165 research outputs found

    Modeling and Control of Piezoactive Micro and Nano Systems

    Get PDF
    Piezoelectrically-driven (piezoactive) systems such as nanopositioning platforms, scanning probe microscopes, and nanomechanical cantilever probes are advantageous devices enabling molecular-level imaging, manipulation, and characterization in disciplines ranging from materials science to physics and biology. Such emerging applications require precise modeling, control and manipulation of objects, components and subsystems ranging in sizes from few nanometers to micrometers. This dissertation presents a comprehensive modeling and control framework for piezoactive micro and nano systems utilized in various applications. The development of a precise memory-based hysteresis model for feedforward tracking as well as a Lyapunov-based robust-adaptive controller for feedback tracking control of nanopositioning stages are presented first. Although hysteresis is the most degrading factor in feedforward control, it can be effectively compensated through a robust feedback control design. Moreover, an adaptive controller can enhance the performance of closed-loop system that suffers from parametric uncertainties at high-frequency operations. Comparisons with the widely-used PID controller demonstrate the effectiveness of the proposed controller in tracking of high-frequency trajectories. The proposed controller is then implemented in a laser-free Atomic Force Microscopy (AFM) setup for high-speed and low-cost imaging of surfaces with micrometer and nanometer scale variations. It is demonstrated that the developed AFM is able to produce high-quality images at scanning frequencies up to 30 Hz, where a PID controller is unable to present acceptable results. To improve the control performance of piezoactive nanopositioning stages in tracking of time-varying trajectories with frequent stepped discontinuities, which is a common problem in SPM systems, a supervisory switching controller is designed and integrated with the proposed robust adaptive controller. The controller switches between two control modes, one mode tuned for stepped trajectory tracking and the other one tuned for continuous trajectory tracking. Switching conditions and compatibility conditions of the control inputs in switching instances are derived and analyzed. Experimental implementation of the proposed switching controller indicates significant improvements of control performance in tracking of time-varying discontinuous trajectories for which single-mode controllers yield undesirable results. Distributed-parameters modeling and control of rod-type solid-state actuators are then studied to enable accurate tracking control of piezoactive positioning systems in a wide frequency range including several resonant frequencies of system. Using the extended Hamilton\u27s principle, system partial differential equation of motion and its boundary conditions are derived. Standard vibration analysis techniques are utilized to formulate the truncated finite-mode state-space representation of the system. A new state-space controller is then proposed for asymptotic output tracking control of system. Integration of an optimal state-observer and a Lyapunov-based robust controller are presented and discussed to improve the practicability of the proposed framework. Simulation results demonstrate that distributed-parameters modeling and control is inevitable if ultra-high bandwidth tracking is desired. The last part of the dissertation, discusses new developments in modeling and system identification of piezoelectrically-driven Active Probes as advantageous nanomechanical cantilevers in various applications including tapping mode AFM and biomass sensors. Due to the discontinuous cross-section of Active Probes, a general framework is developed and presented for multiple-mode vibration analysis of system. Application in the precise pico-gram scale mass detection is then presented using frequency-shift method. This approach can benefit the characterization of DNA solutions or other biological species for medical applications

    Identification of Hysteresis in Human Meridian Systems Based on NARMAX Model

    Get PDF
    It has been found that the response of acupuncture point on the human meridian line exhibits nonlinear dynamic behavior when excitation of electroacupuncture is implemented on another meridian point. This nonlinear phenomenon is in fact a hysteretic phenomenon. In order to explore the characteristic of human meridian and finally find a way to improve the treatment of diseases via electro-acupuncture method, it is necessary to identify the model to describe the corresponding dynamic hysteretic phenomenon of human meridian systems stimulated by electric-acupuncture. In this paper, an identification method using nonlinear autoregressive and moving average model with exogenous input (NARMAX) is proposed to model the dynamic hysteresis in human meridian. As the hysteresis is a nonlinear system with multivalued mapping, the traditional NARMAX model is unavailable to it directly. Thus, an expanded input space is constructed to transform the multi-valued mapping of the hysteresis to a one-to-one mapping. Then, the identification method using NARMAX model on the constructed expanded input space is developed. Finally, the proposed method is applied to hysteresis modeling for human meridian systems

    HIGH-BANDWIDTH IDENTIFICATION AND COMPENSATION OF HYSTERETIC DYNAMICS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Vibration Control of Large Scale Flexible Structures Using Magnetorheological Dampers

