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Abstract

Structural vibration control (SVC) of large scale structures using the magnetorheological

(MR) dampers are studied. Some key issues, i.e. model reduction, suppression of spillover

instability, optimal placement of actuators and sensors, modeling of the MR dampers and their

applications in SVC system for large scale structures, are addressed in this work.

A new model reduction method minimizing the error of a modal-truncation based reduced

order model (ROM) is developed. The proposed method is implemented by using a Genetic Al-

gorithm (GA), and can be efficiently used to find a ROM for a large scale structure. The obtained

ROM has a finite H2 norm and therefore can be used for H2 controller design. The mechanism

of the spillover instability is studied, and a methodology to suppress the spillover instability in

a SVC system is proposed. The suggested method uses pointwise actuators and sensors to con-

struct a controller lying in an orthogonal space spanned by the several selected residual modes,

such that the spillover instability caused by these residual modes can be successfully suppressed.

A GA based numerical scheme used to find the optimal locations for the sensors and actuators of

a SVC system is developed. The spatial H2 norm is used as the optimization index. Because the

spatial H2 norm is a comprehensive index in evaluating the dynamics of a distributed system,

a SVC system using the sensors and actuators located on the obtained optimal locations is able

to achieve a better performance defined on a distributed domain. An improved model of MR

dampers is suggested such that the model can maintain the desired hysteresis behavior when

noisy data are used. For the simulation purpose, a numerical iteration technique is developed

to solve the nonlinear differential equations aroused from a passive control of a structure using

the MR dampers. The proposed method can be used to simulate the response of a large scale

structural system with the MR dampers. The methods developed in this work are finally verified

using an industrial roof structure. A passive and semi-active SVC systems are designed to atten-

uate the wind-induced structural vibration inside a critical area on the roof. The performances

of the both SVC systems are analyzed and compared. Simulation results show that the SVC

systems using the MR dampers have great potentials in reducing the structural vibration of the

roof structure.
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Introduction

1.1 Motivation

Advances in structural technology over the last few decades have enabled the design and ap-

plication of flexible structures of large scale. A flexible structure could be anything from small

to large scale. Examples of flexible structures include: disk drives, high-rising buildings, sus-

pension bridges, and space structures. One of the common characteristics of these structures is

that the inherent structural damping to suppress vibrations is very small, and as a result, dis-

turbances applied to these structures may induce long lasting and sometimes severe structural

vibrations. The vibration of a structure or structural members not only reduces performances of

the structural systems, but also can cause fatigue inside the structure and, in extreme cases, fail-

ure of the structure. Therefore, supressing structural vibration is often a quite important issue

that should be addressed for a successful application of flexible structures. Structural vibration

control (SVC) systems are to serve the vibration reduction purpose by implementation of energy

dissipation devices or control systems into structures to reduce excessive structural vibration,

enhance structural functionality and safety, and prevent catastrophic structural failure due to

vibration caused by various disturbances.

Among the recently developed vibration control devices, those made from Magnetorheologi-

cal (MR) fluids have found many successful applications in structural vibration control area. The
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MR fluids were first found by Winslow [1] in the 1940’s. They are typically consisted of micro-

sized, magnetically polarized particles ( such as iron particles) dispersed in a carrier medium,

such as mineral or sillicon oil and characterized by the constitutive material properties which

are sensitive to magnetic field. In response to an applied magnetic field, the particles dispersed

inside MR fluids align, and interparticle bonds increase the resistance of the fluid, turning the

fluid into a semi-solid. This change can be finished within a few milliseconds [2]. To take advan-

tage of the special material properties demonstrated by the MR fluids, various devices have been

developed. Because the deformation behavior of the MR fluids is governed by the mechanism

that resembles yielding, the forces are primarily dissipative, devices made of the MR fluids are

therefore also known as the MR dampers.

MR dampers are able to provide large damping forces using a small amount of external

power. For example, a MR damper used in [3] can produce yield stress up to 80 kPa using a

20 ∼ 50 watts of power. Instead of using mechanical valves, the damping force of a MR damper

can be adjusted by varying the strength of the magnetic field applied to the MR fluids, as a

result, MR dampers are more reliable than other devices that contain mechanical moving parts.

All these characteristics make the MR dampers ideal control devices that can be used in various

SVC systems.

Altough structural vibration control has been an extensively studied topic for decades, its

application to large scale structures is still a task full of challenge, and many issues need to be

addressed. This research is devoted to vibration control of large scale flexible structures using

MR dampers. In this work, some key issues related to this topic will be studied. In the following

section, these issues are identified through an overview of structural vibration control.

1.2 Overview of Structural Vibration Control

SVC systems can be categorized into three types, namely passive, active, semi-active control sys-

tems [4]. A passive control system does not require an external power source to operate, and

dissipates the vibration energy through a variety of mechanisms including the yielding of mild

steel, viscoelastic action in a rubber-like material, and sliding friction, etc. Control forces in a

passive control system are developed from the motion of the structure. Usually, the mechanical
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properties of a passive control system can not be modified. In contrast, an active control system

require external power supply to operate. Control forces could be generated by various types

of actuators, such as electro-hydraulic Arcturus, piezoelectric films, etc. A compromise between

passive and active SVC systems gives semi-active control systems, which have been developed

to take advantage of the best features of both passive and active control systems. A semi-active

control system usually requires a small amount of external power to operate. As in an active con-

trol system, the mechanical properties of a semi-active control system can be adjusted based on

feedback from the structure being controlled. As in a passive control system, semi-active control

systems utilize the motion of the structure to develop control forces. By above categorization, a

SVC system using MR dampers could be a passive or a semi-active control system.

The major components of a typical active SVC system are: mechanical structure, sensors,

actuators, and controller. For a given structure, design of an active SVC system involves vari-

ous analyses and simulation steps. Figure - 1.1 outlines some of key steps and their interactions

involved in a SVC system design. From this figure it can be seen that, design a SVC system is

a complicated work, and many issues need to be addressed. For a large scale structure, com-

plexity of the structure itself makes some of these issues more challenging. For example, model

reduction, placement of sensors/actuators and controller design/simulation, etc. Because the so-

called spillover [6] has potentials to lead instability in a SVC system, the suppression of spillover

instability is another important issue need to be considered for vibration control of a large scale

flexible structure. The issues mentioned above will be studied in this research. Additionally,

because the MR dampers will be used in this research, dynamics of MR dampers and the issues

related to their applications to a SVC system consist another part of this research. In the follow-

ing few paragraphs, a detailed introduction to the issues that will be studied in this work are

presented.

Model Reduction: Most modern control system design methods, such as LQG, H2, H∞

etc., tend to produce a controller of the order comparable to that of the plant, i.e. a structure

model, which is usually obtained using the finite element method (FEM). For a large scale

structure, its FEM model often has tens of thousands of degree of freedoms. Direct application

of a forementioned method to a FEM model of a structure will end up with a controller of

higher order, which is difficult to analyze, and from the application point of view, is also difficult
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Figure -1.1: Various steps of an active structure system design (Preumont [5]).

to be implemented in a real time manner. Therefore, a lower controller is often required. A

controller with a tractable order could be obtained by two different ways as shown in Figure -

1.2. In one of the approaches, a reduced order controller is obtained by reducing the order of
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Figure -1.2: Two approaches to get a lower order controller

a controller designed directly from the high fidelity structural model using the so-called model

reduction methods. The advantage of this approach is that because an accurate structure model

is used, uncertainty faced in the controller design is minimized. However, design a controller

directly from a FEM model with a large number of DOFs is computationally difficult. In the

second approach, a structure model is first reduced using a model reduction method to obtain a

reduced order model (ROM), then a lower order controller can be designed from the obtained

ROM. In the second approach, numerical difficulty as seen in the first approach can be avoided,

but the effect of uncertainty (or modeling error) due to an inaccurate structure model has to

be considered in controller design. Otherwise, a controller based on an inaccurate model is

unable to achieve the expected performance, or even worse, may induce instability to the control

system. Although a robust controller, e.g. H∞ controller, can be used to stabilize a system with

uncertainty, the performance of the obtained system are sacrificed. The larger the uncertainty,

the worse the performance. In some cases, larger uncertainty makes it impossible to find a

stabilizing controller. In order to reduce the uncertainty faced in a controller design, more

attention should be paid in minimizing the modeling error caused by the model reduction of a

structure model.

Spillover: Spillover happens when a ROM based controller is used to control a higher order

system. It deteriorates performance and has potentials to cause instability of a closed-loop

system. In an active SVC system for a flexible structure, because the structural damping is

usually small, spillover is more likely to induce instability and, as a result, endanger the safety

of the structure. Therefore, suppression of the spillover instability is another issue that will be
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studied in this reseach.

Optimal Location of Sensors and Actuators: For a SVC system with given number of sen-

sors and actuators (SAs), the system performance is affected significantly by the locations of

SAs. In order to achieve the highest performance-expanse ratio, finding the optimal locations

for SAs is desirable. For a structure with a simple geometry and smaller number of DOF’s, expe-

riences and a trail-and-error approach may suffice to solve the problem. While, for a large scale

structure, a systematic and efficient methodology is needed. In finding the optimal locations for

SAs, an appropriate type of performance index should be used, such that the performance of

the resultant SVC system is able to satisfactorily meet the design requirements. In this research,

the methodology used to find optimal locations of SAs for an active SVC system will be stud-

ied. Effect of different optimization indices on the performance of the final SVC system will be

addressed as well.

Modeling of MR Dampers and Applications: A MR damper can be used in a passive SVC

system as a damper. Because the material properties of the MR fluids can be controlled conve-

niently by changing the applied magnetic filed, it can also be used as an actuator in a semi-active

SVC system. To design a SVC system using MR dampers, a mathematical model that is able to

reproduce the hysteresis behavior of MR dampers has to be found. Additionally, because the be-

havior of MR dampers is nonlinear, an appropriate control algorithm that enables a MR damper

to be conveniently used in a linear control system also needs to be found. Through decades’

research, various MR models and control algorithms have been reported in the literature. In this

research, a MR model and a control algorithm will be determined through a comparison study

on the previous works. As regarding to this part, emphasis will be put on the application aspects

using an established MR model and control algorithm to a SVC system design.

Through the above introduction to various aspects involved in structural vibration control,

key issues that will be addressed in this research were identified and briefly introduced, the

scope of this research was therefore defined. Addressing these issues will lead to a better un-

derstanding of a series problems related to the structural vibration control for a large flexible

structure using MR damper.
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1.3 Literature Survey

1.3.1 Model Reduction

In the literature, model reduction has been studied both in control engineering and structural

analysis. Motivated by different applications, methods from these two areas generally have

different subjects and requirements.

In control engineering, model reduction methods were developed to find a ROM for a given

finite dimensional system. A good model reduction method should be able to preserve the sta-

bility of the original system, and provide an error bound for the obtained ROM. These methods

can be divided into the following two categories [7]: singular value decomposition (SVD) based,

and moment matching based methods. Both of them can be used to reduce the order of MIMO

dynamical systems.

For a n-th order MIMO system S with p output and q input channels, assume the transfer

matrix of the system S is given by

G(s) = C(sI − A)−1B + D =


 A B

C D


 ∈ C

p×q, (1.3.1)

where A, B, C and D are system matrices of G(s). The model reduction probelm is usually

defined to find a r-th order system,

Gr(s) = Cr(sI − Ar)
−1Br + Dr =


 Ar Br

Cr Dr


 ∈ C

p×q, (1.3.2)

such that r � n and the difference between the above two systems measured in some norm is

minimized, i.e.

min
Gr

‖G(s) − Gr(s)‖, (1.3.3)

where ‖ · ‖ denotes an appropriate norm.

One of the popular SVD based methods is the so-called balanced model reduction, which is

based on the balanced realization theory introduced by Moore [8]. This method finds a ROM

for a system by truncating the states (also known as modes) that are less observable and less

controllable from a balanced system. Because the observability and controllability are equivalent

in a balanced system, a less observable mode must be less controllable, or vice versa. Truncation

7



Chapter 1. Introduction

of a mode from a balanced system does not change the stability property of the obtained ROM.

The difference between the original system and the ROM is bounded, and the bound can be

found easily using the Hankel singular value of the system. The frequency-weighted balanced

model reduction method introduced by Enns [9] is an extension of the balanced model reduction

method.

The Hankel norm approximation method is another SVD based method. In this method, a

reduced model Gr(s) that makes ‖G − Gr‖H minimized is to be found, where ‖ · ‖H denotes

the Hankel norm. The reduced model Gr(s) is constructed using a series of all pass functions.

The difference of the two systems in terms of the Hankel norm is proved to be bounded [10].

Another two closely related methods of singular perturbation approximation[11, 12] also belong

to the SVD based methods.

SVD based methods are able to preserve stability of a system and provide error bound of the

obtained ROM, but are not computationally efficient. They may face computational challenges

when are used for large scale structures.

On the other hand, moment matching based methods can be implemented in a numerically

efficient way, but they are unable to provide error bound. Moment matching based methods

work in the frequency domain. For a give system, the transfer matrix G(s) is first expanded in

the Laurent series around a given point s0 ∈ C in the complex plane as follows,

G(s0 + σ) = η0 + η1σ + η2σ2 + η3σ3 + . . . , (1.3.4)

where ηi is known as the i-th moment of the system at s0. Then a reduced order system is found

by requiring that its Laurent expansion of the transfer matrix at s0,

Gr(s0 + σ) = η̂0 + η̂1σ + η̂2σ2 + · · · + η̂kσk, (1.3.5)

matches with the corresponding terms of the original system, i.e.

ηi = η̂i, i = 1, 2, . . . , k (1.3.6)

for an appropriate k � n.

Both SVD and moment matching based methods were developed to find a ROM for a finite-

dimensional system. To use them to a distributed system, e.g. a continuous structure, one has

to find a finite-dimensional approximation for the structural system.
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In structural engineering, various model reduction methods have also been developed to

reduce the computational load involved in static or dynamical analysis of large scale structures.

Among the methods that fall into this category are static condensation [13], various dynamic

condensation techniques [14, 15] and modal truncation methods. A static condensation method

is able to produce a ROM that is exact for a static analysis. The obtained ROM often lacks

the required accuracy for a dynamical analysis. Therefore, static condensation methods are

not suitable for a control system design purpose. Dynamic condensation methods reduce the

order of a FEM model of a structure. The obtained ROM is able to preserve the dynamical

characteristics of the original model with certain accuracy within a frequency band, which is

usually at the lower end of frequency spectrum. Accuracy of the ROM decreases dramatically

with the increase of the frequency. To improve the accuracy of a thus obtained ROM in higher

frequency range, iteration techniques [14][16] are usually needed.

Modal truncation is another model reduction method widely used in dynamical analyses in

the structural engineering. When the frequency band of excitation to a structure is limited and

known in priori, a ROM constructed for the structure by using the modal truncation method

can be used to represent the original structure in a dynamical analysis to obtain a sufficiently

accurate response in a reduced computational effort. A modal truncation based ROM contains

the modes that fall inside the frequency band of the excitation, which are known as in-bandwidth

modes. All other modes beyond this frequency band, which are known as out-of-bandwidth

or residual modes, are truncated. As long as the modes contributing significantly to the in-

bandwidth dynamics are included, the obtained ROM is a good approximation of the original

structure from which it was constructed. Although the removal of the out-of-bandwidth modes

does not affect the poles of the transfer matrix of a ROM, it shifts the in-bandwidth zeroes

[17]. When the ROM is used to design a controller, the error caused by the truncation may

propgate to the controller, and finally will deteriorate the performance or lead to instability of

the closed-loop system [18].

To compensate the error due to modal truncation, mode acceleration method [19] adds a

DC (or feedthrough) term, which includes all contributions from the truncated modes, to the

ROM. However, this method can only reduce the truncation error at zero frequency. The error

in higher frequency could still be large. Furthermore, it is also not clear how the multivariable
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systems should be dealt with [20].

Another approach to minimize the truncation error in a structural system with zero damp-

ing was reported by Moheimani [21]. By minimizing a weighted H2 norm of truncation error

associated with a modal-truncation based ROM, the authors found a closed form of an optimal

feedthrough term that can be added to the ROM to correct the truncation error. The proposed

method can be used to multivariable pintwise systems. In [20], this method was further ex-

plored and extended to a damped system, and a closed form of an optimal feedthrough term

was found by minimizing either a weighted H2 or a spatial H2 norm of the truncation error.

Essentially, these two related methods followed the same idea as that of the mode acceleration

method by adding a constant term to a ROM to account for the in-bandwidth contribution of the

truncated modes. Because the error due to modal truncation is frequency denpendent, adding

a constant (i.e. feedthrough) term to a ROM is not adequate to reduce the errors in higher fre-

quency range. Furthermore, because a ROM compensated using these methods has an infinite

H2 norm, they can not be used in a case where a H2 controller is desired [22].

1.3.2 Suppression of Spillover Instability

Spillover phenomena were first studied by Balas [23], and many research efforts have been put

on this topic since then. To suppress the spillover instability, one popular approach as suggested

by Balas [23] is to use LPFs (low pass filter) with output channels [6] to reject the signals from

residual modes. The order of the LPF should be determined such that the undesired spillover

signals can be effectively blocked, and the in-bandwidth signals are able to pass undisturbed.

When the gap between a controller’s cutoff frequency and lower frequency of the spillover sig-

nals is not big enough to allow the use of a traditional LPF, a phase locked filter is required [6].

However, incorporating a filter in a control system increases the order of the system, and as a

side-effect, also causes time delay to the filtered signal. Furthermore, the filter could perturb

the closed-loop system eigenvalues. This perturbation can reduce the stability margin and jeop-

ardize the convergence of an observer [24]. To avoid the problems caused by a filter, Chait and

Radcliffe [24] suggested a method where observer equations are augmented to include dynam-

ics of a first-order filter. Numerical simulation showed that this method introduced very small

perturbation on the closed-loop system eigenvalues.

10
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Nagarkatti et al. [25] studied the spillover on a plate structure, and proposed that the

spillover instability could be eliminated by using a distributed measurement feedback. The

distributed measurements of displacement and velocity were obtained by processing the plate

deformation image acquired through a high speed video camera. The method appeared effec-

tive in a plate experiment. To use this method, however, ability of high speed image processing

is required. For large scale structures, real time distributed measurement and the ability of

processing large amount of measurement data, are both difficult and expensive.

Kim and J. [26], Smyser and Chandrashekhara [27], Chang et al. [28], Kim et al. [29], Baz

[30] proposed the spillover reduction by using a sliding mode observer. Another approach [31]

was to treat the dynamics of the residual modes as norm-bounded uncertainties to a ROM, and

designed a H∞ robust controller [10] to stabilize the system with the uncertainties. The stability

robustness of such a system is achieved by sacrificing the system performance. Additionally,

because the H∞ controller design always considers the worst scenario, this method usually ends

up with a quite conservative design.

Skelton and Likins [32] and Tzou and Hollkamp [33] suggested using spatially distributed

actuators that is orthogonal to the unwanted modes to prevent the control spillover. They used

piezoelectric actuators, and applied the method to a ring structure. Their results showed the

filtering capability of the actuator on the control spillover signals for some selected residual

modes. For large scale structures, the piezoelectric based actuators may not be able to pro-

vide enough control forces, and even if they can, covering a structure totally by the distributed

actuators appears impractical.

In the works surveyed above, questions such as under what condition the spillover can cause

instability to a closed-loop system, and how to determine this condition in a SVC system design,

were not answered.

1.3.3 Optimal Locations of Sensors and Actuators

Finding optimal locations for sensors and actuators (OLSA) for a SVC system design, involves

solving a complicated nonlinear optimization problem. By looking at the performance index

used in solving this problem, the methods developed in the previous works can roughly divided

into two categories: some of them used open-loop performance indices, and the others used
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closed-loop performance indices in solving this optimization problem.

Among the methods that fall in the first category was the method proposed by Lim [34], in

which a non-dimensional open-loop index, which was defined in an intersection subspace of the

observability and controllability spaces, was used to evaluate the importance of each sensor and

actuator (SA) pair. Importance of a SA pair was evaluated using this open-loop performance

index. The larger the index, the more important the corresponding SA pair in the sense of

the both controllability and observability. In the similar fashion, Gawronski [35] solved a SA

selection problem by using performance indices measured in terms of various norms, which

could be H2, H∞ or Hankel norms, of an open-loop system. The SAs corresponding to larger

norms were more important than the those corresponding to smaller norms, and the locations

corresponding to those SAs were the optimal locations. In the approach proposed by Skelton

and DeLorenzo [36, 37], an input/output cost index, which was defined as the RMS contribution

of each sensor and actuator to the overall closed-loop system performance metric, was used to

select an optimal subset of SAs from a given candidate set.

Limitations of the above mentioned methods are: first, the optimality of the obtained solu-

tion is dependent on the originally given set of SA, and secondly, by optimizing the performance

of an open-loop system, the performance of the associated closed-loop system can be improved,

but can not be guaranteed.

Fahroo and Demetriou [38] used a quadratic performance index of a closed-loop system in

solving an OLSA problem for a noise reduction problem. The obtained nonlinear optimization

problem was solved iteratively by using a gradient-based method. Demetriou [39] solved a

SA placement problem for a flexible structure subjected to a worst case spatiotemporal distur-

bance variation, where both LQG and H2 norm performance indices were used. In this work,

an actuator-switching policy was proposed to achieve the better performance when the distur-

bances are moving randomly on the structure.

Li et al. [40] solved a problem of finding both the optimal number and locations for actua-

tors in an actively controlled structure using a two-level genetic algorithm (GA). A closed-loop

performance index, which included the displacement responses of the structure and the control

efforts, was used and minimized by the GA method. Arabyan and Chemishkian[41, 42] used

a GA method in solving a problem of optimal locations for SAs in the sense of a H∞ norm. To

12
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reduce computational overhead, in each GA iteration step, the lower limit of the H∞ norm of the

transfer function from disturbance to controlled output was evaluated first, and a H∞ controller

would be designed only when this lower limit was below a predefined threshold value.

The performance indices used in the methods mentioned above are all defined based on a

point input and point output manner, such as conventional H2 and H∞ etc. Different from the

above works, Halim and Moheomani [43] solved an OLSA problem using a spatial controllability

index, which was based on the spatial H2 norm theory developed by Moheimani and Fu [44,

45]. As an extention of the standard H2 norm to the distributed system, the spatial H2 norm

takes into account the spatial characteristics of a distributed system by introducing an additional

integration over the spatial domain of interest. A performance index based on the spatial H2

norm is a more comprehensive measurement than an index based on the standard H2 norm in

describing the behavior of a structural system.

1.3.4 Modeling and Control of MR Damper

Due to their excellent properties as introduced above, MR dampers have found many appli-

cations in structural vibration control area since 1940’s. Typical applications include, vibra-

tion control of bridges [46–48], buildings [49–51], and vehicle suspension system [52], etc..

Through these research, various MR models have been developed. Shames and Cozzarelli [53]

proposed a Bingham viscoplastic model to describe the hysteresis behavior of MR dampers.

Compared with the experiment results, this model did not exhibit the nonlinear force-velocity

response when the acceleration and the velocity have opposite signs [54]. While this model may

be adequate for response analysis, it is not good for the control analysis. Another extensively

used model for modeling hysteretic system is the Bouc-Wen model [55]. The Bouc-Wen model

is extremely versatile and is able to emulate a variety of hysteretic behaviors. However, similar

to the Bingham model, the nonlinear force-velocity response obtained from this model does not

match experimental results in the region where the acceleration and velocity have opposite signs

and the magnitude of the velocities are small [54]. To improve the above mentioned models,

Spencer Jr. et al. [54] proposed a modified Bouc-Wen model. Their experiments showed that

the proposed model was able to accurately predict the response of atypical MR damper over a

wide range of operating conditions under various input voltage levels.
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Because the hysteresis behavior of MR dampers can be controlled by changing the applied

magnetic field, besides can be used as traditional dampers, MR dampers can also be used as

actuators in a semi-active control system. In a semi-active control system, nonlinearity of MR

dampers should be considered in the controller design.

To avoid the complexity of a nonlinear controller design, the inverse dynamics of the MR

dampers could be used. Because the input/output relationship of a combination of the inverse

and forward dynamics of the MR dampers are linear, using the inverse dynamics of the MR

dampers make it possible to use a linear controller in a SVC system with the MR dampers. In this

case, various linear control theories can be applied. However, due to the complicated nonlinear

relationships of the forward dynamics of the MR dampers, a closed form of the inverse dynamics

appear to be difficult to obtain. To work around this problem, some researchers proposed that

the inverse dynamics of MR dampers could be numerically represented by neural networks

(NN), which are well known for their ability to approximate arbitrary functions with arbitrary

accuracy [56]. Chang and Roschke [57] showed that the nonlinear behavior of a MR damper

can be satisfactorily reproduced by a trained feedforward NN model with one hidden layer.

Hidaka et al. [58] used an adaptive NN control system that was composed of a forward NN for

system identification and NN to control an electrorheological damper. Chang and Zhou [59]

employed a recurrent NN to emulate the inverse dynamics of a MR damper. Although a trained

NN can produce satisfactory outputs for the training inputs set, but there is no guarantee that

it can produce the same satisfactory results for the inputs outside of training set. This inherent

property makes NN-representations of the inverse dynamics of the MR dampers unreliable in

predicting the behavior of the MR dampers in a real application.

In the work done by Yokoyama et al. [60], a nonlinear controller, i.e. a sliding mode con-

troller, was used with the MR dampers in a semi-active control system to control the vibration

of the suspension system of a vehicle. McClamroch and Gavin [61] proposed a decentralized

bang-bang controller to control the seismically excited vibration using electrorheological mate-

rial, which demonstrates the similar hysteresis behaviors as the MR fluids. The controller was

obtained by using the Lyapunov direct method. Dyke et al. [62] proposed a clipped-optimal

control algorithm based on acceleration feedback. In their works, a linear optimal controller

combined with a force feedback loop was designed to adjust the command voltage of the MR
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damper. The command signal was set to either zero or the maximum level, depending on how

the damper’s force compared with the target optimal control force. Analytical and experimental

studies demonstrated that the MR damper, used in conjunction with the clipped-optimal control

algorithm, was effective for controlling a multistory building structure.

1.4 Objectives of the Dissertation

Through the literature survey it can be seen that, for the topics involved in this research, there

are more or less limitations exist in the previous works. Therefore, there are room for the further

improvement for some of the previous works. Furthermore, complexities associated with the

large scale structures considered in this research also warrant additional considerations on these

issues.

Given the subjects that will be studied in this research, and considering the amount of re-

search that has been done, this work is aimed at further exploring the issues involved in the

structural vibration control of large scale structures using the MR dampers. Through this re-

search, the following objectives are expected:

1. Model reduction method based on the direct modal truncation will be developed. The

method should be able to compensate the in-bandwidth error due to the modal truncation,

such that the zero shift of the transfer matrix of the obtained ROM is minimized. The

obtained ROM should be able to avoid the difficulty of an infinite H2 norm as experienced

in the method suggested in [20]. Furthermore, the developed method should be able to

be implemented efficiently for large scale structures;

2. A method to suppress the spillover instability in a SVC system using pointwise actuators

and sensors will be developed. The method to determine whether or not the spillover will

cause the instability to a SVC system will be explored;

3. Develop an efficient numerical scheme to find the optimal locations for sensors and actu-

ators in a SVC system for a large scale structure using the spatial H2 norm performance

index.

4. Determine an appropriate model and the control algorithm for MR dampers such that
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MR dampers can be used in a linear control system. Study related issues involved in the

application of MR dampers in SVC systems for large scale structures;

5. Using the methodologies developed in the research , design a SVC system for an industrial

roof structure subjected to wind loading such that the structural vibration of the roof

structure can be reduced. The emphasis on this part of work will be put on the verification

of the above developed methodologies.

Because a plate structure is among one of the most common building blocks of flexible struc-

tures, furthermore, the roof structure used in this research can be modeled as a plate structure,

plate structures are considered throughout this research. All the methods developed in this work

will be verified on plate structures. It should be noted that except small damping, the develop-

ment of the methods presented in this research does not make any assumption on the structure

to which they can be used.

1.5 Overview of the Dissertation

In the previous sections, some key issues that will be addressed in this research were identified

through an introduction to the structural vibration control, and the objectives of this work were

clarified. The rest parts of the dissertation are arranged as follows:

Chapter 2 introduces some background on flexible structures modeling and control sys-

tem design. In this chapter, the Mindlin-Reissener plate theory are introduced. Finite element

method and modal analysis that commonly used in the structural analysis are briefly reviewed.

Finally, two closely related and commonly used controller design methods, i.e. the LQG and the

H2 controller design, are introduced.

Chapter 3 studies the problem of model reduction for structural systems. The method con-

structing a ROM for a structure using the direct model truncation method is first outlined. The

in-bandwidth truncation error associated with the obtained ROM is then analyzed. A paramet-

ric study on the effect of changing the modal parameters of the transfer function of a modal-

truncation-based ROM is performed. Based on this parametric study, a modal reduction method

that can minimizes the truncation error is developed. A GA method is introduced and used to
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solve the obtained optimization problem. The effectiveness of the proposed method is demon-

strated through an illustrative example.

Chapter 4 considers the suppression of the spillover instability. In this chapter, the mecha-

nism of spillover and the spillover instability in a SVC system are first analyzed. Based on these

analyses, a method to suppress the spillover instability using pointwise actuators and sensors is

developed. A quantitative condition used to determine whether or not the spillover instability

will happen to a SVC system is proposed. The internal structure of a controller designed from

the proposed method is revealed. Finally, the effectiveness of the proposed method is verified

via a numerical example.

Chapter 5 develops a numerical scheme used to find optimal locations of sensors and actua-

tors for a SVC system using the spatial H2 norm as a performance index. Spatial H2 theory and

the corresponding controller design method are introduced. In order to be implemented effi-

ciently for a large scale structure, a GA algorithm is proposed to solve the optimization problem.

In the proposed numerical scheme, the optimality of a set of locations for SAs is evaluated by

the spatial H2 norm of the transfer function of the closed-loop system formed by a spatial H2

controller using these sensors and actuators. A numerical example is used to demonstrate the

effectiveness of the proposed scheme.

Chapter 6 deals with modeling of the MR dampers, and the issues involved in application of

the MR dampers in a SVC system. In this chapter, a MR model and a related control algorithm

are determined through a comparison study on the works reported in the literature. Hysteresis

behavior of the selected MR model are investigated through a series numerical experiments. An

improvement is made to the selected model to help to preserve the desired hysteretic behaviors

in a situation of noisy input data. A numerical technique is developed to enable an efficient

simulation on large scale structural systems with the MR dampers being attached. Semi-active

control using the selected control algorithm is then studied.

