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Abstract
While brain computer interfaces (BCIs) offer the potential of allowing those suffering from loss of muscle control to once 
again fully engage with their environment by bypassing the affected motor system and decoding user intentions directly from 
brain activity, they are prone to errors. One possible avenue for BCI performance improvement is to detect when the BCI user 
perceives the BCI to have made an unintended action and thus take corrective actions. Error-related potentials (ErrPs) are 
neural correlates of error awareness and as such can provide an indication of when a BCI system is not performing according 
to the user’s intentions. Here, we investigate the brain signals of an implanted BCI user suffering from locked-in syndrome 
(LIS) due to late-stage ALS that prevents her from being able to speak or move but not from using her BCI at home on a 
daily basis to communicate, for the presence of error-related signals. We first establish the presence of an ErrP originating 
from the dorsolateral pre-frontal cortex (dLPFC) in response to errors made during a discrete feedback task that mimics the 
click-based spelling software she uses to communicate. Then, we show that this ErrP can also be elicited by cursor move-
ment errors in a continuous BCI cursor control task. This work represents a first step toward detecting ErrPs during the daily 
home use of a communications BCI.

Keywords  Brain computer interface · Error-related potentials · Motor cortex · Dorsolateral pre-frontal conrtex · Locked-in 
syndrome · Utrecht neural prosthesis

1  Introduction

Brain computer interfaces (BCIs) offer the hope of being 
able to once again fully engage with their environment to 
those who suffer from a loss of motor control, by bypass-
ing the affected motor system and decoding user intentions 
directly from brain activity. While the challenge of sensing, 
interpreting and controlling computer and robotic devices 
with brain signals was already being posed in the 1970s [1], 
the potential of BCIs to become systems that can be used at 
home to restore lost motor function is only now starting to 
be realized [2].

One prime example of such a system is the Utrecht Neural 
Prosthesis (UNP), which provides an individual with locked-
in syndrome (LIS) due to late-stage ALS with a means of 
spelling words on a computer screen, despite an inability 
to speak or move [3]. The fully implanted system is able to 
detect the brain activity generated during attempted hand 
movements and translate them into a 'click' which is used 
to select letters from a matrix being scanned through on a 
screen. While there is no decreasing or increasing trend in 
UNP performance over time and the performance is high 
enough (89%) for daily home use, errors (such as unintended 
clicks) are still made.

In fact, the main challenge faced by the neurologists, 
neurosurgeons, computer scientists, systems engineers and 
many other specialists working on developing BCIs over 
the past decades has been to gain robust and reliable con-
trol [4–6]. There are numerous factors, both fundamental 
and technical, that disrupt the mapping of user intentions 
to system performance and for the foreseeable future BCIs 
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are likely to remain error prone. This presents two chal-
lenges to BCI usability at home. First, during home use, 
the user’s true intentions are not known and performance 
errors may not be apparent. For example, the UNP system 
allows free communication and it may not be clear when 
the typed charters do not match the user’s intention. This 
is especially the case when performance enhancing fea-
tures, such as word completion and auto-correction are 
employed. Second, it is generally the case that the number 
of successful control events needed to correct for erro-
neous BCI performance is much greater than that which 
caused the performance error.

One possible solution to this problem is the fact that 
brain signals not only encode users’ intentions, they can 
also reflect the users’ perception of errors. Error-related 
potentials (ErrPs) are a neural correlate of error aware-
ness [7]. Furthermore, it has been shown that ErrPs are 
generated in response to errors made by a BCI system 
during both discrete control [8], such as selecting letters, 
and continuous control [9], such as controlling computer 
mouse movement. By detecting ErrPs a BCI system can 
take fast corrective actions, such as deleting the previously 
selected character, before further actions are made.

1.1 � Problem formulation

Proof of concept ErrP use has been shown in a multitude 
of BCI systems (see [10] for a review of ErrPs in BCI). In 
fact, ErrPs have even been used as the sole control signal 
in BCIs that can infer which letter a user intends to choose 
by simply having them observe a cursor moving through a 
letter matrix and measuring which cursor movements elicit 
an ErrP, and are thus incorrectly moving away from the 
target letter [11]. However, to the best of our knowledge, 
no studies have reported the use or presence of ErrPs in 
an implanted home-use BCI.

Traditionally, ErrPs are defined as deflections in the 
electric voltage potential measured using non-invasive 
electroencephalogram (EEG) electrodes located centrally 
at the top of the head [7–11] and studied using healthy 
volunteers. Error-related neural responses (ERNRs) in 
the spectral decomposition of the signal from electrocor-
ticography (ECoG) electrodes [12], as well as error-related 
changes in the spike rate and local motor potential (also a 
spectral features) of needle arrays [13], implanted on the 
primary motor cortex (M1) have also been reported.

