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Abstract 

 

POWERTRAIN FUEL CONSUMPTION MODELING AND BENCHMARK ANALYSIS 

OF A PARALLEL P4 HYBRID ELECTRIC VEHICLE USING DYNAMIC 

PROGRAMMING 

 

Aaron Mull 

 

As regulations on the emission of greenhouse gasses continue to tighten on the automotive 

industry, the production of hybrid electric vehicles has gained significant popularity in recent 

years. With the increase in production, there has been a parallel demand in the advancement of 

both mechanical hardware and control system implementation used in these vehicles. A critical 

factor in the efficient operation of a hybrid electric vehicle is the energy management strategy 

where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a 

fuel-efficient control system is a complex challenge due to the degrees of freedom that exist in the 

control of a hybrid electric vehicle. Several methods exist for the real-time implementation of 

control strategies that employ heuristic or optimization-based algorithms; however, these control 

strategies typically rely on the results of offline optimization as a benchmark against which the 

control strategies are evaluated. Offline energy management optimization strategies require a pre-

defined driving schedule for which the operation of the powertrain can be evaluated to determine 

the globally optimal control policy. The goal of this work is to develop a hybrid electric vehicle 

model that is suitable for use in a dynamic programming algorithm that provides the benchmark 

for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic 

programming by backward induction to determine the globally optimal solution by solving the 

energy management problem starting at the final timestep and proceeding backwards in time. This 

method requires the development of a backwards facing model that propagates the wheel speed of 

the vehicle for the given drive cycle through the driveline components to determine the operating 

points of the powertrain. Although dynamic programming only searches the solution space within 

the feasible regions of operation, the benchmarking model must be solved for every admissible 

state at every timestep leading to strict requirements for runtime and memory. The backward facing 

model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the 

model to accommodate these requirements. Verification and validation testing of the dynamic 

programming algorithm is conducted to ensure successful operation of the algorithm and to assess 

the validity of the determined control policy against a high-fidelity forward-facing vehicle model 

with a percent difference of fuel consumption of 1.2%.  The benchmark analysis is conducted over 

multiple drive cycles to determine the optimal control policy that provides a benchmark for real-

time algorithm development and determine control trends that can be used to improve existing 

algorithms. The optimal combined CS fuel economy of the vehicle is determined by the dynamic 

programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6L 2019 Chevrolet 

Blazer. 
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𝜏𝑐,𝐼𝐶𝐸 ICE component torque Nm 

𝜏𝑐,𝐼𝐶𝐸,𝑚𝑎𝑥 Maximum ICE component torque Nm 

𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 Minimum ICE component torque Nm 

𝜏 𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝑟𝑢𝑛 Minimum running ICE component torque Nm 

𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝐹𝐶𝑂 Fuel cut off ICE component torque Nm 

𝜏𝑐,𝑚𝑜𝑡 P4 motor component torque Nm 

𝜏𝑐,𝑚𝑜𝑡,𝑚𝑎𝑥 Maximum P4 motor component torque Nm 

𝜏𝑐,𝑚𝑜𝑡,𝑚𝑖𝑛 Minimum P4 motor component torque Nm 

𝜏𝑐,𝑟𝑒𝑚𝑎𝑖𝑛 Remaining torque in terms of ICE component torque Nm 

𝜏𝑤,𝑏𝑟𝑘 Mechanical brake wheel torque Nm 

𝜏𝑤,𝐼𝐶𝐸 ICE wheel torque Nm 

𝜏𝑤,𝑚𝑜𝑡 Electric motor wheel torque Nm 

𝜏𝑤,𝑟𝑒𝑚𝑎𝑖𝑛 Remaining wheel torque Nm 

𝜏𝑤,𝑟𝑒𝑞 Drive cycle wheel torque requirement Nm 

𝜙𝑇𝐶 Torque converter speed ratio - 

𝜓𝑇𝐶  Torque converter torque ratio - 

𝜔𝐼𝐶𝐸 ICE component speed RPM 

𝜔𝐼𝐶𝐸,𝑖𝑑𝑙𝑒 ICE idle speed RPM 

𝜔𝐼𝐶𝐸,𝑚𝑎𝑥 Maximum ICE speed RPM 

𝜔𝐼𝐶𝐸,𝑚𝑖𝑛 Minimum ICE speed RPM 

𝜔𝑚𝑜𝑡 P4 motor speed RPM 

𝜔𝑚𝑜𝑡,𝑚𝑎𝑥 Maximum P4 motor speed RPM 

𝜔𝑚𝑜𝑡,𝑚𝑖𝑛 Minimum P4 motor speed RPM 

𝜔𝑡𝑢𝑟𝑏 Torque converter turbine speed RPM 

𝜔𝑤ℎ𝑒𝑒𝑙 Wheel speed RPM 
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1.0 Introduction 

