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Abstract 

Detecting a looming object and its imminent collision is imperative to survival. For most 

humans it is a fundamental aspect of daily activities such as driving, road crossing, and 

participating in sport, yet little is known about how the brain both detects and responds to 

such stimuli.  Here we use fMRI to assess neural response to looming stimuli in comparison 

to receding stimuli and motion controlled static stimuli. We demonstrate for the first time 

that, in the human, the SC and the pulvinar nucleus of the thalamus respond to looming in 

addition to cortical regions associated with motor preparation. We also implicate the anterior 

insula in making timing computations for collision events.  

 

Key Words: Tectopulvinar; motor preparation; looming; collision; fMRI 
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Introduction 

 

The detection of looming and estimation of time to collision (TTC) are fundamental for 

survival in the environment. These facilities are readily observable in most locomotor 

animals, and influence drivers’, cyclists’ or pedestrians’ critical decisions on a daily basis. 

For an object moving at a constant speed, TTC can be computed using instantaneous distance 

and velocity. In most environments, however, such parameters are not directly available to 

the observer, and require estimation from 3D scene information. As an object approaches the 

observer the optical size of the object on the retina (θ) increases exponentially with time, as 

does the rate of expansion of the object, or looming (Gibson, 1958). It has been proposed that 

the optical variable tau, based on the relative rate of image dilation, can be used as an 

estimation of TTC (Lee, 1976). Consistent with this interpretation, fear or defence responses 

to symmetrical expansion of a closed contour object in the visual field have been elicited in 

human infants and a of variety animal species (Schiff, Caviness, & Gibson, 1962; Yonas et 

al., 1977). 

 

Despite a wealth of research on behavioural aspects of looming detection and TTC 

computation in humans, little has been done to establish how processes are represented in the 

human CNS. In the search to understand the neural basis of looming detection a large 

proportion of research has been carried out using invasive methods on insect and avian visual 

systems. In the locust, the Lobula Giant Movement Detector (LGMD) neuron and the 

Descending Contralateral Movement Detector (DCMD) have been found to respond to 

looming stimuli (Peron & Gabbiani, 2009). In the pigeon the tectofugal pathway in particular 

has been implicated in the detection of looming. This pathway consists of the optic tectum, 

nucleus rotundus and telencephalic entopallium. Three classes of neurons (tau, rho and eta 

cells) have been located in both layer 13 (the stratum griseum centrale) of the optic tectum 

(Wu, Niu, Yang, & Wang, 2005) and the nucleus rotundus (Sun & Frost, 1998), which are 

sensitive to time to collision, angular velocity and the moment when an object reaches a 

specific optical size. The tectofugal pathway is the avian homologue of the superior colliculus 

(SC) and pulvinar nucleus (Pu) in mammalian species (Wu et al., 2005) with layer 13 of the 

optic tectum thought to be the equivalent of the intermediate stratum of SC (Stein, 1984). The 

SC has also been found to be involved in defensive, escape or cringe behaviour in avian 

species (Wang & Frost, 1992) and rodents and it is a subpopulation of cells in deep and 
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intermediate grey regions of the SC which are more closely associated with these behaviours 

(Northmore, Levine, & Schneider, 1988; Brandao, Cardoso, Melo, Motta, & Coimbra, 1994). 

Such behaviours would be consistent with a potential threat, such as a looming predator in 

central or peripheral vision. Furthermore, the SC has connections to multiple regions of the 

pulvinar nucleus in primates (Grieve, Acuna, & Cudeiro, 2000), which in turn has reciprocal 

connections with a distributed network of cortical regions involved in vision, attention and 

multisensory processing. Thus, both these subcortical structures operate within a 

corticothalamic network and could allow for the modulation of motor and visual processing 

that is necessary for rapid response to threatening stimuli.  

