02 0:02 � 0:42 � 0:12 0:36 � 0:085

� �

pþ
�0:28

�0:21

� �

(8)

y1 and y2 is the output neural network bottom and top composition predictions.

3.3.3. Models for inverse

Inverse models are basically the structure by representing the inverse of the network dynamics

after the completion of training. The methods for inverse models are achieved by switching the

required outputs and inputs. The important manipulated variable that is used for switching
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the inputs of the neural net is the manipulated variable reboiler and reflux. The outputs

predicted are the future predictions of top and bottom temperatures are switched with the

manipulated variables. The sequence of the inputs of the network needs to be maintained. The

training procedure outlined in this book is called inversed modeling. y(k + 1) is the required set

point. The network representation of the inverse is finally given below

u kð Þ ¼ f�1 yp kþ 1ð Þ; yp kð Þ; yp k� 1ð Þ; u kð Þ; u k� 1ð Þ
h i

(9)

where f�1 represents the inverse map of the forward model.

In this case the manipulated variable reboiler and reflux flow rate are the output variable which

are used in inverse model. The one-step ahead prediction of the control output, mv2 (k) and

mv3 (k) is performed inconformity with that of the forward model. The one-step ahead control

action application in the control strategies involving the neural network-based strategies.

The training and validation data set are predicted for inverse model for the networks are

similar to that used for forward modeling. Nevertheless, inverse model will have different

input and output configuration.

The inverse model for temperature is as follows

In this case, p is the input to the neural network inverse temperature given by the vector

mv1 kð Þ mv1 k� 1ð Þ mv2 k� 1ð Þ mv3 k� 1ð Þ f kð Þ f k� 1ð Þ Ttop kþ 1ð Þ Ttop kð ÞTtop k� 1ð Þ
�

Tbot kþ 1ð Þ Tbot kð Þ Tbot k� 1ð Þ�T

(10)

After simplifying the weights and biases values by pruning the neural network structure

Eq. (10) can further be simplified in order to give the inverse temperature below in a form of

equation

Figure 3. Forward and inverse models to control temperature.
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mv2 kð Þ

mv3 kð Þ

" #

¼
�0:16 0:14 0:039 � 0:004 � 0:09 � 0:95 1:03 � 0:61 � 0:72 0:81 0:17 � 0:05

0:42 0:077 0:039 0:20 � 0:30 � 0:19 0:13 � 0:27 0:34 � 0:28 � 0:47 0:16

" #

p

þ
�0:79

�0:008

" #

(11)

mv2(k) and mv3(k) is the manipulated variable reflux and reboiler flow rate, respectively. The

equation is implemented in SIMULINK in MATLAB by having the system with more than one

control loop which are multi-input andmulti-output (MIMO) or multivariable control. Figure 3

shows the forward and inverse model to control temperature.

4. Neural network development

The control strategies used in this work are DIC and IMC method. In order to develop and

analyze the controller performance for the debutanizer column, there are two criteria for

advanced process control which are the set point changes and disturbances changes applied

to the column. The set point changes is the step increases for the temperature and the distur-

bances changes is by introducing a disturbance of the column feed temperature. The perfor-

mance of the composition are used based on using a neural network estimator.

4.1. Set point changes

First the top temperature is increased from 30 to 58�C. The bottom temperature is increased

from 60 to 137�C. The starting point for the top temperature is 30�C and for bottom tempera-

ture is 60�C. This is because the starting point temperature mentioned here is based on the

experience of the engineers to maintain and control that particular temperature. Figures 4 and

5 show the fluctuation of the top and bottom temperature due to set point changes. There are

three types of control strategies implemented for the control strategies which are the IMC, DIC

and PID controller. It can be seen that IMC and DIC show similar trends with small error, no

overshoot and fast settling time and straight goes to the set point. The settling time for top and

bottom temperatures fluctuation is at 200 min. The IMC and DIC method gives the least

fluctuations for the set point changes. The fluctuations during step point changes for the PID

controller does not give good results because it has large overshoot and small decay ratio. The

settling time for PID also shows large value compared to the IMC and DIC methods. The PID

controller also produces some offset when there are changes made for set point changes. This

applies to the top and bottom temperatures, respectively. Table 1 shows the PID tuning for the

column. Table 2 shows the performance of the controller to control the top and bottom

temperature. The results indicate that IMC equation gives the optimum performance as the

Integral absolute error (IAE), Integral square error (ISE) and Integral time weighted error

(ITAE) values is the smallest compared to the result of the controller. Figures 6 and 7 show

the fluctuation of the manipulated variables to control temperature. The neural network would

be able to predict the manipulated variable for reboiler and reflux accurately compared to PID
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Figure 5. Set point bottom temperature.