    Get PDF
    Structural vibration control (SVC) of large scale structures using the magnetorheological (MR) dampers are studied. Some key issues, i.e. model reduction, suppression of spillover instability, optimal placement of actuators and sensors, modeling of the MR dampers and their applications in SVC system for large scale structures, are addressed in this work. A new model reduction method minimizing the error of a modal-truncation based reduced order model (ROM) is developed. The proposed method is implemented by using a Genetic Algorithm (GA), and can be efficiently used to find a ROM for a large scale structure. The obtained ROM has a finite H2 norm and therefore can be used for H2 controller design. The mechanism of the spillover instability is studied, and a methodology to suppress the spillover instability in a SVC system is proposed. The suggested method uses pointwise actuators and sensors to construct a controller lying in an orthogonal space spanned by the several selected residual modes, such that the spillover instability caused by these residual modes can be successfully suppressed. A GA based numerical scheme used to find the optimal locations for the sensors and actuators of a SVC system is developed. The spatial H2 norm is used as the optimization index. Because the spatial H2 norm is a comprehensive index in evaluating the dynamics of a distributed system, a SVC system using the sensors and actuators located on the obtained optimal locations is able to achieve a better performance defined on a distributed domain. An improved model of MR dampers is suggested such that the model can maintain the desired hysteresis behavior when noisy data are used. For the simulation purpose, a numerical iteration technique is developed to solve the nonlinear differential equations aroused from a passive control of a structure using the MR dampers. The proposed method can be used to simulate the response of a large scale structural system with the MR dampers. The methods developed in this work are finally verified using an industrial roof structure. A passive and semi-active SVC systems are designed to attenuate the wind-induced structural vibration inside a critical area on the roof. The performances of the both SVC systems are analyzed and compared. Simulation results show that the SVC systems using the MR dampers have great potentials in reducing the structural vibration of the roof structure

    PID Control of Systems with Hysteresis

    Get PDF
    Hysteresis is exhibited by many physical systems. Smart materials such as piezoelectrics, magnetostrictives and shape memory alloys possess useful properties, especially in the field of micropositioning, but the control of these systems is difficult due to the presence of hysteresis. An accurate model is required to predict the behaviour of these systems so that they can be controlled. Several hysteresis models including the backlash, elastic-plastic and Preisach operators are discussed in detail. Several other models are mentioned. Other control methods for this problem are discussed in the form of a literature review. The focus of this thesis is on the PID control of hysteretic systems. In particular, two systems experiencing hysteresis in their controllers are examined. The hysteresis in each system is described by different sets of assumptions. These assumptions are compared and found to be very similar. In the first system, a PI controller is used to track a reference signal. In the second, a PID controller is used to control a second-order system. The stability and tracking of both systems are discussed. An extension is made to the first system to include the dynamics of a first-order system. The results of the second system are verified to hold for a general first-order system. Simulations were performed with the extension to a first-order system using different hysteresis models

