
HIGH-BANDWIDTH IDENTIFICATION

AND COMPENSATION

OF HYSTERETIC DYNAMICS

LIU LEI

NATIONAL UNIVERSITY OF SINGAPORE

2012



HIGH-BANDWIDTH IDENTIFICATION

AND COMPENSATION

OF HYSTERETIC DYNAMICS

LIU LEI
(B.Eng., HARBIN INSTITUTE OF TECHNOLOGY)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

NUS GRADUATE SCHOOL FOR INTEGRATIVE

SCIENCES AND ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2012



Declaration 


I hereby declare that the thesis is my original 

work and it has been written by me in its 

entirety. I have duly acknowledged all the 

sources of information which have been used in 

the thesis. 

This thesis has also not been submitted for any 

degree in any university previously . 

.,. 

LID LEI 




Acknowledgments

I would like to express my most sincere gratitude and appreciation to all who helped me

during my PhD candidature at the National University of Singapore. First, I would like

to thank my supervisors, Professor Lee Tong Heng and Professor Tan Kok Kiong for

their helpful discussions, support and encouragement. Their wisdom, vision, gentleness

and devotion greatly brighten my research paths. Without their support and guidance,

I would not have accomplished this thesis.

I would like to thank my parents and my wife for their endless love and support.

Specially, I would like to express my deepest gratitude to my wife, Weiming for her love,

understanding, supporting and inspiration. This thesis is dedicated to my family for

their infinite stability margin.

I would also like to express my appreciation to all my friends who helped me in the last

four years. Special thanks must be made to Dr Teo Chek Sing for his close collaboration

and warmhearted help. Great thanks to Mr Yuan Jian and Miss Er Poi Voon for their

revisions of my manuscripts and reports. Many thanks to Mr Liang Wenyu for his help

of setting up dSPACE 1104 control platforms. Lots of thanks to Dr Huang Sunan and

Dr Chen Si-Lu for their discussions. Many thanks to all my colleagues in Mechatronics

ii



and Automation Lab for their friendship and help.

Finally, I am thankful to NUS Graduate School for Integrative Sciences and Engineer-

ing for providing the NGS scholarship to undertake my PhD research. Many thanks

to Department of Electrical and Computer Engineering (ECE) for providing high-class

laboratory environment. Special thanks also to the Mechatronics group of Singapore

Institute of Manufacturing Technology (SIMTech).

iii



Contents

Declaration ii

Acknowledgments ii

Summary ix

List of Tables xi

List of Figures xi

Nomenclature xviii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 SVD-based Identification and Compensation of Preisach Hysteresis 5

1.4.2 Comprehensive Identification of Hysteretic Dynamics in PAs at

Broadband Frequencies . . . . . . . . . . . . . . . . . . . . . . . 6

iv



1.4.3 Model-based Composite Compensation of Hysteretic Dynamics . . 7

1.4.4 Multirate-based Compensation Control of PAs for High-bandwidth

and Precision Tracking . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 SVD-based Identification and Compensation of Preisach Hysteresis 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Parameter Identification of Preisach Hysteresis . . . . . . . . . . . . . . . 13

2.2.1 Preisach Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Least Squares Estimation by SVD . . . . . . . . . . . . . . . . . . 15

2.2.3 Identification Revision Using SVD Updating . . . . . . . . . . . . 17

2.2.4 Simulation Study of Proposed Identification Approach . . . . . . 19

2.3 Compensation Strategy of Preisach Hysteresis . . . . . . . . . . . . . . . 22

2.3.1 Preisach-based Inversion Compensation . . . . . . . . . . . . . . . 22

2.3.2 Proposed Composite Control Strategy . . . . . . . . . . . . . . . 23

2.3.3 Simulation Study of Proposed Compensation Strategy . . . . . . . 24

2.4 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Hysteresis Identification at Low Frequencies . . . . . . . . . . . 26

2.4.2 Performance of Proposed Composite Controller at Low Frequencies 28

2.4.3 Performance of Proposed Composite Controller at Higher Frequen-

cies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Model-based Composite Control for High-Bandwidth and Precision

Scanning of PAs 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Proposed Model Identification Strategy . . . . . . . . . . . . . . . . . . . 38

3.2.1 Model of PA systems . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Identification of Quasi-static Hysteresis . . . . . . . . . . . . . . 39

3.3 Proposed Composite Controller . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Analysis of Feedforward and Feedback Controllers at High Fre-

quencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 Design of Feedforward Controller . . . . . . . . . . . . . . . . . . 46

3.3.3 Design of Feedback Controller . . . . . . . . . . . . . . . . . . . . 47

3.4 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Identification of Quasi-static Hysteresis . . . . . . . . . . . . . . . 50

3.4.2 Identification of Non-hysteresic Dynamics . . . . . . . . . . . . . 53

3.4.3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Comprehensive Identification of Hysteretic Dynamics in PAs 62

vi



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Comprehensive Modeling of PAs . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Hysteretic Behavior of Preisach Model Under Square Inputs . . . . . . . 69

4.4 Design of Input and Sampling Rules for Preisach Hysteresis Estimation . 72

4.4.1 Input Signal Design . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Sampling Rule Design . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 SVD-based Hysteresis Identification . . . . . . . . . . . . . . . . . 74

4.5 Proposed Identification Approach . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Creep, Electric and Vibration Dynamics Identification . . . . . . . 78

4.6.2 Hysteresis Identification . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.1 Identification of the Hysteresis, Creep, Electric and Vibration Dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.2 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Multirate-Based Controller Design for High-Bandwidth and Precision

Tracking 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Proposed Multirate-based Composite Controller Design . . . . . . . . . . 96

vii



5.2.1 Analysis of Proposed Composite Controller . . . . . . . . . . . . . 97

5.2.2 Off-line Model-based Inversion Feedforward Controller . . . . . . 100

5.2.3 Design of Bandwidth and Sampling Rate . . . . . . . . . . . . . . 101

5.2.4 Design of Discrete Feedback Controller . . . . . . . . . . . . . . . 105

5.3 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Proposed Multirate-based Composite Controller . . . . . . . . . . 108

5.3.2 Performance of Proposed Composite Controller . . . . . . . . . . 110

5.3.3 Performance of Single-rate Composite Controller . . . . . . . . . . 114

5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Conclusions 117

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 119

Appendix A 121

Bibliography 126

Author’s Publications 141

viii



Summary

Piezoelectric actuators (PAs) are widely used in precision engineering applications due

to their capability of accurate tracking, such as nano-fabrication, dynamic imaging of

molecules by using scanning probe microscopies (SPMs), and advanced spacecrafts with

optical sensitive instruments. The requirements for the bandwidth and accuracy of

these precise motion systems are clearly tight and stringent. It is often desirable to

have precision motion at rates of several kHz, which may be higher than the resonant

frequencies. However, PAs exhibit limited performance at high-bandwidth tracking. The

dynamic tracking is typically slower than 10% of the resonant frequencies, because of

the coupled hysteresis, creep and vibration dynamics.

To achieve precision motion control of PAs, accurate identification and compensa-

tion of hysteretic dynamics can be employed. In this thesis, the accurate identification

and compensation of hysteretic dynamics in PAs are investigated at broadband frequen-

cies. In the experimental studies, the high-bandwidth and precision motion of PAs are

achieved, simultaneously.

First, at low frequencies, the identification and compensation of Preisach hysteresis

are investigated by using singular value decomposition (SVD)-based least squares es-
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timation. The Preisach-based inversion compensator is also presented to compensate

the static hysteresis in PAs. With the inversion compensator, the feedback performance

with PID tuning controller is significantly improved in the experimental studies.

As the input frequencies increase, the hysteretic dynamics becomes more significant.

Thus, the electric and vibration dynamics of PAs are identified at high frequencies by

using the identification result of Preisach hysteresis at low frequencies. The model-based

composite controller is designed, which consists of a model-based inversion feedforward

compensator and a PI tuning feedback controller. In the experimental studies, the

precision tracking is achieved at rates higher than the resonant frequencies.

Furthermore, at broadband frequencies, a comprehensive identification of hysteretic

dynamics is developed for PAs. The non-hysteretic dynamics, such as the creep, electric

and vibration dynamics are identified first. Afterwards, the Preisach hysteresis is iden-

tified by using the specially designed input signals and sampling rules. The effectiveness

of the identification strategy is validated in the experimental studies.

Finally, based on the identified hysteretic dynamics obtained by using the compre-

hensive method, the multirate-based controller is designed to achieve precision motion

at higher bandwidth. The model-based inversion feedforward compensator consists of

the inversions of the creep, Preisach hysteresis, electric and vibration dynamics. The

discrete H∞ controller is designed according to disturbances, modeling uncertainties and

hardware limitations. In the experimental studies, the precision motion is achieved at

rates higher than twice of the resonant frequency.
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Chapter 1

Introduction

1.1 Background and Motivation

Piezoelectric actuators (PAs) are one of the most popular smart actuators which are

increasingly appealing for precision motion control [1]. Directly driven PAs are investi-

gated in this thesis, in which the inverse piezoelectric effect is used. To achieve sufficient

travel span, stacking sequences of piezoelectric patches and motion amplifiers could be

employed in practice. Additionally, instead of common joints, flexible joints could be

used to avoid the friction nonlinearity. PAs have appealing properties, such as:

• High bandwidth: PAs work well at rates of kHz [2].

• High accuracy: PAs can achieve sub-nano accuracy [1].

• Friction-free: Flexible joints are commonly used to avoid the friction nonlinearity.

In precision engineering applications, PAs have been increasingly employed, such as

in modern micro and nano fabrication [3, 4], dynamic imaging with scanning probe

microscopes (SPMs) [5], and advanced spacecrafts with sensitive optical instruments.
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Modern micro and nano fabrication: 3D nanofabrication by femtosecond laser

direct writing [6], Nanoscale scratching [7], submicron lithography [8], diamond turning

machines [9], etc.

Dynamic imaging with SPMs: Three-dimensional nano patterning and dynamic

imaging of molecules [6, 7, 10, 11], nano-visualization of dynamic biomolecular processes

[12–16], etc.

Advanced spacecrafts with sensitive optical instruments: Space telescopes [17],

deep-space laser communication [18], space-based laser weapons [19], space-based inter-

ferometers [20], etc.

Various methods of modeling, identification and compensation have been investigated

for PAs [21,22], for instance:

• Hysteresis modeling: Preisach and Prandtl-Ishlinskii are two popular mathematical

models. Both static and dynamic hysteresis have been investigated.

• Hysteresis identification and inverse compensation: Various approaches of hys-

teresis identification have also been investigated, and the model-based inversion

compensation based on the identified hysteresis is one direct and effective approach

to eliminate the hysteresis.

• Feedback control: Various feedback controllers have been investigated to achieve

precision motion control, consisting of the model-based and model-free controllers.

2



With the development of ultra-accurate applications, more strict requirements are

presented [23], which lay out the scope of current techniques.

• High-bandwidth: In SPMs, the PAs are required to track at rates on the order of

kHz, which may exceed the resonant frequencies of PAs. Currently, PAs typically

operate at frequencies less than 10% of the resonant frequencies.

• High-accuracy: In addition to high-bandwidth requirements, high-accuracy is an-

other requirement for PAs. Furthermore, the simultaneous high-bandwidth and

high-accuracy are current requirements in which the precision tracking are required

at rates possibly beyond the resonant frequencies.

• Feedforward control: Feedback controllers have been limited at frequencies higher

than the resonant frequencies due to the measurement noise at high frequencies.

Compared with feedback control, the model-based inversion feedforward compensa-

tion, which relies on the model identification, is an alternative method to increase

the tracking rates and enhance the tracking accuracy at high frequencies, because

feedforward controllers are effective to avoid the measurement noise which are more

serious at high frequencies.

1.2 Objectives and Challenges

PAs are widely applied in precision engineering to achieve nanometer scale tracking.

However, the scanning accuracy of piezoelectric mechanisms over broadband frequencies
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are limited due to inherent dynamic hysteresis. This phenomenon has been a key bottle-

neck to the use of piezoelectric mechanisms in fast and precision scanning applications.

The main objective of this thesis is to increase the bandwidth and enhance the ac-

curacy of piezoelectric systems by proposing and identifying the models at broadband

frequencies, including Preishach hysteresis, creep, electric and vibration dynamics.

1.3 Experimental Setup

The experimental setup consists of a piezoelectric stage, a linear voltage amplifier, a

linear variable differential transformer (LVDT) displacement sensor and a dSPACE 1104

board. Fig. 1.1 illustrates the piezoelectric stage, amplifier and sensor conditioning. The

travel of the stage is 100μm. The amplifier is E-662 with the output voltage range of

[−20, 120]V. The noise in the measurement signal is white noise with the root-mean-

square (RMS) value of 0.009 μm. �

�
�

�
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Figure 1.1: Experimental setup.
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1.4 Contributions

This thesis aims to propose efficient identification and compensation of hysteretic dy-

namics of PAs to achieve precision motion control over a broadband range of frequencies.

Based on the objectives and challenges listed in Section 1.2, the following contributions

have been made in this thesis.

• The SVD-based identification and compensation of Preisach hysteresis are investi-

gated at low frequencies

• The model-based composite compensation of hysteretic dynamics is designed for

both high-bandwidth and precision motion control of PAs

• The comprehensive identification of hysteretic dynamics in PAs is developed at

broadband frequencies

• The multirate-based compensation controller is designed for precision motion con-

trol of PAs

1.4.1 SVD-based Identification and Compensation of Preisach

Hysteresis

The singular value decomposition (SVD)-based identification and compensation of the

hysteretic phenomenon in piezoelectric actuators (PAs) are addressed using a Preisach

model. First, the accurate identification method of Preisach hysteresis is presented,

containing the SVD-based least squares algorithm and revision approach of the iden-

tification through updating of the SVD. With the identified parameters and a log of
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the memory curve, a Preisach-based inversion compensator is constructed which is com-

plemented with a feedback controller to address the inevitable and residual modeling

errors. Experimental results are furnished for both the identification and compensa-

tion approaches. The Preisach-based feedforward controller significantly improves the

tracking performance and reduces the root-mean-square (RMS) tracking error of a PID

tuning controller by 76.7% and 89% at 1Hz and 25Hz, respectively. With the proposed

composite controller, the percent-RMS errors at 1 Hz and 25 Hz are reduced to 0.035%

and 0.31% respectively.

1.4.2 Comprehensive Identification of Hysteretic Dynamics in

PAs at Broadband Frequencies

A comprehensive approach is provided to identify the hysteresis and coupled non-

hysteretic dynamics of PAs over a broad range of frequencies. The approach leverages on

the special characteristics and distinctions of the hysteretic and non-hysteretic compo-

nents to identify them in sequence, efficiently. The non-hysteretic dynamics is identified

using square wave input signals. The creep dynamics is identified using an input signal

with a long period. Conversely, electric and vibration dynamics are identified using an

input signal with a small period. Moreover, the drift due to the creep is eliminated

by employing its model inversion. The Preisach hysteresis is identified with specially

designed harmonic input signals and sampling rules, which overcomes the persistent

excitation (PE) problem of hysteresis identification and improves the computational ef-

ficiency. Simulation and experiments are conducted to validate the effectiveness of the
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identification approach.

1.4.3 Model-based Composite Compensation of Hysteretic Dy-

namics

A simple model identification and composite control strategy without hysteresis measure-

ment for such applications is introduced. First, least squares estimation using harmonic

signals is applied to achieve the Preisach density function. Next, the hysteresis out-

put is estimated, such that the non-hysteretic dynamics can be identified. The discrete

composite control strategy is proposed with a feedforward-feedback structure. The feed-

forward controller is the primary component designed for performance. The secondary

PI feedback controller is employed to suppress disturbances for robustness. Finally, the

identification and composite control strategy is implemented with a dSPACE 1104 board

for a real piezoelectric actuator setup. The experimental results indicate that adequate

scanning performance can be sustained at a rate higher than the first resonant frequency.

1.4.4 Multirate-based Compensation Control of PAs for High-

bandwidth and Precision Tracking

To track trajectories at rates higher than the resonant frequencies of the PAs, this

chapter presents a multirate-based composite controller consisting of a slow sampled H∞

feedback controller and a fast sampled feedforward controller. The feedback controller is

designed for stability and robustness in the presence of disturbances and modeling errors.

The feedforward controller is designed for high-bandwidth tracking by reducing phase-

lag and gain distortion. The proposed composite controller is realized in a piezoelectric
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stage based on a dSPACE 1104 board. With a sampling rate of 1 kHz in the feedback

loop and a sampling rate of 40 kHz in the feedforward branch, the RMS tracking error at

1 kHz (2.2 times of the resonant frequency) is less than 2.3% of the trajectory amplitude.

1.5 Organization of Thesis

The organization of this thesis is as follows. Chapter 2 investigates the SVD-based

identification and compensation of Preisach hysteresis at low frequencies. Chapter 3

presents the model-based composite control for high-bandwidth and precision scanning

of PAs. Chapter 4 develops the comprehensive identification of hysteretic dynamics in

PAs. Chapter 5 presents the multirate-based controller design for simultaneous high-

bandwidth and precision tracking. Finally, Chapter 6 concludes this thesis and presents

possible future work.
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Chapter 2

SVD-based Identification and

Compensation of Preisach

Hysteresis

2.1 Introduction

Hysteresis contributes to the main uncertainty, which affects the control performance,

among the nonlinearities present in piezo systems. In the open loop, the maximum error

from hysteresis is 10%-15% of the total displacement of PAs [24]. This error may not

be tolerable for precision applications. The modeling and identification of the hysteresis

nonlinearity in PAs can enhance the control performance and the identification accuracy

of non-hysteretic dynamics at higher frequencies. Currently, to avoid the hysteresis

effect, only 5% of the travel range of PAs is used to identify the transfer functions [25].

Moreover, the input voltage slower than 1Hz is typically not used for identification due

to the hysteresis nonlinearity.

This chapter focuses on the hysteresis identification issue of PAs. The identification re-

sult is applied at higher frequencies. PAs are typically quasi-static at low frequencies [26],
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and can be represented by a rate-independent hysteresis model. Generally, hysteresis

models can be classified into mathematical models and physical models [27–29]. The

mathematical model is a vehicle to provide an input-output relationship of the actual

system and it is usually more amenable to practical use for identification and control.