Here, we expand upon this work by searching for the 
presence of perceived error-related signals after known 
errors during both discrete feedback and continuous feed-
back UNP BCI control training games. Because the UNP 
user presented in this work has sensors implanted over 
both M1 and dorsolateral pre-frontal cortex (dLPFC), we 

can investigate both areas for error responses. While the 
dLPFC has been associated with error processing in the 
brain [14], to the best of our knowledge, this work pro-
vides the first investigation of ErrPs in dLPFC.

2 � Methods

2.1 � The UNP brain signal

The data reported in this study was generated by the first 
UNP participant who was implanted with ECoG electrode 
over her left hemisphere hand knob area of M1 and her 
left dLPFC. Each cortical area is covered by a strip of 
four electrodes with dimensions matching those of most 
clinically used ECoG electrodes (circular with 4  mm 
of exposed surface contact spaced with a 1 cm center-
to-center distance). The electrode strips are attached via 
wires that travel through a burr hole in the skull and under 
the skin to an Activa™ PC + S (Medtronic plc; investi-
gational devices) implanted subcutaneously beneath the 
left clavicle. From each of the implanted strips a single 
bi-polar electrode is created measuring the difference in 
electric potential between two electrodes on the strip. The 
electric potential signal is amplified and filtered with the 
Activa™ PC + S and transmitted wirelessly to a Nexus-1 
(Medtronic plc; investigational devices) receiver worn on 
the chest, which is connected via a cable to a tablet. Fur-
ther preprocessing and translation of the signal into the 
‘click’ signal is done on the tablet using custom software, 
which then interfaces with the user’s existing click-based 
assistive communication system. For further description 
of the UNP system and a visualization of the implanted 
electrodes and hardware, see [3].

For this work, the Activa™ PC + S bi-polar referenced 
voltage potential signals from both the M1 and dLPFC 
were recorded at a sampling rate of 200 Hz (see [3] for 
location of M1 bi-polar electrode and [13] for location of 
dLPFC bi-polar electrode). M1 is a popular target corti-
cal area for BCI in general and especially ECoG-based 
BCI because measured signal changes in this area are 
highly correlated to a wide range of movements, including 
attempted movements in people with motor disabilities. 
For this reason, the primary UNP control signal is derived 
from the M1 electrodes [3]. Specifically, the two main 
functional response features used for control in the UNP 
are a decrease in power in the 4–40 Hz low-frequency band 
(LFB) and an increase in power in the 50–100 Hz high-
frequency band (HFB) (see 3 for more details of comput-
ing the control signal). These features match nicely with 
those commonly reported in the ECoG literature focusing 
on M1 [16].
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It has been shown that the dLPFC can be a target area 
for BCI control using mental calculation [15] and this 
provides an alternative UNP control strategy [17]. In this 
work, the BCI feedback is generated from the M1 elec-
trodes, but signals are also being simultaneously measured 
from the dLPFC.

2.2 � Tasks

Since ErrPs have been observed in both discrete and con-
tinuous control tasks and our UNP user performed both dis-
crete and continuous BCI control tasks (respectively, the 
‘click’ and ‘target’ tasks described in [3]), we analyzed the 
M1 and dLPFC signals during both types of tasks for evi-
dence of a signal responses to errors. ECoG data was time 
locked to the visual task feedback which was presented on a 
screen mounted to her wheelchair. The visual feedback had 
a refresh rate of 5 Hz.

2.2.1 � Discrete feedback ‘click’ task

The UNP user played the ‘whack-a-mole’ BCI training game 
(‘click task’) in which the objective was to make clicks using 
the UNP system to select holes that contain a mole (see 
Fig. 1a). This task uses the same row-then-column scan-
ning as the UNP user’s spelling software and requires her to 
make brain clicks (using attempted hand movements) dur-
ing specific time intervals when the scanning box contains 
a mole. For the data presented here a scan rate of 2 s was 

used, meaning that each row or column was highlighted for 
2 s before the scanning box moved to the next position. The 
UNP user needed to raise the control signal above a thresh-
old for at least 1 s to produce a click.