Chapter 7 verifies the methodologies developed in this work through designing a SVC system

for an industrial roof structure subjected to wind loading. The roof structure is modeled as

a plate structure, and its FEM model is build. Wind load data obtained from a wind tunnel

experiment 1 is analyzed, statistical properties and frequency characteristics of the wind load

1The experiment was done in a separated research sponsored by the FM Globalr
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are obtained. Through a transient analysis of the roof structure, a critical area on the roof is

identified. Passive and semi-active control systems using MR dampers to attenuate the vibration

in the critical area are designed, and their performances are compared.

Chapter 8 summarizes the works that have been presented in this dissertation. The main

contributions of this research are outlined. Finally, some recommendations for future work are

suggested.
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Modeling of Flexible Structures and Controller Design

2.1 Introduction

In order to design a controller for a structure, a mathematical model describing the dynamics

of the structure should be first set up. This process is known as modeling. In this chapter,

the procedure of modeling of flexible structures are illustrated through deriving the governing

equations for plate structures. Numerical techniques, namely the finite element method and

modal analysis, that will be used in this research are briefly reviewed. Two controller design

methods, i.e. the LQG and the H2 controller designs, are introduced.

2.2 Mindlin Plate Theory

A plate as shown in Figure - 2.1 is defined as a structure whose thickness h is small as compared

with the other two dimensions Lx and Ly. For a plate structure, it can be assumed that the

deformation state in the plate can be described by the deformation in its mid-plane, which is

defined as the plane midway between the upper and lower surfaces of the plate. A plate is thin

when its thickness-to-span ratios are significantly smaller than 1, i.e. the following conditions

hold,
h
Lx

� 1,
h
Ly

� 1. (2.2.1)
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Figure -2.1: Plate geometry and coordinate system

For a thin plate, the so-called Kirchhoff thin plate theory [63] is usually used to derive the plate

equations. The Kirchhoff plate theory is based on the following assumptions about the deforma-

tion state of the plate:

1. There is no in-plane deformation in the thin plate mid-plane;

2. The stress and strain in the direction of the mid-plane normal can be ignored;

3. A normal to the mid-plane of the plate remains normal to the mid-plane after deformation

as illustrated in Figure - 2.2;

4. The effect of rotary inertia is negligible.

Normal Afte
r d

efo
rm

ati
on

Before deformation

PSfrag replacements

∂w
∂x

Figure -2.2: Straight normal assumption of the classical Kirchhoff theory (cross-section

in the yz plane)
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Based on the above assumptions, the displacements field in a thin plate can be determined by

the deflection w of the plate in the z direction as follows,

u = −z
∂w
∂x

, v = −z
∂w
∂x

, w = w(x, y), (2.2.2)

where u, v, w are displacement components in x, y, z directions, respectively, as shown in Figure -

2.1. Using the above defined displacement field and the Hamilton Principle [64], the following

dynamic plate equation for an isotropic material can be obtained,

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 =

q(x, y)

D
− ρh

∂2w
∂t2 , (2.2.3)

where q(x, y) is the distributed lateral load applied to the surface of the plate, D is the flexural

rigidity given by

D =
Eh3

12(1 − ν2)
, (2.2.4)

in which E is the Young’s modulus and ν is the Poisson’s ratio of the material. The Kirchhoff

plate theory was obtained by ignoring the transverse shear effects, i.e. assuming that the rota-

tion of the mid-plane normal is totally determined by the deflection w (see Figure - 2.2). This

assumption can accurately reflect the real status of the deformation happend in a thin plate.

When the thickness of the plate is moderately thick, i.e. the conditions (2.2.1) does not

hold, the effect of the transverse shear on the deformation can not be ignored anymore, and the

above Kirchhoff assumptions need to be modified. Reissener [65] proposed the simplest thick

plate theory by introducing the effect of transverse shear deformation through a complementary

energy principle. Unlike the Reissener’s work, Mindlin [66] presented a first-order theory of

plates where he accounted for shear deformation in conjunction with a shear correction factor.

In this theory, the first two Kirchhoff assumptions are maintained. To allow for the effect of

transverse shear deformation, the theory relaxes the normality assumption so that normals to the

undeformed midplane remain straight and unstretched in length but not necessarily normal to

the deformed midplane. This assumption is shown in Figure - 2.3. In this figure, the deformation

status of a plate in its yx plane is showed, where ∂w/∂x is the rotation angle of the mid-plane

normal assumed in the Kirchoff theory, θx denotes the rotation angle assumed in the Mindlin

hypothesis. Same as in the Kirchhoff plate theory, the stress component σz in the z direction are

assumed to be zero in the Mindlin plate theory.
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PSfrag replacements

∂w
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Figure -2.3: Mindlin thick plate assumption (cross-section in yz plane)

Based on the above assumptions, the displacement field of a thick plate is modified as fol-

lows:

u = −zθx , v = −zθy, w = w(x, y), (2.2.5)

where θx and θy are rotation angles due to bending in the yz and xz planes, respectively. The

strain field of the plate then follows,

{ε} =





εx

εy

εxy

εxz

εyz





=





−z
∂θx

∂x

−z
∂θy

∂y

− z
2

(
∂θx

∂y
+

∂θy

∂x

)

1
2

(
∂w
∂x

− θx

)

1
2

(
∂w
∂y

− θy

)





, (2.2.6)

The stress field is determined as follows by applying the Hook’s law and the assumption σz = 0,

{σ} =





σx

σy

σxy

σxz

σyz





=




E
1 − ν2

Eν

1 − ν2

Eν

1 − ν2
E

1 − ν2

2G

2G

2G








εx

εy

εxy

εxz

εyz





=





E
1 − ν2 (εx + νεy)

E
1 − ν2 (εy + νεx)

− Ez
2(1 + ν)

(
∂θx

∂y
+

∂θy

∂x

)

G
(

∂w
∂x

− θx

)

G
(

∂w
∂y

− θy

)





,

(2.2.7)
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where G is the shear modulus given by

G =
E

2(1 + ν)
. (2.2.8)

Based on the stress and strain field defined above, the following equations of motion for a

Mindlin (or thick) plate can be obtained by using the Hamilton principle [64],

khG
(

∂2w
∂x2 +

∂2w
∂y2 − ∂θx

∂x
− ∂θy

∂y

)
+ q = ρhẅ,

D

[
∂2θx

∂x2 +
1 − ν

2
∂2θx

∂y2 +
1 + ν

2
∂2θy

∂x∂y

]
+ khG

(
∂w
∂x

− θx

)
=

ρh3

12
θ̈x,

D

[
∂2θy

∂y2 +
1 − ν

2
∂2θy

∂x2 +
1 + ν

2
∂2θx

∂x∂y

]
+ khG

(
∂w
∂y

− θy

)
=

ρh3

12
θ̈y,

(2.2.9)

where k is the shear correction factor introduced in the Mindlin plate theory to compensate for

the error in assuming a constant shear stress throughout the plate thickness. This factor usually

takes value of 1.2 in most analyses.

The boundary conditions associated with the above PDE’s can be determined from the vir-

tual work done by the forces (moments) along the virtual displacement on the boundary. For

an arbitrary boundary as shown in Figure - 2.4, the following boundary conditions should be

Plate

PSfrag replacements

x

y t

n
α

Figure -2.4: An arbitrary boundary of the plate (cross-section in xy plane)

specified [64]:

Vn = 0 or w is specified,

Mn = 0 or θn is specified,

Mnt = 0 or θt is specified,

(2.2.10)

where V is shear force, and M is moment, and subscript n and t denote the normal and tangen-

tial directions of the boundary.
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In the Mindlin plate theory, the effects of transverse shear deformation was considered

through introducing two rotation variables θx and θy, which are independent of the plate de-

flection w, in the displacement field of a thick plate. When a thick plate decays to a thin plate,

i.e. θx → ∂w/∂x and θx → ∂w/∂x, it can be verified that the Mindlin plate equation (2.2.9) re-

duces to the thin plate equation (2.2.3). Therefore, the Mindlin plate model as given in (2.2.9)

can be used to analyze both thick and thin plates.

For the plate equations obtained above, in most cases, closed form solutions are very diffi-

cult to obtain, and numerical solutions are usually seeked. Among various numerical methods

developed to solve the partial differential equations (PDEs) aroused from structural modeling,

the finite element method (FEM) is especially powerful in dealing with complicated structures

with arbitrary boundary conditions, and therefore, will be used in this research for the structural

modeling purpose.

2.3 Finite element Formulation

In this section, the FEM is introduced through deriving an isoparametric plate element formu-

lation for the Mindlin plate. A typical isoparametric plate element considered here and the

notations used in the following derivation are shown in Figure - 2.5. The displacements u inside

PSfrag replacements

x

yz

h

θx

θy

Figure -2.5: A typical plate element.

an element can be expressed in terms of the nodal displacements using the shape function as
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follows,

u =





w(x, y)

θx(x, y)

θy(x, y)





=
n

∑
i=1

N idi = Nd, (2.3.11)

where n is the number of nodes in a typical element, and

di =
[
wi θxi θyi

]T
(2.3.12)

is the nodal displacement vector of the i-th node, and

N i = Ni




1 0 0

0 1 0

0 0 1


 , (2.3.13)

in which Ni is the shape function associated with the node i. In an isoparametric formulation, the

shape function is defined in a natural coordinates system (ξ, η). The velocity u̇ and acceleration

ü can be expressed in a similar way as follows,

u̇ =
n

∑
i=1

N iḋi = Nḋ,

ü =
n

∑
i=1

N id̈i = Nd̈.
(2.3.14)

The dynamical equations of the element can then be obtained using the principle of virtual

work, which states that for any kinematically consisten set of displacemens of a structure sys-

tem, the virtual work due to deformation must equal to that done by the external forces on

virtual displacements irrespective of the material behavior. The principle of virtual work can be

mathematically expressed as follows,

∫

v
(δε)Tσdv =

∫

St

(δu)Ttds +

∫

v
(δu)T(b − ρü)dv, (2.3.15)

where δu is virtual displacements vector, δε is the corresponding virtual strains vector, and σ is

the vector of stresses, t is the surface traction acting on the portion St of the boundary S, vectors

b, ρü are body and inertial forces, respectively, and ρ is the mass density of the material.

For a linear elastic material, the following finite element equation can be obtained by substi-

tuting (2.3.11) and (2.3.14) into (2.3.15),

Md̈ + Cḋ + Kd = f , (2.3.16)
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where M, C and K are mass, damping and stiffness matrices, respectively, and given as follows,

M =

∫

v
ρNT Ndv,

K =

∫

v
BTDBdv,

f =

∫

st

NTtds +

∫

v
NTbdv,

(2.3.17)

where B is the strain-displacement matrix and D is the elasticity matrix. The structural damp-

ing is generally a frequency-dependent variable for most of materials, and is very difficult to

determine. Therefore, in most applications, the damping matrix C is determined by assuming

C = αM + βK, (2.3.18)

where α and β are two constants independent of frequency. The structure damping determined

in this way is known as Rayleigh damping.

The finite element equation (2.3.16) can be solved using either a direct integration method

or the method of modal superposition based on the modal analysis. Due to its excellent stability,

the Newmark method is one of the most commonly used direct integration methods. A brief

description of this method can be found in Appendix A.

The modal superposition method solves (2.3.16) by first transforming the system into a set of

uncoupled single degree of freedom (SDOF) systems in the modal space, solving for the modal

response for each SDOF system , and then superimposing the modal responses to obtain the

response of the original multi-degree of freedom (MDOF) system.

As an essential part of the modal superpostion method, modal analysis is used to find natural

frequencies and modal matrix for the linear system (2.3.16) with zero damping, i.e.

Md̈ + Kḋ = 0. (2.3.19)

assume M, K ∈ Rn×n, and that the solution to the above equation is

d = φ sin ω(t − t0), (2.3.20)

where φ ∈ Rn is unknown mode shape vector, ω is the frequency associated with φ, t0 is

a constant determined by the initial condition. Substituting (2.3.20) into (2.3.19) gives the

following generalized eigenvalue problem,

Kφ − ω2Mφ = 0. (2.3.21)
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There are n eigensolution pairs to the above equation, (ω1, φ1), . . . (ωn, φn), where ωi repre-

sents the i-th natural frequency of the system with

0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωn, (2.3.22)

and φi is the mode shape vector associated with the i-th mode. Modal shape vectors are usually

normalized with respect to the mass matrix as follows

φT
i Mφi = 1, (i = 1, 2, . . . , n). (2.3.23)

By substituting φi into (2.3.21), the following properties of modal shape vectors can be verified,

φT
i Mφj =





1 when i = j

0 otherwise

, φT
i Kφj =





ω2
i when i = j

0 otherwise.

. (2.3.24)

Furthermore, for the Rayleigh dampig, the following property follows,

φT
i Cφj =





2ωiζi when i = j

0 otherwise,

(2.3.25)

where ζ i is the modal damping ratio associated with the i-th mode defined as follows,

ζi =
α + βω2

i
2ωi

. (2.3.26)

Define the modal matrix Φ = [φ1 φ2 . . . φn] and

Ω =




ωi

ω2
. . .

ωn




, ζ =




ζi

ζ2
. . .

ζn




, (2.3.27)

then the above properties can be rewritten in the following matrix forms

ΦT MΦ = I, ΦTKΦ = Ω2, ΦTCΦ = 2Ωζ. (2.3.28)

In the modal superposition method, the above properties are used to transform (2.3.16) into

modal space by introducing

d(t) = Φa(t), (2.3.29)
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where a = [a1 a2 . . . an]T is modal displacement vector. By (2.3.29) and (2.3.28), the original

coupled system equations (2.3.16) can be transformed to n independent SDOF equations in the

modal space as follows,

äi(t) + 2ωiζi ȧi(t) + ω2
i ai(t) = ri(t), (i = 1, 2, . . . , n) (2.3.30)

where ri(t) = φT
i f (t) is the projection of the load vector f (t) on the i-th mode shape φ i.

The solution ai(t) to each of these SDOF equations can be conveniently obtained by using the

Duhamel integral. The displacement responses of the original system (2.3.16) can be obtained

by substituting ai ’s into (2.3.29). The velocity and acceleration can be obtained similarly as

follows,

ḋ = Φȧ, d̈ = Φä. (2.3.31)

In some cases1, the response of a structure subjected to given loads can be approximately

obtained as follows,

d ≈
r

∑
i=1

Φiai, (2.3.32)

where r ≤ n is the number of modes whose contributions to the system’s response are accounted

for. In the above equation, the contributions from the modes whose natural frequency ω i > ωr

are neglected. In this case, only the first r of SDOF equations as given in (2.3.30) need to

be solved to obtain an approximate response of the original n-DOF systems. When r � n, a

large amount of computation can be saved. Therefore, the modal superposition method is more

efficient than the Newmark method if the modal information is available.

2.4 Controller Design

In this section, the state space form of the structure system as given in (2.3.16) is first derived,

followed by an introduction of the two related controller design methods, i.e. the LQG (Linear

Quadratic Gaussian) and H2. The differences and connections between these two methods are

reviewed.

1When the frequency band of the external loads is limited.
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2.4.1 State Space Form

The equations of motion of a n-DOF structural structural system considered in a SVC system

design problem is often written in the following general form

Md̈ + Cḋ + Kd = Bu f . (2.4.33)

Except the right handside, the above equation is a copy of (2.3.16). In the above equation,

Bu ∈ Rn×p is a constant matrix specifying the locations of p applied loads, which could be

external forces or control forces denoted by a vector f ∈ Rp. For controller design purpose, the

above equation is further transformed to a first order ODE (or state space) form as follows,




ḋ

d̈



 =


 0 I

−M−1K −M−1C








d

ḋ



 +





0

M−1Bu



 f . (2.4.34)

The measurement outputs from the above system could be the displacement d, velocity ḋ or

any linear combination of the displacement and velocity. Without loss of the generality, the

measurement outputs can be written as follows,

y =
[
Cd Cv

]




d

ḋ



 , (2.4.35)

where Cd and Cv are measurement matrices associated with displacement and velocity, respec-

tively.

Transforming the above equations into the modal space using the transformations (2.3.29)

and (2.3.31) gives,

ẋ = Ax + B f

y = Cx
(2.4.36)

where xT = [aT ȧT] is the state vector, A, B and C are system metrices given as follows

A =


 0 I

−Ωr2 −2Ωζ


 , B =


 0

ΦTBu


 , C =

[
CdΦT CvΦT

]
(2.4.37)

where

Ω = diag(ω1, ω2, . . . , ωn), ζ = diag(ζ1, ζ2, . . . , ζn)

Φ =
[

φ1 φ2 . . . φn

] (2.4.38)
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2.4.2 LQG Controller

In structural vibration control, a controller is usually used to help a structure to achieve certain

precise positioning or tracking requirements. These requirements should be satisfied for the

structure with natural frequencies within the controller bandwidth and within the disturbance

spectra [67]. A Linear Quadratic Gaussian (LQG) controller can meet these requirements, and

is often used for tracking and disturbance rejection purposes.

A block diagram of a LQG control system is shown in Figure - 2.6. It consists of a plant G ,

PSfrag replacements
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Figure -2.6: A LQG closed-loop system.

i.e. a structural model in this case, and a controller K. The dynamics of the plant is described by

the following state space equations,

ẋ = Ax + B(u + w),

y = Cx + v,

z = Dx,

(2.4.39)

where A, B, C and D are given constant matrices, x denotes the plant state vector, y is the mea-

surement output, z is error output (also known as controlled output), w denotes the disturbance

applied to the plant, which is usually known as the process noise, v is the sensor noise, which is

also known as the measurement noise. In the LQG controller design, both w and v are assumed

to be Gaussian white noise with constant covariance matrices,

W = E(wwT), V = E(vvT), (2.4.40)

where E(·) denotes the expectation operator. Furthermore, w and v are assumed be uncorre-

lated, i.e.

E(wvT) = 0. (2.4.41)
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In the above equations, when the plant is a structural system, A, B and C matrices can be

determined as (2.4.37).

A LQG problem is to find a controller such that the performance index J,

J2 = lim
t→∞

∫ t

0
E

[
zTQz + uTRu

]
, (2.4.42)

is minimized. In the above equation, Q is a positive semidefinite state weight matrix, and z TQz

represents the control error. R is a positive definite input weight matrix, and uTRu represents

the control efforts. Without loss of generality, the input weight matrix is usually assumed to be

R = I. Therefore, by adjusting Q matrix, the tradeoff between the control error and the control

effort can be made.

In the closed-loop system shown in Figure - 2.6, the control input u is developed by the

controller K according to the plant state x, whose information is contained in the measurement

output y. In most applications, the full information about the plant state x is not available

directly from the measurement. In this case, the controller needs to estimate the state of the

plant from the measurement y. The estimated state, which is denoted by x̂, is then used to

compute the control input u. Given the estimated state x̂, the control input is given by

u = −Kc x̂, (2.4.43)

where Kc is the controller gain matrix. It is well known [10, 68] that the following gain matrix

minimizes the performance index J

Kc = BTXc, (2.4.44)

where Xc is the solution of the following algebraic Riccati equation

ATXc + Xx A − XcBBTXc + Q = 0. (2.4.45)

To estimate the plant state from the measurement y, an estimator needs to be incorporated

inside the controller. The dynamics of the estimator is governed by the following equation,

˙̂x = Ax̂ + Bu + Ke(y − Cx̂), (2.4.46)

where Ke is the estimator gain matrix, which is given by

Ke = XeCT, (2.4.47)
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where Xe is the solution of the following estimator algebraic Riccati equation

AXe + Xe AT − XeCTCXe + V = 0, (2.4.48)

where V is the covariance matrix of the measurement noise as given in (2.4.40).

Combining (2.4.43) and (2.4.46) gives the following state space equations of a typical LQG

controller,

˙̂x = (A − BKc − KeC)x̂ + Key,

u = −Kc x̂.
(2.4.49)

The performance requirements for a SVC system, e.g. root-mean-square (RMS) response to

applied disturbances, settling time and overshoot etc., are reflected in a LQG controller design

by choosing an appropriate state weighting matrix Q (see (2.4.42)). There is no established

method to find such a matrix from the given design requirements, however, experiences and a

trial-and-error approach are needed to choose an appropriate Q matrix such that the obtained

LQG controller can meet the design requirements.

2.4.3 H2 Controller

In the LQG design, the control inputs u and disturbances w were assumed collocated, and both

the process and the measurement noises are Gaussian [68]. However, in many applications, the

control inputs u do not always coincide with the disturbances w, and the disturbances to the

system are not necessarily Gaussian. In this case, a H2 controller is needed.

An H2 controller is designed for a system with a more general configuration, where the

control inputs and disturbances are not required collocated. Moreover, the disturbances, which

include process and measurement noises, are not assumed to be Gaussian. A closed-loop system

formed by a H2 controller is shown in Figure - 2.7. In this figure, G and K are the plant and the

controller, respectively, y is the measurement output, z is the controlled output, u and w are the

control input and the disturbance, respectively. The state space equations of the plant are given

by

ẋ = Ax + B1w + B2u,

z = C1x + D12u,

y = C2x + D21w.

(2.4.50)
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Figure -2.7: A H2 closed-loop system.

A controller K is designed such that the performance index J,

J =

∫ ∞

0





x

u





T 
 Q S

ST R








x

u



 dt, (2.4.51)

is minimized for some QT = Q, S and R = RT > 0. Requiring R > 0 emphasizes that the control

energy has to be finite. Moreover, it is generally assumed that the weighting matrix used in the

above definition is positive semi-definite, i.e.


 Q S

ST R


 ≥ 0. (2.4.52)

Due to the above assumption, it is possible to factorize the weighting matrix as follows


 Q S

ST R


 =


 CT

1

DT
12




[
C1 D12

]
. (2.4.53)

Using (2.4.53), the performance index given in (2.4.51) can be rewritten as

J = ‖C1x + D12u‖2
2 = ‖z‖2

2, (2.4.54)

where ‖ · ‖2 denotes the H2 norm operator. The H2 norm of a matrix g(t) is defined as follows,

‖g‖2
2 =

∫ ∞

0
Trace{gT(t)g(t)}dt. (2.4.55)

Denote the Fourier transform of g(t) by G(jω), by the Parseval theorem, the above definition

can also be given in the frequency domain as follows,

‖g‖2
2 = ‖G‖2

2 =
1

2π

∫ ∞

−∞

Trace{G∗(jω)G(jω)}dω, (2.4.56)
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where superscript ∗ is a complex conjugate operator.

As mentioned above, in a H2 design, the disturbance w to the system is not restricted to a

Gaussian white noise, it can be any signal with bounded power spectral density. For a signal u(t),

its power spectral density is given by

Suu(jω) =

∫ ∞

−∞

Ruu(τ)e−jωτdτ, (2.4.57)

where Ruu(τ) is the autocorrelation matrix of u, and

Ruu(τ) = lim
T→∞

1
2T

∫ T

−T
u(t + τ)uT(t)dt. (2.4.58)

A signal with bounded power spectral density can be generated by passing a white noise signal

through a weighting filter. Therefore, the disturbance considered in the LQG design is a special

case covered in the H2 design.

In literature, the performance index for a H2 controller design is usually defined in terms of

the H2 norm of the closed-loop transfer matrix Tzw that relates the disturbance input w to the

controlled output z. This definition is consistent with the one defined previously in (2.4.54). In

the frequency domain, the controlled output can be written as

Z(s) = Tzw(s)W(s). (2.4.59)

For an unit intensity white noise input w, the power spectral density of the output signal z is

given by

Szz(jω) = Tzw(jω)Sww(jω)T∗
zw(jω) = Tzw(jω)T∗

zw(jω). (2.4.60)

Then it follows

‖z‖2
2 =

1
2π

∫ ∞

−∞

Trace{Szz(jω)}dω =
1

2π

∫ ∞

−∞

Trace{Tzw(jω)T∗
zw(jω)}dω

= ‖Tzw‖2
2.

(2.4.61)

Therefore, the performance index for a H2 controller design problem can also be defined as

J = ‖Tzw‖2, (2.4.62)

and it is equivalent to the index defined in (2.4.54).

To ensure that there exist a proper controller minimizing the performance index defined

above, the following assumptions about the plant should be made:
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• (A, B2) is stabilizable, and (A, C2) is detectable;

• DT
12D12 and D21DT

21 are nonsingular.

For the purpose of simplicity, the following conditions are commonly assumed in the H2 con-

troller design, i.e.

DT
12

[
C1 D12

]
=

[
0 I

]

D21

[
BT

1 DT
21

]
=

[
0 I

]
.

(2.4.63)

The first condition can be interpreted as the absence of cross terms in the performance index

(DT
12C1 = 0). The second one just assumes that the process noise and the measurement noise

are uncorrelated (D21BT
1 = 0). Furthermore, because it is assumed that DT

12D12 = I, the tradeoff

between the error and the control efforts as seen in the performance can be defined in C1 matrix.

Similarly, because D21DT
21 = I, the process and measurement noise level can be specified by B1

matrix.

Under the above assumptions, an optimal H2 controller minimizing the performance index

(2.4.62) can be found. Similar to a LQG controller, a H2 controller contains a state estimator.

It has been proved [10, 67] that the minimum of the performance index can be achieved using

the following controller and estimator gain matrices

Kc = BT
2 X2c, Ke = X2eCT

2 , (2.4.64)

where X2c and X2e are solutions of the following controller and the estimator Riccati equations,

X2c A + ATX2c + CT
1 C1 − X2cB2BT

2 X2c = 0, (2.4.65)

X2e AT + AX2e + B1BT
1 − X2eCT

2 C2X2e = 0, (2.4.66)

respectively. A H2 controller then can be represented by the following state space form,

˙̂x = (A − B2Kc − KeC2)x̂ + Key,

u = −Kc x̂,
(2.4.67)

which is of similar structure as that of the LQG controller given in (2.4.49).

The closed-loop system formed by the controller given above is proved to minimize the H2

norm of the the transfer function Tzw, and the minimum is found to be [10],

min ‖Tzw‖2
2 = ‖GcX2e‖2

2 + ‖C1G f ‖2
2, (2.4.68)
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where Gc and G f are transfer functions of the following two systems,

Gc(s) =


 A − B2BT

2 X2c I

C1 − D12BT
2 X2c 0


 (2.4.69)

G f (s) =


 A − X2eCT

2 C2 B1 − X2eCT
2 D21

I 0


 (2.4.70)

2.5 Summary

This chapter is intended to introduce some necessary background needed later in this research.

The procedure of modeling of flexible structures were introduced through deriving the govern-

ing equations for plate structures. Finite element formulation of an isoparametric Mindlin plate

element was derived, and modal analysis was introduced. The LQG and the H2 controller de-

sign methods were outlined. Through the introduction to these two controller design methods,

it can be seen that a H2 controller is an extention of a LQG controller, and can be applied to a

general system with non-collocated control-inputs and disturbances, and disturbances are not

necessarily Gaussian white noise. The H2 controller will be used in this research to design a SVC

system.
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Model Reduction

3.1 Introduction

As introduced in Chapter 1 and Chapter 2, to design a controller for a structure, the structural

model, which is often obtained through the FEM modeling process, has to be set up in the first

place. For a large scale structure, the obtained FEM needs to be reduced in order to obtain a

lower order controller that can be conveniently analyzed and implemented. The modal trun-

cation method can be used to construct a reduced order modal (ROM) for the structure. In a

modal-truncation based ROM, the vibration modes beyond the frequency band of interest are

truncated, and only some in-bandwidth modes are retained. The obtained ROM can be directly

used to design a controller for the structure, or be further reduced using a model reduction

method, e.g. the balanced model reduction.

The modal truncation process develops errors in the obtained ROM. Whatever the ROM

will be used, to design a controller or to obtain another further reduced ROM through a bal-

anced model reduction process, the error exist in the modal-truncation based ROM has to be

minimized. Otherwise, the error in the original ROM either increases the uncertainty that will

be faced in controller design, or will be propgated or even magnified in the following model

reduction process.

In most cases, as long as the frequency band used in constructing a modal-truncation based
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ROM is appropriate, significant truncation error can be avoided in the obtained ROM. However,

truncating modes from a structural system does affect the zeros of the transfer matrix of the

obtained ROM, i.e. shift the frequencies of the zeroes. A controller based on a ROM with zero

shift also has potentials to deteriorate the performance and even destabilize the closed-loop

system when it is used to control the original structure [18].

In this chapter, the model reduction method aiming at reducing the zero shift observed in

a modal-truncation based ROM is studied. As an important part involved in the topic of this

chapter, the balanced model reduction method and related backgrounds are also introduced.

3.2 Balanced Realization and Model Reduction

3.2.1 Controllerability and Observability

Assume a finite-dimensional LTI system be described by the following first order ODE:

ẋ = Ax + Bu, x(0) = x0,

y = Cx + Du,
(3.2.1)

where x ∈ Rn is the state vector of the system, x0 is the initial condition, u(t) ∈ Rm is the system

input, and y(t) ∈ Rp is the system output, A, B, C and D are appropriately dimensioned real

constant matrices. The transfer matrix of the above system is given by

G(s) = C(sI − A)−1B + D. (3.2.2)

Sometimes, the transfer matrix (3.2.2) can also be expressed using the following notation

G(s) =


 A B

C D


 . (3.2.3)

The dynamical system described by (3.2.1) is controllable if, for any initial state x(0) = x0

and the finial state x(t1) with t1 > 0, there exists an input u(·) that drives the system (3.2.1)

from the initial state to the final state. Otherwise, the system in uncontrollable. A necessary and

sufficient condition for the system be controllable is the following controllability matrix has full

(row) rank,

C =
[

A AB A2B . . . An−1B
]

. (3.2.4)
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The system (3.2.1) is observable if, for any t1 > 0, the initial state x(0) = x0 can be deter-

mined from the time history of the input u(t) and the output y(t) in the time interval of [0, t1].

Otherwise, the system is unobservable. A necessary and sufficient condition for the system be

observable is the following observability matrix has full (column) rank,

O =




A

CA

CA2

. . .

CAn−1




. (3.2.5)

Although the controllability and observability a system can be checked by computing the

rank of the controllability and observability matrices, respectively, there is a more efficient ap-

proach. Associated with the controllability and observability of the system (3.2.1), there are two

Lyapunov equations,

AWc + Wc AT + BBT = 0 (3.2.6)

ATWo + Wo A + CTC = 0, (3.2.7)

where Wc and Wo are called as controllability Gramian and observability Gramian matrices of the

system, respectively. For a stable A, the system is controllable iff the controllability Gramian is

positive definite, i.e. Wc > 0, and observable iff the observability Gramian is positive definite

Wo > 0.