Conversely, the physical model is constructed based on physical laws applied to the

phenomenon of hysteresis and thus the model is intuitive to understanding, but it is

typically in a complex form which is difficult to be identified and not often used for

control purposes [30]. In the current literature, the examples of mathematical models

are the Preisach model and the Prandtl-Ishlinskii (P-I) model [31, 32]. Moreover, the

P-I model is a special case of the Preisach model [33].

The Preisach model is popular and effective to describe the quasi-static hysteresis of

PAs, but the accurate identification of the Preisach model is still not solved well due

to the large number of split lattices and the corresponding density values. Preisach

hysteresis is a static nonlinearity and has global memories. All the extreme values of

input history can affect current and future outputs. The classical Preisach model satisfies

the wiping out and the congruency properties [29]. Other mathematical models, such

as the Bouc-Wen model [34,35], have also been applied to describe hysteresis behaviors

of PAs. Compared to the Preisach model, these models are in a highly nonlinear form,

possibly including dynamical parameters which are difficult to be laid out in a form for

parameter identification and model-based inversion compensation.

Modeling of the Preisach hysteresis entails essentially the identification of Preisach
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density functions. Hu and Song identified these functions by differentiating the measure-

ments [36, 37], possibly causing the identified functions to be sensitive to measurement

noise. Tan and Iyer developed recursive schemes for parameter identification and de-

signed a closest-match algorithm for the compensation of the Preisach hysteresis [38,39].

Henze provided approaches for the identification of the Preisach function based on dif-

ferent distribution characteristics [40], but these approaches rely on assumptions of the

form of the density functions and are typically not amenable to be used for the purpose

of producing a model for hysteresis compensation.

As evident in the published literature, approximate Preisach density functions can

be identified more efficiently through a discretized Preisach plane by transforming the

double integral of density functions to a numerical summation, thus reducing the effort to

an identification of a set of finite parameters in the linear regression form. Furthermore,

no restrictive assumption on the density functions is necessary. However, to achieve an

accurate and smooth approximation of these functions from a discretized plane, a large

number of the split lattices will be needed and equivalently, a large number of model

parameters is to be determined from the data. This leads to a requirement to collect a

large amount of sufficiently exciting data to satisfy a persistent excitation (PE) condition

for parameter estimation [39, 41]. Under practical conditions, this issue is equivalent to

solving an ill-conditioned inverse problem [42].

Various hysteresis compensation approaches have been investigated. Aphale proposed

a high-gain feedback controller to suppress hysteresis, but the achieved bandwidth with
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adequate tracking accuracy is significantly decreased [43]. The compensation of hys-

teresis through model-based inversion is adopted in some cases [44], Tao designed an

adaptive controller with a parameterized inverse hysteresis [45], but the model is too

simple to describe global memories of PAs. Chen developed adaptive techniques with-

out requiring an inversion of the hysteresis, but the density function is still assumed in

the controller [46]. This chapter presents a Preisach-based inversion feedforward con-

troller without the measurement of hysteresis output in real-time.

The organization of this chapter is as follows. Section 2.2 presents the least squares

estimation algorithm and the revision of identification, both based on singular value

decomposition (SVD). The SVD-based approach can address the ill-conditioned issue as

it uses a complete orthogonal decomposition to compute a pseudo inverse solution in the

least squares sense. Additionally, the SVD-based updating can reduce the computing

time and provide more precise estimation of the density function. Section 2.3 adopts

a feedback-feedforward control structure for hysteresis compensation and motion track-

ing. A feedforward compensator constructs an inversion of the hysteresis phenomenon

to minimize the hysteresis effect. A PID feedback controller is employed to improve the

tracking performance by addressing the residual effects arising from incomplete feed-

forward cancelation. Section 2.4 provides experimental studies on a piezoelectric stage

to demonstrate the proposed identification and compensation strategy. Though the

Preisach identification is implemented at low frequencies, it is effective to reduce the

tracking error at higher frequencies. Section 2.5 makes a discussion of experimental
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results. Finally, Section 2.6 concludes the chapter.

2.2 Parameter Identification of Preisach Hysteresis

2.2.1 Preisach Hysteresis

The hysteresis relay constitutes the basic element of hysteresis in PAs. The outputs of

these operators are weighted by the Preisach density function μ(α, β) and then summed

continuously over possible values of α and β. The relationship between input voltage

and hysteresis output of PAs is represented as [29]

f(t) =

∫∫
α≥β

μ(α, β)γαβ[u(t)]dαdβ (2.1)

where μ(α, β) is the density function and f(t) is the hysteresis output. At low frequen-

cies, typically less than 1Hz, f(t) is approximately equal to the piezo displacement. α

and β are the switching threshold values of the hysteresis operator γαβ[u(t)], as shown

in Fig. 2.1(a).

In the Preisach model (2.1), the input u(t) is first applied to all the hysteresis operators

γαβ[u(t)]. The hysteresis output can thus be considered to be a superposition of a

continuous set of two-position relay operators γαβ[u(t)] over the range of input signal.

Let S be Preisach triangle which is formed by α ≥ β and the saturation value of input

voltages, shown in Fig. 2.1(b), and can be divided to S+ with γαβ[u(t)] = θ1 and S−

with γαβ[u(t)] = θ2. In PAs with positive input voltage, θ1 = 1 and θ2 = 0 can be used.
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Figure 2.1: (a): Preisach relay operator. (b): Preisach triangle.

Identification of the Preisach model essentially entails the identification of the density

functions. In the continuous form, the parameter μ(α, β) are continuous over the limit-

ing region and it is thus difficult to identify the continuous Preisach functions. In this

section, the limiting region will be considered to be comprising of discrete lattices. Each

lattice cell may have a weight assigned to it which is the discrete equivalence of a specific

lattice density. The hysteresis output can be computed by transforming the double in-

tegral to a numerical summation as shown in Eq. (2.2) which is also linear-in-parameter

and suitable for estimation and control.

f(k) =
L∑

i=1

i∑
j=1

μijγij[u(k)]sij (2.2)

where f(k) and u(k) are the hysteresis output and input voltage at time instant k,

respectively, sij denotes the area of lattice (i, j). The Preisach plane is discretized into

L × L lattices. Thus effectively with the symmetry, there are L(L + 1)/2 lattices in

Preisach triangle to be identified.
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Let vij = μijsij. Moreover, sij is known. The f(k) at time k is rewritten as

f(k) = AkX (2.3)

where Ak = [ γ11(k) γ21(k) γ22(k) γ31(k) · · · γLL(k) ],

XT =
[

v11 v21 v22 v31 · · · vLL

]
, X is to be estimated.

2.2.2 Least Squares Estimation by SVD

The dimension of X is large and the PE condition may not be satisfied, thus least squares

estimation using SVD is employed in this section. Over a time range of t1 < t < tN ,

the data samples are collected at time instances t1, · · · , ti, · · · , tN . With N samples, Eq.

(3.4) can be produced and posed in the following matrix form

AX = Y (2.4)

where A = [ AT
1 AT

2 · · · AT
N ]T , Y = [ f(1) f(2) · · · f(N) ]T , X and Y belongs

to normed linear spaces, and A is a matrix mapping X to Y . If M = AT A is non-singular,

the least squares estimation of μ is unique and given by [41]

X̂ = M−1AT Y (2.5)

where X̂ is the estimation of X.

If AT A is singular, there will be infinite solutions. To identify the Preisach parameters,

detailed discretization is needed. If the discretization level L is 60, the sampling time is

120s and the sampling interval is 1ms, the dimension of matrix A is 120000 × 1830 and

it is difficult to compute AT A. Thus, iterations are employed to compute M and AT Y .
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First, to allow the least squares solution, Eq. (2.6) is formed.

(AT
1 A1 + AT

2 A2 + · · · + AT
NAN)X = AT

1 f(1) + AT
2 f(2) + · · · + AT

Nf(N) (2.6)

The iterations to compute M and AT Y are shown as follows

{
M (k) = M (k−1) + AT

k Ak

(AT Y )(k) = (AT Y )(k−1) + AT
k f(k)

(2.7)

where k = 1, 2, · · · , N . M (k) is the matrix M at time k, M (0) = 0, and Y
(0)
A = 0 If

AT A is singular or significantly ill-conditioned, the PE condition is not satisfied which

is likely to occur in this application of Preisach identification. In this case, The SVD

approach is used to obtain the pseudo-inverse. The SVD of AT A is given by

M = UΣV (2.8)

where U = [ u1 u2 · · · un ], V = [ v1 v2 · · · vn ], Σ = diag([σ1, σ2, · · · , σn]),

singular values σ1 ≥ σ2 ≥ · · · ≥ σn, U and V are unitary matrices.

Assume the rank of matrix M is k, then σk+1, σk+2, · · · , σn = 0. If σj/σ1 � 1, j =

r + 1, r + 2, · · · , k, M is ill-conditioned and can be decomposed as follows

M =
r∑
1

σiuiv
T
i +

k∑
r+1

σiuiv
T
i . (2.9)

Small singular values can be truncated to yield improved least squares estimation in

an ill-conditioned situation. The approximation of the pseudo inverse of A can be given

by

A+ ≈ VrΣ
−1
r UT

r AT (2.10)
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where A+ denotes the pseudo inverse of A and Σ−1
r = diag [ 1/σ1 1/σ2 · · · 1/σr ].

The pseudo inverse of A is reformulated as

A+ ≈
r∑
1

1

σi

viu
T
i AT . (2.11)

Finally, the estimation of X in least squares sense is given by

X̂ = A+Y (2.12)

where X̂ is the estimation of X.

2.2.3 Identification Revision Using SVD Updating

In this section, the Preisach identification in (2.12) is revised using SVD updating, since

Preisach estimation by SVD in least squares sense is time-consuming. The initial iden-

tified result is used and the density values are revised according to new data. Bunch

and Nielsen provided some methods of SVD revision and updating [47]. Brand applied

a rank-1 modifications to movie recommender systems [48]. In this section, the identifi-

cation revision is based on the initial values A0 and Y0 in above section. For A0 and Y0,

the following equation exists.

A0X = Y0. (2.13)

When a new vector a1 and scalar output y1 are added to the matrix, the following

equation is achieved.

[
A0

a1

]T [
A0

a1

]
X =

[
A0

a1

]T [
Y0

y1

]
(2.14)
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where Y0 is a vector, y1 is a scalar.

Let M0 and M1 denote AT
0 A0 and AT

0 A0 + aT
1 11, respectively. Using the analysis in

Section 2.2.2, the initial estimation is written as M0 = UrΣrV
T
r + εr, εr is the residual

error. Then, M1 can be written as

M1 = UrΣrV
T
r + aT

1 a1 + εr. (2.15)

Neglecting εr, M1 can be reformulated as

M1 ≈
[

Ur a1

] [ Σr 0

0 I

] [
Vr a1

]T
. (2.16)

The components of a1 orthogonal to the space spanned by Ur and Vr are given by

{
p = a1 − UrU

T
r a1

q = a1 − VrV
T
r a1

. (2.17)

Let RU = ‖p‖ and RV = ‖q‖, then the unit vector up and vq can be written as

{
up = p/RU

vq = q/RV
. (2.18)

According to the method provided by Ref. [48], [ Ur a1 ] and [ Vr a1 ] can be written

as

[
Ur a1

]
=
[

Ur up

] [ I UT
r a1

0 RU

]
. (2.19)

[
Vr a1

]
=
[

Vr vq

] [ I V T
r a1

0 RV

]
. (2.20)

Then M1 can be written as

M1 =
[

Ur up

]
K
[

Vr vq

]T
(2.21)
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where K =

[
I UT

r a1

0 RU

] [
Σr 0

0 I

] [
I V T

r a1

0 RV

]T

.

The SVD of M1 is transformed to the SVD of K which is (r +1)× (r +1), as is shown

in Eq. (2.22). The SVD of the small matrix K can save computing time, compared to

the SVD of the large matrix M1.

K = UKΣKV T
K (2.22)

where UT
KUK = I and V T

K VK = I

Then, the approximation SVD of M1 can be achieved as

M1 =
([

Ur up

]
UK

)
ΣK

([
Vr vq

]
VK

)T
. (2.23)

Let U1 be the 1 : r columns of [ Ur up ]UK , V1 be the 1 : r columns of [ Vr vq ]VK ,

Σ1 = ΣK(1 : r, 1 : r). The SVD updating with the fixed rank r is obtained as

M1 = U1Σ1V
T
1 . (2.24)

Finally, the estimation revision of X is given by

X̂ = V1Σ
−1
1 UT

1 AT Y (2.25)

where X̂ denotes the estimation of X.

2.2.4 Simulation Study of Proposed Identification Approach

This section presents the simulation study of the proposed hysteresis identification and

its revision using SVD. Additionally, a measure of the estimation error of the Preisach
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Figure 2.2: Estimated error of density function. (a): Projection algorithm. (b): SVD-

based least squares.

density is defined as ⎧⎨⎩ ‖μ − μ̂‖ =
√∑L

j=1

∑j
i=1(μij − μ̂ij)2

‖μ‖ =
√∑L

j=1

∑j
i=1 μ2

ij

(2.26)

where μ̂ is the estimation of μ and can be directly computed using X̂ and sij.

For comparison, the parameter vector X is also estimated using the projection algo-

rithm in [41].

X̂k = X̂k−1 − γL
(f̂(k) − f(k − 1))Ak−1

θ + AT
k−1Ak−1

(2.27)

where 0 < γL < 1, θ > 0 and X̂k is the estimation of X at the time instant k.

Let αmax = 10, αmin = 0, βmax = 10, βmin = 0, μ(α, β) = 4, L = 50. A sinusoidal

input signal 10 sin(5t) is used. Moreover, the white noise with RMS of 0.01μm is added

to the measurement. The sampling interval is 0.001s and the number of sampling points

is 4000. Fig. 2.2(a) shows the estimated error using the projection algorithm. The

estimated error ‖μ − μ̂‖ is 128.3, and the relative error ‖μ − μ̂‖/‖μ‖ is 91.6%. The

parameter identification error of the projection algorithm is significant. Fig. 2.2(b)

shows the estimated error using the SVD-based identification.
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Figure 2.3: Converge error of SVD updating.

The dimension of A is 4000× 1275, and we can get the determinant det(M) = 0. The

rank of M is 99. Then, r is set to 64 with σr+1/σ1 = 0.001, the estimation error ‖μ− μ̂‖

and relative error ‖μ − μ̂‖/‖μ‖ of the SVD-based identification are reduced to 6.67 and

4.7%, respectively. The difference between the real and estimated μ(α, β) is small.

Finally, with SVD updating using 50 new points, the estimation error ‖μ−μ̂‖ is reduced

from 6.67 to 5.9, as shown in Fig. 2.3. It can be seen that the SVD updating improves

the estimation performance. The SVD-based approach gives better identification of

Preisach hysteresis. The relative strengths of the identification approach when applied

for this purpose will be investigated and highlighted through experimental studies.
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2.3 Compensation Strategy of Preisach Hysteresis

2.3.1 Preisach-based Inversion Compensation

This section presents a Preisach-based inversion to compensate the hysteresis in PAs.

The Preisach-based inversion is rate-independent because of the rate-independence of

Preisach model [33], which simplifies the hysteresis compensation. The model-based in-

version can be computed off-line based on the identified Preisach model and the reference

trajectories.

First, with the models obtained via the possible approaches presented in Section 2.2, a

hysteresis compensator based on these models can be designed. Fig. 2.4 shows the flow

chart of Preisach-based inversion compensator. At time instant k, define the reference

displacement as xr(k), the estimated hysteresis output as f̂(k), and the control action

as uff (k). The feedforward compensator works to obtain uff (k + 1) based on the iden-

tified Preisach hysteresis Ĥ. Fig. 2.5 shows the Preisach-based inversion feedforward

controller. xr, d and uff denote the reference trajectory, the output disturbance and the

feedforward control signal, respectively. From the reference trajectory and its memory

curve, the feedforward compensator will compute the feedforward control signal based

on the identified density function, and enforce the output of the PA to track the desired

trajectory, thereby compensating the effects of the hysteresis.

In the flow chart, e is the tracking error bound, Δ is the iteration step and given as

Δ = λ
umax

L
(2.28)
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Figure 2.4: Flow chart of Preisach-based inversion compensator.

where λ is the factor to regulate the step which is less than 1, and L is the discretization

level of the Preisach plane.

2.3.2 Proposed Composite Control Strategy

In this section, a composite controller comprises a Preisach-based inversion feedforward

controller and a PID feedback controller. The Preisach-based feedforward can be used

to compensate the static hysteresis in PAs, but commonly there are offset and distur-

bances in real-time control of PAs, thus, a feedback controller is also necessary. At low

frequencies, the feedback controller eliminates the residual errors and disturbances. As

the reference frequency increases, the feedback controller also suppresses the dynamic

effects. The feedback controller design is not the key issue in this chapter. Thus, a PID

controller is employed.
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The techniques of the PID controller and its tuning are mature. Theoretical analysis,

such as stability analysis, and experimental tests of PID controllers have been applied in

piezo systems [37,49], but the tracking performance is still limited due to the hysteresis

effect. Based on accurate identification of hysteresis, this chapter uses the Preisach-

based inversion feedforward to enhance the tracking performance. Fig. 2.5(b) shows the

composite control of the PAs. ufb denotes the feedback control signal. The measurement

noise is also considered.
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Figure 2.5: (a): Feedforward control. (b): Composite control.

2.3.3 Simulation Study of Proposed Compensation Strategy

The proposed compensation strategy is simulated in this section. The Preisach hysteresis

and the estimated results in the Section 2.2.4 are used. Moreover, the output disturbance

of 5μm is also added to the system. The reference signal is given as 20(1 − cos 2πt).

The performance of Preisach-based inversion feedforward is shown in Fig. 2.6(a). The

RMS tracking error is 5.02μm. However, the output disturbance is not suppressed by
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the feedforward controller. Conversely, the RMS tracking error is reduced to 0.22μm

with the proposed composite controller while the proportional and integral gains of the

PID controller are set to 0.001 and 3, respectively. The constant disturbance is also

suppressed, as shown in Fig. 2.6(b).
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�Figure 2.6: Tracking errors. (a): Preisach-based Inversion feedforward control. (b):

Composite control.

2.4 Experimental Studies

This section presents the experimental studies of the proposed identification and compen-

sation approaches. First, to validate the SVD-based least squares estimation of Preisach

hysteresis, the Preisach density function is identified at low frequencies where the piezo

displacement can be regarded as the hysteresis output. The proposed hysteresis com-

pensation strategy is also verified. Section 2.4.1 proposes the experimental study of the
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Preisach hysteresis identification. Section 2.4.2 provides the Preisach-based inversion

feedforward and the composite control at low frequencies. To extend the application of

the identified Preisach hysteresis. Section 2.4.3 presents the proposed composite control

at high frequencies where the hysteresis output is not measurable due to the dynamics

effect. The Preisach-based inversion feedforward is computed according to the reference

trajectory and identified Preisach model.