 

More recently, two studies have used human fMRI in order to determine the neural correlates 

of looming detection and TTC decision making. Within our own lab comparative judgments 

on pairs of looming stimuli were found to cause increases in BOLD response in superior 

parietal and motor cortex (Field & Wann, 2005). Complementary to this, the supplementary 

motor area was found to vary with the likelihood of collision in an egocentric TTC judgement 

task (Coull, Vidal, Goulon, Nazarian, & Craig, 2008). This sensorimotor response suggests 

the forward engagement of motor preparation in response to an approaching object even 

though execution is not intended, underlining the direct and impelling nature of looming 

events. The methodology employed in these studies, however, did not look at subcortical 

activations associated with looming, particularly those in the superior colliculus and thus 

could not confirm any equivalence to avian models. Furthermore, neither of these two studies 

employed a task which necessitated accurate TTC judgments, but rather used binary choice 

judgments.  

 

In the present study we aim to look at the neural correlates, in humans, of estimating TTC for 

the approach of looming objects. Looming is associated with an increase in the relative rate 

of image dilation on the retina. Measuring the neural response to looming stimulus provides a 

challenge, as it is also inherently linked with changes in both local and global luminance and 

motion properties, which themselves can be represented neurally. In order to account for low 

level visual effects we used point dot stimuli that minimised the overall change in luminance 

across the time-course of an event and allowed us to present stimuli with similar local, but 

not global motion properties. A second challenge is to establish whether neural systems are 

responding to potential collision or just a change in a low level motion property that might be 
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dissociated from a collision stimulus.  Gibson (1958) noted that “magnification reaches an 

explosive rate in the last few moments before contact...This accelerated expansion specifies 

imminent collision.” (p. 188). In this respect a system that is sensitive to accelerated 

expansion (looming) is sufficient to act as a collision warning system, although this will not 

provide a precise estimate of when the collision will occur.  In this first foray into 

establishing human neural processing of collisions we focus specifically on the response to 

accelerated expansion and contrast this with accelerated contraction, but and also compare it 

with stimuli that have the same average local motion speed, and contain elements that change 

direction (accelerate), but do not display accelerated expansion.   
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Methods 

Participants. 10 neurotypical, paid volunteers aged between 20 and 40 (7 males and 3 

females) took part in this study. The study was approved by a local ethical committee; all 

participants were screened according to standard fMRI scanning guidelines and gave their 

written consent to take part in the study. 

Stimulus Presentation. Stimuli were projected on to a screen at the end of the scanner bore 

via a projector in the scanner control room. Participants viewed the screen whilst lying in the 

bore of the scanner via a mirror positioned ~15 cm from their eyes. The screen refresh rate 

was 60 Hz and the resolution was 1024*768 pixels. The horizontal and vertical extent of the 

screen was 34º and 30º respectively. Stimuli were presented monocularly to the left eye, with 

the right eye covered by a patch for the duration of the experiment. 30 repetitions of each 

condition were presented in total using an n-back sequence so that each stimulus was 

preceded by each other stimulus an equal number of times. Furthermore, the interstimulus 

interval was varied between 7.5s and 9s. Both these procedures seek to reduce bias in 

estimating event related % signal change because of activity related to previous trials.  

 

Stimuli were generated using Vizard (Worldviz) software that uses OpenSceneGraph libraries 

to present perspective correct 3D stimuli. This allows all stimuli to undergo the 

transformations that would occur with a solid object moving in depth. For the moving 

stimulus we used a ball composed of point lights, placed at 500 vertices around a sphere. 

These points expanded during flight as would texture elements on a real sphere, but the size 

of each element did not increase. In addition we added a rotation of 45°/s, to each sphere 

during flight (1s), randomized across three axes (pitch, roll, and yaw) for each trial, which 

gave a compelling impression of a structured object moving in depth. 