    Design of a shape memory alloy actuator for soft wearable robots

    Get PDF
    Soft robotics represents a paradigm shift in the design of conventional robots; while the latter are designed as monolithic structures, made of rigid materials and normally composed of several stiff joints, the design of soft robots is based on the use of deformable materials such as polymers, fluids or gels, resulting in a biomimetic design that replicates the behavior of organic tissues. The introduction of this design philosophy into the field of wearable robots has transformed them from rigid and cumbersome devices into something we could call exo-suits or exo-musculatures: motorized, lightweight and comfortable clothing-like devices. If one thinks of the ideal soft wearable robot (exoskeleton) as a piece of clothing in which the actuation system is fully integrated into its fabrics, we consider that that existing technologies currently used in the design of these devices do not fully satisfy this premise. Ultimately, these actuation systems are based on conventional technologies such as DC motors or pneumatic actuators, which due to their volume and weight, prevent a seamless integration into the structure of the soft exoskeleton. The aim of this thesis is, therefore, to design of an actuator that represents an alternative to the technologies currently used in the field of soft wearable robotics, after having determined the need for an actuator for soft exoskeletons that is compact, flexible and lightweight, while also being able to produce the force required to move the limbs of a human user. Since conventional actuation technologies do not allow the design of an actuator with the required characteristics, the proposed actuator design has been based on so-called emerging actuation technologies, more specifically, on shape memory alloys (SMA). The mechanical design of the actuator is based on the Bowden transmission system. The SMA wire used as the transducer of the actuator has been routed into a flexible sheath, which, in addition to being easily adaptable to the user's body, increases the actuation bandwidth by reducing the cooling time of the SMA element by 30 %. At its nominal operating regime, the actuator provides an output displacement of 24 mm and generates a force of 64 N. Along with the actuator, a thermomechanical model of its SMA transducer has been developed to simulate its complex behavior. The developed model is a useful tool in the design process of future SMA-based applications, accelerating development ix time and reducing costs. The model shows very few discrepancies with respect to the behavior of a real wire. In addition, the model simulates characteristic phenomena of these alloys such as thermal hysteresis, including internal hysteresis loops and returnpoint memory, the dependence between transformation temperatures and applied force, or the effects of latent heat of transformation on the wire heating and cooling processes. To control the actuator, the use of a non-linear control technique called four-term bilinear proportional-integral-derivative controller (BPID) is proposed. The BPID controller compensates the non-linear behavior of the actuator caused by the thermal hysteresis of the SMA. Compared to the operation of two other implemented controllers, the BPID controller offers a very stable and robust performance, minimizing steady-state errors and without the appearance of limit cycles or other effects associated with the control of these alloys. To demonstrate that the proposed actuator together with the BPID controller are a valid solution for implementing the actuation system of a soft exoskeleton, both developments have been integrated into a real soft hand exoskeleton, designed to provide force assistance to astronauts. In this case, in addition to using the BPID controller to control the position of the actuators, it has been applied to the control of the assistive force provided by the exoskeleton. Through a simple mechanical multiplication mechanism, the actuator generates a linear displacement of 54 mm and a force of 31 N, thus fulfilling the design requirements imposed by the application of the exoskeleton. Regarding the control of the device, the BPID controller is a valid control technique to control both the position and the force of a soft exoskeleton using an actuation system based on the actuator proposed in this thesis.La robótica flexible (soft robotics) ha supuesto un cambio de paradigma en el diseño de robots convencionales; mientras que estos consisten en estructuras monolíticas, hechas de materiales duros y normalmente compuestas de varias articulaciones rígidas, el diseño de los robots flexibles se basa en el uso de materiales deformables como polímeros, fluidos o geles, resultando en un diseño biomimético que replica el comportamiento de los tejidos orgánicos. La introducción de esta filosofía de diseño en el campo de los robots vestibles (wearable robots) ha hecho que estos pasen de ser dispositivos rígidos y pesados a ser algo que podríamos llamar exo-trajes o exo-musculaturas: prendas de vestir motorizadas, ligeras y cómodas. Si se piensa en el robot vestible (exoesqueleto) flexible ideal como una prenda de vestir en la que el sistema de actuación está totalmente integrado en sus tejidos, consideramos que las tecnologías existentes que se utilizan actualmente en el diseño de estos dispositivos no satisfacen plenamente esta premisa. En última instancia, estos sistemas de actuaci on se basan en tecnologías convencionales como los motores de corriente continua o los actuadores neumáticos, que debido a su volumen y peso, hacen imposible una integraci on completa en la estructura del exoesqueleto flexible. El objetivo de esta tesis es, por tanto, el diseño de un actuador que suponga una alternativa a las tecnologias actualmente utilizadas en el campo de los exoesqueletos flexibles, tras haber determinado la necesidad de un actuador para estos dispositivos que sea compacto, flexible y ligero, y que al mismo tiempo sea capaz de producir la fuerza necesaria para mover las extremidades de un usuario humano. Dado que las tecnologías de actuación convencionales no permiten diseñar un actuador de las características necesarias, se ha optado por basar el diseño del actuador propuesto en las llamadas tecnologías de actuación emergentes, en concreto, en las aleaciones con memoria de forma (SMA). El diseño mecánico del actuador está basado en el sistema de transmisión Bowden. El hilo de SMA usado como transductor del actuador se ha introducido en una funda flexible que, además de adaptarse facilmente al cuerpo del usuario, aumenta el ancho de banda de actuación al reducir un 30 % el tiempo de enfriamiento del elemento SMA. En su régimen nominal de operaci on, el actuador proporciona un desplazamiento de salida de 24 mm y genera una fuerza de 64 N. Además del actuador, se ha desarrollado un modelo termomecánico de su transductor SMA que permite simular su complejo comportamiento. El modelo desarrollado es una herramienta útil en el proceso de diseño de futuras aplicaciones basadas en SMA, acelerando el tiempo de desarrollo y reduciendo costes. El modelo muestra muy pocas discrepancias con respecto al comportamiento de un hilo real. Además, es capaz de simular fenómenos característicos de estas aleaciones como la histéresis térmica, incluyendo los bucles internos de histéresis y la memoria de puntos de retorno (return-point memory), la dependencia entre las temperaturas de transformacion y la fuerza aplicada, o los efectos del calor latente de transformación en el calentamiento y el enfriamiento del hilo. Para controlar el actuador, se propone el uso de una t ecnica de control no lineal llamada controlador proporcional-integral-derivativo bilineal de cuatro términos (BPID). El controlador BPID compensa el comportamiento no lineal del actuador causado por la histéresis térmica del SMA. Comparado con el funcionamiento de otros dos controladores implementados, el controlador BPID ofrece un rendimiento muy estable y robusto, minimizando el error de estado estacionario y sin la aparición de ciclos límite u otros efectos asociados al control de estas aleaciones. Para demostrar que el actuador propuesto junto con el controlador BPID son una soluci on válida para implementar el sistema de actuación de un exoesqueleto flexible, se han integrado ambos desarrollos en un exoesqueleto flexible de mano real, diseñado para proporcionar asistencia de fuerza a astronautas. En este caso, además de utilizar el controlador BPID para controlar la posición de los actuadores, se ha aplicado al control de la fuerza proporcionada por el exoesqueleto. Mediante un simple mecanismo de multiplicación mecánica, el actuador genera un desplazamiento lineal de 54 mm y una fuerza de 31 N, cumpliendo así con los requisitos de diseño impuestos por la aplicación del exoesqueleto. Respecto al control del dispositivo, el controlador BPID es una técnica de control válida para controlar tanto la posición como la fuerza de un exoesqueleto flexible que use un sistema de actuación basado en el actuador propuesto en esta tesis.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: Concepción Alicia Monje Micharet.- Vocal: Elena García Armad

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective
    corecore