2.4.1 Hysteresis Identification at Low Frequencies

The hysteresis identification of the piezoelectric stage is finished at frequencies lower

than 1Hz. The Preisach model is still used to represent the quasi-static hysteresis. At

low frequencies, the hysteresis of a PA is quasi-static [26], since the vibration and electric

dynamics approach to a DC gain [50]. Therefore, the low frequency piezo displacement

without drift can be regarded as the hysteresis output [51]. To avoid the high frequency

dynamics, the Preisach hysteresis of the piezoelectric stage is identified using smooth

input voltage at low frequencies such that the quasi-static assumption holds. The input

voltage range is set to [0, 60]V, i.e., the parameters αmin = 0, βmax = 60, βmin = 0,

βmax = 60. The input signal is constructed as follows:

u(t) =

⌊
1 +

t − 120 �t/120�
2

⌋
1 − cos πt

2
(2.29)

where �·� is the floor function which rounds elements to their negative integers.

Moreover, the sampling interval is set to 1ms. 120000 points are sampled. Using the

iterative method in Eq. (2.7), the matrix M = AT A and AT Y are achieved. Fig. 2.7(a)
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shows the singular values of matrix M . The max singular value is 2.541 × 107 and the

non-zero minimum singular value is 0.734. The condition number of M is 3.462 × 107.

Thus, the matrix M is significantly ill-conditioned. The singular values that are less

than 2.5 are truncated. Fig. 2.7(b) shows the corresponding identification result of the

Preisach density function. The identified density values are positive and its inversion is

easy to achieve.
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Figure 2.7: (a): Singular values. (b): Identified density function.

Two methods are used to test the soundness of the identified hysteresis. First, this

section presents the comparison of hysteresis curves according to the measured and sim-

ulated data. Then, the Preisach-based inversion feedforward in Section 2.3.1 is used to

test the identification soundness, since the model-based inversion is sensitive to model-

ing error. Fig. 2.8(a) shows the measured and simulated hysteresis curves at 1Hz. The

two curves are close to each other. Fig. 2.8(b) shows the curve of the actual piezo dis-

placement versus the desired displacement at 1 Hz. The hysteresis curve is significantly

reduced. Thus, the hysteresis identification is satisfactory.
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Figure 2.8: Validation of hysteresis identification. (a): Comparison of the measured and

simulated hysteresis curves at 1Hz. (b): Actual displacement versus desired displacement

at 1Hz.

2.4.2 Performance of Proposed Composite Controller at Low

Frequencies

In this section, the proposed composite control strategy is validated at low frequencies

where the piezo output can be regarded as the hysteresis output. The inverse Preisach

feedforward is given in Fig. 2.4. Moreover, the parameters are λ = 0.1, e=0.2, L = 60

and umax = 60V. Eq. (2.30) shows the harmonic reference trajectory xr1 with a large

amplitude.

xr1 = 20(1 + sin 2πt) (2.30)

Additionally, the PID feedback controller is designed using Ziegler-Nichols rules. A

relay is employed to obtain the ultimate gain and ultimate period. Applying the tuning

method, the PID controller Kfb is given by

Kfb = 0.6Kp(1 +
2

Tis
+

Ti

8

s

εs + 1
) (2.31)

where the ultimate gain Kp is 2.62, the ultimate period Ti is 0.002s, ε is a small positive
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value to reduce the bandwidth of the derivative, and ε is set to 0.005.

To test whether the PID controller in Eq. (2.31) achieves its limit, the Kp is increased.

When the PID gain Kp is increased by 8%, significant chattering arises and the tracking

performance worsens. It indicates that the PID controller achieves its limit.

To measure the tracking performance, the percent root-mean-square (RMS) error erms

as a percentage of the output range is defined as [25]

erms(%) =

⎛⎝
√

1
n

∑n
i=1 (xr(i) − y(i))2

max (xr) − min (xr)

⎞⎠× 100%, (2.32)

where n is the number of samplings, xr(i) and y(i) are the reference and the measured

piezo displacement at the time instant i.

Figs. 2.9(a-b) shows the tracking error and the feedforward control signal of the

Preisach-based inversion feedforward controller. The RMS tracking error is 2.431μm,

the offset is 2.1μm, erms is 6.08%. It indicates that the inverse Preisach feedforward

controller is effective to compensate the Preisach hysteresis, but the feedforward con-

troller cannot reject disturbances and suppress modeling errors. Fig. 2.9(c) shows the

tracking performance of the PID controller in (2.31). The RMS tracking is 0.061μm,

and erms is 0.15%. The PID controller is effective to track low frequency trajectories,

but its performance is still limited by the Preisach hysteresis.

Fig. 2.10 shows the tracking performance of the proposed composite controller. The

RMS tracking error is reduced to 0.014μm, the offset disturbance is also suppressed, and

erms is 0.035%. The tracking error is reduced by 76.7%, compared to the PID controller

in (2.31). The composite controller gives the best performance.
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Figure 2.9: Experimental results of the feedforward controller and the PID controller.

(a): Tracking error of the inversion feedforward controller. (b): Feedforward control

signal. (c): Tracking error of the PID controller. (d): PID feedback control signal.

The feedback control signal ufb of the composite controller, as shown in Fig. 2.10(b),

is less than 12% of the PID control signal in Fig. 2.9(d). The feedforward control

signal of the inversion feedforward controller and the composite controller are the same.

The control signals in Figs. 2.9(b), 2.9(d) and 2.10(b) indicate that the Preisach-based

feedforward eliminates the hysteresis and the PID feedback controller suppresses the

disturbances and residual errors.

2.4.3 Performance of Proposed Composite Controller at Higher

Frequencies

In this section, the proposed composite controller is employed to track high frequency

trajectories. Though the Preisach hysteresis is identified at low frequencies, the Preisach

model in (2.1) is rate-independent. Thus, the Preisach-based inversion feedforward still

holds at high frequencies. As the input frequency increases, the dynamic effects also

increases.
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Figure 2.10: Experimental results of the proposed composite controller. (a): Tracking

error. (b): Feedback control signal ufb of the composite controller.

The piezo displacement is not the hysteresis output due to the dynamic effects, but

the hysteresis in the PA also can be modeled using the rate-independent Preisach model

in (2.1). The hysteresis is still compensated through the reference trajectories and the

identified μ in Section 2.4.1.

The harmonic trajectory at 25Hz is shown in Eq. (2.33). According to the rate-

independence of Preisach hysteresis, the feedforward control signal of xr2 can be achieved

by altering the time scale of the feedforward control signal of xr1.

xr2(t) = 20(1 + sin 50πt). (2.33)

At first, the same PID tuning controller in Eq. (2.31) is applied to the piezoelec-

tric stage. Figs. 2.11(a-b) shows the tracking error and the control signal of the PID

controller. The tracking error is significant, the RMS value is 1.187μm, and erms is 3%.
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Figure 2.11: Experimental results of the PID controller and the composite controller. (a):

Tracking error of the PID controller. (b): PID feedback control signal. (c): Tracking

error of the composite controller. (d): Feedback control signal ufb of the composite

controller.

Finally, the composite controller is implemented. Fig. 2.11(c) shows the tracking error

using the proposed composite controller, the RMS tracking error is 0.123μm and erms is

0.31%. erms is reduced by 89% compared to the PID controller. The composite controller

gives the best tracking performance among the Preisach-based inversion feedforward

controller, the PID controller and the composite controller.

Fig. 2.12 shows the curves of the actual displacement versus the desired displace-

ment under the inversion feedforward, the PID controller and the composite controller,

respectively. The proposed composite controller achieves the smallest hysteresis curve,

meaning the piezo tracks the displacement with the smallest delay and error.

2.5 Discussion

To achieve accurate motion control of PA mechanisms, this chapter presents the identifi-

cation and compensation of Preisach hysteresis. The SVD-based algorithm is able to deal

with an ill-conditioned mathematical issue due to the large number of discretized param-
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Figure 2.12: Actual versus desired displacement with the PID controller (dashed), the

Preisach-based inversion feedforward controller (solid-dotted) and the composite con-

troller (solid), respectively.

eters on hand and it can thus achieve more accurate estimation, but it requires a higher

level of computational infrastructure for an online implementation to be viable. SVD-

based parameter updating is employed to revise least squares estimation with higher

computing efficiency, and this approach improves the estimation performance.

The experimental results validate the soundness of Preisach hysteresis identification

using the Preisach-based inversion feedforward. With the identified parameters and

a log of the memory curve, a Preisach-based feedforward compensator is constructed

which is complemented with a PID feedback controller. If only the inversion feedforward

controller is used, the residual error and the dynamic effect due to vibration dynamics are

not eliminated. If only the PID controller is used, the tracking performance of the PID

controller is degraded due to the hysteresis effect. As the reference frequency increases,

the tracking performance of the PID controller is degraded more significantly because of
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vibration effects. The composite controller still has adequate tracking performance as the

reference frequency increases to 25Hz, where the Preisach-based feedforward controller

and the PID feedback controller can compensate the hysteresis and dynamics effect,

respectively. In the experiment of the piezoelectric stage, accurate motion control is

achieved by the proposed composite controller. The erms at 1Hz and 25Hz are 0.035%

and 0.31%, respectively.

2.6 Conclusion

Based on the Preisach model, the identification and compensation of hysteretic phe-

nomenon in PAs are addressed in this chapter. The SVD-based least squares estimation

and revision are adopted for the identification of these parameters. The Preisach-based

inversion feedforward is developed to compensate the hysteresis in PAs. Additionally, a

PID feedback controller is also augmented to suppress residual errors, disturbances and

dynamics effects. Experimental studies have been done to highlight the relative strengths

of these algorithms with a view towards real-time precise control tracking applications.

In summary, the hysteresis of PAs has been investigated at low frequencies in this

chapter. For further investigation, in Chapter 3, the vibration and electric dynamics at

high frequencies will also be identified. Additionally, a model-based composite controller

will be designed and demonstrated.
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Chapter 3

Model-based Composite Control for

High-Bandwidth and Precision

Scanning of PAs

3.1 Introduction

High-bandwidth and precision scanning are required in scanning probe microscopes

(SPMs) for high-speed imaging and high-speed nanofabrication. However, the hysteretic

dynamics in PAs greatly limits the scanning and tracking performance. In the open

loop, the maximum error due to quasi-static hysteresis in PAs is 10%-15% of the travel

range [24]. As the input frequency increases, PAs exhibit dynamic response and the

error from the hysteretic dynamics becomes more significant. Generally, a high gain

PID controller is adequate for scanning and tracking at low frequencies [52], but there

is still a low gain margin due to the rapid phase-drop [53]. The closed loop bandwidth

attained using a simple feedback controller is typically less than 5%-10% of the first

resonant frequency because of complex hysteretic dynamics in PAs [54–56].

At high frequencies relative to the resonant frequencies, PAs exhibit dynamic and com-
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plex hysteresis. Thus, the rate-independent hysteresis model should be replaced with a

dynamic type. [57] presents a dynamic Preisach model to describe hysteresis at broad-

band frequencies, but the parameter identification process is complex and difficult. [58]

and [59] expand the rate-independent Prandtl-Ishlinskii hysteresis to a rate-dependent

type, and density functions are assumed for parameter identification. Instead of ex-

panding rate-independent hysteresis, the cascade connection of the rate-independent

hysteresis and non-hysteretic dynamics is another approach to represent dynamic hys-

teresis over a broad range of frequencies [39]. We employ the cascaded model comprising

the rate-independent Preisach hysteresis, electric and vibration dynamics to represent

the hysteretic dynamics of PAs at broadband frequencies.

To push the application frontier of PAs towards fine scanning, various feedback control

schemes have been investigated [45,60]. For instance, [39] proposes the adaptive identi-

fication and control of hysteretic systems. [61] and [62] employ a bounded uncertainty to

represent the PA hysteresis, and propose a sliding mode controller and a robust adaptive

controller to enhance tracking performance. [63] presents the Prandtl-Ishlinskii hysteresis

based sliding model controller. However, fine and high-speed scanning is not simulta-

neously achieved with such approaches, since the hysteretic dynamics is not adequately

compensated over a broad range of frequencies. Furthermore, feedback controllers have

limited bandwidth. Alternatively, a model-based inversion feedforward controller can

be employed to increase the scanning bandwidth and improve the scanning performance

simultaneously, which relies on accurate model identification.
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To achieve scanning at a rate higher than the first resonant frequency, this chapter

proposes a composite controller consisting of a model-based inversion feedforward con-

troller and a PI feedback controller. To design the composite controller, the PA model

is identified first. The quasi-static hysteresis is identified using harmonic signals with

varying amplitudes. The persistently exciting (PE) condition is satisfied with the har-

monic input signals. Following this, the non-hysteretic dynamics is identified using a

multi-frequency harmonic input. Then, the composite controller is constructed based

on the identified model. The inversion feedforward controller strictly depends on the

hysteretic model and can be computed off-line. The feedforward controller effectively

expands the scanning bandwidth. To reject disturbances, the PI feedback controller

is employed. The proposed composite controller presents simultaneous high-speed and

precision scanning of PAs.

This chapter is organized as follows. Section 3.2 presents the model identification

strategy of PAs. Section 3.3 proposes the composite control strategy for high-speed and

precision scanning. Then, Section 3.4 presents the experimental study of the identifica-

tion and composite control on a piezoelectric stage. Finally, Section 3.5 concludes the

chapter.

37



�

�

�

(
#��)*��
���
�	������	�

+�
Γ �, 	,

-���)�

�	�
��*��
������

Figure 3.1: Block diagram of PA model.

3.2 Proposed Model Identification Strategy

3.2.1 Model of PA systems

The cascade connection is employed to represent the hysteretic dynamics in PA sys-

tems. Fig. 3.1 illustrates the cascade structure. Γ, Ge and Gv denote the quasi-static

hysteresis, electric and vibration dynamics, respectively. The non-hysteretic dynamics

consists of Ge and Gv, which are assumed to be time invariant. u, v and y represent the

input voltage, hysteresis output and piezo displacement, respectively. Furthermore, the

hysteresis output v is unmeasurable.

The quasi-static hysteresis is rewritten as the following rate-independent Preisach

model [29].

v(t) =

∫∫
S

μ(α, β)γαβ[u(t)]dαdβ (3.1)

where S is the Preisach area, μ(α, β) is the density function, and γαβ is the hysteron

output at point (α, β).

In this chapter, both the electric dynamics Ge and the vibration dynamics Gv are

considered. Thus, the non-hysteretic dynamics G = GeGv can be written as

G =
kev

τs + 1
·
∏n−2

j (s2 + 2ξjωjs + ω2
j )∏n

i (s2 + 2ξiωis + ω2
i )

(3.2)
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where τ is the time constant of electric dynamics, ωi and ωj are the mode frequencies

of vibration dynamics, ξi and ξj are the damping ratio, and kev is the DC gain of the

non-hysteretic dynamics G.

The dynamics of PAs is quasi-static and almost rate-independent at low frequencies,

since the vibration and other high frequency dynamics approach their DC gains at low

frequencies [65]. Thus, the key idea behind the proposed approach is to identify the

Preisach hysteresis using low frequency harmonic signals. Then, the hysteresis effects

can be computed using the estimated Preisach model. Thereafter, the non-hysteretic

dynamics is identified.

3.2.2 Identification of Quasi-static Hysteresis

The identification of quasi-static hysteresis essentially entails the identification of the

density function of the Preisach model (3.1). Based on the investigation in Chapter 2,

the identification of quasi-static hysteretic will be further studied in this section. The

discretization method is also used for the ease of hysteresis identification. The hysteresis

output in (3.1) at the time instant k can be represented as

v(k) = AkX (3.3)

where Ak = [γ11(k), γ21(k), · · · , γL1(k), · · · , γLL(k)],

X = [μ11s11, μ21s21, · · · , μL1sL1, · · · , μLLsLL], L is the discretization level of the Preisach

plane, γij, μij and sij are the hysteron output, the density value and the area of grid

(i, j), respectively.
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The identification of μi,j is equivalent to the estimation of μijsij, since sij is known.

The data samples are collected at the time instants t1, t2, · · · , ti, · · · , tN , and a linear

equation for Preisach hysteresis identification can be written as

AX = b (3.4)

where AT =
[
AT

1 , AT
2 , · · · , AT

N

]
, bT = [v(1), v(2), · · · , v(N)].

The least squares method is employed to estimate X. However, the PE problem

is associated with a large number of parameters. This PE condition is mathematically

equivalent to the singularity of ATA. Furthermore, the ill-condition due to small singular

values of ATA also has to be suppressed, and the SVD-based estimation is employed, as

shown in Appendix. The estimation of X in the least squares sense is given by

X̂ = A+b (3.5)

where A+ is the pseudo-inverse of matrix A. To perform the identification of quasi-

static hysteresis, the low frequency harmonic signal with varying amplitudes is proposed

to eliminate the PE condition and solve equation (3.4) in least squares sense. Also, a

sampling method that is uniform in the magnitudes of input voltages is also proposed.

For the ease of identification, the variant input voltage is given in (3.6), whose ampli-

tudes match the discretization of the Preisach plane.

u(t) = (P (t) − 0.5δ)
1 − cos ωst

2
(3.6)

where δ = max(u(t))/L, ωs is angular frequency, (P (t) − 0.5δ) is the amplitude at time

40



t and P (t) is given by

P (t) =

⌊
1 +

(
t − TP

⌊
t

TP

⌋)
ωs

2π

⌋
δ (3.7)

where TP is the period of P (t), and �·� is the floor function that rounds the elements

to the nearest integers in the direction of negative infinity.

The relationship between TP and ωs can be represented as

TP = Lωs (3.8)

The Preisach model (3.1) is not rate-dependent but path-dependent. Thus, the sampling

for identification is not uniform with respect to (w.r.t.) time but uniform w.r.t. the input

voltage u(t). This sampling method is proven to be more effective in the experiment in

Section 3.4.1.