As depicted in Fig. 1a from left to right, there are four 
types of discrete feedback moments: (1) when a scanning 
selection box changes position (true negatives; TNs), (2) 
when a click was made during a correct click period (true 
positives; TPs), (3) when the feedback indicated that a click 
failed to be made during an intended click period (false 
negatives; FNs), and (4) when a click was made outside a 
correct click period (false positives; FPs). Since the user 
reports that she never intends to make such FP clicks, these 
clicks are perceived to be system errors. It should be noted 
that clicks made in a scan period just before or after a target 
mole was highlighted have been removed from the analysis 
because they are likely do to timing errors in actual attempts 
to make a click and not spontaneously made clicks when no 
target was present.

Over 40 sessions of the UNP user playing the discrete 
feedback game, 722 TN, 461 TP, 174 FN, and 68 FP feed-
back moments were recorded (resulting in an overall click 
accuracy of ~ 83%).

2.2.2 � Continuous feedback ‘target’ task

While training to control her brain signal, the UNP user 
also played the ‘target task’, a 1D cursor control task that 
provided continuous feedback of the control signal during 

Fig. 1   UNP BCI control 
training games. a The ‘whack-
a-mole’ or ‘click task’ game 
with four types of discrete 
feedback moments (described in 
Sect. 2.2.1) depicted from left 
to right. b Depiction of hit (top) 
and miss (bottom) trials for the 
‘target task’ game (described 
in Sect. 2.2.2). c Example of a 
‘target task’ trial with a cursor 
movement error during a miss 
(left) and hit (right) trial
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attempted hand movements. In this task a yellow cursor 
(see Fig. 1b) moves at a continuous speed from left to right 
across the screen. The control signal was used to control the 
y-velocity (up and down) of the cursor with a positive deflec-
tion in the control signal causing the cursor to move up and 
a negative deflection causing the cursor to move down. The 
goal of the task was to hit one of two red targets at either the 
top or bottom half of the left edge of the screen by attempt-
ing hand movements to push the cursor up or relaxing to let 
the cursor move down.

Each trial of the task lasted 5 s during which the cursor 
first remained still at the center of the left edge of the screen 
and the target was presented at the right for 0.5 s, then the 
cursor moved across the screen for a period of 2.5 s, and 
finally the screen was highlighted with either a green or red 
border to indicate whether the target was respectively hit or 
missed, for 1 s.

Over ten runs of this task, a total of 108 trials, were com-
pleted with 90 targets being correctly hit and 18 missed, 
resulting in total target accuracy of ~ 83% that matches the 
click accuracy of the discrete task.

2.2.3 � Marking movement errors made in the continuous 
feedback task

Given that the refresh rate of both tasks was 5 Hz and the 
cursor movement period of the continuous feedback task 
was 2.5 s, each trial provided 12 cursor position updates. 
Hence, the continuous feedback was not smooth and distinct 
moments when the cursor moves in the y-position toward 
the non-target half of the screen can be perceived as system 
errors by the user. For this reason, in addition to the end of 
trial feedback moments that indicate either a hit or miss, 
feedback moments of incorrect cursor movement were also 
marked for the continuous feedback task.

Marking was done by screening for periods (consecutive 
screen refresh samples) when the y-position of the cursor 
moved away from the target (see Fig. 1c). If the y-position 
change during these periods was > 5% of the height of the 
screen, then the beginning of the period was marked as an 
‘error movement’ feedback moment. Note that error move-
ment feedback moments can occur in both miss and hit trials. 
In total 48 error movements’ feedback moments were found.

2.3 � Analysis of the error responses

Our search for bi-polar ECoG error responses during UNP 
BCI use started with the discrete feedback task since this 
task was repeated many times, providing the most data, 
and ErrP signals are most prominent in response to discrete 
feedback moments that clearly indicate that an error has 
occurred. Based on these findings we narrowed our search 

in the continuous feedback task. All analysis was done using 
the Matlab (www.​mathw​orks.​com) software package.

The recorded bi-polar potential signals were smoothed by 
taking the mean over a 0.2 s sliding window. Thus, temporal 
fluctuations faster than the 5 Hz task feedback refresh rate 
were removed. This smoothed signal is referred to as the 
‘potential response’ in this work.

In addition to being used to derive the UNP control 
signal, frequency power features are commonly used for 
M1-based EEG [6] and ECoG [16] BCI control and have 
also been used in dLPFC BCI control [15, 17]. For these 
reasons, we also performed a frequency decomposition 
on the unsmoothed potential signals to investigate error-
related signals in the frequency domain. The spectral power 
response of the frequencies 1–100 Hz was computed using 
the square of the real component of the convolution of the 
potential signal with a complex Gabor wavelet dictionary 
[18] (span 4 cycles at full width half max). The spectral 
response of each frequency was then divided by the mean 
power to remove the 1/frequency power law seen in electro-
physiological data. These 100 power signals are referred to 
as the ‘spectral response’ in this work.

