3,751 research outputs found

    Optimal inference with suboptimal models:Addiction and active Bayesian inference

    Get PDF
    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent's beliefs - based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment - as opposed to the agent's beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less 'optimally' than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject's generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described 'limited offer' task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work

    Active inference, evidence accumulation, and the urn task

    Get PDF
    Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one that is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding of information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical letter, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behavior--in this case, that they will make informed decisions. Normative decision making is then modeled using variational Bayes to minimize surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step toward understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference and may cast light on why this process is disordered in psychopathology

    Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Thode, A., Wright, D., & Chapman, R. Nonlinear time-warping made simple: a step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. The Journal of the Acoustical Society of America, 147(3), (2020): 1897, doi:10.1121/10.0000937.Classical ocean acoustic experiments involve the use of synchronized arrays of sensors. However, the need to cover large areas and/or the use of small robotic platforms has evoked interest in single-hydrophone processing methods for localizing a source or characterizing the propagation environment. One such processing method is “warping,” a non-linear, physics-based signal processing tool dedicated to decomposing multipath features of low-frequency transient signals (frequency f  1 km). Since its introduction to the underwater acoustics community in 2010, warping has been adopted in the ocean acoustics literature, mostly as a pre-processing method for single receiver geoacoustic inversion. Warping also has potential applications in other specialties, including bioacoustics; however, the technique can be daunting to many potential users unfamiliar with its intricacies. Consequently, this tutorial article covers basic warping theory, presents simulation examples, and provides practical experimental strategies. Accompanying supplementary material provides matlab code and simulated and experimental datasets for easy implementation of warping on both impulsive and frequency-modulated signals from both biotic and man-made sources. This combined material should provide interested readers with user-friendly resources for implementing warping methods into their own research.This work was supported by the Office of Naval Research (Task Force Ocean, project N00014-19-1-2627) and by the North Pacific Research Board (project 1810). Original warping developments were supported by the French Delegation Generale de l'Armement
    • …
    corecore