The sampling instants of the ith harmonic signal are given by

ti,j =
1

ωs

arccos

[
1 − 2(j − 0.5δ)δ

P (t)

]
+ ti,1 (3.9)

ti,2i−j =
1

ωs

{
2π − arccos

[
1 − 2(j − 0.5δ)δ

P (t) − 0.5

]}
+ ti,1 (3.10)

where ti,1 is the starting time of the ith harmonic signal, i = 1, 2, · · · , P (t)/δ, j =

1, 2, · · · , i, and P (t) − 0.5δ is the amplitude of the ith harmonic signal determined by

equation (3.7).

Remark 3.1. Adequate amplitudes are required to identify the Preisach hysteresis in

Eq. 3.3. Furthermore, the sampling is uniform w.r.t. the input signal due to the rate-

independence but path-dependence of Preisach hysteresis.
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Figure 3.2: Output estimation of quasi-static hysteresis

The identification of the electric and vibration dynamics is performed at high fre-

quencies. A multi-frequency harmonic input is employed for adequate frequencies. The

hysteresis output is estimated by the identified Preisach model. Fig. 3.2 illustrates

the estimation of the hysteresis output according to the identified Preisach model. Γ̂

and v̂ denote the identified Preisach model and the estimated hysteresis output, respec-

tively. The identification of the electric and vibration dynamics is performed using v̂

and y. Mature identification methods can be employed in this part. For instance, AR-

MAX method can be employed for parameter identification where the model structure

is specified according to equation (3.2).

3.3 Proposed Composite Controller

This section presents the design of the composite controller. The structure of the control

system is shown in Fig. 3.3. r denotes the reference trajectory, uff and ufb denote the

feedforward and feedback control signals, respectively, Ĝ−1 and Γ̂−1 denote the estimated

of the non-hysteresis dynamics and the hysteresis nonlinearity, respectively. The com-

posite controller consists of a primary model-based inversion feedforward controller and
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Figure 3.3: Composite control strategy

a secondary PI feedback controller. The feedforward controller is used to reduce phase-

lag and achieve high-speed scanning. It comprises of the inversions of the non-hysteretic

dynamics and the Preisach hysteresis. The feedforward controller is constructed based

on the hysteresis and non-hysteretic dynamics. The discrete PI controller is employed

for feedback which compensates disturbances and reduces modeling uncertainty within

the feedback bandwidth.

3.3.1 Analysis of Feedforward and Feedback Controllers at High

Frequencies

A model-based inversion feedforward controller is suitable to track high-frequency tra-

jectories, because the feedforward controller is not affected by the measurement noise

which is outside of the feedforward control branch. In addition, the feedforward control

signal approaches the inverse of the system gain. However, the feedforward controller

is not capable of rejecting disturbances. Conversely, a feedback controller is capable

of rejecting disturbances within the feedback control bandwidth, typically at low fre-

quencies. Furthermore, the feedback gain at low frequencies can be set to a large value
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due to non-significant measurement noise, but at high frequencies, it is inappropriate

to perform a large gain feedback controller because of the possible chattering in case of

noise.

The tracking error under the feedforward controller KFF can be written as

e

r

∣∣∣
KFF

= 1 − (G ◦ Γ) KFF (3.11)

where e = r − y is the tracking error, and ◦ denotes the composition operator which

represents the relationship between G and Γ [33].

Under the model-based inversion feedforward controller, the feedforward control signal

uff can be represented as

uff = r
(
Γ̂−1 ◦ Ĝ−1

)
(3.12)

where Ĝ−1 and Γ̂−1 denote the inversion of the estimation of the non-hysteretic dynamics

and the Preisach hysteresis.

The feedforward control signal is not affected by measurement noise, and depends on

the inversion gain of the PA model. With perfect inversion feedforward control, i.e., the

inversion is sufficiently accurate, the feedforward controller can give adequate tracking

without considering disturbances.

Alternatively, the tracking error under the feedback controller KFB can be written as

e

r

∣∣∣
KFB

=
1

1 + (G ◦ Γ) KFB

(3.13)

The tracking error under the feedback controller KFB can be reduced adequately if

the control gain can be set to sufficiently large. At low frequencies, it is common to
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implement a feedback controller with a large integral action towards fine motion of

PAs [60]. If the tracking error is suppressed by a factor of η, i.e., e/r = 1/η, the

feedback control signal ufb can be written as

ufb = (n + r) (η − 1)
(
Γ−1 ◦ G−1

)
(3.14)

where η 
 1 for fine tracking, and n is broadband noise.

The feedback control signal ufb in (3.14) indicates that high gains of the feedback

controller at high frequencies easily result in instability due to the measurement noise n.

Typically, the PA is a low pass filter and the system gain is decreased at high frequencies,

but the model-based inversion Γ−1 ◦ G−1 is a high pass filter. Thus, if equation (3.14)

with η 
 1 at high frequencies, the feedback control signal easily approaches chattering

and saturation when the amplified high frequency measurement noise coincides with the

vibration modes of PAs.

Thus, we employ both the feedforward controller and the feedback controller to achieve

high-speed and precision scanning. The feedforward controller will expand the scanning

bandwidth and the feedback controller will reject disturbances.

Remark 3.2. Model-based inversion feedforward controllers are suitable to expand track-

ing bandwidth and achieve high-speed scanning. Conversely, feedback controllers are suit-

able to reject unknown disturbances within the feedback bandwidth, and achieve precision

scanning.
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3.3.2 Design of Feedforward Controller

In this section, the model-based inversion feedforward controller is constructed to achieve

high-speed scanning. It encompasses the inverse non-hysteretic dynamics and the inverse

hysteresis. The reference signals pass through the inverse non-hysteresis dynamics Ĝ−1,

then the inverse hysteresis Γ̂−1. The inversion of the non-hysteretic dynamics has more

zeros than poles and thus cannot be directly implemented for unknown and general

reference signals in dSPACE board. To solve this problem, known and sufficiently smooth

trajectories are employed. Furthermore, v̂r can be computed off-line.

After obtaining the inversion of the non-hysteresis dynamics, its output vr is regarded

as the reference of hysteresis inversion Γ̂−1. The feedforward voltage uff is regulated

such that the unmeasurable hysteresis output v tracks vr. The regulation is achieved

using the hysteresis inversion based on the identified Preisach model. If the estimated

hysteresis output v̂ tracks the reference within the error range er, the feedforward voltage

uff remains the same. If the estimated hysteresis output v̂ is less than the reference vr

and |vr − v̂| > er, the feedforward voltage uff is increased and vice versa. Algorithm 1

illustrates the hysteresis inversion. The unmeasurable hysteresis output v̂ is estimated

using the identified density function μ̂. Parameter m is the total number of iterations

in each regulation.

The iteration step δh is represented as

δh = λumax/L
′ (3.15)
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Algorithm 1 Inversion of the identified Preisach hysteresis
if vr(k) < v̂(k) then

uff (k + 1) = uff (k) − iδh, i = 1, · · · ,m

v̂(k + 1) = Γ̂(uff (k + 1))
if |vr(k) − v̂(k + 1)| ≤ er then

break
end if

else
if vr(k) > v̂(k) then

uff (k + 1) = uff (k) + iδh, i = 1, · · · ,m

v̂(k + 1) = Γ̂(uff (k + 1))
if |vr(k) − v̂(k + 1)| ≤ er then

break
end if

else
uff (k + 1) = uff (k)

end if
end if

where λ is a coefficient to regulate the step, umax is the maximum input voltage used in

the hysteresis identification, and L′ is the new discretization level.

3.3.3 Design of Feedback Controller

Though robust control and high gain control have been commonly studied to compensate

the hysteresis and vibration dynamics of PA, they are complex and are not suitable to

track trajectories faster than the resonant frequencies. The high-speed scanning perfor-

mance will be achieved primarily by the model-based inversion feedforward controller.

However, a feedback controller is also necessary to maintain stability and robustness

in the face of disturbances and modeling errors. For disturbance rejection, a simple PI

controller is designed according to the identified hysteretic dynamics. The more complex

computations required for the hysteretic dynamics compensation is left outside of the

feedback loop.
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In Chapter 2, the traditional tuning method has been used to obtain a PID controller

for feedback control. In this Chapter, the PID tuning considering hysteretic dynamics

will be investigated. Additionally, to reduce the sensitivity to high frequency measure-

ment noise, the derivative action is not used. Alternatively, the compensation perfor-

mance at high frequencies is achieved by using the model-based inversion feedforward

control.

The identified model of PAs is used to compute the ultimate gain and the ultimate

period. Ziegler-Nichols (Z-N) tuning rules can be used to obtain the parameters of the

PI controller. First, the ultimate gain and period are computed using the identified

non-hysteretic dynamics. Then, the ultimate gain is adjusted according to the identified

Preisach model, while the ultimate period is kept unchanged as it is not affected by the

Preisach hysteresis.

Characteristic of PID Tuning in PAs

PAs have both rate-independent hysteresis and non-hysteresis dynamics. The hysteresis

is represented by the Preisach model (3.1) which is static and path-dependent. The static

hysteresis does not exhibit dynamic responses, but will alter the input gain. Conversely,

the electric and vibration dynamics exhibit dynamic responses. Thus, the PID tuning

methods using step response or relay tuning will result in the uncertainty of ultimate

gain in PAs. The gain uncertainty w.r.t. input voltage u(t) due to Preisach hysteresis is

illustrated in Fig. 3.4. Smax is the activated area corresponding to the maximum gain

for u(t). Conversely, Smin is the area corresponding to the minimum gain for u(t).
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Figure 3.4: Illustration of the uncertain gain due to Preisach hysteresis. (a): Minimum

gain. (b): Maximum gain.

The minimum and maximum gains of the input voltage u(t) due to Preisach hysteresis

are represented as ⎧⎨⎩
Δmax =

∫∫
Smax

μ(α, β)γαβ[u(t)]dαdβ/u(t)

Δmin =
∫∫

Smin

μ(α, β)γαβ[u(t)]dαdβ/u(t)
(3.16)

where Δmin and Δmax denote the minimum and maximum gains due to the Preisach

hysteresis.

Thus, the gain uncertainty Δh due to the Preisach hysteresis can be represented as

Δmin ≤ Δh ≤ Δmax (3.17)

Ultimate Gain and Period

At first, the ultimate period pu and the gain margin gm are determined at the cross

frequency ωc of the non-hysteretic dynamics G

pu =
1

ωc

(3.18)

where ωc is the cross frequency on the order of hertz.

The gain margin gm of the non-hysteretic dynamics at the cross frequency ωc is given
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by

gm =
1

|G(jωc)|

where G(jωc) is the gain of the non-hysteretic dynamics at the cross frequency ωc.

Then, the overall ultimate gain ku is obtained through the gain margin gm and the

uncertainty Δmax.

ku =
gm

Δmax

(3.19)

Finally, the PI controller determined by Z-N tuning rules can be represented as

KPI(z) = 0.6ku(1 +
2

pu

T

2

z + 1

z − 1
) (3.20)

where T is the sampling interval, ku and pu are the ultimate gain and ultimate period,

respectively.

Remark 3.3. The hysteresis effect alters the ultimate gain of the PI controller deter-

mined by Z-N tuning rules. The ultimate gain can be modified by the identified Preisach

hysteresis.

3.4 Experimental Studies

3.4.1 Identification of Quasi-static Hysteresis

The piezoelectric hysteresis is quasi-static at low frequencies, and low frequency har-

monic signals are used to identify the rate-independent Preisach hysteresis. In equations

(3.6)-(3.10), umax = 60 V, L = 60, δ = 1, ωs = 0.6 Hz, and TP = 100s are used for the

input voltage and the sampling in hysteresis identification.
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Figure 3.5: (a): Displacement drift. (b): Drift suppression.

Drift Suppression

There exist displacement drift in the piezoelectric stage. Fig. 3.5 (a) shows the drift

effect in the piezo displacement till 20s. In this experiment, 100 sampling points are

used and the sampling time is the starting time ti,1 of the ith harmonic signal. The

polynomial curve fitting is employed to suppress the drift. MATLAB function polyfit

is used, and the polynomial for the drift suppression is given by

yd(t) = 0.000121t2 + 0.0127t − 0.013 (3.21)

where yd(t) is the drift displacement, and t is the time. Fig. 3.5 (b) shows the drift

suppression performance using the curve fitting approach. The curve fitting gives satis-

factory accuracy.

Preisach Hysteresis Identification

The discretization level L of Preisach plane is set to 60. Then, the dimension of ATA

is 1830 × 1830. In each grid (i, j), the density at the central point is regarded as the

density of grid (i, j). To reduce the computing time, only the points determined (3.9)
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and (3.10) are used. Extremes of the input signal are still preserved, thus preserving the

hysteresis memory.

In hysteresis identification, only 3661 points are sampled. The rank of ATA is 1830.

Thus, the PE condition is eliminated. Fig. 3.6 (a) shows the singular values of ATA.

The condition number of ATA is 1.92× 107, which indicates ATA is ill-conditioned and

small singular values should be truncated.

The singular value selection is a tradeoff problem. A larger truncation threshold

increases the matrix approximation error but suppresses the ill-conditioned problem.

Conversely, a smaller truncation threshold decreases the matrix approximation error

but results in a more serious ill-conditioned problem. In this chapter, the truncation

is implemented according to the error analysis of hysteresis identification. The relative

error between the estimated displacement error and the measured displacement is em-

ployed to describe the hysteresis identification accuracy, because the density function μ

is unknown.

The relative error is given by

eh(%) =
‖y − ŷ‖
‖y‖ (3.22)

where y and ŷ are the measured and estimated displacements. With trials, the singular

values smaller than 1.2 are truncated to suppress the ill-condition problem. Equation

(3.5) is employed to identify the density function. Fig. 3.6(b) shows the identified

density function. The relative error in (3.22) is less than 3%, and the Preisach hysteresis

identification is satisfactory.

52



100 101 102 103 10410−2

100

102

104

106

108

Integer

S
in

gu
la

r v
al

ue

(a)

Figure 3.6: (a): Singular values of ATA. (b): The identified density function

3.4.2 Identification of Non-hysteresic Dynamics

The non-hysteretic dynamics is identified using a multi-frequency input. The output v̂

of the quasi-static hysteresis is computed using the identified Preisach model. First, to

choose the input frequency, a relay feedback is used to estimate the ultimate frequency

of the piezoelectric stage. Fig. 3.7 shows the sketch of relay feedback where the relay

output switches between 0 and 10 V. From the experiment, the estimated ultimate

frequency is 500Hz. The harmonic signal with adequate frequencies is required to excite

more modes. In the experiment, two vibration modes are identified. According to the

estimated ultimate frequency, the multi-frequency input signal consisting of six sinusoids

is given by

ud(t) = a0 +
6∑

i=1

ai sin 2πfit

where a0 = 24, a1 = 3, a2 = 6, a3 ∼ a6 = 3, f1 = 100Hz, f2 = 200Hz, f3 = 300Hz,

f4 = 400Hz, f5 = 500Hz, and f6 = 600Hz.
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Figure 3.7: Ultimate frequency estimation using relay feedback.
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Figure 3.8: Comparison of simulated and measured displacement.

To estimate the hysteresis output accurately, the Preisach plane is rediscretized to be

180 × 180, i.e., L′ = 180. The estimated hysteresis output v̂ based on the identified

Preisach model is regarded as the input to the non-hysteretic dynamics.

The non-hysteretic dynamics is identified using the ARMAX method [64] where the

denominator, the numerator and the error are identified with orders of 5, 1, 5, respec-

tively. The estimated parameters of the non-hysteretic dynamics are k̂ev = 0.8716,

τ̂ = 0.000474s, ω̂1 = 453.5Hz, ω̂2 = 792.7Hz, ξ̂1 = 0.67, and ξ̂2 = 0.081, respectively.

Fig. 3.8 shows the comparison of the simulated and measured displacements with zero

mean value. It can be seen that the simulated displacement accurately matches the

measured displacement.
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Remark 3.4. The detailed discretization gives more smooth and precise estimation of

the hysteresis output. In the experiments, the discretization level is 60 for the hysteresis

identification, but the discretization level is 180 for the hysteresis estimation.

3.4.3 Controller Design

For easy application, harmonic signals are used as the scanning trajectories. The pro-

posed composite controller is designed and implemented in the dSPACE board 1104.

The composite controller consists of a mode-based inversion feedforward controller and

a PI feedback controller. Based on the identified Preisach hysteresis in Section 3.4.1 and

the non-hysteretic dynamics in Section 3.4.2, the mode-based inversion feedforward is

constructed. λ, umax and L′ are set to 1, 60 and 180 in Algorithm 1, respectively.

In order to suppress disturbances, the simple PI feedback controller in Section 3.3.3 is

augmented. Based on the identified non-hysteretic model of the piezoelectric stage, the

ultimate period is 0.0018s. The maximum gain Δmax due to Preisach hysteresis is 1.06.

The ultimate gain ku is 1.65. Finally, the following discrete PI controller is given by

KPI(z) =
1.01z − 0.976

z − 1
(3.23)

where the sampling interval is 0.025ms.

55



3.4.4 Performance Evaluation

Proposed Feedforward Controller

The proposed model-based inversion feedforward controller is employed to reduce the

phase-lag and gain distortion. Furthermore, the feedforward controller can also be em-

ployed to validate the soundness of the model identification. Based on the identified

hysteresis and non-hysteretic dynamics, the proposed model-based inversion feedforward

controller is implemented in the piezoelectric stage. For comparison, open loop control

is also considered and it only employs a positive value to regulate the actual-desired

displacement gain to one. The positive gain 2.22 is used at 600Hz, such that the actual

and the desired displacements have the same amplitude.

Fig. 3.9 (a) shows the curve of the actual and the desired displacements under the

model-based inversion feedforward controller. Compared to the open loop response,

the phase-lag and the magnitude distortion are reduced significantly by the model-

based inversion feedforward controller. The effectiveness of the model-based inversion

feedforward controller also validates the soundness of the model identification.

Fig. 3.9 (b) shows the scanning error at 600Hz. The root-mean-square (RMS) scanning

error of the open loop control is 18.7 μm. The RMS scanning error of the model-based

inversion feedforward is 13.54μm, and it is reduced by 27.5%. Fig. 3.9(a) also shows

the offset and drift under the inversion feedforward controller. The offset is 13.5 μm

and the maximum drift range is 1.1μm, which will be suppressed using the PI feedback

controller.
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Figure 3.9: Performance of the model-based inversion feedforward controller

Proposed Composite Controller

The proposed composite controller is implemented. Moreover, the RMS error erms as a

percentage of the output range is defined as [25]

erms(%) =

⎛⎝
√

1
p

∑p
i=1 (yr(i) − y(i))2

max (yr) − min (yr)

⎞⎠× 100% (3.24)

where p is the number of sampling points, yr(i) and y(i) are the desired and actual

displacements at time instant i, respectively.