As introduced in section 2.4.3, the H2 norm of a system can be obtained by evaluating the

following integral on the transfer matrix of the system,

‖G‖2
2 =

1
2π

∫ ∞

−∞

Trace{G∗(jω)G(jω)}dω. (3.2.8)

For the system (3.2.1), its H2 norm can be obtained in a more efficient way as follows,

‖G‖2
2 = Trace(BTWoB) = Trace(CWcCT), (3.2.9)

where Wc and Wo are the system’s controllability and observability Gramian matrices, respec-

tively.
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3.2.2 Balanced Realization

For a given transfer function, there are infinite number of state space realizations. Among

them, there is a so-called balanced realization. Different from other kind of realizations, in a

balanced realization, the controllability and the observability of a system’s state are equivalent.

This special property makes the balanced realization very useful in many applications, such as

finding a ROM for a system.

The balanced realization of a system can be found by applying an appropriate transformation

to the system. Suppose the state of the system G as described in (3.2.1) is transformed by a non-

singular transformation T to x̂ = Tx, then the transfer matrix of the system corresponding to

the transformed state x̂ is given by

G′ =


 Â B̂

Ĉ D̂


 =


 TAT−1 TB

CT−1 D


 . (3.2.10)

Correspondingly, the system Gramians become

Ŵc = TWcTT, Ŵo = (T−1)TWoT−1. (3.2.11)

It can be verified that G = G′, i.e. the realization given in (3.2.10) is simply another realization

of the original system G.

The balanced realization corresponds to one that is obtained through a transformation T

such that, the Gramian matrices are equivalent and diagonalized, i.e.

Ŵc = Ŵo = Σ, Σ = diag(σ1, σ2, . . . , σn), (3.2.12)

where σi ≥ 0 (i = 1, 2, . . . , n) are called the Hankel singular values of the system. The transfor-

mation T that balances a system as defined in (3.2.1) can be found as follows:

1. Compute the system controllability and observability Gramians Wc and Wo by solving the

Lyapunov equations given in (3.2.6) and (3.2.7)

2. Compute the decompositions P and Q of the Gramian matrices such that

Wc = PPT, Wo = QTQ. (3.2.13)
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3. Compute the singular value decomposition of matrix H = QP,

H = VΣUT, where VTV = I and UTU = I. (3.2.14)

4. The transformation T and its inverse T−1 are then given by

T = PUΣ−1/2, T−1 = Σ−1/2VTQ. (3.2.15)

It is easy to verify that the transformation T obtained above brings the Gramian matrices of the

transformed system diagonal. The transformed controllability Gramian matrix Ŵc is given by

Ŵc = T−1WcT−T = Σ−1/2VTPPTQTVΣ−1/2. (3.2.16)

Introducing H = QP into the above equation yields

Ŵc = Σ−1/2VT HHTVΣ−1/2. (3.2.17)

Then by substituting (3.2.14) into the above equation, it follows

Ŵc = Σ−1/2VTVΣUTUΣVTVΣ−1/2 = Σ. (3.2.18)

Follow the similar procedure, it can be shown that Ŵo = Σ. Therefore, in a balanced realization,

both controllability and observability Gramians are diagonal and equivalent, i.e. Ŵc = Ŵo = Σ,

which are known as balanced Gramians.

3.2.3 Model Reduction by Balanced Truncation

Because the controllability and observability Gramians are equivalent in a balanced realization,

a less controllable state must be less observable, and vice versa. Moreover, because the balanced

Gramians are diagonal, the states are uncoupled in terms of input-output relationship. The

above nice properties of a balanced realization makes it possible to reduce the order of the

corresponding system by deleting those less controllable/observable states from the original

system without changing the system input-output dynamics too much. This is a rough idea

behind the balanced model reduction method, which is established by the following theorem

[69].
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Theorem 1. Suppose system G(s) is stable, and

G =




A11 A12 B1

A21 A22 B2

C1 C2 D




is a balanced realization with Gramian Σ = diag(Σ1, Σ2) with

Σ1 = diag(σ1 Is1 , σ2 Is2 , . . . , σr Isr)

Σ2 = diag(σr+1 Isr+1, σr+2 Isr+2, . . . , σN IsN)

and

σ1 > σ2 > · · · > σr > σr+1 > σr+2 > · · · > σN ,

where σi has multiplicity si, i = 1, 2, . . . , N and s1 + s2 + · · · + sN = n. Then the truncated system

Gr(s) =


 A11 B1

C1 D




is balanced and asymptotic stable. Furthermore

‖G(s) − Gr(s)‖∞ ≤ 2(σr+1 + σr+2 + · · · + σN)

and the bound is achieved if r = N − 1, i.e.

‖G(s) − GN−1(s)‖∞ = 2σN .

By this theorem, a ROM of a stable finite-dimensional system can be obtained by simply

truncating the states corresponding to smaller Hankel singular values from its balanced realiza-

tion. The bound of the truncation error can be easily estimated using the Hankel singular values

corresponding to those truncated states.

From the above introduction, it is seen that the key step in the balanced model truncation

method is to find a balanced realization for a given system. Because computing balanced real-

ization is a computational extensive process, the balanced model truncation method is suitable

for a small or a moderately large system. To use this method for a large scale structure, the first

step is to reduce the FEM model of the structure to tractable size. This can be done by using the

modal truncation method that will be introduced in the following section.
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3.3 Modal Truncation

Consider a n-DOF structural system described by the following equations

Md̈ + Cḋ + Kd = Buu, (3.3.19)

y = Cdd + Cvḋ, (3.3.20)

where d ∈ Rn is displacement vector, M, C and K are mass, damping and stiffness matrices,

respectively, Bu ∈ Rn×p is the control input matrix, u ∈ Rp is the control input vector, y ∈
Rq is the output from the system, Cd, Cv ∈ Rq×n are output matrices corresponding to the

displacement and velocity sensors, respectively. As discussed in Chapter 2, the state space form

of the above system can be written as (see section 2.4.1 on pp.29)

ẋ = Ax + Bu,

y = Cx,
(3.3.21)

using the modal transformation d = Φa, where Φ is the modal matrix of the structure, and a is

the modal displacement vector. In the above equations, x = [a ȧ]T ∈ R2n is the state vector and

A =


 0 I

−Ω2 −2Ωζ


 , B =





0

ΦTBu



 , C =

[
CdΦ CvΦ

]
, (3.3.22)

in which Ω and ζ are diagonal matrices of natural frequencies and modal damping ratios, i.e.

Ω = diag(ω1, ω2, . . . , ωn), ζ = diag(ζ1, ζ2, . . . , ζn). (3.3.23)

The transfer matrix of the system (3.3.21) can be written as

G(s) = C(sI − A)−1B =




G11(s) G12(s) . . . G1p(s)

G21(s) G22(s) . . . G2p(s)
...

...
...

...

Gq1(s) Gq2(s) . . . Gqp(s)



∈ R

q×p, (3.3.24)

where Gij (i = 1, . . . q, j = 1, . . . , p) is the transfer function from the j-th input to the i-th output.

Gij can be expanded by modes as follows,

Gij(s) =
n

∑
k=1

G(k)
ij =

n

∑
k=1

(cdik + cviks)bkj

s2 + 2ζkωks + ω2
k

, (3.3.25)
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where G(k)
ij is the transfer function associated with the k-th mode on the ij input-output channel,

which will be known as modal transfer function in sequel, cdik and cvik are (i, k) entries of the

matrices CdΦ and CvΦ, respectively, Bkj is the (k, j) entry of the matrix ΦTBu, ωk and ζk are

natural frequency and modal damping ratio of the k-th mode, respectively.

Using the modal truncation, a r-mode ROM of the system (3.3.21) can be obtained by trun-

cating the modes starting from r + 1 up to n. The transfer matrix of the obtained ROM is given

by

G′(s) = [G′
ij(s)], i = 1, 2, . . . q, j = 1, 2, . . . , p, (3.3.26)

where

G′
ij(s) =

r

∑
k=1

(cdik + cviks)bkj

s2 + 2ζkωks + ω2
k

. (3.3.27)

In this case, the frequency band covered by the ROM is [0, ωr]. All modes inside this frequency

band are known as in-bandwidth modes, and all other modes are known as residual modes. G ′(s)

governs the in-bandwidth dynamics of the ROM.

3.3.1 Truncation Error

The dynamics of the residual modes (also known as truncated dynamics) is given by Gt(s) =

G(s) − G′(s). It should be noted that the bandwidth of the truncated dynamics Gt(s) overlaps

with that of the original system, i.e. (0, ωn). In a ROM obtained from modal truncation, the

in-bandwidth contributions of the residual modes are neglected, as a result, the in-bandwidth

dynamics are different from that of the full model. This difference is known as the truncation

error.

Truncation error has little effect on the poles of the transfer matrix of the ROM, however, it

shifts the zeroes. This can be shown by the following simple example. Consider a 5-DOF single

input single output (SISO) system, whose modal transfer functions Gi(s) i = 1, 2, . . . , 5 are given

as follows,

G1(s) =
50

s2 + 0.1s + 100
, G2(s) =

120
s2 + 0.17s + 300

, G3(s) =
140

s2 + 0.28s + 800
,

G4(s) =
130

s2 + 0.34s + 1200
, G5(s) =

120
s2 + 0.49s + 2400

.

The transfer function of the full model is then given by G(s) = G1(s) + G2(s) + · · · + G5(s).

A 3-mode ROM is constructed by truncating the last two modes. Figure - 3.1(a) shows the
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magnitude of the transfer function of the full model, 3-mode ROM and the truncated modes. It

can be seen that the truncation causes the notable zero shift in the ROM: the second zero of the

ROM is shifted by about 4Hz. The truncation disturbs the phase angle of the transfer function

correspondingly as shown in Figure - 3.1(b).

To check the performance of the balanced truncation method, the balanced model reduction

method is used to construct a ROM containing the same modes as the ROM obtained above.

First, the balanced realization of the 5-DOF system is computed using the algorithm presented

above. The obtained state space equation has 10 states. The balanced Gramian of the system

are listed as below,

Σ =
[
25.1 24.9 20.1 19.9 8.8 8.7 5.4 5.4 2.5 2.5

]
. (3.3.28)

Truncating the modes corresponding to the 4 smallest Hankel singular values gives the following

balanced model,

G′ =




−0.055 −9.985 0.068 −0.593 0.078 0.158 1.664

9.985 −0.045 0.582 −0.063 0.149 0.070 −1.504

0.068 −0.582 −0.085 17.304 −0.102 −0.254 −1.852

0.593 −0.063 −17.304 −0.087 0.268 0.102 −1.866

0.078 −0.149 −0.102 −0.268 −0.145 −28.271 −1.597

−0.158 0.070 0.254 0.102 28.271 −0.140 1.561

1.664 1.504 −1.852 1.866 −1.597 −1.561 0.000




. (3.3.29)

The magnitude and phase angle of transfer function of the obtained ROM are plotted in Figure -

3.2 along with the full model and the model-truncation based ROM. It is seen that balanced

model reduction can not avoid the zero shift due to truncation. In this particular example, the

balanced truncation caused the same amount of zero shift as the the modal truncation did in the

obtained ROM as shown in Figure - 3.2.

To compensate the truncation error, Moheimani [21] proposed a modified balanced model

reduction by adding a feed-through term to a ROM experiencing the zero shift. Figure - 3.3

compares the results from the modified balanced ROM and the modal truncation ROM. It is

seen that by adding a feed-through (or DC) term, the zero shift due to truncation is reduced.

However, thus obtained ROM has an infinite H2 norm, and can not be used in H2 controller
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Figure -3.1: Modal truncation error in a ROM
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design. Therefore, this method can not be used in this research because a H2 controller will be

used. To avoid getting a ROM with an infinite H2 norm, new approach should be developed.

3.3.2 Parametric Study

If the in-bandwidth contributions of the truncated modes can be compensated by adjusting the

parameters of the in-bandwidth modes, then adding a feedthrough term to a ROM and the

difficulty associated with this approach can be avoided. In this section, the effect of changing

the corresponding modal parameters on the modal transfer function will be studied.

Without loss of generality, the following modal transfer function of a single input single

output (SISO) structural system is considered,

G(jω) =
a + jbω

(ω2
n − ω2) + 2jζωnω

, (3.3.30)

where a and b are parameters associated with the displacement and velocity outputs, respec-

tively, ζ and ωn are modal damping ratio and natural frequency of the structure’s mode. In

the sequel, these parameters are refferred as the modal parameters associated with the modal

transfer function as given in (3.3.30).

Among the modal parameters of a transfer function, the natural frequency ωn determines the

location of the transfer function’s pole. In this study, ωn will be kept unchanged, and the effect

of changing a, b and ζ on the tansfer function associated with these parameters is analyzed.

Let these parameters be changed to their new values as shown below,

a′ = αa b′ = βb ζ ′ = γζ, (3.3.31)

where α, β and γ are adjusting coefficients corresponding to the modal parameters a, b and

ζ, respectively. Correspondingly, the new transfer function (or perturbed transfer function)

becomes

G′(jω) =
a′ + jb′ω

(ω2
n − ω2) + 2jζ ′ωnω

=
αa + jβbω

(ω2
n − ω2) + 2jγζωnω

. (3.3.32)

The magnitude of the original and perturbed transfer functions are given by

|G(jω)|2 =
a2 + b2ω2

(ω2
n − ω2)2 + 4ζ2ω2

nω2 , (3.3.33)

|G′(jω)|2 =
α2a2 + β2b2ω2

(ω2
n − ω2)2 + 4γ2ζ2ω2

nω2 , (3.3.34)
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respectively. Define the ratio between the magnitudes of these two transfer functions as r(ω),

i.e.

r(ω) =
|G′(jω)|
|G(jω)| . (3.3.35)

By introducing

A =
bω

a
, B =

ω

ωn
, (3.3.36)

the magnitude ratio can be written as

r(ω) =

√(
α2 + β2 A2

1 + A2

) [
(1 − B2)2 + 4ζ2B2

(1 − B2)2 + 4γ2ζ2B2

]
= r1 · r2, (3.3.37)

where

r1 =

√
α2 + β2 A2

1 + A2 , r2 =

√
(1 − B2)2 + 4ζ2B2

(1 − B2)2 + 4γ2ζ2B2 . (3.3.38)

It is seen that, when A is small (i.e. at low frequency range), r1 is approximately proportional

to α, while when A is large (i.e. at high frequency range), r1 is approximately proportional to β.

Figure - 3.4 visualizes the variation of the coefficient r1 with respect to (α, A) and (β, A) when

α and β are taking constant values around 1, namely α, β = 0.8, 1.0, 1.2. These plots depict the

variation trends of r1 as a function of α, β and A. From these plots it is observed that, changing

α and β affect the magnitude ratio over the whole frequency range, and the variation of r1 is

dominated by α in the lower frequency range, and by β in the higher frequency range. Because

r1 does not depend on the natural frequency ωn, above observation applies to all modes.

As regarding r2, it depends on the modal damping ratio ζ, the adjusting coefficient γ and the

frequency ratio B. Figure - 3.5 and Figure - 3.6 show the variation of r2 as a function γ and B

when the damping ratio ζ taking four typical values, i.e. ζ = 0.005, 0.006, 0.007, 0.008. It is seen

from these plots that, compared with the change of α and β, the change of adjusting coefficient

γ of the damping ratio has limited influence range around B = 1, i.e. ω = ωn. The smaller

the damping ratio ζ, the narrower the γ’s influence range. Decreasing the modal damping

ratio, i.e. γ < 1, increases the magnitude of the transfer function dramatically around ω = ωn.

Increasing the modal damping ratio, i.e. γ > 1, gradually reduces the magnitude around the

neighborhood of ω = ωn. The larger the γ, the wider this neighborhood. For a typical flexible

structural damping, it is found that the width of the influenced neighbor is dependent on γ

linearly as follows,

∆B ≈ 1 ± 0.025γ (3.3.39)
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In summary of the above discussion, it was observed that change of the modal parameters

α and β has global effects on the magnitude of the corresponding modal transfer function,

while the change of damping ratio coefficient γ has local effects in a neighborhood around the

resonant frequency ωn. The width of the neighborhood is approximately proportional to γ.

In the following example, it will be demonstrated that for a system with multiple modes, by

changing one or more of the modal transfer functions, the system zeros can be shifted without

notable effect on the poles. Consider a 3-DOF system whose transfer function is given by G(s) =

G1(s) + G2(s) + G3(s), where Gi(s) i = 1, 2, 3 are three modal transfer functions given as follows,

G1(s) =
50

s2 + 0.1s + 100
, G2(s) =

120
s2 + 0.17s + 300

, G3(s) =
140

s2 + 0.28s + 800
.

Assume the transfer function of the second mode is perturbed as follows,

G′
2(s) =

120α

s2 + 0.17γs + 300
,

and the perturbed system is given by G ′(s) = G1(s) + G′
2(s) + G3(s). Figure - 3.7 plots the mag-

nitudes and phase angles of of the transfer functions of G(s) and G ′(s). It can be seen that two
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Figure -3.7: Zero shift by change modal parameters.

zeroes of the transfer function G ′(s) can be displaced from their original locations by changing

the modal parameters of the second mode. By increasing or decreasing the modal parameters,

the direction to which the zeroes are moving can be controlled. In both cases, the magnitudes

54



Chapter 3. Model Reduction

of the transfer function poles have been kept unperturbed by ensuring an appropriate ratio be-

tween α and γ. In this example, it was assumed that b = 0. Similar effect can be observed for a

more general case where a and b are both nonzero.

3.4 Model Reduction by Modified Modal Truncation

In the previous section, it has been showed that the zeroes of the transfer function of a ROM can

be shifted by changing the modal parameters of the ROM. By adjusting these modal parameters

in an appropriate way, it is expected that the truncation error can be minimized. An optimization

problem is formulated in this section for this purpose.

For a n-DOF MIMO structural system with p outputs and q inputs, its transfer function is a

p × q complex valued matrix as given in (3.3.24). The (i, j) entry of this matrix is a transfer

function Gij(s) describing input-output dynamics from the j-th input to the i-th output, which is

given by

Gij(s) =
n

∑
k=1

(cdik + cviks)bkj

s2 + 2ζkωks + ω2
k

, (3.4.40)

with i = 1, 2, . . . , p, j = 1, 2, . . . , q. A set of parameters α ijk, βijk , γijk are seeked such that a

r-mode ROM of the following form,

G′
ij(s) =

r

∑
k=1

(αijkcdik + βijkcviks)bkj

s2 + 2γijkζkωks + ω2
k

, (3.4.41)

minimizes the following error index,

∆ ij =

∫ ∞

0
|W(ω)(Gij(jω) − G′

ij(jω))|dω, (3.4.42)

where W(ω) is a weighting function defined by

W(ω) =





1, ω ≤ ωr,

0, ω > ωr.
(3.4.43)

The error index ∆ ij defined above measures the error that exist in the ij input-output channel of

the r-mode ROM due to truncation.

As discussed in the previous section, the error index defined in (3.4.42) can be minimized

by finding a set of optimal modal parameters associated with the transfer function of this input-

output channel. By introducing the adjusting coefficients as given in (3.3.31), minizing the
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truncation error of a ROM can be formulated as an optimization problem that finds a set of op-

timal adjusting coefficients α∗
ijk, β∗

ijk and γ∗
ijk, such that the truncation error ∆ ij given in (3.4.42)

is minimized, i.e.

(α∗
ijk , β∗

ijk , γ∗
ijk) = argmin(∆ ij) (3.4.44)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q and k = 1, 2, . . . , r. The optimization problem formulated above

is a nonlinear optimization problem. It is difficult to find a globally optimal solution to the

problem using a gradient based algorithm.

In this research, this optimization problem will be solved using a Genetic Algorithm (GA),

which was first proposed by Holland [70] and used as an effective numerical method to find a

global optimal (or sub-optimal) solution to a complicated multi-parameter optimization prob-

lem. An introduction to the GA method can be found in Appendix C.

For the optimization problem as given in (3.4.44), each of the optimization variables, i.e. α ijk,

βijk and γijk, are real numbers. In the GA method, these real variables are represented as follows,

αijk =
R1

α − R0
α

Nij
nα, βijk =

R1
β − R0

β

Nij
nβ, γijk =

R1
γ − R0

γ

Nij
nγ, (3.4.45)

where (R0
α, R1

α), (R0
β, R1

β) and (R0
γ, R1

γ) are three set of pre-selected real numbers that define the

ranges of the variables αijk, βijk and γijk, respectively, Nij is an integer number represents the

resolution used in the GA method for searching the optimization variables, nα, nβ and nγ are

three integer variables that encoded in the GA method to represent α ijk, βijk and γijk, respectively.

By introducing the relationships given in (3.4.45), the original optimization problem (3.4.44) is

transformed to a problem with integer optimization variables, which is solvable using a binary-

string-encoded GA method as introduced in Appendix C.

Based on the parametric study presented previously, the following parameters are used in

solving the optimization problem defined in (3.4.44),

(R0
α, R1

α) = (−4, +4), (R0
β, R1

β) = (−4, +4), (R0
γ, R1

γ) = (0, +4), (3.4.46)

and Nij = 216, i.e. the length of the binray-string codes used in the GA method is 16. Corre-

spondingly, the resolutions for the optimization variables α ijk and βijk are 1.2 × 10−4, and the

resolution for γijk is 0.6 × 10−4. Upon the termination of the GA iterations, a set of optimal nα,

nβ and nγ are found, and the corresponding optimal variables α ijk, βijk and γijk can be obtained

from (3.4.45).
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3.4.1 Approximation of Real System

To solve the above defined optimization problem, the transfer matrix representing the real dy-

namics of a MIMO structural system is needed. For a n-DOF MIMO structural system, the trans-

fer function associated with the ij input-output channel is a summation of n modal transfer

functions associated with this channel as given in (3.4.40). When n is large, computing the

transfer matrix of the full model system using (3.4.40) is expensive and not necessary. In this

case, an approximation of the transfer matrix is used to solve the optimization problem defined

above. This approximation should include contributions from all dominant modes for the all

input-output channels. For a flexible structure, these dominant modes can be found by using

the method suggested by Gawronski [67].

For a n-DOF structural system, let Gi(jω) = Ci(jω I − Ai)
−1Bi be the modal transfer function

associated with the i-th mode, where Ai is defined as follows,

Ai =


 0 ωi

−ωi −2ζiωi


 , (3.4.47)

where ωi is the natural frequency of the i-th mode, and Bi is the i-th row of the matrix B in

(3.3.22), Ci is the output matrix given by

Ci =

[
Cdi
ωi

Cvi

]
, (3.4.48)

in which Cdi and Cvi are i-th column of the matrix CdΦ and CvΦ given in (3.3.22), respectively.

When the modal damping ratio is small, the controllability and observability Gramians of G i are

diagonally dominant [67], i.e.

Wc ≈ diag(wci I2), Wo = diag(woi I2), (3.4.49)

where i = 1, 2, . . . , n, I2 is a 2 × 2 identity matrix, wci and woi are the modal controllability and

observability matrices, respectively, given by

wci =
‖Bi‖2

2
4ζiωi

, woi =
‖Ci‖2

2
4ζiωi

. (3.4.50)

In the above equations, ‖ · ‖2 denotes the H2 norm operator, which is defined as in (2.4.55). For

a real constant matrix X, the H2 norm of the matrix can also be obtained as follows

‖X‖2 =
√

λmax(XTX), (3.4.51)
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where λmax(·) denote the maximum eigenvalue of a matrix. The H2 norm of a transfer function

is defined in (2.4.56). However, for a lightly damped structure system, the H2 norm of its i-th

modal transfer function can be approximated [67] by

‖Gi‖2 ≈ ‖Bi‖2‖Ci‖2

2
√

ζiωi
. (3.4.52)

Furthemore, the H2 norm of the whole system is approximately given by the RMS sum of the

H2 norm of all modal transfer functions, i.e.

‖G‖2 =

√
n

∑
i=1

‖Gi‖2
2. (3.4.53)

The above relationships provide an efficient way to find the dominant modes of a lightly

damped structure. The dominance of a mode can be evaluated using the following index,

ri =
‖Gi‖2

2
‖G‖2

2
, i = 1, 2, . . . , n, (3.4.54)

which gives the percentage of the contribution of the i-th mode to the total system H2 norm.

The lager ri, the more important this mode is in terms of the input-output gain. Therefore, a

mode is defined dominant if the corresponding index r i is larger than some threshold value.

After the dominant modes are found, the transfer function of the system used in the optimiza-

tion problem (3.4.44) can be approximated by the summation of the modal transfer functions

of these dominant modes. The error caused by this approximation can be controlled by the

threshold value used in the definition of a dominant mode.

3.4.2 Algorithm of Modified Modal Truncation Using GA Method

The algorithm described here is to use a GA method to solve a model reduction problem as

define in (3.4.44). The algorithm can be outlined as follows:

1. Build a finite element model for the given structure, perform modal analysis to obtain the

modal parameters for each mode;

2. Find the dominant modes for the structure using the index given in (3.4.54);

3. Compute the approximation of the transfer matrix G(s) using the obtained dominant

modes;
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4. Solve the optimization problem (3.4.44) for (α∗
ijk , β∗

ijk , γ∗
ijk) using the GA method as intro-

duced in Appendix C;

5. Substituting the optimal (α∗
ijk , β∗

ijk , γ∗
ijk) obtained in the previous step into (3.4.41) gives

the transfer function of the ROM.

The flow-chart of the above steps is shown in Figure - 3.8. In this figure, the shaded blocks

Modes

End

One step GA

No

Yes

Compute

Randomly generate a set

Compute

Compute error

Construct the ROM 
using

FEM Model Dominant

PSfrag replacements

G(s)
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index ∆

(αijk , βijk, γijk)

(αijk , βijk, γijk)

Figure -3.8: Flow-chart of the model reduction algorithm

constitute a complete GA iterations which are detailed in Appendix C. The obtained ROM is

in the form of the transfer matrix, whose state space realization can be found using either the

balanced realization method, or the Eigensystem Realization Algorithm (Appendix B).
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3.5 Numerical Example

A model reduction problem for a cantilever plate is solved using the proposed algorithm in this

section. The plate considered here is shown in Figure - 3.9. The plate is of a dimension 30 ×
20 × 0.2 (in), and made of a material with the Young’s modulus E = 30 × 106 psi, the Possion’s

ratio ν = 0.27 and the mass density ρ = 0.0009218 lb/in3. There are 2 point actuators (denoted

by I1 and I2) and 3 point displacement sensors (denoted by O1, O2 and O3) are attached to the

plate at the locations as shown in Figure - 3.9.

First, the plate is discretized using the 150 8-node Mindlin plate elements. There are totally

501 nodes, and 1203 DOF’s in the FEM model of the plate. Modal matrix and natural frequencies

of the plate are obtained via a modal analysis. Figure - 3.10 shows the mode shapes and the

corresponding natural frequencies of the first 10 modes.

To find the dominant modes, the modal contribution indices r i are computed. Let G(s) be the

transfer function of the system, G(k)(s) represent the transfer function of the system containing

the first k modes. When k is large enough, ‖G(k)(s)‖2 converges to H2 norm of the system. By

simulation, it is found that

‖G(k)‖2 → 2.4372 when k > 20,

i.e. ‖G‖2 ≈ 2.437. Figure - 3.11-(a) shows the variation of ‖G(k)‖/‖G‖ v.s k. Given the system

norm ‖G‖2, the modal contribution index ri for i = 1, 2, . . . , 40 are computed. Figure - 3.11-(b)

plots these indices. From this figure, it is observed that, except those shaded modes, contribu-
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Figure -3.10: The mode shapes of the first 10 modes.
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Figure -3.11: Contributions indices of the first 40 modes.

tions of all other individual modes are less than 1%. Assume that all modes corresponding to

ri < 1% can be ingorned, then it is adquate to approximate the original 1203-DOF system by its

first 20 modes.

Using the algorithm described previously, a 3-mode ROM for the structure system is con-

structed. The optimal adjusting coefficients corresponding to the modal parameters of the first

3 modes found by using the GA method are listed as follows:

[γ11k, α11k] =




1.64 1.02

1.31 1.09

1.09 1.47


 , [γ12k, α12k] =




1.08 1.03

1.06 1.03

0.95 0.81


 , [γ21k, α21k] =




1.31 1.00

1.02 1.11

1.14 0.80


 ,

[γ22k, α22k] =




0.86 0.98

0.87 1.06

0.66 1.41


 , [γ31k, α31k] =




1.02 0.99

0.87 0.94

0.74 1.16


 , [γ32k, α32k] =




0.98 0.99

0.97 1.01

0.97 0.94


 .

(3.5.55)

Relative error reduction v.s. GA iteration steps for each channels are shown in Figure - 3.12.

For a given channel, the relative error reduction shown in the figure is defined as the ratio of

truncation errors of the adjusted ROM and the original 3-mode ROM, which was obtained by

the direct modal truncation. After 100 GA iteration steps, the relative errors associated with the
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Figure -3.12: Error v.s. GA iteration steps for each input-output channels
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3 × 2 input-output channels are found as follows,




3.56% 1.71%

1.66% 2.37%

0.78% 11.38%


 . (3.5.56)

IN the above, the relative error associated with the ij input-output channel is defined as follows,

∫ ∞

0 |W(ω)(Gij − G∗
ij)|∫ ∞

0 |W(ω)(Gij − G′
ij)|

(3.5.57)

where Gij is the transfer function of the full model, G∗
ij denotes the optimal ROM found by the

proposed method, and G′
ij denotes the ROM obtained from the traditional modal truncation

method.

The adjusted modal parameters can be obtained from (3.3.31) using the optimal adjusting

coefficients given in (3.5.55). Figure - 3.13 plots the magnitudes of the transfer matrix of the full

model, the optimal ROM, which was constructed using the adjusted modal parameters obtained

above, and the ROM obtained from the direct modal truncation. It can be seen that in each

of input-output channels, the transfer function curve of the optimal ROM matches that of full

model satisfactorily. Especially for the channels G11, G12 , G21 and G22, the originally large zero

shifts caused by the truncation errors have been reduced clearly. For the channels where the

original ROM is already close enough to the full model, such as channel G32 as shown in Figure -

3.13(f), the improvement on the truncation error is not as good as other channels. Figure - 3.14

plots the corresponding phase angles of the full model, original ROM and the optimal ROM. It

can be seen that the agreement of phase angles between the full model and the optimal 3-mode

ROM are also improved.

