14,703 research outputs found

    Neural Simplex Architecture

    Get PDF
    We present the Neural Simplex Architecture (NSA), a new approach to runtime assurance that provides safety guarantees for neural controllers (obtained e.g. using reinforcement learning) of autonomous and other complex systems without unduly sacrificing performance. NSA is inspired by the Simplex control architecture of Sha et al., but with some significant differences. In the traditional approach, the advanced controller (AC) is treated as a black box; when the decision module switches control to the baseline controller (BC), the BC remains in control forever. There is relatively little work on switching control back to the AC, and there are no techniques for correcting the AC's behavior after it generates a potentially unsafe control input that causes a failover to the BC. Our NSA addresses both of these limitations. NSA not only provides safety assurances in the presence of a possibly unsafe neural controller, but can also improve the safety of such a controller in an online setting via retraining, without overly degrading its performance. To demonstrate NSA's benefits, we have conducted several significant case studies in the continuous control domain. These include a target-seeking ground rover navigating an obstacle field, and a neural controller for an artificial pancreas system.Comment: 12th NASA Formal Methods Symposium (NFM 2020

    Association Mining in Database Machine

    Get PDF
    Association rule is wildly used in most of the data mining technologies. Apriori algorithm is the fundamental association rule mining algorithm. FP-growth tree algorithm improves the performance by reduce the generation of the frequent item sets. Simplex algorithm is a advanced FP-growth algorithm by using bitmap structure with the simplex concept in geometry. The bitmap structure implementation is particular designed for storing the data in database machines to support parallel computing the association rule mining

    Quantitative toxicity prediction using topology based multi-task deep neural networks

    Full text link
    The understanding of toxicity is of paramount importance to human health and environmental protection. Quantitative toxicity analysis has become a new standard in the field. This work introduces element specific persistent homology (ESPH), an algebraic topology approach, for quantitative toxicity prediction. ESPH retains crucial chemical information during the topological abstraction of geometric complexity and provides a representation of small molecules that cannot be obtained by any other method. To investigate the representability and predictive power of ESPH for small molecules, ancillary descriptors have also been developed based on physical models. Topological and physical descriptors are paired with advanced machine learning algorithms, such as deep neural network (DNN), random forest (RF) and gradient boosting decision tree (GBDT), to facilitate their applications to quantitative toxicity predictions. A topology based multi-task strategy is proposed to take the advantage of the availability of large data sets while dealing with small data sets. Four benchmark toxicity data sets that involve quantitative measurements are used to validate the proposed approaches. Extensive numerical studies indicate that the proposed topological learning methods are able to outperform the state-of-the-art methods in the literature for quantitative toxicity analysis. Our online server for computing element-specific topological descriptors (ESTDs) is available at http://weilab.math.msu.edu/TopTox/Comment: arXiv admin note: substantial text overlap with arXiv:1703.1095

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps

    Supervised learning with hybrid global optimisation methods

    Get PDF
    • …
    corecore