Figs. 3.10 (a1-a3) show the curves of the actual versus the desired displacements with

the above three different controllers at 40Hz, 100Hz and 600Hz, respectively. Figs. 3.10

(b1-b3) and Table 3.1 show the corresponding scanning performances at 40Hz, 100Hz

and 600Hz, respectively.

The proposed composite controller achieves both high-speed and precision scanning.

Compared with the open loop case, the PI controller improves the scanning performance,

but the phase-lag and scanning error of the PI controller also increases significantly as the

scanning frequency increases. Thus, the PI controller has limited scanning bandwidth
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Table 3.1: Scanning errors RMS (μm) and erms (%)

Frequency Open-loop PI control Composite control

40Hz 5.144 (12.9%) 2.526 (6.31%) 0.30 (0.75%)

100Hz 11.616 (29.1%) 6.218 (15.6%) 0.484 (1.21%)

600Hz 14.961 (74.8 %) 8.014( 40.1%) 0.352 (1.76%)

and performance at frequencies higher than the first resonant frequency.

The composite controller presents the best performance. Both the phase-lag and the

scanning error are reduced significantly. Compared with the PI controller, the scan-

ning errors are reduced by 88.1%, 75.5% and 79.7% at frequencies 40Hz, 100Hz, and

600Hz, respectively. Specially, fine scanning performance is achieved by the composite

controller. The RMS scanning error at 600Hz is 0.352μm and erms is 1.76%.

Remark 3.5. The model-based inversion feedforward controller is successful to expand

the scanning bandwidth higher than the resonant frequency of the PA. Furthermore,

the PI feedback controller is successful to reject known disturbances within the feedback

bandwidth.

3.4.5 Discussion

The experimental results confirm that the proposed composite controller provides both

high-speed and precision scanning at a rate higher than the resonant frequency. By

applying the proposed composite controller, the scanning error erms is reduced to be

0.30%, 1.21%, 1.76% of the desired amplitudes at the scanning frequencies 40Hz, 100Hz,

600Hz (8.84%, 22.1%, 132.0% of the first resonant frequency), respectively.
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Figure 3.10: Scanning performance at different frequencies under open loop control

(dashed), PI control (dash-dotted), and composite control (solid). (a1)-(a3): Curves of

the actual displacement versus the desired displacement. (b1)-(b3): Scanning error.

59



Table 3.2: Comparison of scanning frequency and relative scanning error (%)

Ref. [65] Ref. [25] Proposed method

Resonant frequency 800Hz 486Hz 453.5Hz

Scanning frequency 300Hz 450Hz 600Hz

Relative RMS error (%) 5.28% 10.25% 1.76%

Currently, in most published works to the best of the authors’ knowledge, the scan-

ning frequency with satisfactory performance is lower than the resonant frequency. For

instance, Wu presented the robust inversion-based 2-DOF control for the PA with a

resonant frequency of 800Hz [65], but the electric dynamics and hysteresis is not mod-

eled. The scanning error erms for the small range (5μm) trajectory at 300Hz is 5.28%, as

shown in Table 3.2. Results at higher scanning frequencies are not provided in the PA

experiment [65]. Leang proposed the high-gain feedback and inverse feedforward control

for the AFM piezoelectric actuator with a resonant frequency of 486Hz [25], as shown in

Table 3.2, the scanning error erms at 450Hz is 10.15%, while results at higher scanning

frequencies are still not provided.

In this chapter, the coupled hysteresis, electric and vibration dynamics of PAs are iden-

tified, and a simple composite controller is designed. The model identification strategy

of PAs is effective, and the model-based feedforward controller is significant to expand

the scanning bandwidth by reducing phase-lag and gain distortion. The satisfactory

scanning performance can be achieved at frequencies higher than the resonant frequency

of the piezoelectric stage.
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3.5 Conclusion

This chapter presents an approach amenable to practical applications for dynamic hys-

teresis identification and high-speed motion control. The feedforward controller, em-

ploying a model-based inversion, greatly extends the control bandwidth, while the PI

feedback controller suppresses disturbances. The identification methodology and the

composite control scheme are fully implemented on a real piezoelectric stage using a

dSPACE control platform. The proposed composite controller achieves precision scan-

ning at a rate higher than the resonant frequency.

In summary, the hysteresis and the non-hysteresis dynamics have been identified sepa-

rately in this chapter. To identify and compensate the hysteretic dynamics over a broad

band range of frequencies, the comprehensive modeling and identification of PAs will be

investigated in Chapter 4.
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Chapter 4

Comprehensive Identification of

Hysteretic Dynamics in PAs

4.1 Introduction

Piezoelectric actuator (PA) systems are widely employed in precision engineering, and

the capability for precision tracking at broadband frequencies is increasingly appealing

in many applications, such as the high-bandwidth nano-positioning of scanning probe

microscopes (SPMs) and high-speed imaging of dynamic molecular processes [44, 66].

However, the performance of dynamic tracking is limited over a wide range of frequencies,

because of the coupled hysteresis, creep and vibration dynamics [54, 60]. For example,

the operating bandwidth of SPMs with fine tracking is lower than 1%−5% of the first

resonant frequencies [53].

Various approaches have been proposed to improve the tracking performance of PAs

[34, 44, 56]. At low frequencies, proportional-integral-derivative (PID) controller may

be adequate to compensate the hysteresis and creep of PAs [44, 52, 67]. As the track-

ing frequency increases, model-based approaches become necessary to compensate the
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hysteretic dynamics. A model-based inversion feedforward controller, which bases on

an accurate modeling of PAs, is an effective approach to broaden the bandwidth and

enhance the tracking performance. However, the hysteretic dynamics identification of

PAs over a broad range of frequencies is still a main research issue for model-based feed-

forward compensation [44]. It is still difficult to accurately identify the parameters of

PAs [30]. Thus, up-to-date various complex modeling and identification approaches have

been investigated to achieve accurate model of PAs [51, 68–72]. At broadband frequen-

cies, the effects due to hysteresis, creep, electric and vibration dynamics are significant

and should be considered simultaneously.

At low frequencies, typically lower than 10Hz, hysteresis and creep are the main effects

of PAs. Hysteresis is a strongly nonlinear element with global memories [73,74]. At low

frequencies, PAs can be approximately represented with a rate-independent hysteresis

model, such as Preisach model and Prandtl-Ishlinskii (P-I) model, and the latter is a

special case of the former. The classical Preisach model is employed to identify the static

hysteresis of PAs and to track low frequency trajectories in [37]. The rate-independent

Preisach hysteresis satisfies wiping out and congruency property [29], which will be used

in this chapter for hysteresis identification.

Creep is slow dynamics and its modeling is not as mature as hysteresis. A non-

hysteretic spring-damper model can be employed to represent creep dynamics [75]. Al-

ternatively, [76] proposes a Preisach-type creep and hysteresis model at low frequencies,

but the parameter identification is difficult when other non-hysteretic dynamics are also
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considered. In this chapter, a non-hysteretic creep model is used to simplify the model

identification.

As the input frequency increases, the electric and vibration dynamics become more

dominant. Dynamic models can be employed for PAs. The second order vibration

dynamics is used to represent and control the piezoelectric tube for fast scanning in [77].

However, the hysteresis and creep are not modeled. In [57], a Preisach model is proposed

with a dynamic density function. The Preisach model is also used to compensate the

hysteresis of piezoceramic mirrors [78]. Moreover, [79] proposes a generalized Preisach

model without the limitation of congruency property. [59] regards the dynamic hysteresis

of PAs as a rate-dependent P-I model. However, the identification of rate-dependent

hysteresis model still relies on density function assumption and nonlinear curve fitting.

Alternatively, over broadband frequencies, the combination of rate-independent hys-

teresis and non-hysteretic dynamics can also be used to represent the PA dynamics. [39]

presents a cascade connection of the Preisach hysteresis and the non-hysteretic dynam-

ics without availability of intermediate. However, it is difficult to implement the iden-

tification because of the couplings among the hysteresis, creep, electric and vibration

dynamics. Until now, the coupling between the hysteretic and non-hysteretic dynamics

is not fully considered while identifying a PA model, and isolated treatments of these

dynamics are reported in [80,81].

Fig. 4.1 shows the dynamic hysteretic curves between the input voltage and the

output displacement of the PA investigated in this chapter. The significant dynamic
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hysteresis is observed. As the input frequency increases, the gain distortion and phase

delay also increase. This indicates the rate-independent hysteresis model is not adequate

to represent the hysteretic dynamics of PAs at broadband frequencies. The dynamic

behavior of the PA also should be encompassed in the model if it is employed over a

broad range of frequencies.
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Figure 4.1: Input-output hysteretic curves of the piezoelectric stage at different frequen-

cies. As the input frequencies increase, the dynamic response also increases significantly.

Over broadband frequencies, the rate-independent or static hysteresis is not effective.

Alternatively, the rate-independent hysteresis cascaded with the non-hysteretic dynam-

ics can be used.

This chapter employs the cascade structure for modeling the hysteretic dynamics of

PAs. The couplings among the hysteresis, creep, electric and vibration dynamics are

fully considered and identified by leveraging on their special characteristics and distinc-

tion. First, the creep, electric and vibration dynamics are identified by employing square

wave inputs. Then, the Preisach hysteresis is identified by employing amplitude-varying

harmonic inputs and amplitude-dependent sampling rules. To validate the effectiveness

of the hysteretic dynamics identification, this chapter employs the model-based inver-
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sion feedforward control in addition to the comparison of the hysteretic curves of the

simulated and measured displacements versus the input voltage.

The organization of this chapter is as follows. Section 4.2 provides the problem state-

ment. Section 4.3 discusses the hysteretic behavior of Preisach model under square

inputs. Section 4.4 proposes the input signals and the sampling law for hysteresis iden-

tification. Sections 4.5 and 4.6 propose the systematic identification approach and the

simulation studies of the identification approach. Following by this, Section 4.7 presents

the experimental studies and the demonstration of the proposed identification strategy.

Finally, Section 4.8 concludes this chapter.

4.2 Comprehensive Modeling of PAs

To accurately and conveniently represent the hysteretic dynamics, we have investigated

the multifield effect and dynamics of PAs in Section 4.1. Generally, a PA can be de-

scribed as a capacitor with linear piezoelectric effect, but the linear relationship has

very limited accuracy. As a result, the theoretical modeling of PAs has been explored.

This chapter synthesizes the modeling approaches of the investigated references. Based

on the Refs. [26, 39, 61, 82], the cascade structure is employed for PA dynamics. First,

a rate-independent Preisach model is employed to represent the static hysteresis effect

according to [37], and the coupling creep effect is also considered in this chapter. The

direct piezoelectric effect is not modeled in PAs according to the investigation in [39].

Thus, this thesis employs the cascade connection of the Preisach hysteresis, creep, elec-
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tric and vibration dynamics to represent the complex behavior of PAs. Furthermore,

transfer functions are used for the creep, electric and vibration dynamics.

Fig. 4.2 shows the hysteresis effect Γ and the electric dynamics comprising the resis-

tance R and the capacitance C. u is the input voltage to the PA. uv is the voltage drop

due to piezoelectricity. Tem is the electromechanical transformer ratio due to the inverse

piezoelectric effect.

Fig. 4.3 illustrates the cascade connection of the rate-independent hysteresis and

the non-hysteretic dynamics. The model sketch is represented by the classical Preisach

model Γ, the creep dynamics Gc, the electric dynamics Ge and the vibration dynamics

Gv. v is the unmeasurable hysteresis output. x is the vibration displacement before creep

and y is the piezo displacement. Fv is the force due to the inverse piezoelectric effect.

According to the piezoelectricity principle, the following linear relationship holds [26].

Fv = Temuv. (4.1)�
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Figure 4.2: Sketch of the hysteresis, electric dynamics and piezoelectricity.
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Figure 4.3: Series of the Preisach hysteresis and non-hysteretic dynamics.

The rate-independent hysteresis Γ is represented by classical Preisach model [29]

v(t) =

∫∫
S

μ(α, β)γαβ[u(t)]dαdβ (4.2)

where S is the limiting triangle with α ≥ β in Preisach plane and v(t) is the hysteresis

output. μ(α, β) and γαβ are the density function and the hysteron output at point (α, β)

in Preisach plane, respectively. For PAs with positive input voltage, the hysteron output

can be set to be 1 and 0. The limiting triangle S in Preisach plane is divided into S+

with γαβ = 1 and S− with γαβ = 0. According to Fig. 4.3, the electric and vibration

dynamics can be collectively represented as

Gev(s) =
kev

τs + 1

∏n
j−2

(
s2 + 2ξ̄jω̄js + ω̄2

j

)∏n
j

(
s2 + 2ξjωjs + ω2

j

) (4.3)

where Gev(s) = Ge(s)Gv(s), τ = RC is the time constant of the electric dynamics, ξj and

ωj are the damping ratio and mode frequency of the mechanical mode j, respectively, n

is the model number of vibration dynamics.

Using the series connection of springs and dampers [75], the relationship between x
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and y is the creep dynamics which is represented as

Gc(s) = kc

∏
i

s + zci

s + pci

(4.4)

where pci and zci are the poles and zeros of the creep dynamics, respectively, kev and kc

are constants.

The objective of this chapter is to estimate the Preisach density function μ(α, β) and

the creep, electric and vibration dynamics of the PAs represented in equations (4.2)-(4.4),

by employing designed input signals. Additionally, the soundness of the identification

will be demonstrated in experiments.

4.3 Hysteretic Behavior of Preisach Model Under

Square Inputs

This section will highlight the Preisach hysteretic behavior when the input signal is

a square wave. The rate-independent Preisach hysteresis with a square wave input

behaves as an input uncertainty gain without dynamic responses. Thus, if the electrical

and vibration dynamics of PAs are separately identified using a square wave signal, the

DC gain identified will be different with different input signal amplitudes. This gain

uncertainty is actually due to the Preisach hysteresis.

The classical Preisach model is employed to represent the rate-independent hysteresis,

as given in (4.2). Additionally, the Preisach hysteresis is path-dependent and has global

memories, and clearly, there is no velocity or acceleration terms in the classical Preisach

hysteresis. Fig. 4.4 illustrates the square wave input signal in Preisach plane. Fig. 4.4
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(a) shows the input voltage increasing from 0 to u2. In the shaded area, the hysterons

are activated with γ(α, β) = 1. Conversely, the hysterons in the blank area and the

outside of the triangle have γ(α, β) = 0. The same shaded range is formed whether

the voltage variation happens in instantaneous time or over a very long period, i.e.,

this is the rate-independent property as the output only relies on the historical input

extremes and current input. If the voltage alters instantaneously, the hysteresis output

also responds instantaneously. Similarly, if the input voltage changes from u2 to u1, a

new shading range is formed as shown in Fig. 4.4(b). Fig. 4.4(c) shows the resultant

area Sm due to the square input signal. The square wave input signal with the extremes

of u1 and u2 results in square output with the extremes of v1 and v2. Moreover, there

is no time delay between the input and output signals, as shown in Fig. 4.4(d). Thus,

under square wave inputs, the hysteresis output v can be represented as

v = λ0 + λuu (4.5)

where λ0 is the offset value and λu is the uncertainty gain.

Remark 4.1. The effect of classical Preisach hysteresis with a square wave input is to

alter the input signal magnitude. In other words, for a square wave input, the classical

Preisach hysteresis behaves as a nonlinear amplifier without phase delay and dynamic

response. This property will be harnessed in the identification of the non-hysteretic

components.
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Figure 4.4: Preisach hysteresis behavior under square wave input signals. (a): The input

voltage increases from 0 to u2, forming the activated area S+
1 in Preisach plane. (b):

The input voltage decreases from u2 to u1, forming activated area S+
2 in Preisach plane.

(c): The area change (Sm) in Preisach plane under the square wave input with u1 and

u2 as peak-to-peak values. (d): The resulting hysteresis output v(t) under the square

wave input. �v is the variance of the hysteresis output and �u is the variance of input

signal.
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4.4 Design of Input and Sampling Rules for Preisach

Hysteresis Estimation

4.4.1 Input Signal Design

Special input signals with varying amplitudes are constructed to yield the data set

for Preisach hysteresis identification. Unlike the case of dynamical systems, adequate

frequencies are not helpful to identify the rate-independent Preisach hysteresis as it

has no dynamic elements. Conversely, the input signals with adequate amplitudes can

activate more relay hysterons and result in adequate memory curves. Thus, adequate

amplitudes are efficient to satisfy the PE condition in parameter identification of Preisach

model.

To achieve adequate amplitudes, the input voltage u(t) with monotonically increasing

stair amplitudes is constructed as in equation (4.6). With the maximum voltage umax,

the input range is [0, umax]. After each harmonic period, the input signal returns to 0.

u(t) =
P (t)

2
(1 − cos ωrt) (4.6)

where t is time, ωr = 1/Tsub, and Tsub is the period of each harmonic signal, as shown

in Fig. 4.5. P (t) is the stair amplitude of the input signal which is represented as

P (t) = fix(1 +
t − fix(t/T )T

Tsub

) · δ (4.7)

where T is the period of P (t), and T = Lωr, as shown in Fig. 4.5. fix(x) is a function

to round x to its nearest integer towards zero and δ is given by

δ = umax/L (4.8)
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where L is the discretization level, and umax is the maximum voltage for identification.

Fig. 4.5 graphically illustrates the input signal constructed using equation (4.6). The

amplitudes match the discretization grid points in the Preisach plane.
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Figure 4.5: Sampling and discretization of Preisach plane.

4.4.2 Sampling Rule Design

The sampling rule is constructed depending on the input signal in equation (4.6). The

Preisach plane is expanded by the input voltage. The hysteresis output directly depends

on input voltage u, not on time t. Moreover, the classical Preisach model is rate-

independent. Thus, it is more suitable to perform sampling based on the input u instead

of time t. In this chapter, a sampling law depending on input voltage u is designed.

To improve computing efficiencies, the input voltage u is sampled according to the

discretization points in the Preisach plane.

The uniform sampling interval δs is represented as

δs = δ/N (4.9)
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where N is the sampling number at each grid.

According to input voltage equation (4.6), the sampling time in the ith harmonic

signal is computed and represented as

{
ti,j = arccos(1 − 2jδs

P (t)
)/ωr + ti,1

ti,2si−j = (2π − arccos(1 − 2jδs

P (t)
))/ωr + ti,1

(4.10)

where j = 1, 2, · · · , si, si = Pi/δs, and ti,1 is the starting time of ith harmonic signal.