2.3.1 � Potential response to feedback analysis

For each type of feedback moment described above the mean 
potential response over periods’ time locked to each moment 
(trials) was computed. Similar to the method of Canolty 
et al. [19] the mean of the ‘baseline’ period (the period of 
each trace prior to the feedback moment) was subtracted 
from each trial.

To statistically quantify the mean traces, for each value 
in the mean traces a non-parametric p-value (q-value) was 
computed following the method proposed for by Maris and 
Oostenveld for the evaluation of neurophysiological signals 
[20].

First, 1000 pseudo-mean traces were created by randomly 
shifting the potential response data relative to the feedback 
moments and recomputing the mean baseline-corrected 
response traces for each feedback type using the new trials 
of data, which are no longer time locked to true feedback 
moments.

Then, each value was compared to the distribution of the 
absolute value of the values in the corresponding pseudo-
mean traces. The absolute value was taken because we were 
interested in both positive peaks and negative troughs in the 
normalized mean traces. The q-value of each value in the 
mean traces was computed as the percentage of pseudo-val-
ues > the absolute value of the true mean trace value. Since 
the q-values are computed per trace sample point, a multi-
ple comparison correction was applied. The correct multiple 
comparisons factor to use in the context of neural potential 

http://www.mathworks.com
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signals is hard to know since they contain oscillations (hence 
the commonly used spectral features used in BCI) and thus 
neighboring samples in time are not independent from each 
other. The multiple comparison factor used in this work was 
10, such that mean trace values with q-values < 0.005 were 
considered to be outside the chance range and thus represent 
a potential response to the task feedback.

For the TP, TN, FN, and FP feedback moments in the 
discrete feedback task, a period of 4 s before and 2 s after 
the feedback was used.

For the continuous feedback task, a period of 3 s before 
and 2 s after the target hit and target miss feedback moments 
was used. Note that the 3 s before feedback includes the 
0.5 s target cue period and 2.5 s cursor movement period. 
The trial period for the movement error feedback moments 
is discussed below (Sect. 2.3.3).

2.3.2 � Analysis of single trial error detection in the discrete 
feedback task

To further investigate the presence of an ErrP in the UNP 
potential signal, a single trial detection was done on the 
TP and FP click trials. The 2 s period after feedback of the 
mean potential response for the FP trials was correlated with 
the 2 s period after each of the TP and FP click feedback 
moments. For a range of thresholds, starting from the lowest 
correlation value and moving through all computed correla-
tion values until the highest, threshold crossing error detec-
tion was then performed. Each trial with a correlation above 
the threshold was counted as a detected ErrP and each trial 
with a correlation below was counted as having no ErrP. In 
context, TP click trials with a detected ErrP are FPs and FP 
click trials with a detected ErrP are TPs. The area under the 
receiver-operator curve (AUROC) was computed over the 
range of thresholds.

The AUROC was statistically quantified by randomly 
shuffling the labels of the TP and FP correlation values, 
repeating the thresholding detection, and recomputing the 
AUROC 1000 times. This procedure serves to compensate 
for the unequal distribution on TP and FP trials and allows 
for the computation (following the same procedure described 
above) of a q-value. Note that 1000 shuffles means that 
q-values < 0.001 cannot be reached.

2.3.3 � Analysis of movement error potential responses

The speed at which a movement error occurs will likely 
affect the moment at which the error is perceived by the user. 
If the cursor quickly makes a jump in the wrong direct the 
error will likely be perceived shortly after the beginning of 
the error movement. However, if the cursor slowly drifts in 
the wrong direction the error may be perceived with a longer 
delay relative to the beginning of the error movement. For 
this reason, a four-step analysis was developed to allow for 
jitter in the timing of the potential error response relative to 
the start of the error movement (see Fig. 2).