The obtained ROM is in the form of transfer matrix. Its state space form can be found using

either the balanced realization method, or the ERA algorithm as introduced in Appendix B.
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Figure -3.13: Magnitude of the transfer functions for each input-output channels

65



Chapter 3. Model Reduction

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts

ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(a) Channel G11

-200

-150

-100

-50

 0

 50

 100

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts
ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(b) Channel G12

-200

-150

-100

-50

 0

 50

 100

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts

ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(c) Channel G21

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts

ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(d) Channel G22

-200

-150

-100

-50

 0

 50

 100

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts

ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(e) Channel G31

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 0  50  100  150  200  250  300  350  400

Full model
3-mode ROM

Optimal 3-mode ROM

P
S

fra
g

re
p
la

ce
m

e
n

ts

ω (rad/s)

∠
G

(j
ω

)
(d

e
g
)

(f) Channel G32

Figure -3.14: Phase angle of the transfer functions for each input-output channels
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3.6 Summary

Model reduction problem was studied, and a methodology to compensate the zero shift ob-

served in the transfer matrix of a modal-truncation based ROM was developed. The balanced

model reduction and modal truncation methods were introduced. It was showed that zero shift

happened to the transfer matrix of a ROM obtained either from balanced model reduction or the

direct modal truncation method. Through the parametric study, it was found that the zero shifts,

which was caused by the truncation error, observed in a transfer function could be reduced by

changing the modal parameters associated with the transfer function. Based on this observation,

an innovative approach to minimize the zero shifts by tuning modal parameters of a ROM was

proposed. The GA method was used in the proposed method to find a set of optimal modal

parameters such that the zero shifts, i.e. the truncation errors, were minimized. The method

was verified using a numerical example. Simulation results showed that the agreement between

the transfer functions of the full model and the optimal ROM was improved satisfactorily.

It should be noted that, although the method developed in this chapter was aimed at reduc-

ing the zero shift observed in a modal-truncation based ROM, no assumption made in the devel-

opment of the method could prevent the method from being used to other situations. Although

the contents discussed in section 3.4.1 is necessary in this research, it is not an essential part

of the proposed method itself. Because in a real application, the transfer matrix of a structural

system can obtained through experiments, and the approximation of the system as discussed in

section 3.4.1 can be skipped.
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Suppression of Spillover Instability

4.1 Introduction

Spillover happens when a reduced-order model (ROM) based controller is used to control a

higher order system. Consider a system G(s), let Gr(s) be a ROM of the system, Gt(s) be the

truncated (or residual) dynamics, and K(s) be a controller based on the ROM Gr(s). Figure - 4.1

shows the closed-loop system when the controller is used to the original system G(s). It can be

PSfrag replacements

G(s)

Gt(s)

Gr(s)

u(s) y(s)

K(s)

+

Figure -4.1: Schematic of a closed-loop SVC system.

seen that there exist two closed-loop subsystems: K(s) 
 Gr(s) and K(s) 
 Gt(s). The first

closed-loop subsystem is the one that the controller was designed for, while the latter one isn’t.
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In the closed-loop system as shown in Figure - 4.1, there are some control input energy leaks

into the residual dynamics, and this leakage is known as the control spillover. Similarly, some

output signals due to the residual dynamics are feedback to the controller, which is known as the

observation spillover. Both control and observation spillovers act as a disturbance to the closed-

loop subsystem K(s) 
 Gr(s) degrading the overall performance of the closed-loop system. In

some cases, especially when the damping effects are small, the control system could become

unstable.

Due to its adverse effects on the performance of a SVC system, and its potentials to induce

the instability, the spillover has been studied in many researches. Various methods have been

developed aiming at suppressing the spillover instability in a SVC system. However, as discussed

in the Chapter 1, there are more or less limitations on the methods developed in the previous

works. In this chapter, suppression of spillover instability is studied. Through an investigation

on the mechanism of spillover, it is expected that an efficient method to suppress the spillover

instability that is suitable for SVC systems design for large scale structures can be developed.

4.2 Mechanism of Spillover

In this section, mechanism of spillover and the spillover-induced instability in a SVC system are

studied. The system as shown in Figure - 4.1 is considered here.

Assume a structural system G(s) has n DOFs, p inputs, q outputs consisted of the outputs

from qd displacement and qv velocity sensors. Let G(s) has the following realization,

G(s) =


 A B

C 0


 , (4.2.1)

where A ∈ R2n×2n, B ∈ R2n×p and C ∈ Rq×2n are given as follows

A =


 0 I

−Ω2 −2Ωζ


 , B =


 0

ΦTB f


 , C =

[
CdΦT CvΦT

]
, (4.2.2)

and

Ω = diag(ω1, ω2, . . . , ωn), ζ = diag(ζ1, ζ2, . . . , ζn),

Φ =
[
φ1 φ2 . . . φn

] (4.2.3)
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In the above equations, ωi, ζi and φi ∈ Rn are natural frequency, modal damping ratio and

the mode shape vector of the i-th mode, respectively, B f ∈ Rn×p is input matrix denoting the

locations of inputs, Cd ∈ Rq×n, Cv ∈ Rq×n are output matrices denoting the locations of the

displacement and velocity sensors, respectively. Let Gr(s) denote a r-mode ROM of the structural

system system G(s) defined above.

For simplicity, the partions of the matrices Bd, Cd and Cv that will be repeatedly used in the

following derivation are defined here. Assume the number of actuators, displacement sensors

and velocity sensors are all less than the number of modes included in the ROM1, i.e.

p < r, qd < r, qv < r, (4.2.4)

then without loss of generality, the matrix B f can be partitioned as follows,

B f =


B f r

0


 , (4.2.5)

where B f r ∈ Rr×p. Similarly, Cd and Cv are partitioned as follows,

[
Cd Cv

]
=

[
Cdr 0 Cvr 0

]
, (4.2.6)

where Cdr, Cvr ∈ Rq×r. Ω and ζ are partitioned such that

Ω =


Ωr 0

0 Ωt


 , ζ =


ζr 0

0 ζt


 , (4.2.7)

with Ωr ∈ Rr×r and ζr ∈ Rr×r. Moreover, the modal matrix Φ is partitioned such that,

Φ =


Φrr Φtr

Φrt Φtt


 , (4.2.8)

where Φrr ∈ Rr×r and Φrt ∈ R(n−r)×r.

In Figure - 4.1, K(s) is an output feedback controller based on the ROM Gr(s). Assume the

realization for the controller is given by

K(s) =


 AK BK

CK DK


 . (4.2.9)

1This assumption is made for simplicity purpose, and does not affect the validity of the derivation.
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Let [ar ȧr ] and xK denote the state vectors of the ROM Gr(s) and the controller K(s), respectively.

Using the notations defined above, the dynamics of the closed-loop subsystem K(s) 
 Gr(s)

formed by the controller and the ROM can be written as follows




ȧr

är

ẋK





=




0 I 0

−Ω2
r −2Ωrζr ΦT

rrB f rCK

BKCdrΦrr BKCvrΦrr AK








ar

ȧr

xK





+





0

0

BKCdrΦtrat + BKCvrΦrt ȧt





,

(4.2.10)

where [ar ȧr ] is the state vector of the residual modes. Because the controller was designed to sta-

bilize Gr(s), the subsystem (4.2.10) is guaranteed stable. The right-hand-side term BKCdrΦtrat +

BKCvrΦtr ȧt comes from the truncated modes, and acting on the input channel of the controller

like a measurement noise. The following equations, i.e.




ȧt

ät

ẋK





=




0 I 0

−Ω2
t −2Ωtζt ΦT

trB f rCK

BKCdrΦtr BKCvrΦtr AK








at

ȧt

xK





+





0

0

BKCdrΦrrar + BKCvrΦrr ȧr





(4.2.11)

describe the dynamics of the residual modes, where ΦT
trB f rCK is known as the control spillover

term, which represents the leakage of the control forces to the residual modes, BKCdrΦtr and

BKCvrΦtr are known as observation spillover terms, which correspond to the perturbations to

the controller caused by the displacement and velocity signals from the truncated modes, re-

spectively.

It is through the control and observation spillover terms that the residual dynamics interact

with the controller. This interaction could lead to the instability of the residual dynamics. If there

is no control spillover, i.e. ΦT
trBrCK ≡ 0, the stability of the residual dynamics is determined by

the eigenvalues of the following matrix,



0 I 0

−Ω2
t −2Ωtζt 0

BKCdrΦtr BKCvrΦtr AK


 . (4.2.12)

Because the matrix is in a block triangular form, its eigenvalues are same as those of the matrices

 0 I

−Ωt −2Ωtζt


 and AK. (4.2.13)
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As long as the controller K(s) is stable, so is the matrix (4.2.12), and as a result, the residual

dynamics are stable. Same result can be obtained when the observation spillover terms vanish.

The above discussions can be summarized in the following theorem,

Theorem 2. A necessary condition for the spillover instability happening to a closed-loop system is

that both the control and observation spillover terms present, i.e.

ΦT
trB f rCK 6= 0, BKCdrΦtr 6= 0 and/or BKCvrΦtr 6= 0.

An important implication of the above theorem is that, the spillover instability can be avoided

through blocking either the control or the observation spillover in a closed-loop system. Using a

low-pass-filter (LPF) to the outputs from sensors is an approach trying to block the observation

spillover, and therefore achieve the objective of avoiding the spillover instability. However, as

reviewed in Chapter 1, the effect of this approach is compromised when there is no enough

frequency gap between the cutoff frequency of the ROM and the lower frequency of the residual

modes. Furthermore, introducing a LPF increases the size of the closed-loop system, disturbs

the eigenvalues of the observer, and therefore is not favorable.

4.3 A Null Space Approach for Suppressing Spillover Instability

In the above section, it was concluded that the spillover instability can be avoided by eliminating

either the control or the observation spillover terms. Utilizing this conclusion, a method to

suppress the spillover instability in a SVC system is developed in this section.

Elimination of the control spillover is first discussed. One possible way to reduce the control

spillover term ΦT
trB f rCK to zero is to put all actuators on the vibration nodes of the residual

modes, i.e. to construct a B f r matrix such that

ΦT
trB f r = 0. (4.3.14)

For a large scale structure, it is generally true that the number of modes included in the ROM is

much less than the number of residual modes R = n − r, i.e. r � R. Without loss of generality,

it is assumed that the last m′ rows of ΦT
tr are all zeros, then it follows

ΦT
trB f r =


ΦT

tr1

0


 B f r, where ΦT

tr1 ∈ (R−m′)×r. (4.3.15)
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In general cases, ΦT
tr1 has full (column) rank, therefore ΦT

trB f r = 0 leads to a trivial solution

B f r = 0. However, this solution makes the r-mode ROM Gr(s) uncontrollable. Only in some

special cases, where rank(ΦT
tr) ≤ r, a non-trivial solution could be obtained. Similar conclusion

applies to the observation spillover terms. Through the above discussion it can be seen that,

for a large scale structure with a ROM-based controller, it is generally impossible to bring the

control spillover and observation spillover terms to zero by placing actuators and sensors at the

vibration nodes of the residual modes.

Actually, it is not necessary to reduce the spillover terms mentioned above to zero for all

residual modes. Generally, the controller used in a SVC system is a dynamical system with lim-

ited frequency bandwidth. Amplification effects of the controller on the signals whose frequency

is far beyond the controller’s bandwidth will be vanishingly small. For these signals, the second

closed-loop subsystem as shown in Figure - 4.1 can not be formed. In other words, the spillover

instability due to these signals is unlikely to happen. As a result, to avoid spillover instability,

only the spillover terms corresponding to some of the residual modes2 needs to be brought to

zero.

Therefore, although it is impossible to find a control input matrix B f bringing the corre-

sponding control spillover term ΦT
trB f r to zero for the all residual modes, it is possible to find

a nontrivial matrix B f such that the spillover terms ΦT
trB f r vanishes for a few selected residual

modes as summarized in the following theorem.

Theorem 3. Given a r-mode ROM of a n-DOF plant, and p actuators, there exist a control input

matrix B f r ∈ Rr×(p−`) with 0 < ` < p such that

• control spillover term ΦT
trB f r = 0 for any ` of the residual modes;

• the r-mode ROM is controllable.

Proof. In the control spillover term ΦT
trB f r, ΦT

tr has dimension of R × r with R = n − r being the

number of residual modes. It can be partitioned as follows,

ΦT
tr =


ΦT

tr11 ΦT
tr12

ΦT
tr21 ΦT

tr22


 ∈ R

R×r,

2How to find these modes will be discussed later in this chapter.
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where ΦT
tr11 has dimension of `× p, and other submatrices have compatible dimensions. Because

` < p, a non-trivial null space of ΦT
tr11 can always be found. Denote the null space operator by

N(∗), and define

B f r :=


N(ΦT

tr11)

0


 ∈ R

r×(p−`), where N(ΦT
tr11) ∈ R

p×(p−`)

then the spillover term can be written as follows,

ΦT
trB f r =


ΦT

tr11 ΦT
tr12

ΦT
tr21 ΦT

tr22





N(ΦT

tr11)

0


 =


 0

ΦT
tr21N(ΦT

tr11)


 .

By substituting the above control spillover term ΦT
trB f r into (4.2.11), it’s easy to verify the fol-

lowing relationships,

äi + 2ζiωi ȧi + ω2
i ai = 0, for i = r + 1, r + 2, . . . , r + `,

which indicate that the control spillover term corresponding to the ` residual modes starting

from r + 1 has been eliminated.

It is true that rank(Φrr) = r, i.e. N(Φrr) = 0 6= B f r, therefore, the controllability of the

r-mode ROM is guaranteed.

In the above proof, the B f r matrix was constructed such that the control inputs are orthog-

onal to a subspace spanned by the first ` residual modes. It should be noted that the above

theorem can be applied to any selected ` residual modes, which are not necessarily those start-

ing from the (r + 1)-th mode. Moreover, these ` residual modes are not necessarily consecutive.

The observation spillover for some residual modes can be eliminated similarly by construct-

ing an output matrix in a null space spanned by these residual modes as showed in following

theorem.

Theorem 4. Given a r-mode ROM of a n-DOF plant, and q = qd + qv ( qd displacement and qv

velocity ) sensors, there exist a output matrices Cdr ∈ R(q−s)×r and Cvr ∈ R(q−s)×r such that

• the observation spillover terms CdrΦtr and CvrΦtr corresponding to s residual modes are zero;

• the r-mode ROM is observable.
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where s = min{s1, s2 |0 < s1 < qd, 0 < s2 < qv}.

Proof. When both displacement and velocity sensors present, CdrΦtr denotes the observation

spillover due to the displacement sensors, and CvrΦtr denotes the the observation spillover due

to velocity sensors. First, consider CdrΦtr term. Partition ΦT
tr ∈ RR×r as follows

ΦT
tr =


ΦT

tr11 ΦT
tr12

ΦT
tr21 ΦT

tr22


 ,

where R = n − r is the number of residual modes, ΦT
tr11 has dimension of s × q, and all other

submatrices have compatible dimensions. Define

Cdr :=
[(

N(ΦT
tr11)

)T 0
]
∈ R

(q−s)×r, where N(ΦT
tr11) ∈ R

q×(q−s).

Because s < q, it follows that N(ΦT
tr11) 6= 0, and Cdr 6= 0. Then

CdrΦtr =
(

ΦT
trCT

dr

)T
=





ΦT

tr11 ΦT
tr12

ΦT
tr21 ΦT

tr22





N(ΦT

tr11)

0







T

=
[
0 ΦT

tr21N(ΦT
tr11)

]
.

In the above equations, the zero submatrix has dimension of (q − s) × s. Thus, the displacement

observation spillover over s residual modes corresponding to Φtr11 has been eliminated.

The similar arguments apply for to the velocity spillover term. By partitioning ΦT
tr as follows

ΦT
tr =


Φ̄T

tr11 Φ̄T
tr12

Φ̄T
tr21 Φ̄T

tr22




where Φ̄T
tr11 ∈ Rs×q. By defining

Cvr :=
[(

N(Φ̄T
tr11)

)T 0
]
∈ R

(q−s)×r, where N(Φ̄T
tr11) ∈ R

q×(q−s),

it can be verified that

CvrΦtr =
(

ΦT
tr(Cvr)

T
)T

=
[
0 Φ̄T

tr21N(Φ̄T
tr11)

]
.

The zero submatrix in the above equation has dimension of (q − s) × s, i.e. , the velocity obser-

vation spillover corresponding to s residual modes has been eliminated. Therefore, when both

kind of sensors present, i.e. s1 > 0 and s2 > 0, there are totally s = min{s1, s2} residual modes
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for which both the displacement observation spillover and the velocity observation spillover can

be eliminated.

Because Φrr is non-singular, it follows CdrΦrr 6= 0 and CvrΦrr 6= 0, therefore, the output

matrix [Cd Cv] guarantees the observability of the r-mode ROM.

Again, this theorem applies to any selected s residual modes, not necessarily to those starting

from the (r + 1)-th mode, and these modes need not to be consecutive.

From Theorem 3, Theorem 4 and the discussions therein, it is seen that for a given r-mode

ROM with p actuators, qd displacement sensors and qv velocity sensors, the possible spillover

instability can be suppressed for totally N = ` + s residual modes, where ` < p and s =

min{s1, s2 | 0 < s1 < qd, 0 < s2 < qv}. This observation can be visualized in Figure - 4.2. It

ROM

Velc. Spillover Blocked
Blocked

Disp. Spillover
BlockedControl Spillover

PSfrag replacements

m controlled modes R residual modes

` s2

s1

Blocked

Figure -4.2: Residual modes where spillover instability is blocked

should be noted that, when only one kind of sensors are used, for example when qv = 0, i.e. only

qd displacement sensors are used, the number of residual modes for which the observation

spillover can be eliminated is determined by s = {s1| 0 < s1 < qd}. Similarly, when qd = 0, s is

given by s = {s2| 0 < s2 < qv}.

Through the process described above, an input matrix B f r and the output matrices Cdr and

Cvr used in a controller design were constructed in a subspace orthogonal to the space spanned

by some selected residual modes, such that the resultant controller is able to avoid spillover

instability when it is used to control the higher order system.

In the previous section, the assumption (4.2.4) was made. This assumption does not affect

the validity of the proposed method. For example, when the number of sensors are greater than

the number of in-bandwidth modes, these sensors can be divided into several groups such that

76



Chapter 4. Suppression of Spillover Instability
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CKBK

Figure -4.3: Internal structure of a controller with spillover-suppression capability.

each group satisfies that assumption. Alternatively, by following the idea presented above, it’s

easy to show that more number of residual modes can be blocked for the spillover. Obviously, in

this case, favorable results will be obtained.

It should be noted that the controller designed by using the above obtained input and out-

put matrices has a special internal structure different from those designed using a standard

approach. Figure - 4.3 shows a closed-loop system formed by a plant and a controller with

spillover-suppression capability. In this figure, the internal structure of the controller is shown

in the shaded box. The q measurements from the plant are fed into the controller through matrix

BK ∈ R(q−s)×q. An embedded standard controller utilizes the output y ′ ∈ Rq−s transformed by

the matrix BK to generate an intermediate control input u′ ∈ Rp−`, which is then transformed by

the matrix Ck ∈ Rp×(p−`) to generate a real control input u applied to the plant. The embedded

controller can be obtained using any appropriate control theory, and its transfer matrix has a

dimension of (p − `) × (q − s). The controller is able to suppress the spillover instability for the

` + s residual modes, where ` is any integer such that 0 < ` < p, and s is an integer number

determined by the number of sensors as described previously.

4.4 Discussion

In the previous sections, the method used to suppress the spillover instability in a SVC system

was developed. When the developed method is applied to a SVC system, there are two questions

need to be answered. As indicated previously, the spillover does not necessarily cause instability

in a system. Therefore, the first question is: under what condition the spillover will lead to

instability? If it is determined that the spillover instability will happen, then the second question
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follows: among all the residual modes, which of them will be unstable such that should be used

with the proposed method?

It should be noted that the answers to these questions do not affect the validity of the pro-

posed method. In the development of the method, it was assumed that, the spillover instability

will happen and, the residual modes that tend to be unstable under the spillover are known in

prior. From the application point of view, these questions have to be answered to implement the

proposed method in a SVC system design. In this section, the answers to the questions posed

above are explored.

Consider the interconnected system shown in Figure - 4.4, where ∆(s) and M(s) are two

stable transfer matrices. The stability of this system can be determined using the small gain

PSfrag replacements

∆

M +

+
w1

w2

e1

e2

Figure -4.4: Small gain theorem.

theorem [10] given below.

Theorem 5 (Small Gain Theorem). Suppose M is stable and let γ > 0. Then the interconnected

system shown in Figure - 4.4 is well-posed and internally stable for all stable ∆(s) with

1. ‖∆‖∞ ≤ 1/γ if and only if ‖M(s)‖∞ < γ;

2. ‖∆‖∞ < 1/γ if and only if ‖M(s)‖∞ ≤ γ.

A feedback system said to be well-posed is all closed-loop transfer matrices are physically

realizable or proper. Let x1 and x2 denote the state vectors of the systems ∆ and M, respectively,

then the interconnected system shown in Figure - 4.4 is said to be internally stable if the origin

(x1, x2) = (0, 0) is asymptotically stable [10].

For the SVC system considered in this chapter (see Figure - 4.1), its topological structure

can be equivalently transformed to the one as shown in Figure - 4.5. In this figure, the shaded

block K̂(s) represents the closed-loop system formed by the controller K(s) and the ROM Gr(s).
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Figure -4.5: Schematic of a closed-loop SVC system.

Because the controller K(s) was designed to stabilize the ROM Gr(s), therefore, the stability of

K̂(s) is guaranteed. Furthermore, the residual dynamics Gt(s) are always stable as long as all

residual modes have positive damping. In summary, the small gain theorem can be directly used

to determine the stability of the interconnected system shown in Figure - 4.5.

By the small gain theorem, the spillover instability will happen to the system shown in Fig-

ure - 4.5 when

‖Gt(s)‖∞ ≥ 1
‖K̂(s)‖∞

, (4.4.16)

where K̂(s) is the closed-loop system formed by the controller K(s) and the ROM Gr(s). The

condition given above can be used to answer the first question as posed in the beginning of this

section. In (4.4.16), ‖ · ‖∞ denotes the H∞ norm operator. Given a stable transfer matrix G(s),

its H∞ norm is defined as [10]

‖G(s)‖∞ = sup
ω∈R

σ{G(jω)}, (4.4.17)

where σ{G(jω)} denotes the largest singular value of the matrix G(jω). To compute the H∞

norm of a transfer matrix, an iterative algorithm [10] is often needed. If the Bode plot of

the transfer matrix G(s) is available, the H∞ norm can also be obtained graphically: it is the

maximum peak value on the Bode magnitude plot of |G(jω)|.
For a lightly damped structure G(s), the H∞ norm of G(s) approximately equals to the largest

H∞ norm of its modal transfer matrices, i.e.

‖G‖∞ ≈ max
i

‖Gi‖∞, i = 1, 2, . . . , n, (4.4.18)
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where ‖Gi‖∞ denotes the H∞ norm of the modal transfer matrix associated with the i-th mode,

and can be approximated as follows [67]

‖Gi‖∞ ≈ ‖Bi‖2‖Ci‖2

2ζiωi
, (4.4.19)

where Bi and Ci are same as those defined in section 3.4.1. Therefore, using (4.4.18) and

(4.4.19), the H∞ norm of the residual dynamics Gt(s) can be obtained as follows,

‖Gt‖∞ ≈ max
i>r

‖Bi‖2‖Ci‖2

2ζiωi
. (4.4.20)

After the H∞ norms of the residual dynamics Gt(s) and the controller K̂(s) are obtained, whether

or not the spillover instability will happen to the system shown in Figure - 4.5 can be determined

using the criterion given in (4.4.16).

In the case when the spillover instability happens, to use the proposed method to suppress

the spillover instability, the residual modes that tend to be unstable need to be identified. One

possible approach is to use the criterion given in (4.4.16) to each mode separately. Beause

‖K̂(s)‖∞ tends to increase by including the residual modes in K̂(s), criterion given in (4.4.16) is

reduced to a sufficient condition in this case. A more safe way is to check manually, i.e. to check

the eigenvalues of the system K̂(s) and pick up all modes corresponding to the eigenvalues that

have positive real part. Considering the bandwidth of a controller is limited, only those residual

modes that fall inside a frequency range close to the cutoff frequency of the controller need

to be considered. The width of this frequency range can be determined in a trial-and-error

manner. Whatever approach to be used, a controller with a spillover-suppression capability can

be designed using the method described in the previous section, as long as these residual modes

are obtained.

4.5 Numerical Example

In this section, the effectiveness of the proposed method is verified using a numerical example,

where a controller is designed to stabilize a cantilever plate as shown in Figure - 4.6. The plate

has dimension of 15 × 9 × 0.01 inches, and is made of a material with the Young’s modulus

E = 30 × 106 psi/in4, the mass density ρ = 0.000728 lb/in3, and the Poisson’s ratio µ = 0.27.

The plate is first discretized using finite element method into 5 × 3 8-node plate elements with
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Figure -4.6: A cantilever plate with sensors, actuators and controlled outputs.

5-DOF at each node. Three point velocity sensors and three point actuators are used in the

control system, and their locations as shown in Figure - 4.6. Sensitive direction of sensor and

action direction of actuators are all along with z-axis.

Modal matrix and the natural frequencies of the plate are obtained through a modal analysis.

The natural frequencies of the first 9 modes are given in Table.4.1.

Table 4.1: Natural frequencies of the cantilever plate

i-th Mode 1 2 3 4 5

ωi (rad/s) 9.36 34.87 58.43 115.67 163.68

i-th Mode 6 7 8 9

ωi (rad/s) 184.79 231.72 271.12 340.74

In this example, an optimal H2 controller is designed to control the vibration of the first 5

modes. For this purpose, a ROM containing the first 5 modes is first constructed. The structure
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of the ROM is described as follows

Gr(s) =




A B1 B2

C1 0 D12

C2 D21 0


 =




0 I 0 0 0

−Ω2
r −2ζrΩr Bw 0 φT

r Bu

Cdw Cvw 0 0 0

0 0 0 0 I

0 Cvφr 0 I 0




. (4.5.21)

From the above expression it is seen that, A, B2 and C2 matrices can be easily determined using

the results from the modal analysis, i.e. the natural frequencies and the modal matrix. The

modal damping ratio is assumed to be

ζi = 0.005, i = 1, 2, . . . , 5. (4.5.22)

Because only the velocity sensors are used in the feedback, C2 matrix only has one nonzero entry

of Cvφr, which corresponds to the velocity measurement. The process noises are added to the

system as modal forces through Bw, which is a 5 × 5 diagonal matrix given as follows,

Bw = diag{
√

W1,
√

W2, . . . ,
√

W5}, (4.5.23)

where Wi with i = 1, 2, . . . , 5 denotes the intensity of the process noise associated with the i-

th mode. The controlled outputs consist of the modal velocity and the control input u. The

weight for the control effort is defined by the identity submatrix included in D12. Cdw and Cvw

are two 5 × 5 diagonal matrices defining the weights for the controlled outputs of the modal

displacement and velocity, respectively, and are given as follows,

Cdw = diag{cdw1, cdw2, . . . , cdw5},

Cvw = diag{cvw1, cvw2, . . . , cvw5},
(4.5.24)

where cdwi and cvwi with i = 1, 2, . . . , 5 are the scalar weights assigned to the i-th modal dis-

placement and velocity, respectively. The larger cdwi (or cwi), the more controll effort will be

addressed to control the vibration of the corresponding mode. The measurement noises enters

the system through a 3 × 3 identity submatrix contained in D21.

Based on the 5-mode ROM defined above, a standard H2 controller and a H2 controller with

spillover suppression capability are designed using Bw = I, and

Cdw = diag{1.3, 0.0, 0.0, 0.0, 0.0},

Cvw = diag{0.0, 0.3, 0.3, 0.3, 0.3}.
(4.5.25)
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In the sequel, “Controller-A" and “Controller-B" will be used to denote these two controllers,

respectively. Because there are 3 actuators and 3 velocity sensors, as described in section 4.3,

Controller-B is able to block the spillover for the 4 of residual modes.

Assume for the moment that the first 4 residual modes tend to be unstable under the spillover.

Therefore, the mode shapes of the first 4 residual modes are used to compute B f r and Cvr

matrices used in Controller-B. Using the method presented previously, B f r and Cvr are found as

follows,

B f r =




−5.282

−13.105

−5.037


 , Cvr =

[
7.883 −0.488 12.752

]
. (4.5.26)

For Controller-A, B f r and Cvr matrices are obtained as described in section 2.4.1.

To verify the effectiveness of Controller-B in suppressing the spillover instability, a 9-mode

ROM is constructed. In this example, the 9-mode ROM is constructed using the first 5 modes

and the first 4 residual modes. All systems that will be referred in the sequel are summarized in

Table.4.2.

Table 4.2: Definition of various systems

ROM Open-loop system
Closed-loop system formed with

Controller-A Controller-B

5-mode ROM OPEN-5 CLOSED-5A CLOSED-5B

9-mode ROM OPEN-9 CLOSED-9A CLOSED-9B

Figure - 4.7 shows the responses of the open-loop system OPEN-5 and two closed-loop sys-

tems, i.e. CLOSED-5A and CLOSED-5B, subjected to a pulse force applied to the plate at the

location shown in Figure - 4.6. The pulse force has an amplitude of 1 lb within a time interval

of [0, 0.002] second. In Figure - 4.7, the displacement responses Uz(t) measured at 4 randomly

selected locations (as defined in Figure - 4.6) on the plate are compared. It can be seen that,

both controllers are able to attenuate the vibration of the first 5 modes. The performance of

the closed-loop system CLOSED-5B, which is formed by using Controller-B, is not as good as
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Figure - 4.7: Comparison of responses of OPEN-5, CLOSED-5A and CLOSED-5B to

a pulse force, where thin dashed lines denote OPEN-5, thick dashed lines denote

CLOSED-5A, and thick solid lines denote CLOSED-5B.

CLOSED-5A, which is using a standard H2 controller. Both overshot and the settling time of

CLOSED-5B are larger than that of CLOSED-5A.

One physical explanation for the reduced in-bandwidth performances of the system CLOSED-

5B is that, because Controller-B was designed to avoid spillover instability, it has to reduce its

control energy to avoid disturbing the residual modes, as a result, its ability to attenuate the in-

bandwidth vibration is reduced correspondingly. Controller-A, however, was designed solely for
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the 5-mode ROM, all its control efforts are addressed to attenuate the in-bandwidth vibration,

therefore, it should outperform Controller-B when is used to the system it was designed for.