Fig. 4.6 shows the sampling points in ith harmonic signal. Pi is the amplitude of ith

harmonic signal in equation (4.7).
�
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Figure 4.6: Illustration of sampling points in the i period.

4.4.3 SVD-based Hysteresis Identification

According to the discretized Preisach model and the sampling rule in (4.10), the following

equation can be obtained for hysteresis identification.

AX = Y (4.11)

where AT = [AT
1 , AT

2 , · · · , AT
m] and m is the sample number.
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Using the input voltage in (4.6) and the sampling rule in (4.10), AT A is full rank and

the PE condition of Preisach identification can be satisfied, as shown in the Appendix

6.2. However, there are measurement noise and disturbances which may result in small

singular values and degrade identification accuracy. Furthermore, AT A is easily ill-

conditioned because of large discretization of Preisach hysteresis.

To estimate the vector X with less sensitivity to disturbances and measurement noise

in Y , least squares method and singular value decomposition (SVD) are used to compute

the pseudo inverse of A. The SVD of AT A can be written as

AT A = UΣV (4.12)

where U = [u1, u2, · · · , uL(L+1)/2], V = [v1, v2, · · · , vL(L+1)/2], U and V are unitary ma-

trices, Σ = diag(σ1, σ2, · · · , σL(L+1)/2). Singular values σ1 ≥ σ2 ≥ · · · ≥ σL(L+1)/2 ≥ 0. If

the singular values less than σr are truncated, the pseudoinverse of A is written as

A+ = V Σ−1
r UT AT (4.13)

where Σ−1
r = diag(1/σ1, 1/σ2, · · · , 1/σr, 0, · · · , 0).

Finally, the estimation X̂ is represented as

X̂ = A+Y (4.14)

where A+ is the pseudoinverse of matrix A.

The sampling rule in (4.10) is not only to satisfy the PE condition of Preisach iden-

tification, but also the computational efficiency is also improved. For example, for the
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discretization L = 50, 50 harmonic signals are needed to satisfy the PE condition. If the

sampling depends on time, the time interval is 1ms and the input signal period Tsub = 2s,

the dimension of matrix A is 100000 × 1275 which is a very large matrix and it is com-

putationally intensive to get A+ using software. However, the sampling law in equation

(4.10) is employed instead, the dimension of matrix A is reduced to 2551 × 1275.

Remark 4.2. The input signal with adequate amplitudes satisfies the PE condition of

Preisach hysteresis identification. To treat the ill-conditioned problem resulting from

large discretization of Preisach hysteresis, SVD can be employed to compute the pseudo-

inverse of A, in which small singular values should be truncated.

4.5 Proposed Identification Approach

The components of hysteretic dynamics of PAs are identified step by step. The square

wave signal is employed to identify the creep, electric and vibration dynamics with

multiple temporal scales. For typical PAs, the time constant of the creep dynamics

is in the order of minutes, but the electric and vibration dynamics is in the order of

ten milliseconds. Thus, the creep and electric/vibration dynamics are identified over

two steps. In this chapter, the ARMAX modeling approach is employed to yield the

non-hysteretic dynamic models [64]. Afterwards, the Preisach hysteresis is identified by

employing the input signal in (4.6) and the sampling rules in (4.10).

First, the identification of creep dynamics is carried out using a square wave input

signal with the period in the order of minutes. The gain kc is normalized to one, since
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kc is absorbed in the hysteretic part. Moreover, compared with the sampling for the

identification of the electric and vibration components, the sampling rate for the creep

identification is slower so as to reduce the measurement noise and the effects resulting

from the electric and vibration dynamics.

Second, the identification of the electric and vibration is implemented also by employ-

ing a square wave signal, but the period is the order of ten milliseconds. The gain kev is

set to one. During this step, the creep effect is eliminated with a model-based inversion,

as shown in Fig. 4.7. Ĝ−1
c (s) is the inversion of the estimated creep model. Moreover,

the sampling rate is set as fast as possible to capture the responses at high frequencies.
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Figure 4.7: Inverse creep to identify electric and vibration dynamics.

Finally, by employing the designed harmonic signal and sampling rules, the rate-

independent hysteresis is identified with the SVD-based least square estimation in (4.14).

The creep, electric and vibration affection are eliminated using their model inversion,

as shown in Fig. 4.8. Ĝ−1
ev (s) is the inversion of the estimation of electric and vibration

dynamics.

Remark 4.3. The creep, electric and vibration dynamics in PAs are typically of multiple

temporal scales. The creep is slow dynamics in the order of minutes, but the electric and

vibration dynamics are fast dynamics in the order of milliseconds. It is not suitable to
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identify them simultaneously. This chapter identifies the creep, electric and vibration

dynamics by employing square inputs at different temporal scales.
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Figure 4.8: Inverse creep and vibration to identify hysteresis.

4.6 Simulation Studies

This section presents the simulation study of the proposed identification approach. The

density function μ(α, β) in (4.2) is set to 0.1+0.05(α+β). The parameters of the electric

and vibration dynamics in (4.3) are set as τ = 0.001, ξ = 0.1 and ωn = 3000rad/s. The

parameters of creep dynamics in (4.4) are set as pc1 = 0.02, pc2 = 10, zc1 = 0.12, zc2 = 15

and kc = 2. Additionally, white noise with the root mean square (RMS) of 0.07μm is

added to the measured displacements.

4.6.1 Creep, Electric and Vibration Dynamics Identification

Two sampling rates are used in the identification of the creep, electric and vibration

dynamics. A slow sampling rate is used in the creep identification. Conversely, a fast

sampling rate is used in the identification of the electric and vibration dynamics. For

the creep identification, the sampling interval is set to 20ms and the input square period

is set to 200s. The identified model is shown in equation (4.15), while the na, nb and nc
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of the ARMAX model are set to 3, 4, 3, respectively.

Ĝc(s) =
(s + 0.1199)(s + 14.58)

(s + 0.02)(s + 10.11)

(−s + 98.82

s + 100.1

)
. (4.15)

The estimated errors of pc1, pc2, zc1, zc2 are less than 3% of the real values. Note that

the gain is normalized to one and kc is absorbed into the hysteresis part. The last term

(−s+98.82)/(s+100.1) on the right side of equation (4.15) is due to the coupling effects

from the electric and vibration dynamics at high frequencies. In this step, it is directly

removed. The residual dynamics is identified together with the electric and vibration

dynamics. The creep dynamics is represented as

Ĝc(s) =
(s + 14.58)(s + 0.1199)

(s + 10.09)(s + 0.02)
. (4.16)

After the creep identification, the electric and vibration identification is carried out.

The creep effect is eliminated with the model inversion Ĝc(s)
−1. The period of square

wave signal is set to 0.1s and the sampling interval is 0.1ms. 2000 points are used to

estimate the electric and vibration dynamics using ARMAX approach. The identified

result is given as

Ĝev(s) =
1

0.001016s + 1
· 8.999 × 106

(s2 + 593.6s + 8.999 × 106)
. (4.17)

The estimated time constant, resonant frequency and damping ratio are 0.001016,

2999.8 and 0.0989, respectively. The parameter estimation errors of the electric and

vibration dynamics are 1.6%, 0.007%, 1.1% of their normal values.

Remark 4.4. The poles and zeros close to the slow sampling frequency can be ignored

in the identification of the creep dynamics which is slow and in large temporal-scale
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compared with the electric and vibration dynamics. Afterwards, the poles and zeros

ignored in the creep identification can be accurately identified in the electric and vibration

dynamics in which the fast sampling rate is employed.

4.6.2 Hysteresis Identification

The input signal frequency is chosen to be 1Hz. Let the identified density function be

in the voltage range of [0, 5]. The discretization level of the Preisach plane is set to 10.

The amplitude variance of the harmonic signals in each period is chosen to be 0.5V. The

sampling level N is set to 1. The parameters of the input signal in (4.6) and sampling law

in (4.10) are chosen as umax = 5, L = 10, δ = 0.5, ωr = 2π, Tsub = 2s and T = 10. Model

based inversion is used to eliminate the creep, electric and vibration dynamics. Since

the input signal is at low frequencies, the inversion of electric and vibration dynamics is

simplified as

Ĝ−1
ev ≈ 1 + 0.001082

s

1 + εs
(4.18)

where ε is a small positive value that is chosen according to the input signal frequency.

ε is set to 0.01 in this simulation.

Fig. 4.9(a) shows the hysteresis curve with drift suppression using the blue model-

based inversion of creep, electric and vibration dynamics. The magnitude distortion

and phase delay are suppressed by the model-based inversion. 66 sampling points are

collected to identify Preisach density function by employing the least squares method.

The matrix AT A is full rank and PE condition is satisfied. Fig. 4.9 (b) shows the

identified density function. The density function identification is close to its nominal
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value with the relative error less than 2%.
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Figure 4.9: (a): Creep suppression. (b): Identified result of density function.

As a comparison, the frequency-domain identification approach in [65] is also per-

formed in the simulation study, in which the input is a chirp signal with a constant

amplitude but varying frequencies (higher than 100Hz). The identified electric and vi-

bration dynamics are shown in Fig. 4.10. In addition to the DC gain uncertainty, the

mode frequencies of the identified electric and vibration dynamics decrease compared

with the actual model, because the hysteresis effect is not modeled and regarded as part

of the electric and vibration dynamics.

4.7 Experimental studies

4.7.1 Identification of the Hysteresis, Creep, Electric and Vi-

bration Dynamics

First, the creep dynamics is identified using a square wave input signal with the period of

400s. The sampling interval is set to 10ms. Using this time scale, less dynamic response

is sampled. The poles and zeros faster than the sampling interval are ignored.
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Figure 4.10: Identified vibration and electric dynamics by employing frequency-domain

method. Solid line: The real vibration and electric dynamics. Dashed line: The iden-

tified vibration and electric dynamics. There are DC gain uncertainties and mode fre-

quency decreasing due to the hysteresis effect.

The identified creep transfer function is represented as

Ĝc(s) =
(s + 0.01458)(s + 0.1716)(s + 0.241)

(s + 0.01419)(s + 0.1684)(s + 0.2402)
· (s + 1.07)(s + 18.29)

(s + 1.053)(s + 17.57)
.

After the identification of creep dynamics, the identification of the electric and vibra-

tion dynamics is carried out with a sampling interval of 0.05ms. The square wave input

signal with 20 millisecond period is used. The creep effect is eliminated with its model

inversion. Similarly as in the simulation study, ARMAX structure with na=5, nb=6,

and nc=5 is used.

The identified electric and vibration dynamics is represented as

Ĝev(s) =
1

0.00049s + 1
· 8.1 × 106

s2 + 3901s + 8.1 × 106
· 2.41 × 107

s2 + 805s + 2.41 × 107

In equation (4.19), the time constant is 0.00049s. The mode frequencies of the piezo-
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electric stage are 2846 rad/s and 4909 rad/s. The mode damping factors are 0.69 and

0.082. The identification results indicate that the model structure in Section 4.2 is

effective for the piezoelectric stage.

Finally, the rate-independent Preisach hysteresis is identified by employing the har-

monic signal with varying amplitudes in equation (4.6). The period of each signal is 2s.

The identified voltage range is [0, 50]V. The discretization level L is set to 50. Thus,

50 harmonic signals are needed. The parameters in equations (4.6) and (4.7) are with

δ = 1, umax = 50, Tsub = 2s, ωr = 0.5, T = 100s and N = 1. The drift is observed in the

displacement output.

At low frequencies, the inversion of the identified electric and vibration equation (4.19)

is simplified as

Ĝ−1
ev (s) ≈ 1 + 0.001005

s

1 + εs
(4.19)

where ε = 0.02 is used to eliminate the electric and vibration effect for hysteresis iden-

tification.

Fig. 4.11 shows the identified Preisach density function. The singular values less than

0.00001 times of the maximum singular value are truncated.

4.7.2 Model Validation

The adequacy of the identified hysteretic model is validated by employing the compar-

ison of the measured and simulated hysteretic curves, in additional to the model-based

inversion feedforward control. First, the input-output hysteretic curves, based on the

identified model at different frequencies, are compared to the measured hysteretic curves.
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Figure 4.11: Identified density function μ in the experiment.

Fig. 4.12 shows the measured and simulated hysteretic curves at different frequencies

without considering displacement offset. The simulated hysteresis curves have small

errors compared with the measured hysteresis curves.

To represent the identification accuracy of the hysteretic dynamics, we employ the

relative error between the estimated displacement error and the measured displacement,

because the density function μ is unknown in real experiments. The relative error ey(%)

is represented as

ey(%) =
‖y − ŷ‖
‖y‖ × 100% (4.20)

where ‖ · ‖ denotes the Euclidean norm, y and ŷ are the measured and estimated dis-

placements, respectively.

The relative errors ey(%) at 0.05Hz, 4Hz, 100Hz and 600Hz are shown in Table 4.1.

The relative errors between the simulated and measured hysteretic curves are within a

small range, which indicates the soundness of the model identification.
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(e): Multi−frequency
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(f): Falling amplitude

Figure 4.12: Comparison of the measured and simulated hysteretic curves at dif-

ferent frequencies. Solid line: The simulated hysteretic curves. Dashed line: The

measured hysteretic curves. (a)-(d): Sinuoidal inputs. (e): Multi-frequency input

u(t) = 2 sin 200πt + sin 600πt + sin 800πt + sin 1000πt + 11. (f): Triangular input with

falling amplitudes.
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Table 4.1: Relative errors (%)

Frequency Simulated ey Inversion (er) Open loop (er)

0.05Hz 0.51% 0.77% 7.52%

4Hz 1.08% 1.34% 9.12%

250Hz 1.79% 2.41% 74.88%

600Hz 2.42% 4.32% 107.12%

Multi-fre. 1.42% 2.18% 56.95%

Multi-amp. 2.46% 3.01% 39.03%

Next, without considering displacement offset, the model-based inversion feedforward

compensator is implemented to demonstrate the effectiveness of model identification.

Fig. 4.13 illustrates the model-based inverse feedforward compensator and the direct

open loop control without compensation. In the open loop case without compensation,

the positive value γ is used to regulate the input-output gain, such that the desired and

the actual displacements have a gain of one. The values of γ at 0.05Hz, 4Hz, 100Hz and

600Hz are set to 0.9, 0.96, 1.0, 1.05, respectively.
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Figure 4.13: (a): Model-based inversion. (b): open loop without compensation.
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This chapter only employs periodic trajectories yr(t) which can be represented by

sinusoidal signals using the Fourier series as follows

yr(t) =
∑

i

Mi sin(ωit + θi). (4.21)

where Mi, ωi and θi are the amplitude, frequency, and phase of the ith term, respectively.

For a sinusoidal signal, the inversion of the non-hysteretic dynamics can be achieved

by changing the phase and gain. Therefore, the reference trajectory vr can be obtained

as [44]

vr(t) =
∑

i

Mi/|GcGev(jωi)| sin(ωit + θi − ∠GcGev(jωi)) (4.22)

Then, the inversion of Preisach hysteresis is computed. The output vr(t) of Ĝ−1
c Ĝ−1

ev is

regarded as the input of Γ̂−1, as shown in Fig. 4.13(a).

If the estimated hysteresis output v̂ tracks the reference vr within the error range e,

the feedforward voltage remains the same. If the estimated hysteresis output v̂ is less

than the reference vr and |vr − v̂| > e, the feedforward voltage is increased and vice

versa. The details of the Preisach-based hysteresis inversion can be found in Ref. [84].

Fig. 4.14 shows the performance of the model-based inversion feedforward compensa-

tion. The feedforward compensator reduces the error significantly compared to the open

loop without compensation. Similarly, the relative error er is represented as

er(%) =
‖yr − y‖
‖yr‖ × 100% (4.23)

where ‖ · ‖ denotes the Euclidean norm, yr and y are the desired and the measured

displacements, respectively.
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Figure 4.14: Model-based inverse feedforward performance of sinusoidal signals. Dashed

line: open loop without compensation. Solid line: model-based inversion feedforward

compensation.

To further demonstrate the effectiveness of the identification result, multi-frequency

and falling-amplitude trajectories are also investigated using the model-based inversion

feedforward compensator, as shown in Figs. 4.15 and 4.16. The PA displacement tracks

the desired trajectories within small error range.

The relative errors er are shown in Table 4.1. It can be seen that, without considering

offset, the model-based inversion feedforward compensator is effective to compensate the

hysteretic dynamics over broadband frequencies, indicating that the modeling and the

identification of the PA are also effective.
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Figure 4.15: Model-based inversion feedforward performance of the multi-frequency tra-

jectory (yr = 12 sin 200πt + 6 sin 600πt + 6 sin 800πt + 6 sin 1000πt + 16.2).
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Figure 4.16: Model-based inversion feedforward performance of the dropping triangular

trajectory with three extremes and a basic frequency of 100Hz.
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4.7.3 Discussion

The accurate identification over broadband frequencies is a key bottleneck for simulta-

neous high-speed and precision motion of PAs using model-based inversion feedforward

compensators. In the experimental investigation of the piezoelectric stage over a broad

range of frequencies, the hysteretic dynamics, comprising the coupled hysteresis, creep,

electric and vibration dynamics, has been identified by employing the proposed system-

atic strategy. Additionally, the effectiveness has been demonstrated by the model-based

inversion feedforward compensator and the comparison of the hysteretic curves between

the piezo displacement and the input voltage.

Compared with the identification approaches of the cascade model comprising the hys-

teretic and non-hysteretic dynamics in Refs. [80,81], the couplings are fully considered in

this chapter. The coupling treatment improves the identification accuracy. Additionally,

in contrast to the dynamic hysteresis identification based on the rate-dependent hystere-

sis model as in Ref. [59], the density function assumption and the curve fitting technique

are not adopted in this chapter. Furthermore, it is convenient to design modern con-

trollers based on the identified non-hysteresis dynamics rather than the rate-dependent

hysteresis. Compared with the investigated references in this chapter, the proposed

identification strategy is described step-by-step and it is convenient to perform the ex-

periments by other readers and researchers with the proposed guidelines.

To implement the model-based inversion feedforward compensator efficiently, the feed-

forward input signal can be computed offline. Then, the data is written into a DSP board
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for realtime compensation. The measurement noise lays outside the feedforward branch.

Thus, it is more suitable to track high frequency trajectories compared with feedback

compensators.