Figure 4. Set point top temperature.

Parameter Kc Ti Td

Top temperature 0.71 1.41 20

Bottom temperature 1.76 3.25 15

Top composition 137.32 3.26 10

Bottom compositon 87.36 3.26 5

Table 1. PID tuning.
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IMC eq DIC eq PID

IAE top 830.76 912.78 1219.70

IAE bottom 3809 4289 4666

ISE top 2.10E+02 2.23E+02 2.69E+02

ISE bottom 1.21E+02 2.67E+02 3.06E+02

ITAE top 4.25E+02 4.48E+02 1.44E+03

ITAE bottom 1.92E+02 2.16E+02 4.45E+02

Table 2. Controller performance during set point changes.

Figure 6. Manipulated variable temperature neural network.

Figure 7. Manipulated variable temperature PID.
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controller. Therefore the performance of neural network is better. The fluctuations of the

manipulated variable for the reboiler and reflux are very important to see how the controller

calculates the error for a control system. The fluctuations for reboiler and reflux flow rate for

temperature based on PID show similar trends as time progresses. The units for the calculated

IA, ISE and ITAE are dimensionless.

4.2. Disturbances test

Figures 8 and 9 show the fluctuations for the top and bottom temperatures due to

disturbances. The disturbances introduced to the debutanizer column are the feed temper-

ature. Similar trends are observed for DIC and IMC methods for the top and bottom

temperatures because of disturbances. The neural network control performs well com-

pared to PID controller because there is no overshoot, fast settling time and small error.

The PID controller gives unacceptable results as they perform with high overshoot, some

offset and large error. This also applies to the top and bottom temperatures. Table 3

shows the performance of the controller to control the top and bottom temperatures.

Results indicate that IMC equation gives the optimum performance as the values of IAE,

ISE and ITAE are the smallest compared to other controller. Figures 10 and 11 show the

fluctuation of the manipulated variable to control temperature. The neural network would

be able to predict the manipulated variable for reboiler and reflux accurately compared to

PID controller. Therefore the performance of neural network is better. The fluctuation of

the manipulated variable for the reboiler and reflux flow rate is very important in order to

see how the controller calculates the error for a given control system. The fluctuations for

reboiler and reflux flow rate for temperature based on PID shows similar trends as time

progresses.

Figure 8. Disturbances top temperature.
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4.3. Estimator neural network

The neural network estimator used in the IMC and DIC method is to estimate and monitor the

top and bottom compositions. Figures 12 and 13 show the fluctuations for the top and bottom

compositions which are due to set point changes. For the neural network estimator for IMC for

top composition are favorable than DIC method. This is due to the settling time to settle to the

required set point for the composition is fastest. This could conclude that both IMC and DIC

method perform better compared to the conventional PID controller. This is because the error

is small with no overshoot. The results for PID controller are unacceptable because of large

overshoot, large error and longer settling time. For the bottom composition fluctuations, the

IMC and DIC methods show similar trends. Both methods show better fluctuations compared

to PID controller. Figure 14 shows the fluctuation of the manipulated variable for composition.

IMC eq DIC eq PID

IAE top 817.21 836.95 1736.30

IAE bottom 2811.80 2876.00 7891.20

ISE top 6.02E+02 6.63E+02 3.37E+03

ISE bottom 1.14E+02 1.23E+02 1.75E+03

ITAE top 7.78E+02 7.90E+02 1.78E+03

ITAE bottom 1.28E+02 1.30E+02 4.64E+02

Table 3. Controller performance during disturbance changes.

Figure 9. Disturbances bottom temperature.
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Figures 15 and 16 show the fluctuations for the top and bottom compositions due to distur-

bances. For the top composition for neural network controller for IMC and DIC methods, it

could be concluded that the IMC trend shows similar results to the DIC method. The settling

time for the required set point for the composition is similar. Both IMC and DIC methods are

superior in comparison to the conventional PID controller. This is because the error is small

with no overshoot. The results for PID controller are unacceptable that are due to large

overshoot, large error and longer time to settle. For the bottom composition fluctuations, the

Figure 10. Manipulated variable temperature neural network disturbances.