To determine if the spillover instability happens to the system CLOSED-9A using the criterion

given in (4.4.16), the H∞ norm of the residual dynamics and the system as shown in Figure -

4.8 are computed. In the system as shown in the figure, Gr(s) is the 5-mode ROM, and K(s)

PSfrag replacements
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u(s) y(s)
K(s)

+

Figure -4.8: The system used to determine the spillover instability.

represents Controller-A. The residual dynamics include the 6, 7, 8, 9-th modes of the plate. As

described previously in this chapter, the H∞ norms of this system and that of residual dynamics

determine whether or not the spillover instability happen to the closed-loop system CLOSED-9A.

The H∞ norm of the system shown in Figure - 4.8 is found to be −36.8dB. Using (4.4.20), the

H∞ norm of the residual dynamics is found to be 53.4dB, which is corresponding to the 6-th

mode.

By (4.4.16), it is concluded that the spillover will cause instability to the closed-loop system

CLOSED-9A. This conclusion can also be verified by looking at the eigenvalues of the system

matrix of CLOSED-9A. In Table.4.3, eigenvalues of the three systems, i.e. OPEN-9, CLOSED-9A

and CLOSED-9B, are listed. It can be seen from the table that, the locations of the eigenvalues of

the residual modes were displaced in CLOSED-9A by Controller-A. Among the 4 residual modes

considered here, eigenvalue corresponding to the 6-th vibration mode was moved to the right-

half-plane due to the spillover, and as a result, this mode was unstable in the closed-loop system

CLOSED-9A, as predicted using the criterion (4.4.16). For CLOSED-9B, because the controller

was designed to block spillover on the 4 residual modes, the eigenvalues corresponding to these

residual modes were therefore not disturbed by the controller, as can be seen from the table by

comparing the values inside the two shaded boxes. Because the residual modes are originally

stable, the spillover instability will not happen to a closed-loop as long as they are not perturbed
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Table 4.3: Comparison of eigenvalues of closed-loop systems using standard H2 con-

troller and the proposed approach

Mode
OPEN-9 CLOSED-9A CLOSED-9B

Re(λi) Im(λi) Re(λi) Im(λi) Re(λi) Im(λi)

1 −0.047 ±9.369 −5.426 ±10.843 −12.674 ±26.452

2 −0.174 ±34.842 −13.822 ±32.264 −2.731 ±35.007

3 −0.292 ±58.438 −6.816 ±58.308 −18.232 ±51.971

4 −0.578 ±115.665 −9.800 ±115.714 −2.331 ±115.585

5 −0.819 ±163.702 −4.023 ±163.798 −12.840 ±162.334

6 −0.924 ±184.760 3.121 ±178.214 −0.924 ±184.760

7 −1.159 ±231.713 −2.290 ±231.528 −1.159 ±231.713

8 −1.356 ±271.124 −0.360 ±271.248 −1.356 ±271.124

9 −1.704 ±340.714 −5.129 ±340.331 −1.704 ±340.714

by the controller, which was guaranteed by Controller-B.

Figure - 4.9 compares the responses of the two closed-loop systems, i.e. CLOSED-9A and

CLOSED-9B, to the pulse force defined previously. The responses shown in the figure are mea-

sured at the 4 randomly selected locations as defined in Figure - 4.6. Because the first residual

modes is unstable in the system CLOSED-9A, the response from this closed-loop system explodes

rapidly. However in the system CLOSED-9B, all residual modes are not disturbed by the cotroller

with the spillover-suppression capability, the whole system is kept stable. As can be seen from

the figure, the spillover instability didn’t happen, and the responses of the system CLOSED-9B

gradually decayed to zero.

It should be noted that, because the residual modes are not perturbed by the controller in

CLOSED-9B, the vibration components caused by the 4 residual modes are not attenuated by

the controller. They are decayed naturally due to the material damping. Figure - 4.10 compares

the responses of the systems CLOSED-5B and CLOSED-9B. It can be seen from the figure that,

there are some high frequency components exist in the responses obtained from CLOSED-9B.
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Figure - 4.9: Comparison of responses of CLOSED-9A and CLOSED-9B to the pulse

force, where thick dashed lines denote CLOSED-9A, and thick solid lines denote

CLOSED-9B.

As reflected in Table. 4.3, Controller-B is able to attenuate the in-bandwidth vibrations without

disturbing the residual dynamics. Vibrations due to the uncontrolled residual modes are super-

posed to the attenuated in-bandwidth responses, and as a result, some high frequency compo-

nents are observed in the responses obtained from the system CLOSED-9B. Because the residual

modes are stable in CLOSED-9B, these high frequency vibrations decays to zero eventually as

shown in Figure - 4.10 due to the structural damping.
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Figure - 4.10: Comparison of responses of CLOSED-5B and CLOSED-9B to the pulse

force, where dashed lines denote CLOSED-9B, and thick solid lines denote CLOSED-

5B.

4.6 Summary

In this chapter, the spillover phenomenon was studied in a SVC system, and a method to sup-

press the spillover instability was developed. Through an analysis on the mechanism of spillover,

it was showed that the spillover instability was attributed to the control spillover and the obser-

vation spillover. Blocking any one of them, the spillover instability can be avoided. Although

blocking the spillover for all residual modes of a SVC system using limited number of pointwise
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actuators and sensors is impossible, this can be done for some selected residual modes. Based

on this observation, the proposed method was developed to construct an input and an output

matrices that are orthogonal to a space spanned by some selected residual modes that tend to

be unstable under the spillover. The number of residual modes for which the spillover instability

can be avoided is dependent on the number of actuators and sensors used in a control system.

Based on the small gain theorem, a criterion that can be used to determine whether or not

the spillover instability happen to a SVC system was proposed. The proposed criterion can also

be used to identify the residual modes that tend to be unstable under the spillover. In this case,

however, the criterion can only provide a sufficient condition.

The proposed method was verified via a numerical study of vibration control of a cantilever

plate. Responses obtained from the two closed-loop systems, which was form by a standard

H2 controller and a controller with the spillover-suppression capability, were simulated and

compared. Simulation results verified that the controller designed from the proposed method

was able to suppress the spillover instability.
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Optimal Locations of Sensors/Actuators

5.1 Introduction

For a SVC system with given number of sensors and actuators (SAs), the system performance can

be affected significantly by the locations of the SAs. In order to achieve the highest performance-

expanse ratio, finding the optimal locations of SAs is desired. For a structure with simple geom-

etry and smaller number of DOF’s, experience and a trail-and-error approach may suffice to find

optimal locations for SAs. While, for a large scale structure, a systematic and efficient method-

ology is needed to solve this optimization problem. Moreover, the performance index used in

finding the optimal locations is another important factor that affects the performance that can

be achieved by a closed-loop system.

In this chapter, the method to find the optimal locations for sensors and actuators (OLSA)

used in a SVC system for large scale structures is studied. In this study, the OLSA problem is

formulated as an optimization problem with given number of sensors and actuators. To solve

such a multi-variable nonlinear optimization problem, a GA method is used, because traditional

gradient-based optimization methods may suffer from the slow convergence speed in finding a

global optimal solution. In solving a large scale nonlinear optimization problem, e.g. the OLSA

problem at hand, a GA method is efficient because no Jacobian matrix needs to be evaluated in

its solving process. Furthermore, a GA method solves an optimization problem using a random-
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search-like strategy, a global optimal solution may be easier to obtain. Because a spatial H2

norm [44, 45] is able to provide a more comprehensive index measuring the characteristics of a

structural system, it is used as the performance index in solving the OLSA problem.

The first part of this chapter introduces the spatial H2 norm and the controller design based

based on the spatial H2 norm. Then the OLSA problem is formulated, and the numerical al-

gorithm based a GA method is developed to solve the obtained OLSA problem. Finally, the

developed algorithm is verified through a numerical example.

5.2 Spatial H2 Norm

The concept of the spatial H2 norm was proposed by Moheimani and Fu [44, 45] to describe

the input-output characteristics of a distributed system, e.g. structural system. Based on this

concept, the spatial H2 controller was developed by the same authors. In this section, the

spatial H2 norm and the spatial H2 controller design will be introduced.

Consider a n-DOF structural system as defined in (2.4.34), the state space equations of the

system is given by

ẋ = Ax + Bu,

y = Cx.
(5.2.1)

Assume there are p inputs and q outputs associated with the above system, i.e. the transfer

function of the system is a q × p complex matrix, which can be written as follows,

G(s) =
m

∑
i=1

Gi(s) =
n

∑
i=1

(Cdi + Cvis)Bi

s2 + 2ζiωis + ω2
i

, (5.2.2)

where Gi(s) is the modal transfer matrix of the i-th mode, Bi is the i-th row of the matrix φTBu,

which was defined in section 2.4.1, Cdi and Cvi are i-th column of the matrices Cdφ and Cvφ

(see section 2.4.1 for definition), respectively. When the output from the system is pointwise,

the transfer matrix of the system is a complex function dependent only on the frequency.

The spatial H2 norm concept was introduced by Moheimani and Fu [44] to a system with a

distributed output. In this case, the system is given by

ẋ = Ax + Bu,

y(t, ξ) = C(ξ)x(t),
(5.2.3)
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where the distributed output y(t, ξ) : Rt ×R → R` is measured on ` spatial domains Ri with

i = 1, . . . , `, ξ ∈ {Ri} is the spatial coordinate (for 2D structure, ξ ∈ R2), C(ξ) ∈ (C1)`×n is the

output matrix of the state variable x(t) ∈ Rn on each of the ` spatial domains. Similarly, the

transfer matrix of the system can be decomposed by modes as follows

G(s, ξ) =
m

∑
i=1

Ci(ξ)

s2 + 2ζiωis + ω2
i

Bi, (5.2.4)

in which, Ci(ξ) ∈ (C1)q×1 is the projection of C(ξ) into the i-th mode of the system. The spatial

H2 norm of the transfer matrix G(s, ξ) is then defined by

〈〈 G 〉〉2
2 =

1
2π

∫ ∞

−∞

∫

R
Trace{G(jω, ξ)G∗(jω, ξ)}dξdω, (5.2.5)

where the superscript (∗) denotes the complex conjugate operator. As seen in the above defi-

nition, the spatial H2 norm is different from the standard H2 norm (see (2.4.56)) in the sense

that it introduces an additional average operation over the spatial domain R. It represents the

characteristics between a set of discrete inputs and a set of distributed outputs of a system.

This property makes it suitable to be a performance index in structural vibration control, where

the performance is usually required over a continuous area on the structure being controlled,

instead of on some isolated points.

It has been proved [44, 45] that the spatial H2 norm of the system G in (5.2.4) is equal to

the standard H2 norm of another system Ĝ, i.e.

〈〈 G(s, ξ) 〉〉2
2 = ‖Ĝ(s)‖2

2 , (5.2.6)

where Ĝ(s) is the transfer matrix of the following pointwise system

Ĝ(s) = Γ(sI − A)−1B , (5.2.7)

and Γ is a matrix satisfying

ΓTΓ =

∫

R
C(ξ)TC(ξ)dξ . (5.2.8)

The H2 norm of the transfer matrix Ĝ(s) can be obtained using the method described in section

3.2.1.

Based on the relationship as described in (5.2.6), the optimal spatial H2 controller for the

system G(s, ξ) is therefore a standard optimal H2 controller for the system Ĝ(s). Consider the
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Figure -5.1: Block diagram for the optimal spatial H2 controller design

optimal spatial H2 controller design problem for the system shown in Figure - 5.1. The plant G

has the following state space representation,

ẋ = Ax + B1w + B2u,

z(ξ) = C′
1(ξ)x + D12u,

y = C2x + D21w,

(5.2.9)

where w is the disturbance vector, z(ξ) is the distributed controlled output defined on a spatial

domain Ξ, y is the measurement output from sensors. C ′
1(ξ) is the matrix consisting of modal

shape functions. If the controlled outputs z(ξ) are displacements, then

C′
1(ξ) =

[
φ1(ξ) 0 φ2(ξ) 0 . . . φm(ξ) 0

]
. (5.2.10)

Denote the optimal spatial H2 norm of the transfer matrix Tzw from the disturbance w to

the distributed controlled output z(ξ) by 〈〈 Tzw(ξ) 〉〉2, then the controller K minimizing the

〈〈 Tzw(ξ) 〉〉2 is thus the standard optimal H2 controller for the following system,

ẋ = Ax + B1w + B2u,

z = C1x + D12u,

y = C2x + D21w,

(5.2.11)

where C1 is a matrix satisfying

CT
1 C1 =

∫

Ξ
C′

1(ξ)TC′
1(ξ)dξ. (5.2.12)

In a special case when Ξ is the spatial domain of the entire structure, by using the orthogonal
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property of the modal shape functions, the following simplified relation can be obtained,

CT
1 C1 =

∫

Ξ
C′

1(ξ)TC′
1(ξ)dξ = diag(Ei),

Ei =




∫

Ξ
φi(ξ)T φi(ξ)dξ 0

0 0


 .

(5.2.13)

In this case, C1 can be chosen as follows,

C1 = diag







√∫

Ξ
φi(ξ)Tφi(ξ)dξ 0

0 0





 . (5.2.14)

Following the standard H2 controller design procedure as described in section 2.4.3, an

optimal H2 controller can be obtained for the system (5.2.11). The obtained controller mini-

mizes the ‖Tzw‖2 for the system (5.2.11), or equivalently, minimizes the spatial H2 norm of the

closed-loop transfer function Tzw of the original system (5.2.9), i.e. 〈〈 Tzw 〉〉2 is minimized. The

minimum achieved by the controller was shown [69] to be

min
{
〈〈 Tzw 〉〉2

2

}
= min

{
‖Tzw‖2

2
}

. (5.2.15)

From the minimal H2 norm (see (2.4.68)) that can be achieved, it is seen that min
{
〈〈 Tzw 〉〉2

2

}

is indirectly dependent on both the actuator locations (i.e. B2 matrix) and the sensor loca-

tions (i.e. C2 matrix). By appropriately changing the SA locations, or equivalently adjusting the

parameters of the B2 and C2 matrices, a smaller min
{
〈〈 Tzw 〉〉2

2

}
can be found. The smaller

〈〈 Tzw 〉〉2, the stronger ability the closed-loop system has in rejecting the disturbance, which in

turn implies better performance.

5.3 Dominant Modes and Reduced Order Model

In section 3.4.1, the dominant modes of a structural system were found using an index that

measures the contribution of a mode to the whole system in terms of a standard H2 norm.

Based on the relationship that exists between the H2 norm and the spatial H2 norm as described

in (5.2.6), the index used in measuring the importance of a mode in a structural system can be

re-defined in terms of the spatial H2 norm.
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Because the spatial H2 controller as introduced above minimizes the spatial H2 norm of the

closed-loop transfer matrix relating the disturbance to the controlled output, it make sense to

use the spatial H2 norm of the same transfer matrix in finding the dominant modes for the

system. For simplicity, the transfer matrix used in here is evaluated in the open-loop system.

For a system as given in (5.2.9), by ignoring the path from the control input u to the mea-

surement output y, the subsystem relating the disturbance w to the controlled output z can be

written in a form as given in (5.2.3). The dominant modes mentioned here are then defined

using the spatial H2 norm of the open-loop transfer function of this system.

For a lightly damped system, the spatial H2 norm can be decomposed by modes as introduced

in section 3.4.1 (or in [44, 45] as well), i.e.

〈〈 G 〉〉2
2 =

m

∑
i=1

‖Ĝi‖2
2, (5.3.16)

where Ĝi is the equivalent modal transfer matrix associated with the i-th mode given by

Ĝi(s) =
C′

di + C′
vis

s2 + 2ζiωis + ω2
i

Bi , (5.3.17)

where Bi is the i-th row of the matrix ΦTBu (see section 2.4.1 for definition), C ′
di and C′

vo are

the matrices satisfying

C′
diC

′
di

T
=

∫

R
Cdi(ξ)CT

di(ξ)dξ ,

C′
viC

′
vi

T
=

∫

R
Cvi(ξ)CT

vi(ξ)dξ ,
(5.3.18)

in which Cdi, Cvi ∈ Rr×1 are the i-th columns of the matrices CdΦ, CvΦ (see section 2.4.1 for

definition), respectively. From (5.3.18), it follows that

C′
di = CdiR, C′

vi = CviR ,

R =

√∫

R
φi(ξ)φT

i (ξ)dξ ,
(5.3.19)

where φi(ξ) is the eigenfunction (mode shape vector) corresponding to the i-th mode.

In terms of the spatial H2 norm, the contribution of the i-th mode, or alternatively, the

importance level of the mode, can be described by the following nondimensional quantity r i,

ri =
‖Ĝi‖2

〈〈 G 〉〉2
. (5.3.20)
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The larger the ri, the more important the i-th mode in terms of the system’s spatial H2 norm. A

mode is considered neglectable if the corresponding r i is less than a predefined threshold value.

Using the above defined index, dominants modes of a system with distributed output can be

found. The obtained dominant modes can then be used to construct a ROM respresenting the

original system using the traditional modal truncation method, or the model reduction method

developed in Chapter 3. For simplicity, the ROM used in this chapter is constructed using the

traditional modal truncation methods.

5.4 GA Method for the OLSA Problem

Using the spatial H2 norm as the performance index, the OLSA problem can be formulated as an

optimization problem as follows: For a structural system as given in (5.2.9) with a distributed

controlled output, find the locations for sensors and actuators such that the spatial H2 norm of

the closed-loop transfer matrix Tzw is minimized. Because the locations of sensors and actuators

are represented by the measurement output matrix C2 and the input matrix B2, respectively, the

above optimization problem can be mathematically represented by

(B2, C2) = argmin
B2,C2

{〈〈 Tzw 〉〉2}. (5.4.21)

In the above defined optimization probelm, the number of sensors and actuators are given,

i.e. B2 and C2 matrices have given dimensions.

To solve the OLSA problem using a GA method (Appendix C), the locations of the sensors

and actuators are indexed by a set of integer numbers. Each of them corresponds to a unique

location on the structure, and is encoded in a binary string, which is known as chromosome in the

GA method. Assume there are p actuators and q sensors, then p + q of chromosomes constitute a

population member, several of population members make a population in a GA method. Figure -

5.2 shows a typical chromosome used in the OLSA problem, where each of q binary-strings

represents a location index of a sensor, and each of p strings represents a location of an actuator.

The length of binary encoded string depends on the size of the searching space. For the

problem at hand, the size of the searching space is the number of nodes on the FEM mesh

excluding the constrained nodes and the vibration nodes of the selected modes. The fitness value

of a population member is determined by its chromosome. For convenience of implementation,
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Figure - 5.2: A typical chromosome used in an OLSA problem with q sensors and p

actuators

in each GA iteration step, the size of the population is kept same. An outline of using the GA

process in the OLSA problem is given as follows:

Algorithm for the GA process in OLSA Problem:

1. Given q sensors and p actuators, randomly generate the initial population of N members.

2. Design an optimal spatial H2 controller, and evaluate 〈〈 Tzw 〉〉2 for each member of the

population.

3. Generate N new population members by repeating following steps:

(a) Randomly select two members from the current population to be the parents. The

probability that a member is selected is determined by its fitness value.

(b) Generate a child by applying the crossover with certain probability (known as crossover

rate) on the selected parents.

(c) Mutate one or two bits of the child’s chromosome with certain probability (known as

mutation rate).

(d) Fill the new population with the newly generated child.

4. Evaluate the fitness value for each member of the new population, and find the optimal

one.
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5. If the predefined end-condition is satisfied, the GA iteration is stopped, and return the best

solution in current population.

6. Otherwise, go back to the step 2.

The GA iteration is terminated either when a certain number of iterations have been reached, or

when the required accuracy is achieved. For the problem at hand, the ending condition of the

GA is chosen to be the number of iterations.

It is worth noting that the results obtained from a GA process with the limited number

of iterations might be a suboptimal solution. To ensure a solution be a global optimal one,

sufficient number of iterations have to be done before the GA process can be terminated. Due

to the random nature of a GA method, the number of iterations that need to obtain a global

optimal solution is difficult to determine. In this research, the GA program will be run several

times such that a solution good enough can be found.

5.5 Numerical Example

In this section, the numerical scheme proposed above is used to solve an OLSA problem for a

fixed-fixed supported plate as shown in Figure - 5.3. The plate has dimension of 36 in × 18 in ×

�����
�����
�����
�����

���������
���������
�������
�������

�������
�������
�������
�������

���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	

�
�
�
�


�
�
�
�


�����
�����
�����
�����

����
����
���������
���������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

���������
���������
���������

���������
���������
���������

�������
�������
�������
�������

�����
�����
�����
�����

���������
���������
���������

�������
�������
�������

�������
�������
 � � � 
 � � � 

!�!�!�!�!
!�!�!�!�!
!�!�!�!�!

"�"�"�"�"
"�"�"�"�"
"�"�"�"�"

#�#�#�#�#
#�#�#�#�#
#�#�#�#�#

$�$�$�$
$�$�$�$
$�$�$�$

%�%�%�%
%�%�%�%
&�&�&�&
&�&�&�&

'�'�'�'
'�'�'�'
(�(�(�(
(�(�(�(

)�)�)�)
)�)�)�)
*�*�*�*
*�*�*�*

+�+�+�+
+�+�+�+
,�,�,�,
,�,�,�,

-�-�-
-�-�-
.�.�.
.�.�.

/�/�/�/
/�/�/�/
0�0�0�0
0�0�0�0

1�1�1�1
1�1�1�1
1�1�1�1

2�2�2�2
2�2�2�2
2�2�2�2

3�3�3�3�3
3�3�3�3�3
4�4�4�4�4
4�4�4�4�4

5�5�5�5
5�5�5�5
6�6�6�6
6�6�6�6

7�7�7�7
7�7�7�7
8�8�8�8
8�8�8�8

9�9�9�9�9
9�9�9�9�9
:�:�:�:�:
:�:�:�:�:

;�;�;�;
;�;�;�;
<�<�<�<
<�<�<�<

Controlled output 18in

36in

=�=�=�=
=�=�=�=
=�=�=�=
>�>�>
>�>�>

X

Y
Z

Figure -5.3: A fixed-fixed plate. Solid dots denote the locations where the disturbances

are applied, shaded area denotes the region on the plate where the distributed dis-

placement output is attenuated.
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0.05 in, and is discretized using the 8-node plate elements. The plate is made of a material

with the Young’s modulus E = 30 × 106 psi, the Poisson’s ratio µ = 0.27 and the mass density

ρ = 0.0009218 lb/in3. A modal damping ratio of 0.005 is assumed. The Cartesian coordinate

used in sequel is shown as Figure - 5.3.

The objective is to find the locations for the 4 sensors and 4 actuators such that, for the given

disturbances, the distributed displacement response measured on the shaded region as shown

in Figure - 5.3 is attenuated as much as possible.

The disturbance considered here is a 2D Gaussian disturbance given by

D(x, y, t) =
WD(t)Cg

2πσxσy
exp

[
−1

2

(
x − µx

σx

)2

− 1
2

(
y − µy

σy

)2
]

, (5.5.22)

where µx and µy define the center location of the Gaussian disturbance on the plate, σx and σy

define the shape of the disturbance. WD(t) is a time-dependent magnitude of the force, and Cg

is a normalization coefficient. In the following simulation, WD(t) is chosen as

WD(t) =





Wc = const for 0 ≤ t ≤ 0.01

0 otherwise.

(5.5.23)

To excite as many vibration modes as possible, the center of the 2D Gaussian disturbance is

chosen at a location away from the center of the plate. Figure - 5.4 shows the load D(x, y, t) for

0 ≤ t ≤ 0.01 with µx = 12 in, µy = −5 in, σx = 6 in and σy = 4 in, Wc = 10 lb, and Cg = 105.8

(is chosen such that the peak value of D(x, y, t) is 10 lb/in2).

The natural frequencies and the modal shapes of the plate are obtained through a modal

analysis. Figure - 5.5 shows the modal shapes and natural frequencies of the first 6 modes.

A ROM is then constructed using the dominant modes of the structural system defined above.

For this purpose, the dominance indices ri as defined in (5.3.20) are calculated for the first 40

modes. As explained previously, the subsystem relating the disturbance to the controlled output

is used to evaluate these indices. Figure - 5.6 shows r i ’s for the first 40 modes of the plate.

It is observed that, for the given disturbance, the contribution from the i-th mode is getting

smaller with increase of i. Starting from the 23rd mode, the index σi is less then 10−6, which is

considered sufficiently small and can be neglected. Therefore, the ROM containing the first 22

modes is used in the following analysis to represent the original structural system.
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Figure - 5.4: The 2D Gaussian disturbance applied on the plate, centered at (x =

12, y = −5) with peak value D(12,−5, t) = 10 lb/in2 for 0 ≤ t ≤ 0.01.1
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Figure -5.5: The first six mode shapes of the plate

To solve the OLSA problem using the GA method, the searching space, which defines the

admissible locations for the sensors and actuators, has to be defined. There are 541 nodes in the

FEM mesh of the plate. Excluding the 38 constrained nodes and the nodes where the mode shape
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Figure -5.6: The mode importance index of the plate

values are zero for the first 22 modes, there are 460 candidate nodes that can be used to place

sensors and actuators. These 460 nodes define the searching space for the GA process, which

is visualized in Figure - 5.7. In this plot, the area corresponding T(x, y) = 1.0 are admissible

for placing a sensor or an actuator. The nodes (of the FEM mesh of the plate) fall inside this

area are then numbered from 1 to 460, and encoded in a binary string, whose length is 9 bits

(28 < 460 < 29).

The GA method is then simulated with a population size of 50, a crossover rate of 95%, and

a mutation rate of 10%. The GA process is terminated upon the finish of 1000 iterations. Figure -

5.8 shows the variation of the performance index, i.e. 〈〈 Tzw 〉〉2 of the closed-loop system, vs

the GA’s iteration steps in the five runs of the simulation (each takes 4h20min on an 930MHz

PC). The minimum performance index achieved by these runs is found to be 4.47 × 106. For a

randomly selected SA set, this performance index is generally between 7.5× 108 and 8.0× 106. A

simple algebra shows that the solution found by the GA process improves the closed-loop system

performance by 40% to 50% in terms of the spatial H2 norm. The optimal locations for the SA

are shown in Figure - 5.9(a).

To demonstrate the performance improvement, two closed-loop systems are formed. One of
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Figure - 5.7: The searching space for the OLSA problem. All nodes corresponding to

T(x, y) = 1 define the searching space for the optimization.
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Figure -5.9: Sensor and actuator locations of (a) the SYS-RND, and (b) the SYS-OPT

them, which is denoted by SYS-OPT, is formed by the structural model and a controller using

the SAs with the optimal locations. Another one, which is denoted by SYS-RND, is formed by

a controller using the same number of SAs with randomly selected locations as shown in the

Figure - 5.9(b). The open-loop system is denoted by the SYS-OPN.
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Figure - 5.10: Comparison of the frequency response functions of the three systems

from the disturbance to the outputs measured at the locations Z1 to Z6 (see Figure -

5.9).
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Firstly, the frequency domain characteristics of the systems defined above are compared in

Figure - 5.10, where the singular values of the transfer matrices from the disturbance to the dis-

placement outputs measured at the locations Z1 to Z6 (see Figure - 5.9) are plotted. For these

randomly selected input-output pairs, the SYS-OPT shows the smallest value compared with the

other two systems at the first two resonant peaks. Because these two modes are among the most

dominant ones, suppressing the vibration for these modes has a significant effect on improving

the overall performance. This means that the controller using the SAs with the optimal loca-

tions (as shown in Figure - 5.9(a)) is able to achieve the best result among the three systems in

attenuating the vibration caused by the disturbance defined previously.

As a more comprehensive index, an averaged singular value, which is obtained by averaging

all that over the shaded area (as defined in Figure - 5.3) at the first 4 resonant frequencies,

is used to compare the performances of the systems. The results are listed in the Table. 5.1.

From the table it is seen that, at the first resonant frequency, SYS-OPT can achieve about 35dB

Table 5.1: Comparison of singular values between the three systems

i-th mode ωi SYS-OPN SYS-OPT SYS-RND

(rad/s) (dB) (dB) (dB)

1 46.1 66.5 31.6 41.7

2 75.9 46.0 25.5 32.6

3 127.2 38.5 32.4 29.6

4 173.3 22.4 21.3 20.5

reduction on the response, as compared 25dB reduction from the SYS-RND. At the third and

the fourth resonant frequencies, although the reduction achieved by SYS-RND is little bit better

than achieved SYS-OPT, SYS-OPT outperformances SYS-RND over the whole frequency range.

Performances of these systems are compared in the time domain as well. First, the displace-

ment responses are compared in Figure - 5.11. The displacement curves plotted in Figure - 5.11

are measured at the same locations as those used in Figure - 5.10. It is seen that the response

from the system SYS-OPT decays in a faster speed than the other two systems.

Secondly, the vibration energy are compared among the systems. The total vibration energy
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Figure -5.11: Comparison of the displacement responses at the locations Z1 to Z6 (see

Figure - 5.9) of the three systems
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E(t) of the structural system at certain time instant t, is defined as the summation of the potential

energy and the kinetic energy, i.e.

E2(t) =
1
2

(
ḋT

(t)Mḋ(t) + dT(t)Kd(t)
)
≈ 1

2

m

∑
i=1

[
ai(t) ȧi(t)

]

ω2

i 0

0 1





ai(t)

ȧi(t)


 , (5.5.24)

where M and K are mass and stiffness matrices of the structure, respectively, d and ḋ are

displacement and velocity vectors, respectively, q i and q̇i are modal displacement and velocity of

the i-th mode, respectively. ωi is the natural frequency of the i-th mode. Figure - 5.12 shows the

time history of E(t) obtained from the three systems subjected to the disturbance. It can be seen
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Figure -5.12: Comparison of the vibrating energy vs time.

that the SYS-OPT demonstrates the fastest energy-decay rate among the three systems. In other

words, the SYS-OPT demonstrates the best performance not only in a local but also in a global

sense.