 

For all stimuli two vertical lines where set behind the main stimuli at 3.87m and their colour 

(green, yellow, or blue) indicated what trial type was about to occur. These lines were also 

used as part of the TTC task for the receding condition. The experimental sequence always 

commenced with the ball fading into the scene over 1.5s. This then underwent motion for 1s 

and then disappeared some time before a TTC button response was required. The looming 

ball (Figure 1a) was 24cm in diameter and travelled at 3.1m/s, it disappeared 0.25s before 

reaching the observer (0.77m from observer and 17.7
o 

optical size). The receding ball 
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(Figure 1b) created exactly the same series of images as the looming ball, but starting with 

the largest size (17.7
o
), and contracting down to the smallest. The observer pressed a button 

when they judged the ball would reach the size that would pass through two yellow vertical 

lines 3.87m away (although this size was never actually reached on any trial). This condition 

provided matched stimuli for the looming ball in terms of representing a structured 3D object 

in motion which required a TTC judgment and also had an equivalent distribution of local 

motion, but it presented accelerated contraction, rather than accelerated expansion. The 

random condition faded in at the final size of the looming ball (17.7
o
), but the dot elements 

then underwent random motion at a speed equivalent to the mean rate of dot motion in the 

looming ball approach. The observer pressed a button when a blue square appeared 

approximately 0.25s after the dot motion ceased. This presented a control for the manual 

response in the other conditions, but in this case the response was not based on anticipated 

arrival. This condition also acted as a low level visual control. The dot elements had 

equivalent local motion properties averaged across the 1s event and the elements changed 

direction of motion (directional acceleration), but importantly there was no isotropic 

acceleration, which is a key feature of motion in depth.  The comparison of Random, 

Looming, and Receding stimuli allow us to identify areas that respond to motion patterns 

signalling motion in depth and then whether this activation is due to approach (collision) or 

just any motion in depth. All velocities and temporal parameters were randomized by +/- 

10% across trials so as to avoid habituation when making a TTC motor response. 

 

FIGURE 1 

 

fMRI data acquisition and pre-processing. fMRI data was collected using a Siemens Trio 3 

Tesla scanner with an 8 channel head array coil. Functional images were collected using 38 

slices covering the whole brain (slice thickness 3 mm, inter-slice distance 0 mm, in-plane 

resolution 3mm×3mm) with an echo planar imaging sequence (TR = 3 s, TE = 29 ms, flip 

angle = 90 degree). All experiments in this study employed an event related design and data 

was collected over the runs of 141 each, with the first four volumes of all runs being 

discarded to allow for T1 equilibration effects. fMRI data pre-processing and data analysis 

were carried out using Brain Voyager QX. Prior to analysis, all images were corrected for 

slice timing using the middle slice as a reference slice. Images were realigned to the first 

image in the first session and resultant realignment parameters were used as regressors in 1
st
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level GLM analysis. All images were transformed to Talairach space. ROI analysis at the 

individual level was carried out on unsmoothed data; however, whole brain contrasts were 

carried out on smoothed (5mm) images. 

 

1st and 2nd level GLM analysis. Beta values were estimated using the general linear model 

(GLM) in order to convolve the haemodynamic response (HRF) with the time series of 

events. We removed low frequency noise with a high pass (GLM-Fourier) filter. An event in 

this case was classed as the onset of the stimulus fade in to the offset of the stimulus some 

time before TTC (2500ms). The period between offset and TTC was not included in the event 

time in order to avoid directly modelling early motor responses. A correction for serial 

correlations was employed using a first order autoregressive model (AR-1). Six regressors 

were added to each model in order to model potentially confounding rotational and 

translational minor head movements in x, y and z coordinates; this was considered 

particularly important in the event that looming stimuli was associated with minor 

‘avoidance’ head movements. At the group level a p < 0.001 (uncorrected (unc.) threshold) 

was used alongside a 10 voxel (vx.) cluster level extent threshold for general comparisons. 

 

Region of interest (ROI) event related analysis. The SC is a particularly difficult structure 

to image using fMRI due to its small size and its proximity to major blood vessels in the brain 

stem, making it subject to cardiac noise (DuBois & Cohen, 2000).  Wall, Walker, & Smith, 

(2009) recently presented data which questioned the validity of using a standard (6 second) 

canonical haemodynamic response function (HRF) citing that a 4/5 second HRF was actually 

optimum for modelling activity in the SC. They noted a significant improvement in detected 

activation in the SC without the need for complex scanning procedures or analysis. Thus, in 

order to maximise statistical inference we did an additional ROI analysis on anatomically 

defined regions of the left and right SC. Each ROI comprised of a 27mm
3
 cube drawn over 