The objective of this research is to develop a hybrid electric vehicle model that can be used to 

conduct a benchmark analysis by implementing a dynamic programming algorithm to identify the 

optimal control policy for a hybrid electric drivetrain on prescribed drive cycles. The results from 

the benchmark analysis can be used to compare and improve existing hybrid supervisory control 

strategies by providing a frame of reference to the optimal performance of the hybrid drivetrain.  

In this work, the motivation behind hybrid powertrain technology is discussed by providing the 

justification behind the transition from conventional vehicle that rely solely on internal combustion 

engines, to the hybrid electric vehicles that utilize electric motors and batteries to supplement 

torque production. The background of hybrid vehicle technology and the range of technology 

available to support these powertrains is discussed along with an overview of the work done by 

the West Virginia University EcoCAR Team to develop a hybridized 2019 Chevrolet Blazer to 

participate in the premier North American Advanced Vehicle Technology Competition (AVTC) 

the EcoCAR Mobility Challenge (EMC). Part of the development of the hybrid vehicle includes 

extensive hybrid supervisory control implementation which is the primary inspiration for the 

contents of this work. 

An overview of energy management strategies is discussed to define the options that are available 

to control hybrid vehicles and provide a frame of reference for how the benchmark analysis results 

are useful in the design of such control systems. The fundamentals of the mathematical models 

used by the EcoCAR team are discussed in depth to provide the necessary background to 

understand the models developed for the benchmark analysis in this work. Each subsystem is 

examined and the available methods for balancing accuracy and complexity are investigated. The 
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structure, logic and justification of the benchmarking model are discussed in detail such that this 

work can be easily reproduced to model nearly any parallel hybrid electric vehicle with the 

appropriate component data. This work provides the essential background for the development of 

a dynamic programming algorithm and associated powertrain models such that highly efficient 

control systems can be developed to maximize the usability a given hybrid powertrain.  

The dynamic programming algorithm is discussed in depth along with the mathematical models 

used for both the electric and conventional powertrain to determine the optimal control policies 

for multiple drive cycles. The methods to verify and validate the benchmarking model to ensure 

that the algorithm successfully operates and determines solutions that adequately represent control 

actions taken by the hybrid 2019 Chevrolet Blazer. The results for multiple drive cycles are 

analyzed in depth to identify the trend of control actions the optimal control policy constitutes and 

discuss the motivations as to why the control policy takes certain actions. 

1.1 Hybrid Electric Vehicles 

From the original prototype motor vehicle developed by Carl Benz in 1886 to the widely produced 

modern-day automobiles, the internal combustion engine (ICE) has been used as the primary 

generator of propulsive power. Under operation, the range of torques and speeds that correspond 

to the maximum efficiency of the ICE is narrow, and in most consumer automobiles, the ICE 

frequently operates outside of this envelope to honor the torque and power requests of the driver. 

The increasingly large number of ICE operating inefficiently across the world has begun causing 

consequential problems for the environment and hydrocarbon resource supplies. Deteriorating air 

quality, global warming issues and depleting petroleum resources have forced regulatory entities 

to implement ever more strict emissions regulations for automotive manufacturers. Rising to the 
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challenge to meet these regulations, innovation in the automotive design field has influenced 

hybrid electric vehicles (HEVs) popularity more than ever across the world. HEVs utilize a 

combination of conventional vehicle components, such as an engine and transmission, and electric 

vehicle components, such as an electric motor and battery pack, to provide propulsive power to 

the wheels of the vehicle. By electrifying the powertrain, higher fuel efficiency and reduction in 

emissions can be achieved when compared to conventional vehicles [1]. 

HEVs stand as the middle ground between conventional vehicles and fully electric vehicles by 

exhibiting many of the attractive features of either powertrain while improving on their 

shortcomings. Most notably, HEVs boast higher fuel efficiency and reduced emissions compared 

to conventional vehicles but are not restricted to long charging periods that would be experienced 

with battery electric vehicles (BEVs). These features of HEVs are achieved by two primary 

operational strategies: regenerative braking and engine operation optimization. Regenerative 

braking takes advantage of the energy that is traditionally lost as heat by friction brakes and instead 

uses deceleration events as an opportunity to capture electrical energy by utilizing the electric 

motors to reduce vehicle speed. The energy captured in regenerative braking events is stored in a 

high voltage (HV) battery pack, often referred to as the energy storage system (ESS), for later use.  