First, the mean smoothed response trace (over all error 
movement trials) of the dLPFC bi-polar electrode for the 
range of − 0.2 to 1.2 s time locked to the beginning of the 
error movements was computed (Fig. 2: Step 1). Next, 
this mean was shifted for the range of − 0.1 to 0.6 s over 
each trial until the shift with the highest correlation to the 
original mean was found, and a new mean over the shifted 
trials was computed (Fig. 2: Step 2). This process of shift-
ing to fit the mean response traces and computing a new 
mean trace was repeated 20 times (at with point no trial 
needed to be further shifted to optimally correlate to the 
mean). Then (Fig. 2: Step 3) 1000 trial-mean traces were 
computed by randomly shifting the actual error movement 
start times such that the − 0.2 to 1.2 s period relative to 
these times will no longer be time-lock to actual movement 
errors and repeating steps 1 and 2. This step thus produced 

Fig. 2   The four-step procedure 
(described in Sect. 2.3.3.) for 
computing significant responses 
to movement errors in the 
continuous feedback task while 
allowing for variations in time
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1000 mean traces that were not time locked to movement 
errors. For each of these 1000 pseudo-trial-mean-traces the 
maximum of the absolute value of the maximum and mini-
mum of the trace was computed (max(abs(max(trace)), 
abs(min(trace))). Finally, this distribution of 1000 peak/
trough values from the pseudo-trial-mean-traces was used 
to quantify the likelihood that that any peaks or troughs 
of the actual mean trace shifted around the actual error 
movements onsets indicate a significant feedback response 
(Fig. 2: Step 4). In this context significance was defined to 
be trace values whose absolute values were > 95% of the 
1000 pseudo-trial-peak/trough values.

Steps 3 and 4 were done because the shifting in Steps 
1 and 2 serves to sharpen or increase any peak or trough 

in the mean and thus prevents a direct comparison to non-
shifted pseudo-trial-mean trace values.

3 � Results

3.1 � The UNP data shows a dLPFC bi‑polar ErrP 
(dLPFC‑bErrP) in response to FP clicks made 
during the discrete feedback task

Both the M1 and dLPFC potential response and spectral 
response signals were screened for responses to all four 
feedback types of the discrete feedback task. The results 
of this screening are shown in Fig.  3. Given that the 
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Fig. 3   Spectral and potential discrete feedback task response patterns. 
a Mean spectral response patterns for the M1 bi-polar electrode time 
locked to TN, TP, FN, and FP (respectively from left to right) dis-
crete feedback task moments. b Mean potential response patterns of 
the M1 electrode. c Mean spectral response patterns of the dLPFC 
electrode. d Mean potential response patterns of the dLPFC elec-
trode. In all plots the vertical black lines at 0  s on the y-axis indi-
cate the feedback moment. The colors in the plots of a and c indicate 

spectral power with yellow and blue corresponding to minimum and 
maximum power, respectively. The blue traces in the plots of b and d 
show the normalized potential with red points indicating value with 
q-values < 0.005. The red, blue and cyan, and green circles in b and 
d indicate the dLPFC bErrP, M1 feedback negative troughs, and M1 
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which dLPFC bErrP detection was done (see Sect. 2.3.2)



450	 Z. Freudenburg et al.

1 3

spectral response of M1 was used to produce clicks through 
attempted hand movements, the mean spectral signal pat-
terns time locked to TN and TP click moments seen in the 
first two columns of Fig. 3a are as expected. A clear increase 
in the 50–100 Hz HFB 1 s prior to TP clicks (the minimum 
time need to make a click) coupled with a decrease in the 
5–40 Hz LFB fits the expect response from ECoG literature 
and the definition of the UNP control signal. In contrast to 
this, for TN moments, when the scanning box moves from 
one empty mole hole to the next and no attempted movement 
is made, a relatively high LFB power and low HFB power 
can be seen. Looking at the mean spectral response for FN 
moments (3rd column, Fig. 3a), it is clear from the high HFB 
power and low LFB power that the UNP user indeed made 
attempted hand movements, but failed to exceed the control 
signal threshold for the 1 s needed to make a click. The fact 
that she was attempting hand movements is also supported 
by the sharp increase in LFB power 0.5 s after the feedback 
moment (the ‘beta rebound’ phenomenon), which is also 
seen to a lesser extent for the TP clicks. This increase in 
the 13–30 Hz frequency band after the cessation of move-
ment is another common feature of M1 [21]. Interestingly, 
for the FP clicks (4th column, Fig. 3a), a HFB increase and 
LFB decrease 1 s prior to the click feedback is also seen. 
However, the post-click feedback period does not contain a 
sharp LFB increase. This, along with the user reporting that 
she did not intentionally try to click for these trials, supports 
the notion that these FP clicks were indeed due to sponta-
neous activation of M1 and were not related to attempted 
movements. Thus, while Fig. 3a shows the expected patterns 
of M1 activation due to attempted movements before feed-
back, the post-feedback M1 spectral responses to the error 
FN and FP clicks also match those expected and no clear 
error response is seen.

