1,015 research outputs found

    Efficient Automated Driving Strategies Leveraging Anticipation and Optimal Control

    Get PDF
    Automated vehicles and advanced driver assistance systems bring computation, sensing, and communication technologies that exceed human abilities in some ways. For example, automated vehicles may sense a panorama all at once, do not suffer from human impairments and distractions, and could wirelessly communicate precise data with neighboring vehicles. Prototype and commercial deployments have demonstrated the capability to relieve human operators of some driving tasks up to and including fully autonomous taxi rides in some areas. The ultimate impact of this technology’s large-scale market penetration on energy efficiency remains unclear, with potential negative factors like road use by empty vehicles competing with positive ones like automatic eco-driving. Fundamentally enabled by historic and look-ahead data, this dissertation addresses the use of automated driving and driver assistance to optimize vehicle motion for energy efficiency. Facets of this problem include car following, co-optimized acceleration and lane change planning, and collaborative multi-agent guidance. Optimal control, especially model predictive control, is used extensively to improve energy efficiency while maintaining safe and timely driving via constraints. Techniques including chance constraints and mixed integer programming help overcome uncertainty and non-convexity challenges. Extensions of these techniques to tractor trailers on sloping roads are provided by making use of linear parameter-varying models. To approach the wheel-input energy eco-driving problem over generally shaped sloping roads with the computational potential for closed-loop implementation, a linear programming formulation is constructed. Distributed and collaborative techniques that enable connected and automated vehicles to accommodate their neighbors in traffic are also explored and compared to centralized control. Using simulations and vehicle-in-the-loop car following experiments, the proposed algorithms are benchmarked against others that do not make use of look-ahead information

    Fuel-efficient driving strategies

    Get PDF
    This thesis is concerned with fuel-efficient driving strategies for vehicles driving on roads with varying topography, as well as estimation of road grade\ua0and vehicle mass for vehicles utilizing such strategies. A framework referred\ua0to as speed profile optimization (SPO), is introduced for reducing the fuel\ua0or energy consumption of single vehicles (equipped with either combustion\ua0or electric engines) and platoons of several vehicles. Using the SPO-based\ua0methods, average reductions of 11.5% in fuel consumption for single trucks,\ua07.5 to 12.6% energy savings in electric vehicles, and 15.8 to 17.4% average\ua0fuel consumption reductions for platoons of trucks were obtained. Moreover,\ua0SPO-based methods were shown to achieve higher savings compared to\ua0the commonly used methods for fuel-efficient driving. Furthermore, it was\ua0demonstrated that the simulations are sufficiently accurate to be transferred\ua0to real trucks. In the SPO-based methods, the optimized speed profiles were\ua0generated using a genetic algorithm for which it was demonstrated, in a\ua0discretized case, that it is able to produce speed profiles whose fuel consumption\ua0is within 2% of the theoretical optimum.A feedforward neural network (FFNN) approach, with a simple feedback\ua0mechanism, is introduced and evaluated in simulations, for simultaneous estimation of the road grade and vehicle mass. The FFNN provided road grade\ua0estimates with root mean square (RMS) error of around 0.10 to 0.14 degrees,\ua0as well as vehicle mass estimates with an average RMS error of 1%, relative\ua0to the actual value. The estimates obtained with the FFNN outperform road\ua0grade and mass estimates obtained with other approaches

    Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Full text link

    Powertrain Fuel Consumption Modeling and Benchmark Analysis of a Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming

    Get PDF
    As regulations on the emission of greenhouse gasses continue to tighten on the automotive industry, the production of hybrid electric vehicles has gained significant popularity in recent years. With the increase in production, there has been a parallel demand in the advancement of both mechanical hardware and control system implementation used in these vehicles. A critical factor in the efficient operation of a hybrid electric vehicle is the energy management strategy where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a fuel-efficient control system is a complex challenge due to the degrees of freedom that exist in the control of a hybrid electric vehicle. Several methods exist for the real-time implementation of control strategies that employ heuristic or optimization-based algorithms; however, these control strategies typically rely on the results of offline optimization as a benchmark against which the control strategies are evaluated. Offline energy management optimization strategies require a pre-defined driving schedule for which the operation of the powertrain can be evaluated to determine the globally optimal control policy. The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determine control trends that can be used to improve existing algorithms. The optimal combined CS fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6L 2019 Chevrolet Blazer

    A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator

    Get PDF
    Thesis (S.M. in System Design and Management)--Massachusetts Institute of Technology, Engineering Systems Division, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 107-112).The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was initiated in order to demonstrate a tactical vehicle with significantly greater fuel efficiency than a Humvee while maintaining capability. An additional focus of the program was the exposure of systems engineering practices and methodologies to government engineers. This document provides an overview of a systems engineering methodology for maximizing fuel efficiency and its application in concept development for the FED program. The methodology is organized into a phased process, comprising definition of operational requirements, modeling of design alternatives, analysis of design space, development of product concepts, and prototype verification. Tools and methods used included requirements tradespace definition, provisional baseline product models, decomposition of energy expenditure over the product usage cycle, structured technology market surveys inclusive of lead users, surrogate model-based simulation tools, and design space exploration / Pareto optimization. Object-Process Methodology (OPM) is used within the document to illustrate process elements and their relationships. A key element of the methodology is the intensive use of modeling and simulation to enable data driven decision making. In particular, neural network-based surrogate models of engineering code allow the evaluation of thousands of feasible design configurations. It is intended that this rigorous framework is applicable to the improvement of any attribute of any product system.by Paul Luskin.S.M.in System Design and Managemen