Modern day engines operate around 40% efficiency at peak performance while most electric 

motors are capable of over 90% efficiency for most of their operational range. Considering the 

operation of an ICE, the efficiency envelope as a function of torque and speed, referred to as an 

engine map, will generally be populated with operational points that are solely dependent on the 

request of the driver. With the additional source of torque in an HEV, the electric motor, the 

operational points of the engine can be shifted to a more efficient point for a given driver demand 

as shown in the highly simplified example in Figure 1. 
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Figure 1: Example of Engine Operational Point Shifted with Electric Motor (Left: Opportunity Charging) (Right: Motor Assist) 

In the example on the left, the engine only operational point would fall into the medium efficiency 

region. In a hybrid powertrain, the electric motor could be used to command negative torque, 

requiring the engine to produce more torque than the driver requested utilizing a strategy called 

opportunity charging. This would shift the operational point of the engine up into the high 

efficiency range. Similarly, in the example on the right, the driver torque request exceeds the 

efficient region of operation and the engine only operating point would fall in the low efficiency 

region. With electric motor assist, the ICE could produce less torque and operate in its most 

efficient regions and allow the electric motor to provide positive propulsive torque to meet the 

driver command. Depending on the HEV architecture, the use of both an electric motor and ICE, 

the operational point can be shifted up and down along the torque axis and also left and right along 

the speed axis.  

There are additional benefits for plug-in hybrid electric vehicles (PHEVs) where the vehicle 

operator has the ability to charge the ESS from the grid, which allows for the propulsive power of 

the vehicle to be generated in a highly efficient plant rather than the inefficient ICE. Because of 

this, PHEVs generally have a larger ESS and more powerful electric motors that make the vehicle 
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capable of operating in a completely electric mode known as charge depleting (CD) operation or 

engine supporting mode known as charge sustaining (CS) operation. Traditional HEVs have 

smaller battery packs that are specifically designed to charge and discharge quickly as well as less 

powerful electric motors that are meant to assist engine operation in CS mode rather than support 

a fully electric or CD operational mode.  

1.2 Hybrid Electric Vehicle Architectures 

Conventional vehicles consist of an ICE coupled to the wheels through a transmission. Generally, 

a dry clutch or hydrodynamic torque converter decouples the engine from the transmission when 

needed. In these vehicles, there is a direct relationship between driver commands and the engine 

or friction brakes. HEVs introduce electric motors as additional torque sources into the powertrain. 

The location and capabilities of electric motors in the vehicles make up a wide spectrum of 

electrified vehicle architectures. 

1.2.1 Classifications 

 Most vehicles on the road today can be categorized as one of the following classifications: 

conventional vehicle, micro hybrid, mild hybrid, full hybrid, plug-in hybrid, or battery electric 

vehicle. Micro hybrids incorporate engine start/stop capabilities into vehicles with non-electrified 

drivetrains. These systems allow the ICE to shut down and restart thus reducing fuel consumption 

and emissions. Micro hybrids typically do not employ the use of an ESS but instead utilize higher 

performance starter motors than conventional vehicles. Mild hybrids generally couple an ICE and 

electric motor that allow the engine to be turned off whenever possible and employ both power 

assist and regenerative braking. A mild hybrid will be equipped with a full hybrid powertrain (ESS, 

inverter, electric motor) however do not employ an exclusively electric-only or CD mode [2]. Full 
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hybrid electric vehicles typically have higher power motors and larger capacity battery packs when 

compared to mild hybrids and may employ a CD operating mode. It is important to note that HEV 

classifications should be viewed as a spectrum of capabilities rather than strict buckets that every 

vehicle can be sorted into. For example, a vehicle that exhibits most characteristics of a full hybrid 

but may not necessarily employ engine start/stop functionality while stopped at a traffic light.  

1.2.2 Configurations 

HEVs can be outfitted with electric motors in various configurations that vasty change the 

necessary control strategy as well as the overall performance of the vehicle. There are various 

types of HEV configurations but each type generally traces back to the following two 

configurations: series and parallel [2].  