To compare the effect of the optimization index used in the OLSA problem on the perfor-

mance of the final closed-loop system, the standard H2 norm is used in solving the OLSA prob-

lem (see [71] for details). In this OLSA problem, the optimization index is defined as the H2

norm the closed-loop transfer matrix relating the disturbance, which is same as the one used in

the above analysis, to the displacement outputs measured at the four corners and center point
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of the shaded region as shown in Figure - 5.13. The method as described in [71] is then used
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Figure - 5.13: Controlled output and SA locations of SYS3. The point controlled out-

puts are shown by the solid triangles. Solid rectangular and circles show the optimal

locations for the actuators and the sensors, respectively.

to solve this OLSA problem, and a set of the optimal locations of the SAs are found as shown in

Figure - 5.13. A standard optimal H2 controller is then designed, and a new closed-loop system,

which is denoted by SYS-PH2, is formed. The vibration energy of the above obtained closed-

loop system is then compared with that of SYS-OPT and SYS-OPN. The comparison is shown in

Figure - 5.14. It is observed that the vibration of the SYS-PH2 decays slower than that of both

SYS-RND and SYS-OPT. Because the standard H2 norm describes pointwise input-output char-

acteristics of a system, it has inherent limitation on describing the overall dynamical behavior of

a distributed system. As a comparison, the spatial H2 norm overcomes the limitation by intro-

ducing an additional averaging over the spatial domain, it is therefore a more comprehensive

performance index for a structural system. As a result, when a spatial H2 norm is used as an

optimization index in an OLSA problem, the obtained optimal locations of SAs is able to result

a better closed-loop performance when they are used to design a controller. Simulation results

shown in Figure - 5.14 demonstrate the benefits that one may get by using a spatial-H2-norm

based performance index in solving an OLSA problem for a distributed system.

In this numerical example, a distributed impulse load as defined in (5.5.22) is used, and
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Figure -5.14: Comparison of vibrating energy vs time of the four systems.

it should be noted that for this example, the obtained optimal locations for the SA’s are not

dependent on time (i.e. WD(t) in (5.5.22)) but dependent on the spatial distribution of the

applied load. When WD(t) is not an impulse function, to obtain a time-independent solution to

the OLSA problem, the frequency information (if available) has to be absorbed into the system.

In this case, the optimal locations for SA’s are dependent on time indirectly.

5.6 Summary

The problem of optimal locations for sensors and actuators in a SVC system was studied in this

chapter. Based on a brief introduction of the spatial H2 norm and the spatial H2 controller de-

sign, a numerical scheme using the spatial H2 norm as the performance index was proposed to

find the optimal locations for the sensors and actuators in a SVC system. A GA method was used

in solving the OLSA optimization problem. The effectiveness of the proposed scheme was illus-

trated via extensive numerical simulation studies on the vibration control of a plate structure.

The simulation results showed that the scheme was effective in finding optimal sensor and ac-

tuator locations. A controller using the SAs with the locations found by the proposed scheme, is
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able to improve the performance of the resultant closed-loop substantially. Additionally, the spa-

tial H2 norm was shown to be a better performance index to be used in the structural vibration

control when the vibration reduction is required over a continuous area on the structure.
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Modeling of MR Dampers and Applications

6.1 Introduction

The MR fluids typically consist of microsized, magnetically polarizeable particles (such as iron

particles) dispersed in a carrier medium. An applied magnetic field can turns the MR fluids into

a semi-solid in a few milliseconds [2]. This phase change increases the yield stress of the MR

fluids dramatically. Various devices have been developed to utilize this special material property

demonstared by the MR fluids. Because the deformation of the MR fluids resembles that of

yielding, the force provided by a MR device is always dissipative, as a result, MR devices are

also known as MR dampers. A schematic of a typical MR damper is shown in Figure - 6.1. As

shown in this figure, the MR fluids are contained inside of a sealed channel. The piston can move

back and forth along the channel with valves on the piston. There is a coil inside the piston that

can generate a magnetic field inside the channel when the electric current flows inside the coil

through the wire. The magnetic field around the MR fluids can be regulated by altering the

intensity of the current flowing through the coil, and as a result, the material property, i.e. the

yielding stress, of the MR fluids can be controlled.

A MR damper can be operated in a wide temperature range (-40◦C to 150◦C), and can pro-

vide up to tons of damping force using a battery power supply (as low as 20 ∼ 50 watts). These

properties make MR dampers an powerful and reliable devices that can be used in various appli-
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Dyke, Spencer, Sain & Carlson August 1, 1996 3

filled with an MR fluid [42]. The damper is 21.5 cm long in its extended position, and the main
cylinder is 3.8 cm in diameter. The main cylinder houses the piston, the magnetic circuit, an accu-
mulator and 50 ml of MR fluid, and the damper has a  cm stroke. As shown in Fig. 1, the
magnetic field produced in the device is generated by a small electromagnet in the piston head.
The current for the electromagnet is supplied by a linear current driver running off of 120 V AC,
which generates a 0–1 amp current that is proportional to an applied DC input voltage in the range
0–3 V. The peak power required is less than 10 watts, which could allow the damper to be operat-
ed continuously for more than an hour on a small camera battery. Forces of up to 3000 N can be
generated with the device. The force is stable over a broad temperature range, varying less than
10% in the range of –40 to 150 degrees Celsius. The rise time (defined as the time required to go
from 10% to 90% of the final value) in the force generated by the MR damper during a constant
velocity test when a step in the voltage is applied to the current driver is approximately 8 msec.
This behavior is primarily due to the time the MR fluid in the damper takes to reach rheological
equilibrium and the time lag associated with the dynamics of driving the electromagnet in the MR
damper.

The response of the MR damper due to a 2.5 Hz sinusoid with an amplitude of 1.5 cm is
shown in Fig. 2 for four constant voltage levels, 0 V, 0.75 V, 1.5 V, and 2.25 V, being applied to
the current driver for the device. These voltages correspond to 0 A, 0.25 A, 0.5 A and 0.75 A, re-
spectively. Saturation of the MR effect begins in the tested device when the applied voltage is 2.25
V (0.75 A). Thus, attention is restricted to voltages between 0 and 2.25 V. The measured forces
are shown as a function of time in Fig. 2a, the force-displacement loops are shown in Fig. 2b, and
the force-velocity loops are shown in Fig. 2c. The force-displacement loops in Fig. 2b progress
along a clockwise path with increasing time, whereas the force-velocity loops in Fig. 2c progress
along a counter-clockwise path with increasing time. Note that the nonzero mean force produced
by the MR damper is due to the accumulator (see Fig. 1).

2.5±

Figure 1. Schematic of MR Damper.
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Figure -6.1: A schematic of a typical MR damper

cations, such as vibration control of bridges [46–48], buildings [49–51], and vehicle suspension

system [52], etc.

In this chapter, hysteresis behavior of MR dampers and the their applications to structural

vibration control are studied. Mathematical model of a MR damper and the corresponding

control algorithm that will be used in this research are determined through a comparison study

on various MR models and control algorithms available in the literature. Using the determined

MR model and control algorithm, passive control and semi-active control of large scale structures

using MR dampers are studied. In this chapter, emphasis will be put on the application aspect

and the related numerical simulations.

6.2 Modeling of MR Fluids Damper

In this section, several widely used models of MR dampers are briefly introduced and their abil-

ities to reproduce the hysteresis behavior of MR dampers are compared. The comparison study

presented in this section are mainly based on the experimental study reported by Spencer Jr.

et al. [54].
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6.2.1 Binham Model

The stress-strain behavior of the Bingham viscoplastic model [53] is often used to describe the

behavior of MR fluids. In this model, the plastic viscosity is defined as the slope of the measured

shear stress versus shear strain rate. For positive values of the shear rate γ̇, total stress is given

by

τ = τy sgn(γ̇) + ηγ̇, (6.2.1)

where τy is the yield stress induced by magnetic field; and η is viscosity of the MR fluids. Based

on this model, Stanway et al. [72] proposed an idealized mechanical model for a controllable

fluid damper, which is applicable to MR dampers. The schematic of this model is shown in

Figure - 6.2.

PSfrag replacements

c0

x

F

Figure -6.2: Bingham model

In this model, the force generated by the device is given by

F = fc sgn(ẋ) + c0 ẋ (6.2.2)

where c0 is damping coefficient; fc is friction force related to fluid yield stress.

6.2.2 Extended Bingham Model

Gamota and Filisko [73] proposed a model predicting the behavior of the ER material, which

has similar hysteresis behavior as the MR fluids, based on the Bingham model. As shown in

Figure - 6.3, this model is an extension of the Bingham model, and consists of the Bingham

model and a standard model of linear solid. The governing equation of this model is given by
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Figure -6.3: Extended Bingham model [73]

F =





k1(x2 − x3) + c1(ẋ2 − ẋ1) + c0 ẋ1+

fc sgn(ẋ1) + f0 + k2(x3 − x2)
for |F| > fc,

k1(x2 − x3) + c1 ẋ2 + f0 + k2(x3 − x2) for |F| < fc.

(6.2.3)

For this model, it was experimentally observed [74] that the decrease in the damping coefficient

c1 can produce nonlinear roll-off in the measured force-velocity relationship as the velocity

approaches zero. A problem associated with this model is that much smaller time steps are

needed to simulate the system [75].

6.2.3 Bouc-Wen Model

One model that is numerically tractable and has been used extensively for modeling hysteretic

systems is the Bouc-Wen model [1]. The Bouc-Wen model is extremely versatile, and can be used

to simulate a variety of hysteretic behaviors. A schematic of this model is shown in Figure - 6.4.

Bouc−Wen
PSfrag replacements

c0

k0

x

F

Figure -6.4: Bouc-Wen model [1]

The force in this model is governed by

F = c0 ẋ + k0(x − x0) + αz, (6.2.4)
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where z is an hidden variable governed by

ż = −γ|ẋ|z|z|n−1 − βẋ|z|n + Aẋ. (6.2.5)

By tuning the parameters γ, β and A, this model is able to simulate a variety of hysteretic

materials. According to Spencer Jr. et al. [54], main problem for this model is that its force-

velocity relation within the low velocity range does not closely reproduce the measurement

results obtained from a typical MR damper used in their research.

6.2.4 Modified Bouc-Wen Model

From the above investigation it can be seen that, there are various problems associated with

the models introduced above. Based on extensive experiments, Spencer Jr. et al. [54] proposed

a modified Bouc-Wen model, which avoided most of the problems observed in the other mod-

els. This model was able to maintain all advantages exhibited by the Bouc-Wen model. The

schematic of this model is shown in Figure - 6.5.

Boc−Wen

PSfrag replacements
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c1 k0

k1

xy

F

Figure -6.5: Modified Bingham model [54].

In this model, the damping force fd produced by the MR device is given by

fd = c1ẏ + k1(x − x0), (6.2.6)

where y is governed by the following equations

ẏ =
1

(c0 + c1)
{αz + c0 ẋ + k0(x − y)} (6.2.7)

ż = −γ|ẋ − ẏ|z|z|n−1 − β(ẋ − ẏ)|z|n + A(ẋ − ẏ).
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In the above equations, parameters α, c1 and c0 are directly related to the voltage u applied to

the MR damper in a manner shown below,

α = α(u) = αa + αbu,

c1 = c1(u) = c1a + c1bu, (6.2.8)

c0 = c0(u) = c0a + c0bu,

where u is given as the output from a first-order filter as follows

u̇ = −η(u − uc),

in which, uc is the command voltage signal sent to the current driver. The parameters associ-

ated with this model were found through matching the simulated data with experimental data

obtained in a variety tests [54]. The obtained parameters are shown in the following table.

As reported in [54], the mathematical model described in (6.2.6) and (6.2.7) with the above

Table 6.1: Parameters of the MR damper used in simulation

Parameter Value Parameter Value

c0a 20.2 N · sec/cm αa 44.9

c0b 2.68 N · sec/cm · V αb 638 V−1

k0 15.0 N/cm γ 39.3 cm−2

c1a 350 N · sec/cm β 39.3 cm−2

c1b 70.7 N · sec/cm · V A 47.2

k1 5.37 N/cm n 2

x0 18.4 cm η 251 sec−1

parameters was able to match experimental results satisfactorily. Therefore, this model and the

corresponding parameters shown in Table.6.1 will be used in this research.

Using this model, the responses of the MR damper due to a 2.5Hz sinusoidal excitation

with an amplitude of 1.5cm are shown in Figure - 6.6. It can be seen from this figure that, at

0V input voltage, the MR damper behaves like a viscous damper, i.e. the force-displacement

relation is approximately elliptical, and the force is almost linearly proportion to the velocity.
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(c) Damping force v.s. displacement
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(d) Damping force v.s. velocity

Figure - 6.6: Simulated MR damper force for a 2.5Hz sinusoidal excitation with

an amplitude of 1.5cm by using the modified Bouc-Wen model. Four different

input voltages are used.

With the increasing of the applied voltage, the force needed to yield the material increase, and

the amount of energy dissipated within one cycle, which is measured by the area circled by the

curve as shown in Figure - 6.6(c), increases correspondingly.
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Figure -6.7: Response of the MR damper to a noisy displacement excitation.

6.2.5 Improvement of the Numerical Property

Through numerical experiment of the MR model described above, it was observed that the

response of the model is extremely sensitive to the change of the velocity. High frequency

components in the velocity not only cause the trouble in solving the model, but also make the

model losing its desired hysteretic behavior as shown in the following example.

Consider a case where the MR model is excited by the following sinusoidal displacement

signal contaminated by noise,

x(t) = 1.5An sin(5πt), (6.2.9)

where An = N(0, 0.01) is a zero-mean Gaussian white noise. Figure - 6.7(a) shows the time

history of this displacement signal, and Figure - 6.7(b) gives the MR force obtained from the

above model. It can be seen that desired hysteretic behavior as shown in Figure - 6.6 is destroyed

by the noise inside the displacement signal.

Through numerical experiments, it is observed that the response from the MR model given in

(6.2.7) is dominated by the input velocity ẋ, and is sensitive to the change in the velocity. This

property causes the model behave erratically when there are sudden changes in the velocity,

which is the case when the velocity is evaluated numerically from the displacement. In many

numerical simulations, evaluation of the velocity from noisy displacement data is inevitable.

Therefore, it is desirable to take necessary measure to improve the numerical property of the
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MR model.

To this end, a low-pass filter (LPF) is added to the MR model (6.2.7) in order to improve the

ability of the model in dealing with noisy displacement data. The dynamics of the MR model

with a LPF thus becomes

ẏ =
1

(c0 + c1)
{αz + c0v + k0(x − y)},

ż = −γ|v − ẏ|z|z|n−1 − β(v − ẏ)|z|n + A(v − ẏ),

ẇ = A f w + B f ẋ,

v = C f w,

(6.2.10)

where A f , B f and C f are system matrices of the low-pass filter, w is the state of the filter, and v

is the filtered velocity. The damping force of the MR damper is still given by (6.2.6). The system

matrices associated of a 2nd order LPF are given as follows

A f =


 0 1

−ω2
c −

√
2ωc


 , B =


0

1


 , C =

[
ω2

c 0
]

, (6.2.11)

where ωc is the cutoff frequency of the filter. Figure - 6.8 shows the damping force obtained

from the improved model (6.2.10) subjected to the noisy displacement given in Figure - 6.7(a).

The MR damping force showed in Figure - 6.8 is obtained by setting the cutoff frequency of
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Figure -6.8: Response of the improved MR model to a noisy displacement excitation.

119



Chapter 6. Modeling of MR Dampers and Applications

the LPF to 15 Hz. Because the frequency of the primary component of the excitation is 5 Hz,

therefore, the LPF allows the pass of this main component, and all higher frequency components

are rejected. As a result, the desired hysteretic behavior of the MR damper is retained as shown

in Figure - 6.8.

6.3 Structural Vibration Control Using MR Dampers

To attenuate vibration of a structure, MR damper can be used either in a passive or a semi-active

way. In the passive way, a MR damper is used as a normal damping device, whose natural hys-

teretic behavior helps to dissipate the vibration energy through its interaction with the structure

to which it is attached. In this case, an appropriate input voltage to the MR damper is chosen

and kept constant throughout its working cycle. In the semi-active way, the controllable hys-

teretic behavior of the MR damper is used to achieve a better vibration attenuation. In this case,

the input voltage to the MR damper changes in a way such that the damping force provided by

the MR damper follows a command signal, which is usually generated by a feedback controller

according to the measured response of the structure. In the semi-active control, a MR damper is

used in a way more like an actuator with additional controllable damping capability.

Passive control is simple to implement and robust to uncertainties. Semi-active control may

achieve better performance at the expense of a more complicated design and analysis. In this

section, issues related to the analysis of passive and semi-active control of a structure using MR

damper will be discussed.

6.3.1 Passive Control

Given a n-DOF structure and m MR dampers, the equations of motion of the system can be

expressed as follows,

Mẍ + Cẋ + Kx = Bm fd(x, ẋ) + f , (6.3.12)

where M, C, K ∈ Rn×n are mass, damping and stiffness matrices of the structure, respectively,

x ∈ Rn is the displacement vector, Bm ∈ Rn×m is a matrix specifying the locations of the m MR

dampers, fd ∈ Rm and f ∈ Rn are MR damping force and external force vectors, respectively.
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Because the MR damping force vector fd is a function of the unknown displacement x and

velocity ẋ, (6.3.12) represents a set of nonlinear equations.

Two approaches can be used to solve the above nonlinear equations. One approach is to use

a linear solver, e.g. the Newmark method as introduced in Appendix A, by treating (6.3.12) as

a piecewise-linear system, computing the MR damping force fd(x) from the displacement at the

previous time step, and treating it as constant in each time step. In this approach, MR dampers

actually acts like active devices providing additional excitation to the system. Numerical exper-

iment showed that, this approach can not produce an accurate results, and even worse, could

lead to an unstable solution. To obtain an stable and accurate solution, the integration time step

needs to be sufficiently small. Another approach is to transform the above second order ODE

into a set of first order ODE’s (or state space form), and solve the obtained first order system

using a Runge-Kutta method. Because each MR damper has 4 states (2 internal states and 2 filter

states), the obtained the first order ODE has totally 2n + 4m states. For a large scale structure

with multiple MR dampers, numerical simulation on such a big system is a difficult task.

To facilitate the numerical simulation in this research, an efficient method to solve (6.3.12)

is developed. The propposed numerical scheme is based on the Newmark method, and the

unconditionally-stable property of the Newmark method is preserved. To deal with the nonlin-

earity, the proposed scheme finds the solution through iteration within each integration step.

Assume the solution to (6.3.12) have been obtained at time t, to find the solution at time

t + 4t, the MR force fd at time instant t + 4t is first expressed by the known values at the

previous time instant t. The error introduced by the above approximation calls for the iteration

within each time step. The solution at the i-th iteration step is obtained by solving,

Mẍ(i)
t+4t + Cẋ(i)

t+4t + Kx(i)
t+4t = Bm fd(x(i−1)

t+4t, ẋ(i−1)
t+4t) + f t+4t. (6.3.13)

The solution at i + 1-th iteration step is obtained as follows

x(i+1)
t+4t = δx(i)

t+4t + x(i)
t+4t, ẋ(i+1)

t+4t =
3
4t

δx(i)
t+4t + ẋ(i)

t+4t, ẍ(i+1)
t+4t =

6
4t2 δx(i)

t+4t + ẍ(i)
t+4t. (6.3.14)

The coefficients used in the above equations are obtained from the assumptions of the Newmark

method (see Appendix A). δx(i)
t+4t is obtained by solving the following linear equations,

−
[

6
4t2 M +

3
4t

C + K
]

δx(i)
t+4t = Mẍ(i)

t+4t + Cẋ(i)
t+4t + Kx(i)

t+4t
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− Bm fd(x(i)
t+4t, ẋ(i)

t−4t, ut+4t) + f t+4t. (6.3.15)

Above iteration steps will be terminated when ‖δx(i)
t+4t‖ ≤ ε has been satisfied, where ε is an

accuracy tolerance.

The method proposed above solves (6.3.12) without transforming to a state space form.

Because the symmetric property of the mass, damping and stiffness matrices can be utilized, the

method can be implemented efficiently for a large scale structure.

6.3.2 Semi-Active Control

In a semi-active control system, the desired control force (i.e. command signal) is calculated

by a controller based on the measured response of the structure, and MR damper is used as an

actuator to apply the control force to the structure. Because a MR damper is a passive device, a

force can only exist in its interaction with the structure. In other words, the force developed by

a MR damper is determined by the displacement, velocity as well as the input voltage to the MR

damper as shown in (6.2.10). As a result, the MR force can not be totally controlled by changing

the input voltage.

To instruct a MR damper to follow a given command signal, some researchers (Chang and

Roschke [57], Hidaka et al. [58]) proposed to use a neural networks to represent the inverse-

dynamics of the MR damper, such that the desired input voltage to the MR damper can be

found by an off-line-trained neural network. Numerical experiments showed that an off-line-

trained neural network can not generate an acceptable output when the inputs are different in

nature from the that used in the training process. In this research, a control algorithm based

a clipped-optimal control algorithm [62] is used to find an appropriate input voltage for a MR

damper, such that the force developed by the MR damper can follow the command signal. The

block diagram of a semi-active control system using MR damper is shown in Figure - 6.9. In the

system showed in the figure, the controller can be any linear controller. The command signal

fu is generated by the controller from the measured structural response x, ẋ. The ‘control law’

acts like a secondary controller, which is designed to produce an output u, which is the input

voltage to the MR damper, such that the difference between the actual MR damping force f d and

the command signal fu is as small as possible. The clipped-optimal control algorithm uses the
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Figure -6.9: Block diagram of a semi-active control system using MR damper.

following bang-bang type control strategy to determine the input voltage u to the MR damper,

u = umax H [ fd × ( fu − fd)] , (6.3.16)

where H(·) is the Heaviside function. Essentially, this control law switches the voltage to its

maximum allowed value umax whenever the MR force is in the same direction as the command

signal fu and smaller than fu.

6.4 Numerical Example

Vibration control of a plate using the MR dampers is considered here. The plate has a dimension

of 30 × 20 × 0.01in, and is made of a material with Young’s modulus E = 30 × 106 psi, Poisson’s

ratio ν = 0.27 and mass density ρ = 0.0009218 psi. The modal damping ratio is assumed be

0.005. The finite element mesh of the plate is shown in Figure - 6.10. A single point excitation

force is applied to the plate at the location as shown in the figure. Passive and semi-active

vibration control using 3 MR dampers, whose locations are randomly selected as specified in

the figure, are considered for two different excitation cases: impulse and Gaussian white noise

excitations. The impulse force has a magnitude of 10 lb and lasts for 0.01 s. The Gaussian white

noise excitation has an intensity of 0.05 lb2/s with zero mean.

The MR dampers used in the following simulation are based on the model whose parameters

are specified in Table.6.1. Because the MR defined by these parameters is too stiff for the plate

structure considered here, the MR force calculated from this MR model is scaled by a factor of
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Figure -6.10: Finite element mesh of a plate.

0.002.

For comparison purpose, the displacement responses at the three randomly selected loca-

tions, i.e. O1, O2 and O3 as shown in Figure - 6.10, are computed for each cases. As a global

performance index, the vibration energy of the plate is also computed and compared between

the passive and the semi-active control strategies. The vibration energy of the plate was defined

(5.5.24) (on pp.107).

6.4.1 Passive Control

In this case, a constant voltage u = 0.05 V is applied to all 3 MR dampers. Figure - 6.11 shows

the responses of the plate with and without MR dampers due to the impulse excitation. From the

displacement responses plotted in Figure - 6.11(a)-(c), it is seen that the displacement response

is quickly decayed to zero when the MR dampers are used. In terms of the energy index, over

99% of the vibration energy is drained from the plate by the MR dampers at t = 3 s.

Figure - 6.12 compares the the responses of the plate subjected to the white noise excitation

for the cases with and without MR dampers. At the three randomly selected locations, it is seen

from Figure - 6.12(a)-(c) that the displacement responses are reduced apparently by using the

MR dampers. The RMS responses at these locations are compared in the Table. 6.2. From the

results listed in the table, it is observed that the largest reduction appears at O2, which is close

to the two of 3 MR dampers. O1 is very close to one of the MR dampers, and therefore achieves
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Figure - 6.11: Passive vibration control using MR dampers of a plate subjected to an

impulse excitation.

the second best reduction. The distance between the location O3 and any one of the three MR

dampers are much larger than other locations, and as a result, the effects of the MR dampers

experienced at this location is the smallest among the three locations. From this analysis, it is

observed that, reduction of vibration measured at any specific location depends on its distance

from the MR dampers, and therefore varies across the structure. In terms of the vibration energy,

the passive control using MR dampers definitely achieves significant overall vibration reduction

as shown in Figure - 6.12(d).
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Figure - 6.12: Passive vibration control using MR dampers of a plate subjected to a

white noise excitation (intensity 0.05).

6.4.2 Semi-Active Control

In this section, a semi-active control system using the MR dampers is designed for the vibration

control of the plate. A H2 controller with 3 velocity sensors, whose locations are shown as

in Figure - 6.10, is first designed. The controlled output of the controller are displacements

measured at the locations as shown in Figure - 6.10. The input voltages to the MR dampers are

determined using the control law as described in (6.3.16).

The H2 controller is designed to attenuate the first 4 modes of the structure. The weighting
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Table 6.2: Comparison of the RMS responses

Locations Without MR damper With MR dampers Reduction

(in) (in) (%)

O1 3.54 1.19 66%

O2 4.93 1.44 71%

O3 7.18 3.11 57%

coefficient matrix C1 (see (2.4.53) and (2.4.54)) for the controlled outputs is chosen as identity

matrix. Following the standard procedure as outlined in Chapter 2, the H2 controller used

in the semi-active control system is obtained. In this example, the obtained controller has 3

measurement inputs from the velocity sensors, and 3 outputs, which are command signals for

the 3 MR dampers. Figure - 6.13 compares the Bode plots of the transfer matrices relating the

disturbance to the controlled outputs of the open-loop and closed-loop systems. It can be seen

that using H2 controller reduces the responses by 20 − 50dB at the resonant frequencies in the

controlled output channels. By using the clipped optimal control algorithm, it is expected the

control force provided by the MR dampers be able to follow the ideal control force generated by

the controller, such that the desired vibration reduction can be achieved.

For the comparison purpose, the same impulse and white noise excitations as being used

in the passive control case are used here. Figure - 6.14 shows the response of the controlled

plate subjected to the impulse excitation applied at the location shown in Figure - 6.10. The

displacement responses of the three controlled outputs are compared between the passive and

semi-active cases in Figure - 6.14(a)-(c). It is seen that the semi-active control scheme achieves

more fast vibration decay speed than the passive one does. At the three controlled outputs

locations, the displacements settle down at about 1.5s in the semi-active control scheme, which

is 4s faster than in the passive control case. Figure - 6.14(d) compares the variation of the energy

v.s. time between the two control strategies. In the semi-active case, 99% of the vibration energy

is dissipated in 1s, as compared 3.5 s in the passive control system.

For the white noise excitation, semi-active control also outperforms the passive control as

shown in Figure - 6.15, where (a)-(c) compares the displacement responses measured at the
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Figure -6.13: Comparison of the Bode plots of the open-loop and closed-loop systems.
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Figure - 6.14: Respose comparison of the plate with passive and semi-active control

using MR dampers (Impulse excitation).

three controlled output locations between the passive and semi-active control schemes. It is seen

that the response obtained from the semi-active control system is much smaller than that from

the passive control system. Table.6.3 summarizes the RMS responses obtained from the passive

and semi-active control systems. From the results listed in Table.6.3 it can be seen that, in terms

of the RMS response, the semi-active control system achieves a much better performance than

the passive one does.
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Figure - 6.15: Respose comparison of the plate with passive and semi-active control

using MR dampers (white noise excitation).

6.5 Summary

In this chapter, the hysteretic behavior of a MR damper and the its application to structural

vibration control were studied.

First, several existant models used to simulate the nonlinear dynamics of MR damper were

briefly introduced and compared. Based on the research and experiments conducted by Spencer Jr.

et al. [54], a modified Bouc-Wen MR model was used in this research.

Numerical experiments on the modified Bouc-Wen model showed that the desired hysteretic
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Table 6.3: Comparison of the RMS responses

Locations Passive Semi-Active Reduction

(in) (in) (%)

O1 1.19 0.37 69%

O2 1.44 0.58 60%

O3 3.11 1.32 58%

behavior of the model was dominated by the variation of the input velocity. Although this

characteristic of the model is essential to produce the desired hysteretic behavior, it makes the

model extremely sensitive to the noise that exists in the displacement signal. This sensitivity

makes the desired hysteretic behavior of the MR model vulnerable to the noise. To improve the

numerical robustness of the MR model in dealing with noisy data, the MR model was modified to

include a LPF such that the modified MR model can preserve its hysteretic behaviors in various

numerical simulations. A simple example verified that this modification improved the numerical

stability, and preserved the desired hysteretic behavior of the original MR model.

A Newmark method based iteration technique was suggested to solve the nonlinear differ-

ential equations encountered in a structural system with MR dampers. By iterating inside each

integration step, an accurate and stable solution can be obtained.

The improved MR model and the proposed solution method were verified through a numeri-

cal example, where the vibration control of a plate structure was considered. Simulation results

showed that both passive and semi-active control systems using MR dampers were able to ef-

fectively attenuate the structure vibration both locally and globally. Compared with the passive

control, semi-active control using the clipped-optimal control algorithm was able to achieve a

better performance. For the impulse excitation case, the semi-active control system was able

to bring the structure to rest more faster than the passive control system. For the white noise

excitation, smaller RMS displacement response was achieved by the semi-active control system.
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Vibration Control of a Roof Structure

In the previous chapters, some key issues involved in the design of a SVC system for large

scale structures using the MR dampers were studied, and the methodologies used to address

these issues were developed. In this chapter, these methodologies are used to design a SVC

system for an industrial roof structure subjected to wind loading. Through the work presented

in this chapter, the methodologies developed in the previous chapters will be further verified

by applying them to a large scale structure. From application point of view, this work also has

impact on improving the performance and safety of the similar roof structures.

For a roof structure, one of the most commonly encountered structural damages is caused

by wind load. Under a stormy weather condition, such as typhoon, hurricanes, etc., strong

wind may cause severe damage to roof structures. Although less strong wind may not cause an

instant damage to a roof, but the wind-induced structural vibration has potentials to develop

fatigue damage to the structural components of the roof, and as a result, reduce the possibility

for the roof structure to survive in the coming storms. A SVC system is able to reduce the wind-

induced vibration, and as result, reduce the deterioration rate of a roof structure due to fatigue,

and improve the life span of the structure.

In this chapter, structural vibration control for an industrial roof structure using MR dampers

will be studied by using the methodologies developed in the previous chapters. The FEM model

of the roof structure is first built. A transient and a modal analysis are performed on the ob-
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tained FEM model, and a critical area, in which larger response appears, on the roof structure

is identified. Through an analysis on the wind load data, a wind filter is designed. A passive

and a semi-active SVC systems are designed for the roof structure. The performances of the SVC

systems are then analyzed and compared.