    Energy management of hybrid and battery electric vehicles

    Get PDF
    This work focuses on improving the fuel economy of parallel Hybrid Electric Vehicles (HEVs) and dual-motor Electric Vehicles (EVs) through energy management strategies. Both vehicle models have two propulsion branches, each powering a separate axle: An engine and an electric motor in the HEV and two electric motors in the EV. This similarity in the vehicle models emphasises the need for similar energy management solutions. In Part Energy Management of HEVs of this thesis, a high-fidelity parallel Through-The-Road (TTR) HEV model is developed to study and test conventional control strategies. The traditional control strategies serve as a guide for developing novel heuristic control strategies. The Equivalent Consumption Minimisation Strategy (ECMS) is an optimisation-based control strategy used as the benchmark in this part of the work. A family of rule-based energy management strategies is proposed for parallel HEVs, including the Torque-levelling Threshold-changing Strategy (TTS) and its simplified version, the Simplified Torque-levelling Threshold-changing Strategy (STTS). The TTS applies a concept of torque-levelling, which ensures the engine works efficiently by operating with a constant torque as the load demand crosses a certain threshold, unlike the load-following approach commonly used. However, the TTS requires finely tuned constant torque and threshold parameters, making it unsuitable for real-time applications. To address this, two feedback-like updating laws are incorporated into the TTS to determine the constant torque and threshold online for real-time applications. Real-time versions of these strategies, Real-time Torque-levelling Threshold-changing Strategy (RTTS) and Real-time Simplified Torque-levelling Threshold-changing Strategy (RSTTS) are developed using a novel Driving Pattern Recognition (DPR) algorithm. The effectiveness of the RTTS is demonstrated by implementing it on a high-fidelity parallel hybrid passenger car and benchmarking it against ECMS. In Part Energy Management of EVs of the thesis, a low-fidelity model of a novel EV powertrain with two electric propulsion systems, one at each axle, has been developed to study and test its energy management with one of the main conventional optimal control methods, Dynamic Programming (DP). The EV model uses two differently sized traction motors at the front and rear axles. The thermal dynamics of the utilised Permanent Magnet Synchronous Motors (PMSMs) are studied. DP is first implemented onto the Baseline model that does not include any PMSM thermal dynamics, referred to as the Baseline DP, which acts as a benchmark since it is the conventional case. The thermal dynamics of the traction motors are then introduced in the second DP problem formulation, referred to as the Thermal DP, which is compared against the Baseline DP to evaluate the possible benefits of energy efficiency by the more informed energy management optimisation formulation. The best method is chosen to include these thermal dynamics in the overall energy management control strategy without significantly compromising computational time.Open Acces

    Online Learning of a Neural Fuel Control System for Gaseous Fueled SI Engines

    Get PDF
    This dissertation presents a new type of fuel control algorithm for gaseous fuelled vehicles. Gaseous fuels such as hydrogen and natural gas have been shown to be less polluting than liquid fuels such as gasoline, both at the tailpipe and on a total cycle basis. Unfortunately, it can be expensive to convert vehicles to gaseous fuels, partially due to small production runs for these vehicles. One of major development costs for a new vehicle is the development and calibration of the fuel controller. The research presented here includes a fuel controller which does not require an expensive calibration phase.The controller is based upon a two-part model, separating steady state and dynamic effects. This model is then used to estimate the optimum fuelling for the measured operating condition. The steady state model is calculated using an artificial neural network with an online learning scheme, allowing the model to continually update to improve the controller's performance. This is important during both the initial learning of the characteristics of a new engine, as well as tracking changes due to wear or damage.The dynamic model of the system is concerned with the significant transport delay between the time the fuel is injected and when the exhaust gas oxygen sensor makes the reading. One significant result of this research is the realization that a previous commonly used model for this delay has become significantly less accurate due to the shift from carburettors or central point injection to port injection.In addition to a description of the control scheme used, this dissertation includes a new method of algebraically inverting a neural network, avoiding computationally expensive iterative methods of optimizing the model. This can greatly speed up the control loop (or allow for less expensive, slower hardware).An important feature of a fuel control scheme is that it produces a small, stable limit cycle between rich and lean fuel-air mixtures. This dissertation expands the currently available models for the limit cycle characteristics of a system with a linear controller as well as developing a similar model for the neural network controller by linearizing the learning scheme.One of the most important aspects of this research is an experimental test, in which the controller was installed on a truck fuelled by natural gas. The tailpipe emissions of the truck with the new controller showed better results than the OEM controller on both carbon monoxide and nitrogen oxides, and the controller required no calibration and very little information about the properties of the engine.The significant original contributions resulting from this research include: -collection and summarization of previous work, -development of a method of automatically determining the pure time delay between the fuel injection event and the feedback measurement, -development of a more accurate model for the variability of the transport delay in modern port injection engines, -developing a fuel-air controller requiring minimal knowledge of the engine's parameters, -development of a method of algebraically inverting a neural network which is much faster than previous iterative methods, -demonstrating how to initialize the neural model by taking advantage of some important characteristics of the system, -expansion of the models available for the limit cycle produced by a system with a binary sensor and delay to include integral controllers with asymmetrical gains, -development of a limit cycle model for the new neural controller, and -experimental verification of the controller's tailpipe emissions performance, which compares favourably to the OEM controller