At low frequencies, the modeling of PAs could be simplified to static Preisach hys-

teresis, because the electric and vibration dynamics of PAs approach their DC gains

at low frequencies. Chapter 2 investigates the static Preisach hysteresis of PAs at low

frequencies where the creep is suppressed using curve fitting techniques, but as the

reference frequencies increase to 25Hz, the compensation errors of the Preisach-based

inversion feedforward increase significantly. Conversely, the compensation error of the

model-based inversion feedforward in this chapter is still less than 4.32% at 600Hz.

The limitation of discretization levels of the Preisach hysteresis still exists in this

chapter. If the Preisach hysteresis in (4.2) is discretized with larger levels, the computing

of AT A will be more time-consuming for a CPU [39]. As a result, the discretization level

is limited in experiments, and the identification accuracy of the Preisach hysteresis is

also limited.

4.8 Conclusion

To achieve accurate model identification of PAs at broadband frequencies, this chapter

presents a systematic identification strategy of the coupled rate-independent hysteresis,

creep, electric and vibration dynamics. First, the creep dynamics is identified using

square wave signals with long periods. After eliminating the creep effect, the electric and

91



vibration dynamics are identified by employing square wave signals with short periods.

Finally, using harmonic signals with varying amplitudes, the rate-independent hysteresis

is identified by specially designed input signals and sampling rules. The soundness of

the proposed identification approach is demonstrated in simulation and experimental

studies.

Furthermore, using the identified hysteretic model in this chapter, Chapter 5 will

design a muitirate-based composite controller which can track trajectories at rates twice

higher than the resonant frequencies using a modest DSP platform.
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Chapter 5

Multirate-Based Controller Design

for High-Bandwidth and Precision

Tracking

5.1 Introduction

High-speed nanofabrication and dynamic imaging of scanning probe microscopes are

requiring PAs to perform fast tracking, possibly beyond their first resonant frequencies.

However, classical controllers have limited bandwidth and high frequency performance.

Simultaneous high-bandwidth (beyond resonant frequencies) and precision tracking of

PAs are still not solved well. Commercial atomic force microscopes typically operate at

rates lower than 10% of their first resonant frequencies due to the complex and hysteretic

dynamics comprising the coupled hysteresis, creep, electric and vibration dynamics in

PAs [23,44,56,60].

To compensate hysteretic dynamics and achieve precision tracking, various model-

based compensators have been investigated. At low frequencies, Preisach-based inversion

feedforward controller can be employed to compensate the static hysteresis of PAs [84,85].
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High-gain feedback controllers are also employed to compensate the static hysteresis

and creep of PAs [25], such as integral or proportional-integral controllers with high

loop gain at low frequencies [54]. To expand the tracking bandwidth, modern feedback

and inversion-based feedforward controllers have been combined mainly based on linear

models of PAs [44]. For instance, [65] presents a 2-DOF feedforward-feedback controller

and the tracking error at 300Hz (still lower than the first resonant frequency) is 5.28%.

[25] proposes a notch filter and a inversion-based feedforward controller to enhance the

high-gain feedback. However, the hysteresis is not modeled and the fine tracking at rates

higher than the resonant frequency is still not provided in PA experiments. Additionally,

dynamic or rate-dependent hysteresis models is employed to represent and compensate

PA dynamics over a broadband range of frequencies [58]. Based on the rate-dependent

Prandtl-Ishlinskii (P-I) hysteresis, the hysteresis-based inversion is employed to extend

the tracking bandwidth [86], but it is difficult to apply modern control techniques to rate-

dependent hysteresis, since most modern controllers are designed using non-hysteretic

models.

To enhance the motion tracking of PAs, modern or intelligent controllers have also been

investigated, such as the robust H∞ controller [65], adaptive-based controller [39, 87],

neural network-based controller [30], learning-based controller [88], etc. However, ad-

vanced or intelligent controllers are typically complex and need more calculations, which

limits the updating rates of control signals. For instance, H∞ and H2 controllers com-

monly have high orders, since they have the same order as the generalized plants [89].
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Furthermore, at high frequencies, feedback controllers with high gains easily approaches

chattering and saturation when the amplified high frequency measurement noise coin-

cides with the vibration modes of PAs. Thus, we design a feedback controller with the

bandwidth lower than the resonant frequency of the PA to guarantee robust stability in

the face of noise and disturbances at high frequencies. The broadband performance is

achieved mainly by a model-based inversion feedforward controller.

To develop a composite controller with adequate high-bandwidth performance, we em-

ploy multirate techniques in the feedforward and feedback loops. Based on the linear

dynamics of PAs, various multi-rate composite controllers have been investigated with

different objectives. For example, [90], [91] and [92] present multirate perfect track-

ing controllers to handle non-minimum phase zeros, [93] models the transfer function

of a multirate controller to evaluate the open-loop response. [94] provides an adaptive

feedforward controller based on multirate discretization to compensate periodic distur-

bances. [95] proposes a multirate feedback controller to improve the intersample behav-

ior. In this chapter, we investigate the different design and application of multirate

techniques. The feedback controller is designed with a sampling rate, such that it can

reject disturbances, reduce feedforward control errors, and suppress noise effect.

To track broadband trajectories beyond the resonant frequencies of PAs, I design the

multirate-based composite controller comprising a model-based inversion feedforward

controller and a robust H∞ feedback controller, using the identified hysteretic dynamics

in Chapter 4. For high bandwidth tracking, the model-based inversion feedforward
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controller is constructed based on the identified hysteretic dynamics. Furthermore, a

high sampling rate is used in the feedforward branch, since the computing of feedforward

control signals can be performed off-line. To reject disturbances, a discrete robust H∞

controller is designed with a low sampling rate which depends on disturbance bandwidth

and DSP limits. In experimental studies, the proposed composite controller provides

precision tracking at a rate beyond the resonant frequencies of the piezoelectric stage.

The organization of this chapter is as follows. Section 5.2 proposes the design strat-

egy of the multirate-based composite controller. Section 5.3 presents the experimental

studies of the proposed composite controller. Finally, Section 5.4 concludes the chapter.

5.2 Proposed Multirate-based Composite Controller

Design

In this section, the multirate-based composite controller is presented. It consists of

a model-based feedforward controller and a discrete H∞ feedback controller. First, the

model-based inversion feedforward controller is constructed to compensate the phase-lag

and magnitude distortion. In order to improve the computing efficiency, the feedforward

control signals are computed off-line. Then, they are written into the DSP platform for

real-time implementation. The discrete H∞ feedback controller with an integral action

is built to suppress disturbances. The H∞ controller design is a trade-off among the

feedforward error, disturbances, calculations and noise.

Fig. 5.1 illustrates the proposed composite control strategy. “ZOH” denotes the zero-

order-hold sampling, uff and ufb are the feedforward and feedback signals, respectively.
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Figure 5.1: Multirate composite control strategy of PAs

The variables e, d and n denote the tracking error, output disturbance and measurement

noise, respectively, G denotes the non-hysteretic dynamics of PAs and G = GcGev, fFF,

fFB and fM denote the sampling rates of the feedforward, feedback and measurement

signals, respectively, fFF = fM is used in this article, Ĝ−1 and Γ̂−1 denote the inversions

of the estimated non-hysteretic dynamics and hysteretic dynamics, respectively, KFF

and KFB denote the feedforward and feedback controllers, respectively. The feedforward

controller is constructed based on the PA dynamics. The discrete feedback controller

is designed using the non-hysteretic dynamics while the rate-independent hysteresis in

(3.1) is regarded as a bounded uncertainty.

5.2.1 Analysis of Proposed Composite Controller

The proposed composite controller is analyzed in this section. First, the model-based

inversion feedforward controller KFF of PAs can be written as

KFF = Γ̂−1 ◦ Ĝ−1 (5.1)
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where ◦ denotes the composition operator [96]. Multiplication is not used in (5.1), since

the hysteresis Γ and its estimation Γ̂ are strong nonlinearities with global memories [29].

Ĝ−1 and Γ̂−1 can be represented as

{
Ĝ−1 = G−1(1 + δl)

Γ̂−1 = Γ−1(1 + δh)
(5.2)

where δl denotes the inversion error of the non-hysteretic dynamics and δh denotes the

inversion error of the rate-independent hysteresis. δl and δh are bounded uncertainties

and determined by the identification accuracy of PAs. Then, Γ̂−1 and Ĝ−1 can be

rewritten as

Γ̂−1 ◦ Ĝ−1 = Γ−1 ◦ G−1(1 + δl + δh + δlδh). (5.3)

Let δf = δl + δh + δlδh, the model-based inversion feedforward controller of PAs is

rewritten as

KFF = Γ−1 ◦ G−1(1 + δf ) (5.4)

where the bounded uncertainty δf can be determined using the feedforward control.

Then, the feedforward control signal uff can be given by

uff = Γ−1 ◦ G−1(1 + δf )r (5.5)

The measurement noise n lays outside of the feedforward branch. With only the

feedforward controller KFF in (5.4) while the feedback controller KFB = 0, the relative

error in e/r is given by

e

r
|KFB=0 = δf +

d

r
. (5.6)
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Eq. (5.6) indicates that the tracking performance of feedforward relies on the identifi-

cation accuracy and the output disturbances are not suppressed. Thus, feedback control

is necessary to guarantee stability and robustness in the face of modeling error δ and

disturbance d.
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Figure 5.2: Analysis of proposed composite control strategy

Fig. 5.2 shows the proposed composite control strategy where Ĝ−1 and Γ̂−1 are rep-

resented by G−1 and Γ−1 according to (5.4), respectively. With the proposed composite

controller, the relationship between the reference r and tracking error e can be repre-

sented as

e

r
=

1

G ◦ Γ ◦ KFB + 1
δf +

1

G ◦ Γ ◦ KFB + 1

d

r
+

G ◦ Γ ◦ KFB

G ◦ Γ ◦ KFB + 1

n

r

where δf is the feedforward error, KFB denotes the feedback controller, n and d are the

measurement noise and output disturbance, respectively.

If the tracking error is suppressed by a factor of η + 1, i.e., 1/(G ◦ Γ ◦ KFB + 1) =

1/(η + 1), the feedback control signal due to measurement noise can be written as
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un
fb = nη (Γ ◦ G)−1 (5.7)

where η 
 1 at frequencies with fine tracking performance.

Typically, the PA is a low pass filter and the system gain is decreased at high frequen-

cies. Conversely, the model-based inversion (G◦Γ)−1 is a high pass filter. Equation (5.7)

indicates that the measurement noise n is amplified by η (Γ ◦ G)−1, and easily results

in chattering and saturation when the amplified measurement noise coincides with the

vibration modes of PAs.

Thus, the high frequency gain of KFB is reduced for stability. Multi-objective robust

H∞ control is employed to design KFB. The different objectives of the feedback controller

are specified at different frequencies. The sampling rate and bandwidth of KFB are the

main specifications to be considered.

Remark 5.1. The model-based inversion feedforward controller is employed to expand

the bandwidth beyond the resonant frequencies of PAs, because the measurement noise

lies outside of the feedforward branch. Conversely, the feedback controller is employed

to reject disturbances and modeling error within feedback bandwidth. The high frequency

gain of the feedback controller should be reduced to suppress noise effect.

5.2.2 Off-line Model-based Inversion Feedforward Controller

Off-line model-based inversion feedforward controller can be employed if the reference is

known. The feedforward controller is used to overcome the bandwidth limitation of the
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feedback controller. It encompasses the inverse non-hysteretic dynamics and the inverse

hysteresis. First, the reference signals pass through the inverse non-hysteresis dynamics

Ĝ−1, then the inverse hysteresis Γ̂−1. The details of the model-based inversions Γ̂−1and

Ĝ−1 can be found in Refs. [84,97].

The Preisach-based inversion Γ̂−1 is shown in Chapter 3. The inversion of the non-

hysteretic dynamics can be represented as

Ĝ−1(s) =
τ̂ s + 1

k̂ev

m∏
i=1

s + p̂i

s + ẑi

·
∏n

i (s2 + 2ξ̂iω̂is + ω̂2
i )∏n−2

j (s2 + 2ξ̂jω̂js + ω̂2
j )

(5.8)

where k̂ev, τ̂ , ξ̂i, ξ̂j, ω̂j and ω̂j are the identified parameters of the electric and vibration

dynamics, respectively, ẑi and p̂i are the estimated zeros and poles of the creep dynamics.

Negative ẑi and ξ̂j are not considered in (5.8).

The feedforward control signal uff can be computed off-line through Ĝ−1 and Γ̂−1 for

known and periodic trajectories which can be represented by Fourier series. Then, the

data are written into a DSP platform for real-time feedforward control.

5.2.3 Design of Bandwidth and Sampling Rate

This section presents the design of the bandwidth and sampling rate of the multirate-

based composite controller. The design of the bandwidth and sampling rate in the

feedback loop is the key issue, since the bandwidth and sampling rate in the feedforward

loop is easier to determine as the computations can be done off-line. The feedforward

bandwidth is determined by the identification accuracy of the PA dynamics and its

sampling rate can be set to the maximum value which a DSP supports.
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Design of Feedback Bandwidth

The bandwidth of the feedback controller is important to guarantee stability and sup-

press disturbances. Design of the bandwidth in the feedback loop is a trade-off among

tracking errors, disturbances and measurement noise. Let the bandwidth of output dis-

turbances be ωd. The measurement noise n is assumed to be white noise. First of all,

the maximum sampling rate fmax of a DSP platform poses a limitation on both the

feedforward and feedback bandwidth [98]

ωFF ≤ fmax

2
, ωFB <

fmax

2

To reduce modeling error, drifts and other disturbances in piezoelectric mechanisms,

the bandwidth of feedback controller is higher than the disturbance bandwidth ωd

ωFB > γωd.

where γ is a factor denotes the suppression performance of disturbances. γ should be

as large as possible to reject more disturbances. The modeling error, drifts, offset and

other disturbances lower than ωd can be suppressed by KFB.

The bandwidth of the feedback controller is also limited to the frequency ωbc to guar-

antee the robust stability under the modeling error δ, measurement noise n and the

coupling with feedforward controller at high frequencies. ωbc can be estimated by the

Nyquist stability criterion.

ωFB < ωbc.

Additionally, the computational complexity of the feedback controller KFB is another
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limitation. Let the maximum calculation time of KFB is TFB. TFB increases as the order

and the complexity of KFB increase. To guarantee the accurate updating of feedback

control signals in real-time implementation, the feedback bandwidth should satisfy

ωFB <
1

TFB

.

Finally, the bandwidth of the feedback controller satisfies

γωd < ωFB < min

(
fmax

2
,

1

TFB

, ωbc

)
. (5.9)

Design of Sampling Rate in Feedback Loop

The sampling rate in the feedback loop is related to the feedback bandwidth, the cal-

culating capacity of DSPs, the noise level and the ultimate frequency of a PA. In the

real-time control of the PA experiment, too fast sampling in the feedback loop may de-

grade performance, and even result in instability. First, a DSP needs time to calculate

and update the feedback signals, but the calculating capability of a DSP restricts the

sampling rate, especially for the complex and modern controllers. Secondly, fast sam-

pling of high gain feedback controllers amplifies the high frequency noise n that may

contain signals coinciding with resonant (mode) frequencies of a PA, resulting in serious

chattering.

Both the upper and the lower bounds of the sampling rates are necessary for the

feedback controller KFB. Let f̄FB denote the upper bound of sampling rates that can be

implemented in a DSP. f̄FB is mainly related to the calculations of the feedback controller

KFB. Additionally, the lower bound of sampling rate f
FB

is related to the disturbance
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bandwidth ωd, the ultimate frequency ωr of a PA and the feedback bandwidth ωFB.

Thus, the sampling rate fFB in the feedback loop can be given by

f
FB

< fFB < f̄FB (5.10)

where f
FB

= 2 max (ωFB, ωr, ωd) and f̄FB = min (fmax, 1/TFB).

Fig. 5.3 illustrates a slow sampling rate in the feedback loop. The frequencies of the

desired trajectories in Figs. 5.3 (a-c) are 200%, 100% and 50% of the sampling rate.
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Figure 5.3: Sampling rates of the desired high-frequency trajectories (no unit) in the

feedforward and feedback loops. The desired trajectories with fast sampling rate (solid)

are employed for the feedforward controller. The sampling points in circle are employed

for the feedback controller.

Remark 5.2. Compared with the sampling in the feedforward loop, insufficient sam-

pling is possible to be employed for the feedback controller when the trajectory rates are

beyond the resonant frequencies of PAs. In this case, the feedback controller still rejects

disturbances within its bandwidth, but has no tracking performance.
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5.2.4 Design of Discrete Feedback Controller

This section presents the design of the discrete feedback controller according to the

sampling rate fFB and the disturbance bandwidth ωd. Additionally, the loop shaping

technique is used. The feedforward controller is effective in reducing phase-lag and

achieve high-bandwidth tracking, but there are undesirable modeling errors and other

disturbances. It is necessary to design an optimal feedback controller to reject distur-

bances and guarantee robust stability.

Fig. 5.4 illustrates the loop shaping technique to design the feedback controller. The

performance and stability requirements are satisfied by specifying L1 and L2. ωc is the

cross frequency of GKFB and is related and close to the feedback bandwidth ωFB, ωp is

related to the disturbance rejection performance, and ωs is related to the robust stability

under modeling errors, disturbances and measurement noise at high frequencies. ωp and

ωs can be represented as

ωp = γωd, ωs = min(
fFB

2
,

1

TFB

, ωbc). (5.11)

Weighting functions are suitable for specifying different requirements at different fre-

quencies as shown in Fig. 5.4. It is convenient to achieve multiple objectives using

weighting functions [89]. The robust discrete H∞ controller is designed based on the

non-hysteresis dynamics, while the rate-independent hysteresis Γ can be regarded as an

input uncertainty consisting of the nominal gain kh and the weighting function wu.
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Figure 5.4: Illustration of loop shaping

Fig. 5.5 shows the sketch of the multi-objective robust H∞ control. w1 is the per-

formance weighting function to specify performance requirements. Moreover, significant

vibrations are easily induced by high gains at high frequencies. Then, an integral action

is added to w1 to reduce the feedback bandwidth ωFB and enhance the disturbance sup-

pression at low frequencies. wn, wr and wd denote the noise, reference and disturbance

weighting functions, respectively, w2 is the control weighting function to limit the con-

trol gain and suppress noise at high frequencies, wu denotes the uncertainty due to the

hysteresis nonlinearity, Δu is an unit complex uncertainty with norm ‖Δu‖ < 1.