(and within) the SC using landmarks derived from a standard brain atlas (Mai, Paxinos, & 

Voss, 2007), see figure 2. In order to allow us to assess BOLD responses which may not be 

precisely modelled by a 6 second HRF raw event related time courses were extracted from 

each individual SC ROI. These % signal change time courses were averaged across all 

participants for left and right separately, adjusted by subtracting the mean of the 0 & 1 second 

time points and then normalised by dividing by the maximum data point in the data set.  
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FIGURE 2 

 

Bell, Meredith, Van Opstal, and Munoz (2006) found that a high intensity stimulus which 

prompts a saccade resulted in earlier neural activation (~50ms) in the primate SC than a 

lower intensity stimulus, suggesting that neural responses in the SC can be mediated by light 

intensity. However, Bell and colleagues (2006) used a stimulus that was 160 times brighter 

than its comparator, whereas the brightness of our stimuli in the fovea only varied by a factor 

of 5 for a distant ball (point lights compressed) vs. a near ball (point lights dispersed). As our 

looming and receding stimuli have perfectly matched but reciprocal intensity ramps, the raw 

time courses also allowed us to determine whether there were temporal differences in the 

BOLD peak response due to specific clusters of frames. The looming event presented a dense 

patch of dots in the centre of the screen at onset and a larger sparser patch of dots at 

completion; however the converse were true for the receding stimuli. Examining time course 

values within the SC ROIs allowed us to assess this influence. If the BOLD response is 

consistently time locked to the start of the event (regardless of sequence order) we would 

expect a temporally consistent response peak for each condition regardless of the strength of 

that response; however, if the BOLD response is time locked to frames with a high level of 

luminance in central visual field we would expect a consistent one second offset across 

conditions. 
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Results 

Behavioural Results. Compared to a veridical time estimate (TTC = 0) participants tended to 

respond only fractionally before TTC for the receding balls (mean = -0.043s, SD = 0.229: t = 

-0.59, p = 0.57) and significantly after TTC for the looming balls (mean = 0.233s, SD = 

0.205: t = 3.60, p < 0.01). Late responses to looming balls may have been related to where 

participants considered their face to be in relation to the screen when asked to press the 

button “when they thought the ball would hit them in the face”. Although participants 

reported finding the receding condition harder the more accurate responses may relate to 

being able to visibly see the point of contact. Given this pattern of results, the receding 

condition was considered a good cognitive as well as low level visual control for the looming 

stimulus. Motor responses to the square cue in the random condition were compatible with a 

reaction time to the onset of a stimulus (mean = 0.537s after, SD = 0.107: t =15.74, p 

<0.001). This suggests that participants were simply reacting to the appearance of the square 

rather than trying to anticipate its onset. 

 

MRI Results. Making a TTC judgement to receding stimuli (receding > random, p < 0.001 

unc., vx > 10) activated middle frontal gyrus (MFG), superior frontal gyrus (SFG), inferior 

parietal lobe (IPL), and post central gyrus (PCG), see Table 1. In contrast, making a TTC 

computation specific to looming (looming > random, p < 0.001 unc., vx > 10) stimuli 

activated MFG, cingulate gyrus and anterior insula. Viewing looming balls in comparison to 

a high level TTC control (looming > receding, p < 0.001 unc., vx >10) resulted in activation 

in inferior frontal gyrus, anterior and mid insula as well as basal ganglia and thalamic medial 

Pu.  

