113 research outputs found

    Are errors detected before they occur? Early error sensations revealed by metacognitive judgments on the timing of error awareness

    Get PDF
    Errors in choice tasks are not only detected fast and reliably, participants often report that they knew that an error occurred already before a response was produced. These early error sensations stand in contrast with evidence suggesting that the earliest neural correlates of error awareness emerge around 300 ms after erroneous responses. The present study aimed to investigate whether anecdotal evidence for early error sensations can be corroborated in a controlled study in which participants provide metacognitive judgments on the subjective timing of error awareness. In Experiment 1, participants had to report whether they became aware of their errors before or after the response. In Experiment 2, we measured confidence in these metacognitive judgments. Our data show that participants report early error sensations with high confidence in the majority of error trials across paradigms and experiments. These results provide first evidence for early error sensations, informing theories of error awareness

    Commentary: Prestimulus theta oscillations and connectivity modulate pain perception

    Get PDF
    Pain experience includes the fine-grain integration of both attentive and automatic (bottom-up; Legrain et al., 2012), as well as affective and intentional (top-down; Buschman and Miller, 2007) processes. While the neural underpinnings of post-stimulus pain processing have been deeply explored (Hauck et al., 2008), the oscillatory brain activity preceding pain processing is less far investigated

    The dorsolateral pre-frontal cortex bi-polar error-related potential in a locked-in patient implanted with a daily use brain–computer interface

    Get PDF
    While brain computer interfaces (BCIs) offer the potential of allowing those suffering from loss of muscle control to once again fully engage with their environment by bypassing the affected motor system and decoding user intentions directly from brain activity, they are prone to errors. One possible avenue for BCI performance improvement is to detect when the BCI user perceives the BCI to have made an unintended action and thus take corrective actions. Error-related potentials (ErrPs) are neural correlates of error awareness and as such can provide an indication of when a BCI system is not performing according to the user’s intentions. Here, we investigate the brain signals of an implanted BCI user suffering from locked-in syndrome (LIS) due to late-stage ALS that prevents her from being able to speak or move but not from using her BCI at home on a daily basis to communicate, for the presence of error-related signals. We first establish the presence of an ErrP originating from the dorsolateral pre-frontal cortex (dLPFC) in response to errors made during a discrete feedback task that mimics the click-based spelling software she uses to communicate. Then, we show that this ErrP can also be elicited by cursor movement errors in a continuous BCI cursor control task. This work represents a first step toward detecting ErrPs during the daily home use of a communications BCI

    Error-related potentials for adaptive decoding and volitional control

    Get PDF
    Locked-in syndrome (LIS) is a condition characterized by total or near-total paralysis with preserved cognitive and somatosensory function. For the locked-in, brain-machine interfaces (BMI) provide a level of restored communication and interaction with the world, though this technology has not reached its fullest potential. Several streams of research explore improving BMI performance but very little attention has been given to the paradigms implemented and the resulting constraints imposed on the users. Learning new mental tasks, constant use of external stimuli, and high attentional and cognitive processing loads are common demands imposed by BMI. These paradigm constraints negatively affect BMI performance by locked-in patients. In an effort to develop simpler and more reliable BMI for those suffering from LIS, this dissertation explores using error-related potentials, the neural correlates of error awareness, as an access pathway for adaptive decoding and direct volitional control. In the first part of this thesis we characterize error-related local field potentials (eLFP) and implement a real-time decoder error detection (DED) system using eLFP while non-human primates controlled a saccade BMI. Our results show specific traits in the eLFP that bridge current knowledge of non-BMI evoked error-related potentials with error-potentials evoked during BMI control. Moreover, we successfully perform real-time DED via, to our knowledge, the first real-time LFP-based DED system integrated into an invasive BMI, demonstrating that error-based adaptive decoding can become a standard feature in BMI design. In the second part of this thesis, we focus on employing electroencephalography error-related potentials (ErrP) for direct volitional control. These signals were employed as an indicator of the user’s intentions under a closed-loop binary-choice robot reaching task. Although this approach is technically challenging, our results demonstrate that ErrP can be used for direct control via binary selection and, given the appropriate levels of task engagement and agency, single-trial closed-loop ErrP decoding is possible. Taken together, this work contributes to a deeper understanding of error-related potentials evoked during BMI control and opens new avenues of research for employing ErrP as a direct control signal for BMI. For the locked-in community, these advancements could foster the development of real-time intuitive brain-machine control
    • …
    corecore