Figure 11. Manipulated variable temperature PID disturbances.
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Figure 12. Neural network estimator for the top composition.

Figure 13. Neural network estimator for the bottom composition.
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IMC and DIC methods show similar trends. Both methods show better fluctuations compared

to PID controller. Figure 17 shows the fluctuation of the manipulated variable for composition

PID which is due to disturbances.

Figure 14. Manipulated variable compositions for PID.

Figure 15. Top composition disturbances.

Advanced Applications for Artificial Neural Networks156



Acknowledgements

The authors would like to acknowledge PETRONAS for providing the required data and

information for the research. I would like to acknowledge University Malaya for providing

the grant for the research (PS107/2010B).

Figure 16. Bottom composition disturbances.

Figure 17. Manipulated variable compositions PID due to disturbances.

Advanced Process Control
http://dx.doi.org/10.5772/intechopen.70704

157



Author details

Nasser Mohamed Ramli

Address all correspondence to: nasser_mramli@utp.edu.my

Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi PETRONAS,

Perak, Malaysia

References

[1] Smith Cecil L. Industrial process control. Proceedings AIChe Continuing Education

Department, American Institute of Chemical Engineers; 1979

[2] Hussain MA. Review of the application of neural networks in chemical process control—

Simulation and online implementation. Artificial Intelligence in Engineering. 1999;13:55-

68. DOI: S0954-1810(98)00011-9

[3] Greaves MA, Mujtaba IM, Barolo M, Trotta A, Hussain MA. Neural network approach to

dynamic optimization of batch distillation application to a middle vessel column. Trans-

actions of the Institution of Chemical Engineers. 2003;81:393-401. DOI: 0263-8762/03

[4] Rahman MS, Rashid MM, Hussain MA. Thermal conductivity prediction of foods by

neural network and fuzzy (ANFIS) modeling techniques. Food and Bioproducts

Processing. 2012;90:333-340. DOI: 10.1016/j.fbp.2011.07.001

[5] Hosen MA, Hussain MA, Mjalli F. Control of polystyrene batch reactors using neural

network based model predictive control (NNMPC): An experimental investigation. Con-

trol Engineering Practice. 2011;19:454-467. DOI: 10.1016/j.conengprac.2011.01.007

[6] Arpornwichanop A, Kittisupakorn P, Hussain MA. Model based control strategies for a

chemical batch reactor with exothermic reactions. Korean Journal of Chemical Engineer-

ing. 2002;19:221-226

[7] Ghasem NM, Sata SA, Hussain MA. Temperature control of a bench scale batch polymer-

ization reactor for polystyrene production. Chemical Engineering Technology. 2007;30:

1193-1202

[8] Norgaad M, Poulsen N, Hansen L. Neural Networks for Modeling and Control of

Dynamic Systems. London: Springer Verlag; 2000. DOI: 10.1002/rnc.585/pdf

[9] Haykin S. Neural Network—A Comprehensive Foundation. New Jersey: Prentice Hall

Inc; 1999. DOI: 10.1017/S0269888998004019

[10] Chen G, McAvoy TJ, Pivoso MJ. A multivariable statistical controller for online quality

improvement. Journal of Process Control. 1998;8:139-149. DOI: 0959-1524/98

Advanced Applications for Artificial Neural Networks158



[11] Ayala HVH, Coelho LS. Cascaded evolutionary algorithm for non-linear system identifi-

cation based on correlation functions and radial basis functions neural networks.

Mechanical System and Signal Processing. 2016;11:378-393. DOI: 10.1016/j.ymssp.2015.

05.022 0888-3270

[12] Mujtaba IM, Aziz N, Hussain MA. Neural network based modeling and control in batch

reactor. Chemical Engineering Research and Design. 2006;84:635-644. DOI: 10.1205/

cherd.05096

[13] Ng CW, Hussain MA. Hybrid neural network prior knolwledge model in temperature

control of a semi batch polymerization process. Chemical Engineering and Processing.

2004;43:559-570. DOI: 10.1016/S0255-2701(03)00109-0

[14] Kittisupakorn P, Thitiyasook P, Hussain MA, Daosud W. Neural network based model

predictive for a steel pickling process. Journal of Process Control. 2009;19:579-590. DOI:

10.1016/j.jprocont.2008.09.003

Advanced Process Control
http://dx.doi.org/10.5772/intechopen.70704

159