 

 

Following the onset of stimulus fade in each condition a six second peak BOLD response in 

left and right SC for the looming ball (see figure 3). ROI t-tests showed that there were 

significantly increased responses in left and right SC when viewing looming stimuli 

compared to both receding stimuli (L: t =1.634, p<0.05; R: t =1.395, p < 0.01) and random 

dot motion (L: t =1.664, p < 0.05; R t =1.157, p < 0.05); response peaks in the reverse and 

random conditions showed no significant difference however.  
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There was no suggestion of a consistent 1s offset in peak BOLD response when comparing 

the receding and looming stimuli in SC; thus, there appeared to be little consequence of 

having reciprocal luminance intensity ramps within trials. Although our three whole brain 

contrasts presented no activation in visual cortices, in acknowledgement that activation in the 

SC could still be due to low level visual features of the looming stimulus we carried out three 

repeat contrasts at a much more lenient threshold (p < 0.05 unc.) in order to ascertain whether 

low level effect such as average luminance intensity across trials were apparent in the BOLD 

response. The only contrast resulting in activation in visual cortices was receding > random; 

this activation was located on the anterior end of the calcarine fissure (x=7,y= -72, z= 9) and  

occipital gyrus (x=-24, -85, -12), anatomically corresponding to V1v and V2d respectively. 

The looming condition resulted in no additional visual activation in comparison to receding 

or random stimuli; thus strengthening our claim that SC response to a looming object is not 

simply a result of low level visual features.  

 

 

 

 

FIGURE 3  

TABLE 1 
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Discussion 

 

This study has shown that an extensive network of sub-cortical and cortical regions respond 

preferentially to visually looming stimuli compared to salient stimuli with no accelerated 

expansion properties. At the sub-cortical level a response to looming in human SC and mPu 

is in line with research findings in both the pigeon and the locust (Sun & Frost, 1998; Wu et 

al., 2005; Peron & Gabbiani, 2009). This finding also fits well with the role of the SC in 

detecting visually salient stimuli and orientating or defensive movements of the head and eye 

to salient stimuli (Brandao et al., 1994).  Activation associated with looming stimuli in the 

basal ganglia is also consistent with previous research. Inhibitory mechanisms in the basal 

ganglia network have been inferred to be involved in ceasing ongoing motor behaviour when 

a looming, potentially dangerous, object is detected (Redgrave, Prescott, & Gurney, 1999). 

The basal ganglia output nucleus has efferent projections to the thalamus and pre-motor areas 

of the brain stem, including SC (Comoli et al., 2003) and may play a role in mediating motor 

responses to looming stimuli entering personal space.  

 

The mPu receives inputs from intermediate layer of the SC and as well as having projections 

to and from striate and extrastriate regions. It is also connected to a range of higher cortical 

regions such as; parietal, temporal, orbital frontal and cingulate cortex as well as the 

amygdala (Grieve et al., 2000), and could thus play an important role in motor preparation 

with regard to looming stimulus.  A recent review by Kaas and Lyon (2007) which 

predominantly focused on primate literature implicates a subset of medial nuclei in the 

pulvinar as the subcortical component of the dorsal visual stream, with the majority of 

pulvinar projections to middle temporal visual area (MT) emanating from medial regions. A 

neural network which circumvents V1 in this way may provide a more direct pathway for the 

purpose of responding to approaching stimulus. Given that the pulvinar nucleus of the 

thalamus plays a role in attentional modulation and orientating (Kastner & Pinsk, 2004), 

looming stimuli may simply be more attentionally engaging, thus resulting in tectopulvinar 

activation. However, we argue that a looming detection mechanism which works on such a 

principle would still be an effective looming detection mechanism for rapid response to 

approaching object.  
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Activations across frontal, parietal and cingulate cortex were present when making a TTC 

judgement to both looming and receding stimuli in comparison to random motion control. 

These activations are  consistent with previous research and reflect the high cognitive 

demand of the task (Field & Wann, 2005).  Additional activation present in frontal and 

parietal cortical regions when making a TTC judgement to receding stimuli are consistent 

with the cognitive difficulty associated with making a computational TTC judgement in 

comparison to a low level control (Livesey et al., 2007) and encoding spatially salient aspects 

of the external environment (Culham & Valyear, 2006). Previously, comparative judgements 

made between two looming stimuli have been found to selectively increase the BOLD 

response in superior parietal and motor cortex (Field & Wann, 2005); in our study these 

regions were only activated for receding stimuli. The receding condition was the only 

condition which required the use of multiple objects in the simulated environment as the 

participants had to judge time to collision to a distant set of lines rather than to the face. This 

suggests that there is either a specific or additional role for parietal or motor cortex in making 

relative TTC judgements involving multiple objects in visual space as opposed to absolute 

judgements with a single object.  