The mean M1 potential response shown in Fig. 3b con-
tains clear negative deflections, or troughs (blue circles), 
after all four types of feedback moments. In fact, even the 
additional troughs seen prior to TN feedback and later after 
TP and FP clicks (cyan circles) can be attributed to feedback 
moments. Since the scan rate is 2 s and TN shifts of the 
scanning box to the next position are often preceded by other 
TN scanning box shifts, the troughs just after 2 s and 4 s (the 
1st and 3rd cyan circle from the left) prior to TN feedback 
can also be attributed to TN scanning box shifts. In addition, 
scanning box shifts also occur 1 s after clicks (either TP 
or FP) are made, since the click feedback last 1 s and then 
scanning resumes. Hence, the troughs that occur 1 s after the 
initial post TP and FP feedback troughs (cyan circles in the 
Fig. 3c TP and TP plots) can also be attributed to feedback 
moments. Also, while the 2 s period before a TN scanning 
box shift does not contain any visual changes on the screen, 

due to the fact that the user first needs to select the correct 
row before the scanning box scans through the columns of 
that row, there are many moments in the task when scanning 
is resumed after a 1 s click feedback pause. Hence, there 
was often a click feedback moment 1 s before the last TN 
scanning shift feedback moment and the trough after 3 s 
prior to TN feedback (2nd cyan circle from the right in the 
rightmost plot of Fig. 3c) can also be attributed to a feedback 
moment. One final feature in the M1 potential signal that can 
be reported is the presence of a gradual increase in potential 
leading to a peak just prior to the beginning of the 1 s period 
in which an attempted hand movement is made to produce 
a TP click (green circle in the second plot from the left in 
Fig. 3c). Such a buildup can be attributed to the ‘Readiness 
Potential’ reported in M1 prior to executed movements [22]. 
Taken together, these results indicate a clear M1 potential 
response to all forms of visual changes on the screen and in 
preparation of attempted movement, but no post feedback 
response that could indicate that an error has been made.

When looking at the dLPFC, the lack of spectral response 
changes, seen in Fig. 3c, prior to discrete feedback moments 
is to be expected since dLPFC is not reported to have a func-
tional response related to attempted hand movements. How-
ever, the lack of spectral changes after the feedback moments 
also indicates that no spectral response to correct TP, missed 
FP, or incorrect FP clicks is seen in dLPFC either.

In contrast, while Fig. 3d shows no distinct deflection in 
the mean dLPFC potential response prior to any discrete 
feedback moment, a clear peak in the dLPFC potential 
response ~ 600–800 ms after an FP click is made (red circle 
in rightmost plot of Fig. 3d) is evident. A response trough 
is also seen ~ 900–1200 ms after a TP click, and to a lesser 
degree after a FN feedback moment. Hence, the dLPFC 
potential response does not show a distinct response to FN 
errors, but it does show a distinct response after an errone-
ous FP click has been made. Because this response is seen 
in the bi-polar response from dLPFC, we will refer to it as 
the dLFPC bErrP.

3.2 � Single trial detection of the dLPFC bErrP

While the dLPFC bErrP is observed in the mean potential 
response after FP clicks are made, more analysis is needed 
to establish that it is truly a consistent and unique response 
to unintended clicks made during UNP use. Thus, we per-
formed single trial ErrP detection using the dLPFC potential 
response and found an AUROC value of 0.795. As can be 
seen in Fig. 4, the AUROC value was not only well above 
the theoretical chance level of 0.5 (for a 2-class discrimina-
tion task), it was highly significant (q-value < 0.001). Thus, 
dLPFC bErrP represents a distinct pattern that can be used 
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to discriminate intended UNP clicks from unintended UNP 
clicks.

3.3 � The UNP ErrP in the continuous feedback task

After finding an ErrP response in dLPFC to FP clicks, it 
could be expected that missed targets in the continuous feed-
back task would also induce an ErrP response. However, as 
Fig. 5a shows, this is not the case. No deflection in potential 
signals is seen after moments when a target is missed or hit. 
A sharp positive peak followed by a negative trough is seen 
at the point when the cursor starts to move in response to the 
appearance of the target 0.5 s earlier.

However, in Fig. 5b it can be seen that there is a signifi-
cant peak in the dLPFC potential response when time locked 
to the onset of erroneous cursor movements that can occur 
both in trials where the target is eventually hit or missed. 
Thus, moments of unintended movement during the continu-
ous feedback task are also perceived as control errors by the 
UNP user and, as such, elicit a dLPFC bErrP very similar 
that that seen in the discrete feedback task.