The feedforward control error δf can be written as

δf = wδΔδ (5.12)

where Δδ denotes an unit complex uncertainty with ‖Δδ‖ ≤ 1, wg is the weighting

function to describe the feedforward error.
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Figure 5.5: Illustration of multi-objective H∞ control

Weighting functions w1 and w2 are employed to satisfy the trajectory requirement of

GKFB which is bounded by L1 and L2. The relationships are as follow

{
w1|ω≤ωp = L1

w2|ω≥ωs = 1/L2
(5.13)

G is the non-hysteretic dynamics of PAs and its identification Ĝ can be regarded as

the nominal model to design the discrete H∞ controller. The discrete state space of the

nominal model can be represented as

{
x(k + 1) = Āx(k) + B̄v(k)

y(k) = C̄x(k)
(5.14)

where v(k) is the output of rate-independent hysteresis, Ā, B̄ and C̄ can be transformed

from the identified non-hysteretic dynamics in PAs. The sampling rate fFF in the feed-

forward loop is N times of fFB in the feedback loop, i. e., fFF = NfFB.

Remark 5.3. The specifications and the feedforward control error are incorporated into

the feedback controller by loop shaping techniques.
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5.3 Experimental Studies

5.3.1 Proposed Multirate-based Composite Controller

This section presents the multirate-based composite controller of the piezoelectric stage

employing the design strategy in Sections 5.2.2 and 5.2.4. The model-based inversion

feedforward is achieved first. In addition, the maximum sampling fmax of the DSPACE

1104 board is 40 kHz. The sampling rate in the feedforward loop is then set to 40 kHz.

After testing the feedforward performance, the feedforward-error function δ, without

considering the offset and drifts in the displacement y, is less than 5%. Thus, wδ is set to

0.05. Based on the identified Preisach hysteresis, the nominal gain kh of the hysteresis is

0.96, and the weighting function wu reflecting the input uncertainty is set to 0.12. The

disturbances, such as displacement offset and drifts, are at frequencies less than 20Hz,

indicating that the disturbance bandwidth ωd is 20Hz. To reject more disturbances,

γ = 2 and wp=40Hz are used in the experiment.

The ultimate frequency of the piezoelectric stage is 500Hz, i. e., ωr=500Hz. Moreover,

let ωbc be equal to ωr in this chapter. To reduce high frequency noise and induced

vibrations, ws is set to 350Hz. The requirement of 1/TFB is tested using the designed

controller in the PA experiment. The sampling rate fFB is a more flexible parameter

to design. In this chapter, much slower fFB is tested, such that the multirate-based

composite controller can be performed in a slow DSP. The lower bound due to the

feedback bandwidth, ultimate frequency and disturbance bandwidth in Eq. (5.10) is 1

kHz.
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According to wp and ws in (5.11), with the sampling rate fFB of 1 kHz in the feedback

loop, weighting functions w1 and w2 used for H∞ control are as follows

{
w1 = 0.1(z + 1)/(z − 1)

w2 = 1.2496(z − 0.2283)2/(z + 0.7254)2 (5.15)

where (z + 1)/(z − 1) is the integral action of w1.

With the same fFB, the reference signal, disturbances and measurement noise are

represented by the weighting functions wr, wd and wn, respectively⎧⎨⎩
wr = 1

wn = 0.0395(z − 0.9691)/(z + 0.222)

wd = 0.1182(z + 1)/(z − 0.8818)

(5.16)

Doyle presented an analytical solution of H∞ optimization, but the optimization

through H∞ norm is conservative. To reduce the conservation, the discrete D-K it-

eration with structured singular values is used to solve the controller [89]. Using the

weighting functions in (5.15) and (5.16), the structure singular value is 0.81 after 4 dis-

crete D-K iterations. The robust stability is satisfied according to small gain theorem.

The H∞ controller is as follows

KFB(z) = kz

k∏
j=1

z + zkj

z + pkj

(5.17)

where k is the order of the controller, k = 15, kz = 0.1665, the zeros of KFB(z) are

−1,−0.6836 ± 0.6529i, −0.7254, −0.2088 ± 0.4324i, −0.2220,−0.0266, 0.6938, 0.8603,

0.9170, 0.9825, 0.9989, 0.9998, and 1.0000, and the poles of KFB(z) are −0.682± 0.614i,

−0.0996±0.4964i, −0.3081±0.3721i, −0.2345±0.0369i, 0.9730±0.0168i, 0.9987, 0.9997,

0.9998, and 1.0000.
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5.3.2 Performance of Proposed Composite Controller

For easy implementation, the harmonic signal r(t) is chosen as the desired trajectory

and given by

yr(t) = A
1 − cos 2πft

2
(5.18)

where A is the amplitude of the reference trajectory yr(t), t is time, f is the desired

frequency. The percent root-mean-square (RMS) error erms is used to measure the

tracking performance.

To verify the effectiveness of the proposed multirate composite controller, the tracking

performances at 500Hz (ultimate frequency of the piezoelectric stage) and 1 kHz are

investigated. The phase-drop of the PA at 500Hz and 1 kHz are 180◦ and 390◦, respec-

tively. The magnitudes of r(t) at frequencies 500Hz and 100Hz are set to 21μm and

10.25 μm, respectively. The sampling rates in the feedback and feedforward loops are

set to 1 kHz and 40 kHz, respectively.

Transient Responses Under Disturbances

Fig. 5.6 shows the transient responses of tracking errors using the proposed multirate

composite controller with the specified r(t) at 500Hz and 1 kHz, respectively. The

tracking errors are reduced to the steady values after 20 milliseconds (ms). Thus, the

performance of disturbance suppression of the feedback controller is verified. The cor-

responding steady responses are presented in next section.
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Figure 5.6: Tracking errors under disturbances

Steady Responses

The steady responses of the piezoelectric stage at 500 Hz and 1 kHz are presented,

respectively. Figs. 5.7 (a-b) show the tracking performance at 500Hz, the RMS tracking

error is 0.486μm and its erms is 2.3%. Figs. 5.7 (c-d) show the feedforward and feedback

control signals. In each period, 80 sampling points of feedforward signals, which are

computed off-line, are used to track the desired r(t), but only 2 points of the reference

and the measured displacement are used for feedback to reject disturbances.

Figs. 5.8 (a-b) show the tracking performance at 1 kHz (twice the ultimate frequency),

the RMS tracking error is 0.226μm and the erms is 2.2%. Figs. 5.8 (c-d) show the feed-

forward and the feedback control signals in voltage. In each period, 40 sampling points

of feedforward signals are used to track the reference, but only 1 point of the reference

and the measured displacement are used for feedback control to reject disturbances.
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Figure 5.7: Tracking performance and control signals at 500Hz. (a): Tracking perfor-

mance(solid: actual displacement; dotted: desired displacement); (b): Tracking error;

(c): Feedforward control signal; (d): Feedback control signal.
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Figure 5.8: Tracking performance and control signals at 1 kHz. (a): Tracking perfor-

mance (solid: actual displacement; dotted: desired performance); (b): Tracking error;

(c): Feedforward control signal; (d): Feedback control signal.
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Figs. 5.9 (a-b) show the power spectral densities (PSDs) of the feedforward and the

feedback control signals at 500 Hz and 1 kHz, respectively. The PSDs of the feedback

control signals are less than 200Hz, since the H∞ feedback controller is designed to

suppress modeling error and disturbances at low frequencies and its bandwidth is less

than the resonant frequency. The PSDs of the feedforward control signals are the largest

at the reference frequencies, i. e., 500 Hz and 1 kHz, respectively.

The control signals and their PSDs in Figs. 5.7 (b), 5.8 (b) and 5.9 (a-b) indicate

that the feedforward control achieves fast tracking at high frequencies and the feedback

control rejects disturbances within the feedback bandwidth.
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Figure 5.9: PSDs of feedforward and feedback control signals at 500Hz and 1 kHz. (a):

PSDs of feedforward control signals (FF: feedforward); (b): PSDs of feedback control

signals (FB: feedback).

Remark 5.4. The experimental studies of a piezoelectric stage have demonstrated the

effectiveness of the proposed composite controller. The feedforward controller successfully

contributes to the broadband tracking at rates higher than the resonant frequency of

the piezoelectric stage. In contrast, the robust feedback controller sufficiently rejects
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disturbances and modeling errors within feedback bandwidth. The phase-drops of the

piezoelectric stage at 500Hz and 1 kHz are up to 180◦ and 390◦, respectively, but the

smooth and precision tracking are still achieved at 500Hz and 1 kHz.

5.3.3 Performance of Single-rate Composite Controller

The single-rate composite controller is also tested. The proposed composite controller

in Section 5.3.2 is transformed to the corresponding single-rate controller. If both the

feedforward and the feedback loops have a slow sampling rate of 1 kHz, the composite

controller cannot track trajectories at rates higher than 500Hz. To track the trajectories

both at 500 Hz and 1 kHz, 40 kHz sampling rate is used for both the feedforward and

feedback loops.

The composite controller in (5.17) is transformed into the single-rate controller with

the sampling rate of 40 kHz. However, the full-order composite controller cannot be

implemented in the DSPACE 1104 board. The error “task over-run” occurs until the

order of the H∞ controller is reduced to 10. The tracking performance with the reduced-

order composite controller is degraded compared to the multirate case in Section 5.3.2,

and the corresponding tracking accuracies are degraded by 68% and 46% at 500Hz and

1 kHz, respectively.

5.3.4 Discussion

Both high-bandwidth and precision tracking are achieved by the multirate-based com-

posite controller which employs a fast sampling rate in the feedforward loop to achieve
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high-bandwidth tracking, but a slow sampling rate in the feedback loop to reject dis-

turbances. Furthermore, the slow sampled feedback controller can be performed in a

modest DSP. In the experimental studies, the percent RMS tracking errors at 500 Hz

and 1 kHz are less than 2.2% and 2.3%, respectively.

The tracking performance of the multirate-based composite controller is better than

the single-rate composite controller with either a slow or a fast sampling rate. The slow

sampled single-rate composite controller is not sufficient to track high-frequency trajec-

tories. Conversely, overrun errors easily occur in the fast sampled single-rate composite

controller.

In most published works to the best of the authors’ knowledge, the precision tracking

rates are still lower than the resonant frequency. For instance, [25] proposes a high gain

feedback controller augmented with a inversion feedforward based on linear vibration

dynamics. The tracking error erms with a maximum rate of 450Hz is 10.15%, while the

first resonant frequency of the PA is 486Hz. In this chapter, we employ a multirate

composite controller based on the complete modeling comprising the coupled hysteresis,

creep, electric and vibration dynamics. Fine tracking can be achieved at rates beyond

the first resonant frequency of the piezoelectric stage.

5.4 Conclusion

In this chapter, a multirate-based composite controller is designed for simultaneous

high-bandwidth and precision tracking of PAs. The fast sampled feedforward controller
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approaches broadband tracking. The slow sampled controller rejects disturbances. The

experimental results validate that the proposed composite controller presents precision

tracking at rates twice higher than the first resonant frequency.

116



Chapter 6

Conclusions

6.1 Summary of Contributions

To achieve high-bandwidth and precision motion control of piezoelectric actuators (PAs),

this thesis has investigated the identification and compensation of hysteretic dynamics

over a broad range of frequencies.

First, at low frequencies, this thesis investigates the identification and compensation

strategy of Preisach hysteresis. The SVD-based least squares estimation is presented.

Additionally, the online updating of the Preisach hysteresis identification is provided.

The Preisach-based inversion compensation validates the identification of the Preisach

hysteresis. With the Preisach-based inversion compensator, the reference tracking of the

PID tuning control is significantly improved.

Next, based on the identification result of the Preisach hysteresis, electric and vibration

dynamics, the model-based composite compensation is designed, which contains a model-

based inversion feedforward compensator and a PI tuning feedback controller. In the

experimental studies, the compensation approach is effective at rates faster than the
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first resonant frequency of the piezoelectric stage. The inversion feedforward and the

PI feedback controllers are employed for the hysteretic dynamics compensation and

disturbance rejection, respectively.

Then, over a broad band range of frequencies, the comprehensive identification of the

hysteretic dynamics is provided, consisting of the identification of the Preisach hystere-

sis, creep, electric and vibration dynamics. The identification metrology is effective at

broadband frequencies, which is demonstrated in the experimental results.

Finally, by using the identification result of the comprehensive methodology, the

multirate-based composite controller is designed for simultaneous high-bandwidth and

precision tracking of PAs. With different sampling rates in the feedforward and feedback

branches, the model-based inversion feedforward controller is effective to compensate the

hysteretic dynamics over a broad range of frequencies. Conversely, the feedback con-

troller is effective to suppress disturbances within the feedback bandwidth.

The systemic identification and compensation of hysteretic dynamics have been in-

vestigated in this thesis. Simultaneous high-bandwidth and precision motion control of

PAs have been achieved in experimental studies. Based on the accurate identification,

the piezoelectric stage tracks the desired trajectories at rates higher than the resonant

frequencies.
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6.2 Suggestions for Future Work

Although both the identification strategies and the compensation approaches have been

investigated in this thesis, there are still improvements which can be achieved. Further

investigations of the identification and compensation issues in PAs are suggested as

follows:

• Transfer functions can be used to represent creep dynamics in this thesis. However,

if the input voltage has a large range, hysteretic creep model can be used to enhance

the modeling accuracy.

• The coupled Preisach hysteresis, creep, electric and vibration dynamics have been

identified step-by-step in this thesis by employing designed input signals, but the

treatment can result in undesirable errors. Thus, the simultaneous identification

of the coupled components can be performed to reduce undesirable errors.

• This thesis presents the offline compensation of the hysteretic dynamics under

periodic trajectories, but the online compensation of hysteretic dynamics under

general trajectories is still not presented in this thesis. The online compensation

can be extended to the unknown general trajectories.

• There is high-order derivative in the inversions of the electric and vibration dynam-

ics. The derivative is sensitive to noise and computational errors. To implement

the inversions online, it is necessary to design a differentiator which is robust in

the face of noise and computational errors.
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The suggested future work could improve the identification and compensation accuracy

of hysteretic dynamics in PAs. Hysteretic creep and simultaneous identification can

improve the modeling accuracy over a large input range. Online model-based inversion

compensators can be designed to track unknown general trajectories. Additionally,

the differentiator is less sensitive to noise and computational errors, compared with

derivative.
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Appendix A

A.1: Properties of Preisach Hysteresis

This section presents three properties of Preisach model, i. e., the rate-independence,

memory rules and wiping out properties, which will be employed to construct the iden-

tification strategy of the coupled hysteresis.

Rate-independence. The rate-independence property is represented as [28,33]

Γ[u ◦ ϕ] = Γ[u] ◦ ϕ (6.1)

where ◦ the composition operator, and ϕ is increasing function mapping the considered

time onto itself.

Figs. 6.1(a-b) illustrates the rate-independence of Preisach model. The input signal

has a constant amplitude but varying frequencies. The resultant hysteresis curve of the

hysteresis output versus the input voltage is still invariant.

Remark: The rate-independence property indicates that adequate frequencies are not

helpful to improve identification of Preisach hysteresis, which is different from the identi-

fication of non-hysteretic dynamics where adequate frequencies are necessary to achieve

accurate identification.
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Figure 6.1: Illustration of rate-dependence of Preisach model. (a): Input voltage with

constant amplitude but variant frequencies. (b): Hysteresis curve of the hysteresis

output versus input voltage.

Memory rules and wiping out property. The details of memory rules of Preisach model

is described in Ref. [29]. Figs. 6.2(a-b) shows the memory rules of Preisach model.

As the input signal u(t) is monotonically increased from zero to the local maximum

value M1, all the hysteresis operators γαβ[u(t)] with switching values less than M1 will

be activated. Next, the input signal is monotonically decreased from the local maximum

value M1 to the local minimum value m1, the γαβ[u(t)] with switching values larger than

m1 becomes deactivated. Geometrically, this corresponds to a division of the limiting

triangle into two regions, i.e., the activated S+ and the deactivated S−, as shown in Fig.

6.2(b). If M2 > M1, the extreme M1 and m1 will be deleted in the Preisach memory

according to the wiping out property. The three properties of Preisach model will be

employed to identify the coupled hysteresis and creep dynamics.
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Figure 6.2: Illustration of memory rules of Preisach model. (a): Input signal. (b):

Hysteresis representation in Preisach plane.

A.2: PE condition Under Designed Input Signals and

Sampling Rules

A.2.1: Proposed Inputs and Sampling law

The section illustrates the satisfaction of the PE condition by employing the input in

equation (4.6) and the sampling in equation(4.10). For instance, let N = 1, δ = 1,

δs = 1, ωr = π, and T = 8. The density values of 10 grids are needed to be identified.

According to the input signal and the sampling rule, partial sampling points are collected

and used. Fig. 6.3 illustrates the sampling points corresponding to the discretization

points on the Preisach plane in the first 4 periods. It can be seen that 10 samples are

collected in the first 4 periods.

According to the discretization of the Preisach model, the matrix A for the 10 sampling

points is obtained as shown in (6.2). Furthermore, one non-singular matrix E can be

used to pre-multiply matrix A to exchange the columns of A, such that the following

EA is achieved as shown in (6.2).
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Figure 6.3: Illustration of sampling points.

The matrix EA is lower triangular and full rank. Thus, the matrix A is also non-

singular and full rank because of the non-singularity of E. According to the sampling

law, the special sampling points are reserved in matrix A. If the detailed disretization

is applied, the matrix AT A is still non-singular and full rank. Finally, the PE condition

in the estimation equation (4.14) is satisfied.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 0 1 1 0 0
1 1 0 1 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, EA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 0 1 0 0 1 0 0 0
1 1 1 1 1 0 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.2)
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A.2.2: PE Condition Using Standard Inputs and Sampling

Next, the input signals with constant amplitude and the time-based sampling (uniformly

over time) are used for comparison. In this section, two inputs are considered. Fig. 6.4

(a) shows the input with a constant frequency of 0.5 Hz and a constant amplitude of 4V.

Fig. 6.4 (b) shows the input with a constant amplitude of 4V but varying frequencies.

The sampling is based on time and the sapling interval is set to 0.01s. According to

the Preisach discretization in Section 6.2, the matrix A is achieved. In both cases, 800

points are collected and used in 8 seconds. However, the rank of AT A in both cases is

7. The PE condition in both cases is not satisfied.
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Figure 6.4: Two standard inputs. (a): The input signal with a fixed amplitude. (b):

The input signal with varying frequencies.
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