7.1 Dynamic Response Analysis of Roof Structure

Figure - 7.1 shows a sketch of the real industrial roof structure1 considered in this study. Each of

the fasteners and the clips as shown in the figure represents a fixed support on the roof structure.

The weight of roof panel is 1.23 psf (mass density is 0.0009218 lb/in3). Material properties are

the Poisson’s ratio ν = 0.3, the elasticity modulus E = 30000 ksi, yield stress σy = 50 ksi. A

modal damping ratio of 0.005 is assumed.

7.1.1 Wind Load

To determine the distribution of the wind load on the roof under typical territory conditions, a

wind tunnel experiment was conducted on a scaled-down roof model by the researchers in the

university of Western Ontario2. The wind pressures were measured through 714 taps distributed

on the test model at a time interval of 0.0299 second. The measurement was lasted for 344.563

seconds.

The wind pressure data used in this research were provided by the FM Globalr, and applica-

ble to the real roof structure. Figure - 7.2 shows the locations where the wind presure data were

provided. Each rectangular box as shown in the figure represents an area with which the pro-

vided data were associated. The number shown inside each box is an index used to identify the

data. Figure - 7.3 plots two time histories of the wind pressure corresponding to the locations

1003 and 1207 ( denoted in Figure - 7.2 by two dark boxes ).

The given wind pressure data are analyzed both in the time domain and the frequency

domain. From Figure - 7.3 it can be seen that, in the time domain, the wind pressure at any given

location can be viewed as a random process, and therefore, the associated statistical properties,

1The model of the roof structure and all wind loading data were provided by the FM Globalr

2The experiment was sponsored by the FM Globalr
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z

x

seam

Figure -7.1: An industrial roof structure.

i.e. the mean value and the standard variation, can be obtained. Figure - 7.4 plots the mean and

standard deviation of the wind pressure over the whole roof structure.

Because the wind pressure P at a typical location can be decomposed into a static part Ps
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Figure -7.2: Wind tunnel measurement locations on the prototype roof model.
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Figure -7.3: Wind loading at the two typical locations on the roof.

and dynamic part Pt with zero mean as follows,

P = Ps + Pt. (7.1.1)

When the structure is linear, static and dynamic part of the wind loading can be considered

separately. The static part of the wind pressue causes a static deformation of the roof structure.

In the SVC system design, the main concern is the structural vibration caused by the dynamic

part of the wind loads. In the frequency domain, the frequency contents of the wind pressure

is of interest in the following analysis. In Figure - 7.5, the spectrum of the wind pressure at

a typical location is plotted (solid line). Through a series spectral analyses on the dynamic

part of the wind pressure data, it was found that the spectra of the wind pressure given at

different locations on the of structure were highly consistent. Therefore, in this study, an upper

envelope of the spectra will be used to represent the spectrum of the wind pressure at any given

locations. The envelope was shown in Figure - 7.5 by the dashed line. The bump that appears

around 10.4 Hz was thought due to the some errors in the raw data. Futhemore, because the

magnitudes around the bump are small, this bump will be ignored in the following analysis.

Based on the spectra envelope obtained above, a wind filter is designed for controller design

purpose. The filter is able to produce a dynamical output of the same spectrum as the spectra

envelope of the wind pressure when excited by a Gaussian white noise. Assume the transfer
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(a) Mean pressure

(b) Standard deviation

Figure -7.4: Statistical properties of the wind loading.
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Figure -7.5: Frequency components of the wind loading. Dashed line shows the enve-

lope obtained from the numerical analysis of the wind data.

function of the filter is of the following form,

Tw(s) =
a0 + a1s + a2s2 + · · · + an−1sn−1

b0 + b1s + b2s2 + · · · + bnsn , (7.1.2)

where ai, i = 0, 1, . . . , n − 1, bi, i = 0, 1, . . . , n are unknown parameters to be determined. These

parameters are determined such that the spectrum of Tw(s) is the best approximation of the

wind spectrum envelope as shown in Figure - 7.5. Denote the wind spectrum envelope by S( f ),

which is a function of frequency f , the wind filter can be found by minimizing the following

error index J,

J = ‖S( f ) − |Tw( f )|‖w , (7.1.3)

where ‖ · ‖w is a norm defined in a frequency interval [ f1, f2] as follows,

‖g( f )‖w =

∫ f2

f1

g2( f )d f . (7.1.4)

For the problem at hand, f1 and f2 are set to 0.07Hz and 10Hz, respectively. To ensure a stable

filter, the optimization subject to the following constraints,

Re(λi) < 0, i = 1, 2, n, (7.1.5)
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where λi is the i-th pole of the filter’s transfer function Tw(s). Because the order of the filter is

unknown, three cases with n = 2, 3, 4 were tried. It was found that the error index J took the

minimal value when n = 3, and the corresponding optimal wind filter was given by

Tw(s) =
−19.27s2 − 0.5151s + 2.07

−0.1597s3 − 1.72s2 − 1.855s − 0.4117
. (7.1.6)

Figure - 7.6 shows the comparison of the optimal wind filter and the spectrum envelope of the

wind loading. It is seen that the obtained filter matches the objective envelope spectrum satis-
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Figure -7.6: An optimal 3rd order wind filter.

factorily in most part of the frequency band [0.07, 10] Hz. The bump appeared on the spectrum

envelope curve at 6Hz was caused by the error that existed in the raw data of the wind pressure,

and therefore can be ignored.

The obtained wind filter will be incorporated with the structural model of the roof in the

controller design. In the dynamical response analysis presented in the next section, the real

wind pressure data will be used.
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7.1.2 Response of the Roof to the Wind Excitation

The response of the roof structure subjected to the wind excitation was first studied experimen-

tally3. The wind load measured from the wind tunnel test were scaled to drive an array of

magnets attached to a 1 : 1 scale roof structure to simulate the response of the structure under

the wind loading. In this work, however, the dynamical responses of the roof structure excited

by the wind load will be studied numerically through a transient finite element analysis using

the commercial software ANSYSr.

To this end, a FEM model was built by discretizing the roof structure using the 8-node shell

elements. The FEM model is shown in Figure - 7.7. In this model, there are totally 1850 ele-

1

X

Y

Z

                                                                                

DEC  1 2004
21:32:44

PLOT NO.   1

ELEMENTS

U
ROT

Figure -7.7: Finite element model of the roof structure.

ments, 5725 nodes and 28625DOF’s.

The wind pressure at a given location (as shown in Figure - 7.2) was transformed to the cor-

responding element of the FEM model as a pressure applied in the y direction, which is defined

in Figure - 7.1. Then a full transient analysis was performed with a time step of 0.0299 second,

which is same as the sampling resolution of the wind pressure data. The simulation started at

0 second and ended at 344.563 second. Figure - 7.8 gives the y-displacement responses at 2

randomly selected locations on the roof. Figure - 7.9 gives 6 snap-shoots of the contour plots

3The experimental study was performed by the researchers in the Mississippi state University
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Figure -7.8: Uy displacement response at 2 randomly selected locations.
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Figure -7.9: Snap shots of displacement response (y direction) of the roof structure to

the distributed wind loads at some time instants.
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of the y displacement taken at t = 20, 50, 100, 150, 250, 340 second, respectively.

Through analyzing the obtained transient responses, it was found that a larger average dis-

placement response appeared inside the area defined by {(x, z)|24 ≤ x ≤ 72, 0 ≤ z ≤ 170} on

the roof as shown in Figure - 7.9(f). This area is therefore a critical area in which the vibration

should be attenuated. The maximum y-displacement response of 13 in also appeared inside this

area.

7.2 Modal Analysis of the Roof Structure

To investigate the dynamic characteristics of the roof structure, a modal analysis was performed,

and the natural frequencies and the mode shapes of the roof structure were obtained. Figure -

7.10 shows the variation of the natural frequencies of the first 2500 modes. It is observed that

 0

 20

 40

 60

 80

 100

 120

 140

 1  10  100  1000

P
S

fra
g

re
p
la

ce
m

e
n

ts

Modes

f
(H

z)

Figure - 7.10: Variation of natural frequencies of the roof structure (Fully constrained

case).

the natural frequencies are densely distributed, especially at the lower frequency range. Figure -

7.11 gives the mode shapes of the first 6 modes. These figures reveal another characteristics of

the roof structure, i.e. the vibration modes are isolated by the seams along the longer direction

of the roof as shown in Figure - 7.1, and each mode can only affect a small part of the roof

statue. This is due to the stronger stiffness of the seams (compared to the roof panels between
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Figure -7.11: Mode shapes of the first 6 modes of the roof structure.

them) and the supports (i.e. clips as shown in Figure - 7.1) that are uniformly distributed on the

seams.
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7.3 Modeling of the Roof Structure

In this section, the modeling of the roof structure for the purpose of designing the SVC systems

for the roof structure using the MR dampers are studied. The optimal locations of the actuators

(i.e. the MR dampers) and sensors will be found using the numerical scheme developed in

Chapter 5. The optimal locations of the actuators found in this section will be used in designing

both the passive and the semi-active SVC systems that will be discussed later in this chapter.

From the spectral analysis of the wind pressure, it was observed that most part of the ex-

citation energy were concentrated in a frequency band of [0.07, 10]Hz. This observation makes

it possible to ignore a lot of the vibration modes in the following design. The 50-th natural

frequency of the roof structure is 13 Hz, which is already beyond the frequency band of the

excitation, therefore, the first 50 modes are considered adequate to represent the dynamics of

the roof structure as involved in the following analysis. The 50-mode model is already a reduced

order model for the roof structure, for the verification purpose, however, the model reduction

method developed in Chapter 3 will be used to obtain a further reduced ROM that will be used

in the semi-active SVC system design.

As pointed out in the previous section, because the vibration modes, especially the first few

modes, of the roof structure were found confined within a localized area due to the special

natures of the roof structure, it would be very difficult for both a passive and a semi-active SVC

systems to achieve an effective vibration reduction over the whole roof structure. Considering

the structural vibration inside the critical area are more severe than in other region, both the

passive and the semi-active SVC systems will be designed to attenuate the vibration inside this

critical area, such that the RMS response would be reduced. The modeling of the roof structure

will be discussed with this objective in mind.

7.3.1 Admissible Actuator/Sensor Locations

To find the optimal locations for the sensors and the actuators using the algorithm developed in

Chapter 5, a searching space, i.e. admissible locations for placing the sensors and the actuators,

has to be found first.

The admissible locations consist of those being able to ensure the controllability and the ob-
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servability of the structural system. To avoid an uncontrollable (undetectable) system, locations

that are the vibration nodes of the modes being controlled should be excluded from the search-

ing space. Additionally, it is favorable to place an actuator (sensor) at a location where the

modal influence factor4 associated to the mode takes the maximum value, because the mode can

be controlled (sensed) with a minimum effort by placing an actuator (sensor) at this location.

For a structure with multiple modes, it is rare that the best location for a mode is also the best

for other modes. Therefore, an index measuring the ’goodness’ of a location should be defined

to find the admissible locations. This index will be referred as modal sensitivity index in sequel.

Assume the modal matrix of the roof structure is given by

Φ =
[
φ1 φ2 . . . φk

]
∈ R

Nn×k, (7.3.7)

where Nn is the number of DOF’s and k is number of the modes considered, φ i ∈ RNn , i =

1, . . . , k is the mode shape vector of the i-th mode. φ ij will be used in the sequel to denote the

j-th value of φi vector. It should be noted that the modal matrix given above includes only the

DOF’s corresponding to the y-displacement. Therefore, Nn is actually the number of the nodes

of the FEM model of the roof structure.

Given the above notations, the modal sensitivity index mentioned above is computed as

follows:

1. First, the mode shape vectors are normalized by dividing the maximum absolute value of

that vector, i.e.

φi =
φi

max{s | s = |φij|, j = 1, 2, . . . , Nn}
, i = 1, 2, . . . , k (7.3.8)

2. Compute the number of modes can be sensed at node j, i.e. compute

Nj =
k

∑
i=1

H
(
|φij| − ε

)
, (7.3.9)

where H(·) is the Heaviside function, ε is a predefined threshold value such that, location

j is a vibration node of the i-th mode if |φ ji| < ε.

4Referred to the value in a mode shape vector corresponding to certain location.
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3. The modal sensitivity index S j associated with the location j is then defined as

Sj = α
k

∑
i=1

|φji| + (1 − α)Nj , j = 1, 2, . . . , Nn, (7.3.10)

where 0 ≤ α ≤ 1 is weight coefficient.

From the above definition it can be seen that, if an actuator is placed at a location j, the modal

sensitivity index Sj associated with this location is a combined index measuring: ① the number

of the modes that can be controlled and, ② how effectively these modes can be controlled at this

location. In (7.3.10), the parameter α is used as a weighting factor to make a tradeoff between

these two indices. The larger the sensitivity index S j, the better the location j.

For the roof structure, the searching space consists of the nodes inside the critical area whose

nodes indices are specified by the following set,

S = {j | Nj > 30, Sj > 0.1, 1 ≤ j ≤ n}. (7.3.11)

Figure - 7.12 shows the modal sensitivity indices, number of sensable modes and the positions

of the obtained admissible locations obtained by using k = 50, ε = 10−4 and α = 0.1. Inside the

critical area, there are 1175 nodes and only 506 of them are admissible according to (7.3.11).

Their sensitivity indices varies from 14 to 0.1 (Figure - 7.12(a)). More than 43 modes can be

sensed at 70% of the addmissiable locations (see Figure - 7.12(b)). The distribution of these

locations is shown in Figure - 7.12(c).

7.3.2 Optimal Locations of Actuators and Sensors

In the previous section, searching space used for solving an OLSA problem has been found. In

this section, the optimal locations of 3 actuators and 4 velocity sensors will be found by solving

the OLSA problem using the algorithm developed in Chapter 5.

As defined at the beginning of this section, the SVC systems will be designed to reduce the

RMS response inside the critical area on the roof structure. In solving the OLSA problem, the

spatial H2 norm of the closed-loop transfer matrix relating the disturbance (i.e. the wind load)

to the distributed controlled out (i.e. the displacement response inside the critical area) will be

used as the optimization index. Because the closed-loop will be involved in the course of solving

the OLSA problem, it is necessary to elaborate a little bit on the controller design.
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Figure -7.12: Admissible locations for actuator and sensor placement.

When design a controller for the roof structure, the distributed wind loads are treated as

the process noises. It can be shown that these process noises can be modeled as the Gaussian

white noises. Through the modal transformation, the distributed wind loads enter the structural

system as disturbances applied to each mode. Denote the wind load at node i by F (i)
w , i =

1, 2, . . . , Nn where Nn is the total number of nodes in the FEM model of the roof structure, then
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the modal disturbance Wj applied to the j-th mode due to the wind loads is given by

Wj(t) =
Nn

∑
i=1

φijF
(i)
w , (7.3.12)

where φij denotes the modal influence factor of the j-th mode at node i. By the central limit

theorem, Wj has a limiting cumulative distribution function which approaches to a normal dis-

tribution. Therefore, the process noises are Gaussian. The variance of the process noises can be

found as follows. Assume F(1)
w , F(2)

w , . . . , F(Nn)
w (t) are independent with each other, i.e.

E{F(i)
w F(j)

w } = 0 when i 6= j, (7.3.13)

and each has zero-mean and variance σ2
i . Then, the variance of the modal disturbance can be

calculated as follows,

Var(Wj) =
Nn

∑
i=1

φ2
jiσ

2
i . (7.3.14)

Using the above relationship and the variance σ2
i of the wind load at the node i, the variances of

the process noises corresponding to the first 50 modes are obtained and plotted in Figure - 7.13.

The obtained variances will be used to construct B1 matrix used in a H2 controller design.
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Figure -7.13: Variance of the modal disturbance for the first 50 modes.

Moreover, by incorporating the wind filter given in (7.1.6) in the structural model, the pro-

cess noises can be treated as the Gaussian white noises. The augmented structural system by

including the wind filter is shown in Figure - 7.14, where w denotes the disturbances to the sys-
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Figure -7.14: Block diagram of the roof structure system.

tem, which includes both the process and measurement noises, z is the controlled output, u and

y are control input and sensor output, respectively, Tw(s) is the wind filter given in (7.1.6), G ′(s)

represents the structure model, which is a ROM constructed from the first 50 modes, K(s) is a

controller. By incorporating the wind filter into the structure model, an augmented plant G(s)

(denoted by the dashed box in Figure - 7.14) is formed. Assume the original structural system is

G′(s) =




A′ B′
1 B′

2

C′
1 0 D′

12

C′
2 D′

21 0


 , (7.3.15)

and the realization of the wind filter Tw(s) is given by

Tw(s) =


 Aw Bw

Cw 0


 , (7.3.16)

then the augmented plant G(s) can be written as follows,

G(s) =




A′ B′
1Cw 0 0 B′

2

0 Aw Bw 0 0

C′
1 0 0 0 I

C′
2 0 0 I 0




=




A B1 B2

C1 0 D12

C2 D21 0


 . (7.3.17)

Let Tzw be the closed-loop transfer matrix relating the disturbance w to the distributed controlled

out z, then the OLSA problem is solved with 〈〈 Tzw 〉〉2 being the optimization index.

To solve the OLSA problem, 506 locations in the searching space as shown in Figure - 7.12

are indexed sequentially using integers 1 ∼ 506. Therefore, any member in the searching space
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Figure -7.15: GA iteration history.

can be represented by a chromosome that has a length of 9 bits (28 < 506 < 29) in the GA

method. In the GA simulation, the population size of 50, the crossover rate 95% and mutation

rate 10% are used. The simulation was runed for 2 times, and both of them were terminated

when 1000 iterations have been reached.

Figure - 7.15 shows the variation of the performance index with respect to the iteration steps

in the two runs of the GA simulations. The minimal performance index obtained from these sim-

ulations was 6592.7. For randomly selected actuator/sensor locations, the typical performance

index is in the level of 106. Therefore, the the performance of the closed-loop system has been

improved significantly. Figure - 7.16 plots the optimal locations for the actuators (denoted by

Si, i = 1, 2, 3) and sensors (denoted by Oi, i = 1, . . . , 4). The coordinates of the found optimal

locations are listed in the Table.7.1

7.3.3 Reduced Order Model

As motioned previously, for the roof structure subjected to the wind loads, a ROM constructed

from the first 50 modes can reproduce the dynamics of the original structure. For the verifica-
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Table 7.1: Coordinates of the optimal locations for the actuators and sensors

Actuator/Sensor Node Index x y z

(in) (in) (in)

S1 912 57 0 30

S2 2055 57 0 78

S3 2092 42 0 144

O1 986 70.5 0 30

O2 2889 36 0 126

O3 2910 39 0 159

O4 3090 70.5 0 144

tion purpose, however, the method developed in Chapter 3 is used here to construct a further

reduced ROM containing only the first 20 modes. This lower order ROM will be used to design

a controller for the semi-active SVC system. In the sequel, the 50-mode ROM with be denoted
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by “ROM50”, and the 20-mode ROM will be denoted by “ROM20".

In construction of ROM20, the objective dynamics of the structural system is represented

by the transfer matrix of ROM50 with the 3 actuators and 4 velocity sensors. The locations of

the actuators and sensors are those shown in Figure - 7.16. The objective dynamics used in the

model reduction is described by the following 4 × 3 transfer matrix, i.e.

G(s) =




G11(s) G12(s) G13(s)

G21(s) G22(s) G23(s)

G31(s) G32(s) G33(s)

G41(s) G42(s) G43(s)




, (7.3.18)

where Gij(s) (i = 1, . . . , 4 and j = 1, 2, 3) denotes the transfer function from the j-th input

(i.e. actuators) to the i-th output (i.e. sensors). Each Gij is a summation of the corresponding

modal transfer functions of the first 50 modes. ROM20 is found using the method developed in

Chapter 3 such that, its transfer matrix is an optimal approximation of G(s) given in (7.3.18) in

the sense that the zero shift due to modal truncation is minimized.

Figure - 7.17 plots the frequency response functions of ROM20 (thick solid lines), ROM50

(thick dashed lines) and the 20-mode model (thin dashed lines) obtained from the direct modal

truncation. It is seen that the truncation errors in each input-output channel have been signif-

icantly reduced. For G1i i = 1, . . . , 3, G21 and G42 channels, although the original truncation

errors were very large, the model reduction method developed in Chapter 3 still can find the

transfer functions sufficiently close to the objectives. For the channel G21, the average improve-

ment reaches 45dB. Because the natural frequencies of the roof structure are densely distributed,

there is only one notable peak appears in the transfer function curves shown in Figure - 7.17.

It should be noted that, although the zero shift can not be observed in these curves, the model

reduction method developed in Chapter 3 is still able to reduce the errors due to the modal

truncation. The effectiveness of the method is therefore further verified on the roof structure.

7.4 Passive Control Using MR Damper

In this section, a passive SVC system using 3 MR dampers is designed. The locations of these

MR dampers were obtained in section 7.3.2. To check the effect of the MR dampers on reducing
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Figure -7.17: The Optimal reduced order model of the roof structure.
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the responses, four locations (denoted by pi, i = 1, . . . , 4) as shown in Figure - 7.18 are selected

to read the displacement responses.
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Figure -7.18: Locations of the MR dampers and outputs on the roof structure.

In the simulation, ROM50 is used to represent the roof structure. Because the real wind

loads are used, the wind filter is not used in this simulation. The voltages applied to the MR

dampers are 0.5 V and kept constants throughout the simulation. The MR forces are calculated

based on the parameters defined in Table. 6.1. As explained in section 6.4, the obtained MR

forces are scaled-down by a factor in order to match the local stiffness of the structure to which

the MR dampers are attached. If a MR damper is too stiff for a structure, i.e. the MR damping

force is too big compared with the (local) stiffness of the structure, it would behave more like a

support instead of a damper, which it is supposed to be, and as a result, the damping effects of

the MR damper is compromised. In this simulation, a scale factor of 0.05 is used for each of the

MR dampers.

The simulation starts at 0 second and is terminated at 10 second. The wind load is applied

to the structure between t = 0 s and t = 3 s, such that both the responses of the forced vi-

bration and the free vibration can be obtained. If assume that the wind loads are stationary

random processes, the RMS response obtained from the period of the first 3 seconds is adequate

to represent that would be obtained from a simulation lasting for 300 seconds. Figure - 7.19

shows the comparison of the displacement responses measured at p1, p2, p3 and p4 locations
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(see Figure - 7.18). From the results shown in the figure, it is seen that at a location close to the
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Figure - 7.19: Comparison of the displacement responses at 4 randomly picked loca-

tions. Dashed line for the case without MR dampers, solid line for the case with MR

dampers.

MR dampers, such as p1 or p3, the displacement responses of both the forced vibration (t ≤ 3 s)

and free vibration (t > 3 s) were reduced consistently. The maximum reduction factor of the

displacement response varies between 2− 3 times as shown in Figure - 7.19(a)(c). While for the

locations p2 and p4, which are separated from the MR dampers by a seam, the response reduc-

tion was barely observed as shown in Figure - 7.19(b)(d). From the previous modal analysis,
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it was observed that the vibration modes of the roof structure are isolated by the seams on the

roof. This is due to the presence of the relatively strong seams and the supports on these reams.

Compared with these reams, the roof panels between the two adjacent seams are much softer.

Therefore, most of the flexible modes can only be observed in the areas between the reams. As

a result, any vibration control efforts can only have a limited influence area. This explains the

results observed in Figure - 7.19(b)(d).

For the whole structure, the effect of the passive vibration control using the MR dampers

can be evaluated by the vibration energy. Figure - 7.20 shows the vibration energies of the roof

structure with and without the MR dampers. It is seen that, the vibration energy of the system
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Figure - 7.20: Comparison of the vibration energy for the cases with and w/t MR

dampers.

is dissipated by the MR dampers. When the MR dampers are used, the decay of the vibration

energy is faster than the case without MR dampers. Although the influence of the MR dampers
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are limited to local area due to the special configuration of the roof structure, from the energy

point of view, usage of MR dampers does help in reducing the structural vibration.

Figure - 7.21 shows the contour plots of a normalized RMS response obtained from the two

cases, i.e. without MR dampers and with MR dampers. The normalized RMS response at a

location on the roof is obtained by dividing the RMS response at this location by the maximal

RMS response found on the whole roof in the first case (without MR damper). Therefore, the

value read from the contour plots is actually a non-dimensional ratio, not a real RMS response,

but for a concise statement sake, normalized RMS response is used to refer this ratio. Because a

limited number of MR dampers were used inside the critical area, the effect of the MR dampers

may not be clearly seen from these plots.

To evaluate the effect of the MR dampers, an averaged index are defined for the critical

area and the region outside of the critical area. The averaged index of an area is obtained by

an algebraic averag on all the normalized RMS responses calculated inside the area. Using the

index defined above, the effect of the MR dampers can be evaluated quantitatively for an region

of interst. Table.7.2 compares the averaged indices of the critical area and the other part on the

roof. It can be seen that, outside the critical area, the average reduction of the RMS response is

Table 7.2: Comparison of average normalized RMS responses.

Region Without MR Dampers With MR Dampers Reduction

Outside the Critical Area 0.1291 0.1179 8%

Inside the Critical Area 0.1114 0.0944 18%

8% as compared 18% reduction inside the critical area. Because the special nature of the roof

structure as observed in the modal analysis, and the limited number of the MR dampers, the

absolute reduction on the roof structure’s response due to the usage of the MR dampers is not

as good as it was obtained on the plate structure used in the previous chapter. The effect of

the MR dampers on reducing the vibration would be more clearly exemplified or observed by

changing the roof structure design such that the influence area of a vibration mode can cover a

larger potion of the roof.
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(a) Without MR dampers

(b) With MR dampers

Figure -7.21: Normalized RMS response of the roof structure.
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7.5 Semi-Active control Using MR Damper

Using the reduced order model ROM20 obtained in section 7.3.3, a semi-active SVC system

using a spatial H2 controller is designed to attenuate the structural vibration inside the critical

area. The controller is designed with the 3 MR actuators and 4 velocity sensors that are placed

at the locations found in section 7.3.2. The locations of the MR dampers, sensors and the 4

outputs (denoted by pi, i = 1, . . . , 4) are shown in Figure - 7.22.
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Figure -7.22: Locations of MR dampers and outputs on the roof structure.

To analyze the performance of the obtained semi-active SVC system, the spatial H2 controller

is used to ROM50, and the closed-loop system is simulated. The excitation used in this simula-

tion is same as that was used in the previous section, i.e. the distributed wind load are applied

to the roof structure during the time interval of 0 ≤ t ≤ 3 second. Figure - 7.23 compares the

displacement responses of the passive and the semi-active SVC systems at the 4 output locations.

In this figure, the dashed and solid lines denote the responses obtained from the passive and the

semi-active SVC systems, respectively. It is observed that except at the location p4, almost same

responses between the passive and the semi-active SVC systems are observed at other three

locations.

Using the response obtained from the semi-active system in the time interval of [0, 3]s, the

averaged RMS response (as defined in section 7.4) inside the critical area obtained from the
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Figure - 7.23: Comparison of the displacement responses of the passive and the semi-

active SVC systems.

semi-active system are calculated. Table. 7.3 compares the average normalized RMS responses

reduction between passive and semi-active control. The results show that the semi-active control

using the MR dampers has the limited advantage over the passive control in reducing the RMS

response inside the critical area.

The results observed above does not agree with that obtained in the previous chapter. This

disagreement was due to the special characteristics of the roof structure as revealed through the

modal analysis. Due to the stiffness difference between the seams and the roof planels, the mode
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Table 7.3: Comparison of the averaged RMS responses reduction between the passive

and semi-active SVC systems.

Location Passive Control Semi-active Control Reduction

Outside Critical Area 0.1179 0.1179 0%

Inside Critical Area 0.0944 0.0907 4%

shapes of the roof structure were isolated with each other by the seams. Because the interior

supports distributed on the seams make the stiffness difference even bigger, it is getting more

difficult for a control system to achieve a global vibration reduction. As a result, the advantage

of a semi-active control system that would be observed otherwise is compromised.

7.6 Less Constrained Roof Structure

To verify that it is the special characteristics of the roof structure be responsible for the lim-

ited performance improvement of the semi-active SVC system, in this chapter, a passive and a

semi-active SVC systems for a less constrained roof structure are designed and analyzed. The

less constrained roof structure is obtained by removing all the interior supprots originally dis-

tributed on the seams. By removing these supports, the stiffness difference between the seams

and the roof panels is reduced, and the isolation level of the mode shapes will be lowered cor-

respondingly. It is expected that the characteristics of thus modified roof structure allow a more

effective vibration reduction using a semi-active SVC system.

First, the modal analysis is performed on the modified roof structure. Figure - 7.24 gives

the mode shapes of the first 6 modes. It is seen that the area affected by a mode is expanded

significantly, at least for the first 6 modes as shown in the figure. This change is favorable to

improve the efficiency of a control system. The natural frequencies of the first 1000 modes

are plotted in Figure - 7.25. By removing the interior supprots, the stiffness of the structure is

reduced. As a result, the first natural frequency drops to 4.38 Hz, and the first 15 modes move

into the frequency band of the wind excitation. These 15 modes should be considered in the

design and analysis of control system. In this case, the roof structure is represented by its first
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Figure -7.24: Mode shapes of the first 6 modes of the modified roof structure.

20 modes.

In the following analysis, it is assumed that the modification on the roof structure does not

change the wind loads distribution on the roof structure. For the comparison purpose, the SVC
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Figure -7.25: Natural frequencies of the modified roof structure.

system is designed to attenuate the vibration of the same critical area. Furthermore, the number

and locations of the actuators and the sensors are same as those used in the previous chapter.

First, the optimal locations of the sensors and the actuators used in the passive and the semi-

active SVC systems for the modified roof structure need to be found. In this case, the searching

space for the OLSA problem is defined as follows,

S = {j | Nj ≥ 19, Sj > 0.1, 1 ≤ j ≤ n}. (7.6.19)

The symbols used in the above expression are same as those defined in section 7.3.1. Using the

same procedure as described in section 7.3.1, 1200 admissible locations for the actuators and

sensors are found for k = 20, ε = 10−4 and α = 0.1, and their positions are shown in Figure -

7.26(a). Same as did in section 7.3.1, the spatial H2 norm the closed-loop transfer matrix is

used as the optimization index in solving the OLSA problem. For the modified roof structure,

the optimal locations of the actuators and sensors are found as shown in Figure - 7.26(b). It can

be seen that, although vibration reduction is required in the same critical area as defined before,

optimal locations for 4 sensors and 1 actuator are found outside that critical area. Because the

mode shapes of the modified roof structure have been expanded significantly by removing the

interior supports, an actuator (sensor) is able to have a more large influence area when is used

to control (sense) a mode. Therefore, to attenuate the vibration in the critical area, the optimal
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(b) Optimal locations for actuators/sensors

Figure -7.26: Admissible and optimal locations for the actuators and sensors (less con-

strained case).

locations of the actuators and sensors do not necessarily be inside that area.