 

The anterior insula was additionally active when making a TTC judgement to looming 

stimulus in comparison to both the control and receding stimuli. This may bear some 

connection to this region’s involvement in making duration judgments (Livesey et al., 2007), 

error detection (Klein et al., 2007) and interoceptive awareness on a variety of tasks (Craig, 

2009). Our current findings, taken together this research suggests that this cortical region may 

be particularly attuned to making timing judgements with respect to objects in the 

environment which are approaching personal space. 

 

Future research needs to focus on elucidating the role of attentional orientating in looming 

detection and associated tectopulvinar response. The two may be closely linked as looming 

stimuli tends to be alerting.  Furthermore, disambiguating the contribution of different visual 

cues which are inherently linked to a looming object is a challenging next step. In this 

experiment we controlled for global changes in luminance using point light stimuli, but 

manipulating object properties such as visible texture can bias the percept of looming (Jacobs 

& Diaz, 2010).  The progression from point light stimuli, towards more natural textures that 
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will produce different luminance ramps, is a balance that needs to be struck between 

ecological validity and experimental control in MRI.  

 

We conclude that an extensive network of regions is involved in both low level detection of 

looming, sensorimotor response and higher level TTC estimation. The network contains the 

tectopulvinar early warning system, a motor preparatory system and possibly a more 

sophisticated computation system involving the anterior insula. These preliminary findings 

do have implications for humans’ performance during every day activities, such as driving or 

sports. If errors occur in collision detection, these may be due to failure at a sub-cortical level 

rather than in higher level cognitive processing. The dedicated nature of these early detection 

systems may also shed light on the “footballer’s dilemma” where we are able to react very 

rapidly to objects on a collision course, but after the event are unable to elucidate what we 

perceived or what we did to intercept or avoid an object.     
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Table 1: Activated regions for timing computation and looming. The whole brain 

contrasts receding ball > random motion and looming ball> random motion were run in 

order to identify brain regions which were involved in making a time to collision 

judgement to a moving stimulus in comparison to a low level visual and motor control 

stimulus. The contrast looming > receding was run to identify activation which was 

specific to perceiving an approaching object in comparison to a control matched for 

making a TTC judgement. All activations presented were at the p < 0.001 uncorrected 

level with a voxel extent threshold =10. 

 

 

Table 1 

 

Condition 

Peak 

X 

Peak 

Y 

Peak 

Z t Voxel N 

      

Receding > Random      

Superior Frontal Gyrus -6 -1 64 6.29 67 

Middle Frontal Gyrus 39 56 10 6.67 120 

Inferior Parietal Lobule 51 -46 40 5.20 26 

Postcentral Gyrus -21 -49 64 5.49 33 

      

Looming > Random      

Middle Frontal Gyrus 45 29 22 5.21 24 

Cingulate Gyrus 3 11 44 6.34 68 

Anterior Insula -36 19 4 5.43 14 

      

Looming > Receding      

Head of Caudate Nucleus -9 2 4 5.58 25 

External Globus Pallidus -9 -1 -5 5.45 23 

Medial Pulvinar nucleus of the Thalamus 9 -31 -2 6.03 16 

Inferior Frontal Gyrus 48 26 13 5.78 11 

Anterior Insula 39 22 7 6.41 20 

Mid Insula 36 -7 -11 7.01 29 
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Figure 1: Sequence of events in a looming trial (a.) and receding trial (b.). 1. Lines change colour to 
cue stimulus type. 2. Ball appears by slowly fading in for 1.5 seconds. 3. Ball looms towards/ 

recedes from viewer for 1 second. 4. Ball disappears and participant has to make a TTC judgement 
after a random interval.  
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Figure 2.  27mm3 ROI of left and right SC (inset) and the location of SC within the brain (main 
image).  
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Figure 3: Event related time course % signal change values for bilateral SC. The event start and end 
points are marked by the dashed grey line; looming onset is marked by the solid grey line.  
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