As shown by the gray box plot in Fig. 5b depicting the 
distribution of shifts relative to the movement onset, the is 
an ~ 400 ms variance in the timing of when these errors are 
perceived. Interestingly, as Fig. 5c illustrates, even given this 
range the movement errors tend induce an even faster dLPFC 
bErrP than the discrete FP click errors.

4 � Discussion

In our study, we showed a significant potential peak of the 
bi-polar dLPFC potential response related exclusively to 
feedback indicating UNP system closed-loop BCI control 
errors, which we call the dLFPC bErrP. The dLPFC bErrP 
was seen in response to both unintended clicks made during 

a discrete feedback letter grid spelling task and unintended 
cursor movements during a continuous feedback 1D cursor 
control task. To the best of our knowledge, this is the first 
study to demonstrate an ErrP response to error movements 
made during continuous BCI control in a user of a fully 
implanted home-use BCI. This work also represents the first 
demonstration of an ErrP in dLPFC.

ErrPs have been reported in many studies during online 
discrete and continuous control and even BCI control [10]. 
In fact, Schalk et al. even reported ErrPs in BCI users play-
ing the same two-target 1D cursor control game analyzed 
in this work [9]. However, in their study ErrPs were seen in 
response to the feedback moments when the cursor missed 
the target. In the present study, no dLFPC bErrP was seen 
in response to these moments and was only seen at moments 
when the cursor moved in the unintended direction regard-
less of whether the target was eventually hit or missed. In 
addition, no dLFPC bErrP was seen when the UNP system 
failed to make an intended click and only in response to 
clicks that were unintended. This suggests that the UNP user 
perceives missed click moments and targets as joint user 
and system failures, while unintended clicks or sudden cur-
sor movements are perceived as unexpected erratic system 
behavior. This discrepancy could also be due to the dLPFC 
source of the ErrP (see discussion below).

4.1 � Application of the dLFPC bErrP to improve UNP 
performance

When looking into the feasibility of using the discrete feed-
back dLPFC bErrP signal to directly correct for FP clicks, 
we faced the previously described problem of needing a very 
high detection rate and very low false detection rate for ErrP-
based corrections to be helpful [10]. Because the UNP sys-
tem click performance is very good there are many more TP 
clicks than FP clicks. When attempting to detect ErrPs after 

Fig. 4   dLPFC single trial detec-
tion results. a AUROC over the 
full range of computed correla-
tion values (see Sect. 2.3.2). b 
AUROC value for the true TP 
and FP labels compared to the 
distributions of values created 
by randomly shuffling the labels
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a click has been made, the ~ 80 AUROC means that 80% of 
FP clicks (54 of 68) would be corrected while 20% of TP 
clicks (92 of 461) would be falsely ‘corrected’. This would 
likely not improve the UNP performance in the user’s eyes.

However, as the recent work of Lopes-Dias et al. demon-
strates, ErrP signals can also be used for controller adapta-
tion [23]. In this context the single trial detection of an ErrP 
can be less reliable and still inform the system as to when 
performance is generally good or bad. For example, in the 
cursor control task, the detection of a dLPFC ErrP could be 
used to slow down the cursor y-movement and its absence 
used to speed it up. This use of an ErrP is similar to its use 
in ErrP-driven BCI spellers where letters are selected by 
observing which scanner movements induce an ErrP because 
they move away from the intended letter and which do not 
[11]. In the context of UNP click-based spelling, the dLPFC 
bErrP could be used to offer the user the choice to delete a 
letter if a dLPFC bErrP is detected, offering a double check 
as to whether the click was really unintended. This basic 

approach is similar to a two-step ErrP-based error correction 
shown to improve the performance of a P300 BCI spelling 
system [24]. While these strategies could make good use of 
the dLPFC bErrP, further investigation is needed to verify 
the utility the dLPFC bErrP in improving UNP performance.