    Control of a hybrid electric vehicle with predictive journey estimation

    No full text
    Battery energy management plays a crucial role in fuel economy improvement of charge-sustaining parallel hybrid electric vehicles. Currently available control strategies consider battery state of charge (SOC) and driver’s request through the pedal input in decision-making. This method does not achieve an optimal performance for saving fuel or maintaining appropriate SOC level, especially during the operation in extreme driving conditions or hilly terrain. The objective of this thesis is to develop a control algorithm using forthcoming traffic condition and road elevation, which could be fed from navigation systems. This would enable the controller to predict potential of regenerative charging to capture cost-free energy and intentionally depleting battery energy to assist an engine at high power demand. The starting point for this research is the modelling of a small sport-utility vehicle by the analysis of the vehicles currently available in the market. The result of the analysis is used in order to establish a generic mild hybrid powertrain model, which is subsequently examined to compare the performance of controllers. A baseline is established with a conventional powertrain equipped with a spark ignition direct injection engine and a continuously variable transmission. Hybridisation of this vehicle with an integrated starter alternator and a traditional rule-based control strategy is presented. Parameter optimisation in four standard driving cycles is explained, followed by a detailed energy flow analysis. An additional potential improvement is presented by dynamic programming (DP), which shows a benefit of a predictive control. Based on these results, a predictive control algorithm using fuzzy logic is introduced. The main tools of the controller design are the DP, adaptive-network-based fuzzy inference system with subtractive clustering and design of experiment. Using a quasi-static backward simulation model, the performance of the controller is compared with the result from the instantaneous control and the DP. The focus is fuel saving and SOC control at the end of journeys, especially in aggressive driving conditions and a hilly road. The controller shows a good potential to improve fuel economy and tight SOC control in long journey and hilly terrain. Fuel economy improvement and SOC correction are close to the optimal solution by the DP, especially in long trips on steep road where there is a large gap between the baseline controller and the DP. However, there is little benefit in short trips and flat road. It is caused by the low improvement margin of the mild hybrid powertrain and the limited future journey information. To provide a further step to implementation, a software-in-the-loop simulation model is developed. A fully dynamic model of the powertrain and the control algorithm are implemented in AMESim-Simulink co-simulation environment. This shows small deterioration of the control performance by driver’s pedal action, powertrain dynamics and limited computational precision on the controller performance

    A Multi-Contextual Approach to Modeling the Impact of Critical Highway Work Zones in Large Urban Corridors

    Get PDF
    Accurate Construction Work Zone (CWZ) impact assessments of unprecedented travel inconvenience to the general public are required for all federally-funded highway infrastructure improvement projects. These assessments are critical, but they are also very difficult to perform. Most existing prediction approaches are project-specific, shortterm, and univariate, thus incapable of benchmarking the potential traffic impact of CWZs for highway construction projects. This study fills these gaps by creating a big-data-based decision-support framework and testing if it can reliably predict the potential impact of a CWZ under arbitrary lane closure scenarios. This study proposes a big-data-based decision-support analytical framework, “Multi-contextual learning for the Impact of Critical Urban highway work Zones” (MICUZ). MICUZ is unique as it models the impact of CWZ operations through a multi-contextual quantitative method utilizing sensored big transportation data. MICUZ was developed through a three-phase modeling process. First, robustness of the collected sensored data was examined through a Wheeler’s repeatability and reproducibility analysis, for the purpose of verifying the homogeneity of the variability of traffic flow data. The analysis results led to a notable conclusion that the proposed framework is feasible due to the relative simplicity and periodicity of highway traffic profiles. Second, a machine-learning algorithm using a Feedforward Neural Networks (FNN) technique was applied to model the multi-contextual aspects of iii long-term traffic flow predictions. The validation study showed that the proposed multi-contextual FNN yields an accurate prediction rate of traffic flow rates and truck percentages. Third, employing these predicted traffic parameters, a curve-fitting modeling technique was implemented to quantify the impact of what-if lane closures on the overall traffic flow. The robustness of the proposed curve-fitting models was then scientifically verified and validated by measuring forecast accuracy. The results of this study convey the fact that MICUZ would recognize how stereotypical regional traffic patterns react to existing CWZs and lane closure tactics, and quantify the probable but reliable travel time delays at CWZs in heavily trafficked urban cores. The proposed framework provides a rigorous theoretical basis for comparatively analyzing what-if construction scenarios, enabling engineers and planners to choose the most efficient transportation management plans much more quickly and accurately
    • …
    corecore