After the optimal locations of the sensors and actuators are found, the passive and the semi-

active SVC systems can be designed for the modified roof structure using the exactly same
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procedure as described in the previous section. Therefore, details of the SVC systems design

are skipped. In the rest part of the section, the performances of the passive and the semi-active

SVC systems are compared for an impulse excitation case, where the impulse force, whose

magnitude is 100 lb and lasting for 0.01 second, is applied to the roof at the location shown in

Figure - 7.26(b).

Figure - 7.27 shows the displacement responses at the 4 output locations p1 ∼ p4 (defined in

Figure - 7.26) for the case with and without MR dampers. From the results shown in the figure,

it is seen that responses at all the 4 output locations are reduced by using the MR dampers.

Although p1 and p3 are separated from the MR dampers by the seams, their responses are still

reduced.

Figure - 7.28 compares the responses obtained from the the semi-active control and the pas-

sive control systems. From the plots it can be seen that, different from the results observed in

the original fully constrained roof structure, responses obtained from the semi-active control are

found much better than that obtained from the passive control. In the semi-active control, all

MR dampers are working cooperatively to achieve the best vibration attenuation over the whole

critical area. At the location p2, although the response from the semi-active control is a little

bit larger than that from the passive control, globally, the responses are significantly reduced.

This can be seen from the comparison of the vibration energy as shown in Figure - 7.29. The

semi-active control achieves much faster energy decay. At t = 1s, semi-active dissipates 73% of

the total energy, while passive control dissipates 43% of the total energy. At t = 6s, 99.1% of

energy is disspipated by semi-active control v.s. 93% by passive control.

Figure - 7.30 plots the command voltages applied to the MR dampers. This figure also com-

pares the actual MR forces with the desired control forces calculated by the spatial H2 controller.

The command voltages as showed in the figure demonstrates that the clipped-optimal control

algorithm used in this research is indeed a bang-bang type control. When it is used to control

a MR damper, it is expected to drive the MR damper follow the desired control force as quick

as possible with the maximum available control input, which is the input voltage in this case.

From the comparison of the forces, it is found that MR forces can follow the trend of the control

forces, but can not exactly follow the desired control forces. This is because the force developed

by a MR damper can not be directly controlled by the input voltage. The force provided by a
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(d) Transverse displacement at p4

Figure -7.27: Comparison of the displacement responses at 4 randomly picked locations

in the original critical area. Dashed line for the case without MR dampers, solid line

for the case with MR dampers.

MR damper is also dependent on the displacement and velocity at the location to which the

MR damper is attached. Changing the input voltage only has an indirect effect on the force

generated by a MR damper. In a semi-active control system, by changing the input voltage, the

damping effect of a MR damper is changed in a way such that the vibration can be attenuated

more efficiently. Therefore, although the MR forces did not follow the desired control forces,

semi-active control system was still able to outperform the passive control system.
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Figure - 7.28: Comparison of the displacement responses at 4 output locations in the

original critical area. Dashed line for the case of passive control, solid line for the case

of semi-active control.

Figure - 7.31 shows the hysteretic curves of the 3 MR dampers used in the semi-active control

system. The force-displacement curves illustrates the amount of energy dissipated through the

MR dampers. The larger the area enclosed by a curve during a cycle, the more vibration energy is

absorbed by the corresponding MR damper. Changing the input voltages to the MR dampers will

change the area enclosed by the force-displacement curve. The typical force-velocity relationship

as demonstrated by a MR damper (see Figure - 6.6(d)) can also be observed in this figure.
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The analyses presented in this section showed that, on the modified roof structure, a semi-

active SVC system is able to achieve a better vibration reduction result than a passive SVC.

This is because by removing the supports from the original roof structure, the influence area

of a vibration mode has been significantly expanded, as a result, the advantages inherent in a

semi-active control system are able to exemplify themselves.

7.7 Summary

In this chapter, structural vibration control of an industrial roof structure subjected to a wind

excitation was studied. The methodologies developed in the previous chapters were verified

through designing a passive and a semi-active SVC systems for the roof structure.

Based on a spectral analysis of the wind loading, an optimal wind filter was obtained to be

used in the semi-active control system design. A critical area on the roof structure was identified

through a transient analysis of the roof structure subjected to the wind loads. Through a modal

analysis of the roof structure, it was found that for the given wind excitation, a ROM consisted

of the first 50 modes was adequate to represent the dynamics of the roof structure used for

171



Chapter 7. Vibration Control of a Roof Structure

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

P
S

fra
g

re
p
la

ce
m

e
n

ts

t (s)

u c
(V

)

(a) Command voltage for MR1

-30

-20

-10

 0

 10

 20

 30

 0  1  2  3  4  5  6

MR force     
Desired force

P
S

fra
g

re
p
la

ce
m

e
n

ts
t (s)

f(
lb

)

(b) Desired and actual force for MR1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

P
S

fra
g

re
p
la

ce
m

e
n

ts

t (s)

u c
(V

)

(c) Command voltage for MR2

-15

-10

-5

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6

MR force     
Desired force

P
S

fra
g

re
p
la

ce
m

e
n

ts

t (s)

f(
lb

)

(d) Desired and actual force for MR2

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

P
S

fra
g

re
p
la

ce
m

e
n

ts

t (s)

u c
(V

)

(e) Command voltage for MR3

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  1  2  3  4  5  6

MR force     
Desired force

P
S

fra
g

re
p
la

ce
m

e
n

ts

t (s)

f(
lb

)

(f) Desired and actual force for MR3

Figure -7.30: Command voltages, MR forces and the desired control forces
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Figure -7.31: Hysteretic curves of the MR dampers in the semi-active control system
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the SVC systems design. Based on the 50-mode ROM, an OLSA problem was solved using the

method developed in Chapter 5. For the verification purpose, a 20-mode ROM was obtained

using the model reduction method developed in Chapter 3. A spatial H2 controller was then

designed using this 20-mode ROM, and used in a semi-active SVC system. The passive and the

semi-active SVC systems were used to the roof structure to attenuate the wind-induced vibration

inside the critical area. It was found that the average RMS responses inside the critical area were

reduced by 18% by using the passive SVC system, and the semi-active SVc system achieved 4%

more reduction than the passive SVC system. The limited performance improvement observed

in the semi-active SVC system as compared with the passive one, was attributed to the special

charcateristics demonstrated by the roof structure due to its special structural configuration and

the suppots on the seams. This observation was verified by an analysis on a modified roof

structure, where a semi-active SVC system was demonstrated be able to achieve much better

performance than the passive one. Finally, it should be noted that, due to the dissipative natures

of MR dampers, the ROM based semi-active control system didn’t cause the spillover instability

problem when it was used to control a higher order structural system. Therefore, the spillover

problem was not involved in this chapter.
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Concluding Remarks

8.1 Summary of the Work

This dissertation was devoted to the vibration control of large scale flexible structures using the

MR dampers. Altough the structural vibration control has been extensively studied for decades,

its application to large scale structures is still a task full of challenge, and many issues need to

be addressed. As reviewed in the first chapter of this dissertation, the methods developed in the

previous works aimed at addressing these issues have more or less limitations, and some these

limitations prevent them from being efficiently used for large scale structures. These issues were

therefore revisited in this work, such that more efficient new methods or the improved methods

can be developed to enable an efficient application of the structural vibration control technology

for large scale structures.

The issues addressed in this research and the work done on these issues are summarized as

follows:

1. Modeling of Flexible Structures and Controller Design: As one of the most commonly

encountered structural members in various flexible structures, plate structures were used

in this research. The procedure of modeling the plate structures was introduced. The

Mindlin plate theory was briefly reviewed and the equations of motion of thick plate were

derived. Finite element formulation of an 8-node plate element was introduced. Two nu-
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merical methods commonly used for dynamical analysis of linear MDOF systems, i.e. the

Newmark direct integration method and the modal superposition method, were also re-

viewed. Finally, the LQG and H2 controller design methods were introduced, and the

differences and relationships between these two methods were outlined. Because the H2

controller design method deals with a more general system, H2 controller was selected to

be used in this research.

2. Model Reduction: In order to get an implementable controller for large scale structures,

model reduction is an essential issue that needs to be addressed. In this part, minimizing

the truncation error of a reduced order model obtained from the modal truncation was

studied. Through a parametric study on the modal truncation method, it was found that

by adjusting the modal parameters of the in-bandwidth modes, the truncation error can be

reduced. Based on this observation, an algorithm to minimize the in-bandwidth truncation

error was developed. The proposed algorithm could be used to find an optimal ROM

with minimized truncation error from a ROM obtained from the direct modal truncation

method, and can be used to both SISO and MIMO systems. Finally, the proposed method

was verified through a numerical example.

3. Suppression of Spillover Instability: When a ROM based controller is used to control the

original structure from which the ROM was obtained, spillover is inevitable. Spillover not

only degrade the system performance, for a lightly damped structure, it may also destabi-

lize the system. In this part, the mechanism of the spillover was studied, and the method

to suppress spillover instability in a SVC system was developed. A criterion to check if the

spillover instability will happen to a closed-loop system was proposed. It was found that

the spillover instability could be avoided by blocking either the control spillover or the ob-

servation spillover in a closed-loop system. The proposed method suppresses the spillover

instability by constructing a controller that lies in a null space spanned by several selected

residual modes. Vibration control of a plate structure showed that the proposed method

was able to effectively suppress the spillover instability that would happen otherwise.

4. Optimal Locations of Sensors/Actuators: For the vibration control of a large scale struc-

ture, selecting the optimal locations for actuators and sensors is not only a problem that
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should be addressed from the economical point of view, but also there is a need to be able

to achieve the best performance. In this research, the spatial H2 norm of a SVC system was

used as the performance index in finding the optimal locations for actuators and sensors.

The GA method was used to solve this optimization problem. It is found that the optimal

locations for actuators and sensors found by using the spatial H2 norm as the optimiza-

tion index, can achieve better closed-loop system performance than other commonly used

indices (such as controlability, observability, H2 and H∞ norms, etc.).

5. Modling of MR Dampers and Applications: Several hysteresis models for the MR dampers

reported in the literature were compared, and a modified Bouc-Wen model due to Spencer Jr.

et al. [54] was selected to be used in this research. It was found that the hysteretic behavior

of this model was extremely sensitive to the change of the velocityand this characteristic

could lead to the loss of the desired hysteretic behavior when noisy data were used. In

this research, the MR model was modified to include a low-pass filter in the model, such

that the hysteretic behavior of the MR model could be preserved when noisy data were

used. Application of the MR dampers in the structural vibration control was then studied.

A passive and semi-active SVC systems using 3 MR dampers and 4 velocity sensors were

designed. In the passive control analysis, a Newmark based numerical scheme was de-

veloped to solve the resultant nonlinear differential equations. In the semi-active control

system, the clipped-optimal control algorithm [62] was used to find the appropriate input

voltages for the MR dampers.

6. Vibration Control of a Roof Structure: For verification purpose, the methodologies devel-

oped in this work were finally used to design a passive and a semi-active SVC systems for

an industrial roof structure subjected to wind loading. An optimal wind filter was designed

based on a spectrum analysis of the wind loads. Through a full scale transient analysis of

the roof structure, a critical area on the roof was identified. A passive and a semi-active

SVC systems using 3 MR dampers and 4 velocity sensors were then designed to attenu-

ate the vibration inside the critical area on the roof structure. The method developed in

Chapter 5 was used to find the optimal locations for the MR dampers and the sensors. A

ROM containing the first 20 modes was constructed using the model reduction method
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developed in this work for the semi-active control system design. Through numerical sim-

ulation, it was found that the average RMS response in the critical area could be reduced

by 18% using the passive control system, and the semi-active control system achieved 4%

more reduction. The stiffness difference between the structural members of the roof, and

interior constraints were attributed to the limited improvement on the performance of the

semi-active control system over the passive one. To support this observation, a less con-

strained roof structure with all interior supports being removed was analyzed. Simulation

results showed that the semi-active control system achieved a much better performance

than the passive one on the less constrained roof.

8.2 Main Contributions

a A new model reduction method was developed. The proposed method is able to minimize

the truncation error of a modal-truncation based ROM, such that the shift of zeroes in the

transfer function of the ROM is compensated. The proposed method does not add a feed-

through term to the ROM, as a result, the difficulty of an infinite H2 norm as encountered

in the method reported by Halim and Moheomani [20] can be avoided. Because the

developed method was based on the GA method, it can be efficiently implemented for

large scale structures. The method can be used for both SISO and MIMO systems. A

state space realization of thus obtained ROM could be obtained using either the balanced

realization method, or the Eigensystem Realization Algorithm (ERA). To the best of the

author’s knowledge, this work was the first of its kind.

a An innovative method to suppress spillover instability in a SVC system was developed.

A criterion used to determine whether or not the spillover instability will happen to a

closed-loop system was proposed. Compared with the distributed sensing method [25]

and orthogonal filter methods [32, 33], the proposed method uses a set of point actuators

and sensors to achieve the suppression of the spillover instability. When used for a large

scale structure, the proposed method eliminates the need on the expensive hardwares

as required by the other methods reviewed in the first chapter of this dissertation, and

therefore is cheaper and easier to implement for large scale structures.
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a A new numerical scheme to find the optimal locations for sensors and actuators for a

SVC system was proposed. Different from the existing works, the spatial H2 norm was

used as the performance index in the optimization process. The optimization problem was

solved using a GA algorithm. It was verified numerically that the locations of sensors and

actuators obtained by using the spatial H2 norm as the optimization index can achieve

better performance than using the standard H2 norm.

a An improved MR model based on a modified Bouc-Wen MR model [54] was developed.

The improved MR model proposed in this study was able to deal with noisy input data and

still maintain the hysteretic behavior. Numerical analysis showed that the modified MR

model was able to reproduce the dynamics of the original MR model in both normal and

noisy situations.

a A Newmark based iteration scheme was proposed to solve the nonlinear differential equa-

tions aroused from using the MR dampers in a large scale linear structural system. Because

the symmetric properties of the structural mass, stiffness and damping matrices can be uti-

lized, this method can be used to analyze large scale structure. Furthermore, the proposed

method was based on the Newmark direct integration method, numerical instability prob-

lem is avoided.

a A passive and a semi-active SVC system using the MR dampers were designed for an in-

dustrial roof structure. In this study, an optimal wind filter was designed for the controller

design purpose. A critical area on the roof was identified through the transient analysis of

the roof structure subjected the wind load. The optimal locations for the actuators (i.e. MR

dampers) and sensors were found using the algorithm developed in this work. Using the

passive control system, it was found that an average RMS response in the critical area can

be reduced by 18%. The cause of a limited performance improvement for the semi-active

control system was analyzed. It was concluded that the special characterstic of the roof

structure prevented the improvement of the performance of a semi-active control system.

The observation was verified through an analysis performed on a less constrained roof

structure, where a semi-active control achieved a much better vibration reduction over the

passive counterpart.
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8.3 Recommendations for Future Work

There are several ways in which the work presented in this dissertation could be advanced. A

few possible extensions to the current work are suggested as follows:

1. Model Reduction: From the development of the proposed model reduction method it

is seen that, the nature of the method was to compensate the truncation error through

modifying the mode shapes of the in-bandwidth modes. The present algorithm modifies

the modal influence parameters on the locations where point actuators and sensors are

presented. Considering the distributed nature of a structure, it could be extended to allow

the distributed inputs and outputs.

2. Optimal Locations for Actuators/Sensors: In this research, a set of locations for the

actuators and sensors are optimal in the sense of the spatial H2 norm of the closed-loop

transfer function is minimized. Because the locations of actuators and sensors also af-

fect the spillover, the algorithm could be improved by including the index measuring the

spillover instability. This can be done by combining the OLSA algorithm with the method

to suppress the spillover instability.

3. Control of MR Damper: The clipped-optimal control algorithm proposed by Dyke et al.

[62] was used in this work to design a semi-active control system using MR damper. The

algorithm used a bang-bang type control strategy to find an input voltage to a MR damper,

such that the MR force follow the desired control force. Using the clipped optimal control

algorithm allows a linear controller be used control a nonlinear actuator – MR damper,

and therefore simplifies the control system design. However, from the simulation results

presented, it was observed that the clipped-optimal control algorithm could not guarantee

an exact match between the MR force and the desired control force. Due to the dissipative

nature of MR dampers, this mismatch did not cause the instability to the closed-loop sys-

tem, and achieved satisfactory results in attenuating vibrations. However, it destroys the

optimality of the original linear controller. It is reasonable to believe that the performance

of the semi-active control system could be further improved by reducing the mismatch.

Including the inverse dynamics of a MR damper into a semi-active control loop is one of

the possible solutions to this problem. Because the inverse dynamics of a MR damper is
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difficult to find, some researchers (Hidaka et al. [58] and Chang and Zhou [59]) proposed

to use a Neural Networks (NN) to represent the inverse dynamics of MR damper. However,

in most cases, the NN representation of the inverse dynamics of MR damper is only good

for the data for which the NN was trained, and therefore is not robust to the change of

the inputs. Suppout Vector Machine (SVM) [76] is an another method developed after the

NN and used in pattern recognition and artificial intelligence. It is based on structural risk

minimization principle to find an optimal approximation to a given set of data, such that

the obtained SVM is able to produce good approximation for both training and unseen

samples. Therefore, a trained SVM is able to represent a process in a statistically optimal

sense. Using SVM to represent the inverse dynamics of a MR damper could be able to

produce a good result over a wide range of inputs.

4. Modeling of Roof Structure: The characteristic of a set of densely distributed vibration

modes demonstrated by the roof structure studied here, may pose a challenge for a SVC

system design. Fortunately, because the spectrum of the wind load does not have much

overlap with that of the roof structure, this characteristic did not cause much trouble in our

research. In an unfortunate case, there could be hundreds of modes fall into a frequency

band that need to be considered. In this case, one possible solution is to construct a new

model for the controller design. The new model contains several number of ‘modes’, each

of them is a ‘lumped’ mode which includes the contributions from a number of original

modes within a certain frequency band. In some optimal sense, each one of these lumped

modes should be able to reproduce the overall dynamics of the modes from which it was

constructed within certain frequency band. By this way, hundreds of modes piled inside

a relatively narrow frequency band could be represented by few of these lumped modes,

and as a result, a controller with a smaller order could be designed. The stability problem

aroused from applying thus obtained controller to the original structure should also be

addressed.
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Newmark Direct Integration Algorithm

The Newmark method is one of the most extensively used direct integration method in the

dynamical FEM analysis. It was developed to solve a system of the 2nd order linear ordinary

differential equations as given in (2.3.16). In this study, the Newmark method and its related

assumptions was used in Chapter 6 in deriving (6.3.14).

Newmark direct integration procedure is an extension of the linear acceleration method,

which assumes that the acceleration vary linearly inside each time step. In the Newmark

method, this assumption can be summarized as follows,

ḋt+∆t = ḋt + [(1 − δ)d̈t + δd̈t+∆t]∆t, (A-1)

dt+∆t = dt + ḋt∆t +

[(
1
2
− α

)
d̈t + αd̈t+∆t

]
∆t2, (A-2)

where α and δ are two constant parameters determined by the accuracy and stability require-

ments. Solving for the acceleration d̈t+∆t from (A-2) gives

d̈t+∆t =
1

α∆t2 (dt+∆t − dt) −
1

α∆t
ḋt −

(
1

2α
− 1

)
d̈t. (A-3)

Then the velocity ḋt+∆t can be obtained by substituting (A-3) into (A-1). The displacement d t+∆t

is obtained by enforcing the dynamical equation at the time instant t + ∆t, i.e.

Md̈t+∆t + Cḋt+∆t + Kdt+∆t = f t+∆t. (A-4)
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From the above equations, the displacement can be obtained by solving the following linear

system equations,

(
K +

1
α∆t2 M +

δ

α∆t
C

)
dt+∆t = f t+∆t + M

[
1

α∆t2 dt +
1

α∆t
ḋt +

(
1

2α
− 1

)
d̈t

]

+ c
[

δ

α∆t
dt +

(
δ

α
− 1

)
ḋt +

(
δ

2α
− 1

)
∆td̈t

]
. (A-5)

The procedure of the Newmark method can be summarized as follows:

1. Compute the stiffness matrix K, the mass matrix M and the damping matrix C;

2. Set the initial values d0, ḋ0 and d̈0;

3. Set the time step ∆t, the integration parameters α and δ, and compute

c0 =
1

α∆t2 , c1 =
δ

α∆t
, c2 =

1
α∆t

, c3 =
1

2α
− 1,

c4 =
δ

α
− 1, c5 =

∆t
2

(
δ

α
− 2

)
, c6 = ∆t(1 − δ), c7 = δ∆t;

4. Compute the effective stiffness matrix K̂ = K + c0 M + c1C;

5. Perform LDL decomposition of the effective stiffness matrix K̂ = LDLT;

6. For each time step,

(a) compute the affective load vector at time instant t + ∆t,

f̂ t+∆t = f t+∆t + M(c0dt + c2ḋt + c3d̈t) + C(c1dt + c4ḋt + c5d̈t);

(b) solve for the displacement at time instant t + ∆t using the following equation

LDLTdt+∆t = f̂ t+∆t;

(c) compute the acceleration and velocity using

d̈t+∆t = c0(dt+∆t − dt) − c2ḋt − c3d̈t,

ḋt+∆t = ḋt + c6d̈t + c7d̈t+∆t.

183



Appendix A. Newmark Direct Integration Algorithm

The Newmark method has been proved unconditional stable when the two integration parame-

ters satisfythe following conditions,

δ ≥ 0.5 and α ≥ 0.25(0.5 + δ)2. (A-6)

In this case, the time step used in the Newmark procedure is determined by the accuracy re-

quirement. A larger time step will not cause the numerical instability problem, but may reduce

the accuracy of the obtained solutions. Generally, the time step should be at least 2 times smaller

than the smallest period of the interested modes.
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Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm (ERA) is usually used to find a state space realization

for a MIMO transfer matrix. In this research, a ROM obtained by using the model reduction

method as introduced in Chapter 3 is in a transfer matrix form. ERA method can be used to find

a state space realization for a thus obtained ROM.

For a p × q MIMO system, its transfer matrix G(s) ∈ Cp×q can be considered in the form of

the ratio of a matrix numerator polynomial B(s) ∈ Cp×q, and a n-th order scale polynomial a(s),

i.e.

G(s) =
B(s)
a(s)

(B-1)

where

B(s) = B0 + B1s + · · · + Bnsn (B-2)

a(s) = a0 + a1s + · · · + ansn (B-3)

and Bi ∈ Rp×q, i = 0, 1, . . . , n. By dividing a(s) into B(s), one can obtain the Markov parameter

sequence {Hi} as follows,
B(s)
a(s)

=
∞

∑
i=0

Hisi. (B-4)

Expanding the above equation gives

B0 + B1s + · · · + Bnsn = (a0 + a1s + · · · + ansn)
∞

∑
i=0

Hisi. (B-5)

185



Appendix B. Eigensystem Realization Algorithm

By equating the first N powers of s in the above equation, one can obtain a system of equations

that are used to solve for the Markov parameters Hi ∈ Rp×q. It can be shown that the Markov

parameters are given by the following recursive formula,

H0 = B0, (B-6)

Hk = Bk −
k

∑
j=1

aj Hk−j, k = 1, 2, . . . , n, (B-7)

Hk = −
n

∑
j=1

aj Hk−j, k = n + 1, n + 2, . . . , N. (B-8)

Then choose any r and s such that r + s ≤ N and min(r, s) ≥ n, and form the following Hankel

type matrices H(0) and H(1)

H(0) =




H1 H2 . . . Hs

H2 H3 . . . Hs+1
...

...
. . .

...

Hr Hr+1 . . . Hr+s−1




, H(1) =




H2 H3 . . . Hs+1

H3 H4 . . . Hs+2
...

...
. . .

...

Hr+1 Hr+2 . . . Hr+s




. (B-9)

A Balanced state space realization of the given transfer function then can be found using the

ERA algorithm as follows,

1. Compute the singular value decomposition of H(0),

H(0) = UΣVT (B-10)

where µ = min(r · q, s · p), U ∈ R(r·p)×µ, V ∈ R(s·q)×µ, Σ = diag(σ1, . . . , σµ), and the

singular values are ordered such that σi ≥ σi+1, i = 1, . . . , µ − 1.

2. Set a threshold value δ, find m such that σi > δ for i = m + 1, . . . , µ.

3. Then a m-th order state space realization of G is given by

ẋ = Ax + Bu,

y = Cx + Du,
(B-11)

where

A = Σ−1/2
m UT

mH(1)VmΣ−1/2
q , B = Σ1/2

m VT
m Eu,

C = ET
y Umσ1/2

m , D = H(0).
(B-12)
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and

ET
y =

[
Ip×q 0

]
∈ R

p×(r·p), ET
u =

[
Iq×q 0

]
∈ R

q×(s·q). (B-13)

In above equations, Um and Vm are submatrices formed by the first m columns of the

matrices U and V, respectively.
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Genetic Algorithm

A Genetic Algorithm (GA), which was first proposed by Holland [70], is a heuristic procedure

used as an effective numerical method to find a global optimal (or sub-optimal) solution for a

complicated multi-parameter optimization problem. It starts with a certain number of randomly

generated solution candidates, which is known as a generation, and advances towards better

solutions by applying the so-called genetic operators, i.e. crossover and mutation, mimicking

a natural genetic selection and evolution process. After the applications of these operators, a

new generation of the same sizer is obtained. The objective function is used in evaluating the

quality of a member in a generation. In each generation, the better solutions pass on to the

next generation with a higher probability than the bad ones. In this way, GA operations make

the new generation acquire better properties and more suitability. Iterating the above process

till the solutions converge or the maximum number of iterations has been reached. The best

solution of these generations is chosen as the final solution.

In a GA method, the variables of the optimization problem can be either represented by real

numbers, called real-coded GA, or by strings of binary numbers, called binary-coded GA. In this

work, the binary-coded GA was used, i.e. the optimization variables were encoded in the form

of binary strings, which is known as chromosome. Each chromosome consists of several binary

bits (0 or 1) as shown in Figure - C.1. The number of binary bits in a chromosome defines the

resolution of the optimization variables. In each iteration step, GA operations are performed on
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0 0 1 ..... 0 1 01

0 0 1 1 ..... 1 0 0

1 1 0 1 ..... 1 1 1

.....

PSfrag replacementsnp

`

Figure -C.1: Chromosomes of a binary-coded GA.

a group of chromosomes, which is known as the population. The size of the population n p is

determined empirically by user, and kept constant through the GA iteration.

GA operations are performed on the two members selected from the current population,

which are known as the parents. Selection of parents from the current population involves the

evaluation the fitness values of the current population. The fitness value of a member is defined

by the objective function of the optimization problem. Without loss of generality, consider a opti-

mization problem finding a solution maximizing a function. Then the fitness value of a member,

i.e. a set of optimization variables, is just the value of the objective function evaluated using

these variables. In this case, the bigger the fitness value, the higher probability the correspond-

ing member be selected to be one of the parents. Foe example, assume there are 4 members (or

chromosomes) in the current population, and their fitness values are 1.0, 2.1, 0.6 and 0.3 respec-

tively. The probability for each of them being selected can be obtained by dividing the fitness

value by the summation of all fitness values. In this example, the summation of the fitness val-

ues is 4.0. Then the probability associated with these chromosomes are 1/4, 2.1/4, 0.06/4 and

0.3/4, respectively. By following this rule, the members corresponding to good fitness values

have better chance to pass their properties (i.e. making objective function take larger value) to

the new generation. After a pair of parents are selected, the GA operations can be applied.

The first GA operation is crossover. For each pair of parents obtained by the above selection

process, the crossover combines their binary codes to produce a new chromosome with certain

probability, which is known as the crossover rate. The binary codes of the new chromosome

consist of segments of codes from its parents. Generally, to preserve the good characteristics
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from the parents, one party of the parents corresponding to a better fitness value contributes

more its code to the new chromosome than another one. The binary strings of the parents are

randomly divided into several segments, then the codes of these segments are copied to the new

chromosome from either one of the two parents according to the criterion mentioned above.

Note that the chromosome generated by the crossover operation has the same length as their

parents’. When the crossover does not happen, the new chromosome is just the copy of one of

the parents, usually the one corresponding to a better fitness.

The second operation is mutation, which is performed on the chromosomes produced by

the crossover operation. The mutation operation happens with certain probability as well. This

probability is known as the mutation rate. When the mutation happens, some randomly selected

bits of the chromosome are mutated, i.e. flip the bit from 1 to 0 or 0 to 1. When it does not

happen, the chromosome produced from the crossover is kept untouched. The chromosome

obtained through the above two GA operations is known as a child. The above two GA operations

are iterated until the population that consists of the newly generated children reaches the same

size as the old population. The above GA operations are illustrated in Figure - C.2.

1 0 1 0 0

1 1 0 0 11 0 0 1 1 0

Parents

1 0 0 1 0 1 00011

0 0 1 0 1

0 1 1 01 1 1 0 10 0

Crossover

Mutation

Child

0

Figure -C.2: GA operations.

The essential mechanism of emulating the evolution process is implemented through the

operations introduced above. Among these two GA operations, the crossover ensures that the

good characteristics of one generation be able to pass to the next generation. The convergence

property of a GA method is dominated by the crossover operation. For this reason, the crossover

rate is usually very high, e.g. 90% or higher. The mutation operation introduces diversity to

the GA iteration to prevent the GA iteration converge to a local extrema. For a complicated

190



Appendix C. Genetic Algorithm

nonlinear optimization problem, where exists many local extrema, the mutation operation is

critical to find a global optimal solution. Generally, the mutation rate is less than 10%.

An overall view of GA process is shown in Figure - C.3. It is seen that the new generation is

No

mutation rate

Set the population
size Np and n=0

Generate initial
population

Selct parents from
current populationCrossoverMutation

n++ n=Np

Evaluating fitness values 
of current population

EndSave results Set n=0
NoYes

Yes

Set crossover and

Figure -C.3: Flow chart of a GA method.

produced by applying the GA operations on the current population. After the new generation is

obtained, the original one is replaced by the new population. The fitness value of each member

of the current population is then evaluated. The GA iteration continues until either the solution

is converged or, a maximum number of iterations has been reached. Upon the ending of the GA

iteration, the best solution in the current population is the final optimal solution.
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