4.2 � Neural origins of the UNP bErrP signal

The dLPFC bErrP is likely related to the ErrPs reported for 
EEG signals [7–11], which are believed to originate in the 
anterior cingulate cortex (ACC). While the local nature of 
the ECoG signal makes it unlikely that the dLPFC bErrP is 
a direct measurement of the ErrPs generated by the ACC, 
the fact that both the dLPFC and the ACC are part of the 
corticolimbic system [13] suggests that it is closely related. 
The difference in timing of the dLPFC bErrP (+ 700 ms in 
the discrete case and a range covering + 400 to + 700 ms in 
the continuous case) compared to the 320 ms delay of the 
large positive peak in the EEG signal could be due to the 

Fig. 5   The dLPFC potential response to the continuous feedback task. 
a Mean dLPFC potential response time locked to the beginning and 
end of the continuous feedback task trials. The leftmost vertical black 
line indicates the moment when the cursor reaches the right side of 
the screen and the target is either hit of missed. The leftmost vertical 
black line indicates the moment when the cursor starts to move 0.5 s 
after the target appears. The plotted black trace is the mean potential 
response over all trials and the green and red traces are means of the 
hit and miss trials respectively. Trace points with a q-value < 0.005 

are marked with dots. b Shifted mean dLPFC potential response time 
locked to the onset of error movements. The dark red trace and light 
red shaded region plot the mean and standard error of the potential 
response. The dark yellow shaded area indicated the part of the trace 
with a q-value < 0.05. The vertical black line marks error movement 
onset with shaded grey box and whiskers plot showing the distribu-
tion of shifts relative to error movement onset. c The relative timing 
of the dLPFC bErrP found in response errors made in the continuous 
(light red) and discrete (dark red) feedback tasks
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differing roles of ACC and dLPFC within that system. The 
ACC is more engaged in processing emotional experiences, 
while the dLPFC is more engaged in regulating motivational 
responses [25]. Hence, an error signal originating from 
dLPFC could reflect awareness of the error (as opposed to 
a pre-awareness response in ACC). In light of this hypoth-
esis, FN feedback moments in the discrete click task did 
not induce the dLPFC bErrP could be because they do not 
require corrective action and FP clicks do. Also, the slightly 
earlier timing of dLPFC bErrPs in response to movement 
errors in the continuous control task could relate to the fact 
that quick action is required in these situations to correct for 
the error and hit the final target.

One factor to consider when interpreting our results is 
our use of bi-polar referenced signals. Bi-polar referencing 
makes the actual direction and temporal shape of the poten-
tial change under the individual electrodes unclear.

Finally, because the previously reported ERNRs using 
ECoG [12] and local motor potential and spike-rate ‘putative 
task outcome’ signals using needle arrays [14] were over 
sensorimotor cortex and also not potential response features, 
it is difficult to relate the dLPFC bErrP to this work. It is 
noteworthy that we saw no marked difference in spectral 
response to FPs in the M1 bi-polar electrode, despite the fact 
its spectral response was highly correlated to the feedback 
(i.e., it was used to produce clicks and overall task perfor-
mance was 83%). While unlikely given the fact that a robust 
spectral control signal was shown in M1 in this work and 
has been seen in dLPFC for mental calculation-based BCI 
control [17], this lack of spectral response could be due to 
the bi-polar referencing.

4.3 � Significance

There are two fundamental challenges to BCIs that could 
lead to ErrP detection being a crucial part of BCI systems.

First, the brain is always active and may never be fully 
functionally mapped. Thus, even as the brain signal features 
that are defined to control BCIs become ever more specific 
to certain cognitive events, the mapping of unique brain sig-
nal features to specific BCI outcomes is very challenging. 
In this context, it is likely that any brain signal feature that 
highly correlates to a cognitive task, such as attempted hand 
movements, will also be modulated by many other cognitive 
tasks and processes. Since the true intentions of the user are 
not known, such modulation can result in FPs. For example, 
in the UNP brain activity associated with the processing of 
sensory input from the touch of the hand causes FP clicks. 
Hence, there will likely continue to be room for improve-
ment in BCI performance by identifying unintended FP BCI 
events.

Second, the brain is always changing and adapting. 
Thus, BCIs will need to adapt with them and this need 

becomes greater as the recorded brains signals used for 
control become more complex. One of the keys to success 
that allows the UNP system to be used daily at home is the 
remarkable stability of the simple M1 bi-polar ECoG elec-
trode control signal, which measures the collective activ-
ity of millions of neurons. However, even the UNP system 
requires recalibration at times. On the other extreme of 
implanted BCIs are systems that can detect the activity of 
multiple single neurons. These systems can provide more 
complex BCI control, but need frequent recalibration and are 
not yet suitable for daily home use. As BCIs move forward 
they strive to get the best of both worlds by proving complex 
control that is stable over time in the daily home-use setting. 
In this context, being able to continuously monitor whether 
a BCI is performing according to the user’s intentions by 
detecting ErrPs could go a long way toward being able to 
adapt to changes in the control signal.

We feel that this work helps establish the feasibility of 
detecting ErrPs in BCI systems that are suited for long-term 
home use.
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