618 research outputs found

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Reinforcement learning control of a flexible two-link manipulator: an experimental investigation

    Get PDF
    This article discusses the control design and experiment validation of a flexible two-link manipulator (FTLM) system represented by ordinary differential equations (ODEs). A reinforcement learning (RL) control strategy is developed that is based on actor-critic structure to enable vibration suppression while retaining trajectory tracking. Subsequently, the closed-loop system with the proposed RL control algorithm is proved to be semi-global uniform ultimate bounded (SGUUB) by Lyapunov's direct method. In the simulations, the control approach presented has been tested on the discretized ODE dynamic model and the analytical claims have been justified under the existence of uncertainty. Eventually, a series of experiments in a Quanser laboratory platform are investigated to demonstrate the effectiveness of the presented control and its application effect is compared with PD control

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Dynamic Modeling of Planar Multi-Link Flexible Manipulators

    Get PDF
    A closed-form dynamic model of the planar multi-link flexible manipulator is presented. The assumed modes method is used with the Lagrangian formulation to obtain the dynamic equations of motion. Explicit equations of motion are derived for a three-link case assuming two modes of vibration for each link. The eigenvalue problem associated with the mass boundary conditions, which changes with the robot configuration and payload, is discussed. The time-domain simulation results and frequency-domain analysis of the dynamic model are presented to show the validity of the theoretical derivation.publishedVersio

    Modeling, simulation and control of microrobots for the microfactory.

    Get PDF
    Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated with top-down manipulation requiring precision. However, bottom-up manufacturing methods have certain limitations, such as components needing to have predefined shapes and surface coatings, and the number of assembly components being limited to very few. For example, in the case of self-assembly of nano-cubes with an origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nanoscale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nanopositioners. To fulfill the microfactory vision, numerous challenges related to design, power, control, and nanoscale task completion by these microrobots must be overcome. In this work, we study two classes of microrobots for the microfactory: stationary microrobots and mobile microrobots. For the stationary microrobots in our microfactory application, we have designed and modeled two different types of microrobots, the AFAM (Articulated Four Axes Microrobot) and the SolarPede. The AFAM is a millimeter-size robotic arm working as a nanomanipulator for nanoparticles with four degrees of freedom, while the SolarPede is a light-powered centimeter-size robotic conveyor in the microfactory. For mobile microrobots, we have introduced the world’s first laser-driven micrometer-size locomotor in dry environments, called ChevBot to prove the concept of the motion mechanism. The ChevBot is fabricated using MEMS technology in the cleanroom, following a microassembly step. We showed that it can perform locomotion with pulsed laser energy on a dry surface. Based on the knowledge gained with the ChevBot, we refined tits fabrication process to remove the assembly step and increase its reliability. We designed and fabricated a steerable microrobot, the SerpenBot, in order to achieve controllable behavior with the guidance of a laser beam. Through modeling and experimental study of the characteristics of this type of microrobot, we proposed and validated a new type of deep learning controller, the PID-Bayes neural network controller. The experiments showed that the SerpenBot can achieve closed-loop autonomous operation on a dry substrate

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern

    Development of a SMA-fishing-line-McKibben bending actuator

    Get PDF
    High power-to-weight ratio soft artificial muscles are of overarching importance to enable inherently safer solutions to human-robot interactions. Traditional air driven soft McKibben artificial muscles are linear actuators. It is impossible for them to realize bending motions through a single McKibben muscle. Over two McKibben muscles should normally be used to achieve bending or rotational motions, leading to heavier and larger systems. In addition, air driven McKibben muscles are highly nonlinear in nature, making them difficult to be controlled precisely. A SMA(shape memory alloy)–fishing–line–McKibben (SFLM) bending actuator has been developed. This novel artificial actuator, made of a SMA-fishing-line muscle and a McKibben muscle, was able to produce the maximum output force of 3.0 N and the maximum bending angle (the rotation of the end face) of 61°. This may promote the application of individual McKibben muscles or SMA-fishing-line muscles alone. An output force control method for SFLM is proposed, and based on MATLAB/Simulink software the experiment platform is set up, the effectiveness of control system is verified through output force experiments. A three-fingered SFLM gripper driven by three SFLMs has been designed for a case study, which the maximum carrying capacity is 650.4 ± 0.2 g

    MODELLING AND CONTROL OF A TWO-LINK RIGID-FLEXIBLE MANIPULATOR

    Get PDF
    The literature lacks data on the reliability of 3D models created by Autodesk Inventor software and imported to MATLAB Simulink software in comparison to mathematically generated models. In this contribution, a two-link rigid-flexible manipulator modelled in two different methods was demonstrated, one of which is using Lagrange equations and Finite Element Method to generate a mathematical model of the manipulator, and the other is creating a 3D model with the aid of Autodesk Inventor then import to MATLAB Simulink, both models were subsequently controlled by three types of controllers, conventional PID controller, LQR controller, and LQG controller. The research demonstrated the performance of the two models with response to the three types of controllers. Achieved results have proven that the Autodesk Inventor is considered a reliable tool for modelling mechanical systems. Results have also confirmed that modern controllers, i.e., LQR and LQG controllers perform much better than conventional PID controllers with regards to the manipulator movement. The implementation of Autodesk Inventor along with MATLAB Simulink indicates that the Autodesk Inventor can be considered as an instrumental tool for designers and engineers. The results enable future developments in the frontier area of robotics and mechanical systems, where sophisticated models could be generated by Autodesk Inventor instead of being modelled mathematically which will benefit engineers and designers by saving time and effort consumed in modelling using mathematical equations, and by reducing the potential errors associated with such modelling technique
    • …
    corecore