In a series configuration, the engine is completely mechanically decoupled from the wheels of the 

vehicle and thus the electric motor(s) are the only means for producing torque to the wheels of the 

vehicle. The output shaft of the engine is generally coupled to a separate electric motor that is 

exclusively used to generate energy for the ESS. Series HEVs typically employ large battery packs 

and powerful electric motors similar to what would be present in a BEV, with a small, fuel efficient 

engine. The control strategy for the engine is relatively simple as the engine can be run at whatever 

speed and torque the system deems to be either the most efficient or necessary for the current 

conditions. A major drawback of the series HEV architecture is that these architectures exhibit 

increased weight due to the full BEV drivetrain plus engine and generator motor. [3] 

Parallel HEVs use the engine and electric motors together to provide propulsive power to the 

wheels of the vehicle. The position of the electric motor in a parallel configuration is indicated by 
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a position number P0-P4. An overview of the location of electric machines in a parallel hybrid 

electric vehicle are shown in Figure 2.  

 

Figure 2: Electric Motor Locations for a Parallel HEV 

 A P0 electric motor is mounted on the front-end accessory drive of the engine and is connected to 

the engine via a belt. P1 electric motors are connected directly with the crankshaft, pre-clutch, of 

the ICE. A P2 electric motor is located post-clutch on the engine but pre-transmission. Electric 

motors in a P3 configuration are post-transmission and connected to the driveshaft of the vehicle 

through a gearbox. Finally, a P4 electric motor drives an independent axle and is only coupled to 

the conventional drivetrain through the wheels.  

Series architectures have the advantage of high efficiency as propulsive power is supplied through 

energy efficient electric motors and the freedom to select engine speed and load to keep the ICE 

operating at peak efficiency. These configurations are preferrable for urban stop and go driving 

conditions; however, a series architecture requires two energy conversions, mechanical to 

electrical and electrical to mechanical, which introduces losses. In some cases these losses are so 

significant that the vehicle consumes more fuel than a conventional vehicle, specifically during 

highway driving conditions [2]. Parallel architectures, however, lose the ability to always operate 

the ICE efficiently as the engine operating point is at the discretion of the driver. Parallel 



8 

 

architectures are generally more efficient in highway driving conditions but less efficient in city 

driving conditions. Some HEVs combine series and parallel configurations by utilizing power split 

devices and clutches to allow the use of the configuration that is best suited for the operating 

condition of the vehicle. These configurations are referred to as series-parallel configurations and 

take advantage of the benefits of both configurations. 

1.3 EcoCAR Mobility Challenge  

The EcoCAR Mobility Challenge (EMC) is the current Advanced Vehicle Technology 

Competition (AVTC) sponsored by Argonne National Laboratories, MathWorks, and General 

Motors (GM). AVTCs started in 1988 with the Methanol Marathon [4]. The EMC is the premier 

automotive student design competition between 10 North American universities. Each team was 

provided a 2019 Chevrolet Blazer RS with the GM 3.6L LGX in an all-wheel drive (AWD) 

conventional vehicle configuration. Spanning over four years, teams are tasked to convert their 

Blazer into a HEV. The main goals of the competition are to improve fuel economy, reduce 

emission, maintain stock vehicle performance, and improve vehicle automation features. A final 

competition is held at the end of each year, throughout the four-year competition, where teams 

have the opportunity to present their work and show off their vehicle in dynamic vehicle testing 

events.  

There are three technical swimlanes that make up the majority of work within the EMC: propulsion 

systems integration (PSI), propulsion controls and modeling (PCM), and connected and automated 

vehicles (CAVs). The West Virginia University (WVU) team has established sub-teams made up 

of engineering students from various backgrounds such as mechanical engineering, electrical 

engineering, computer science, and computer engineering. The PSI team is responsible for 
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mechanical and electrical integration of vehicle systems such as the engine, transmission, ESS, 

electric motor, etc. The work of the PSI team extends to the design and integration all supporting 

systems for these components including the mounting, thermal, and electrical systems. The PCM 

team is responsible for vehicle architecture modeling as well as vehicle controls development and 

implementation. The models developed by the PCM team are used to drive architecture selection 

decisions as well as provide various simulation environments such as model in the loop (MIL) or 

hardware in the loop (HIL) where vehicle controls can be developed and tested. The vehicle 

controls developed by the PCM team include component functionality, energy management 

strategies, diagnostic systems, and fault mitigation systems. The CAVs team is responsible for 

designing and implementing advanced driver assistance systems (ADAS) with vehicle to vehicle 

(V2V) and vehicle to everything (V2X) communication capabilities. These systems are utilized to 

develop advanced vehicle features such as adaptive cruise control and lane keep assist.  

Over the course of the competition, the team must work together to produce a fully functional, 

road worthy, HEV. The competition facilitates a team oriented and results-driven environment 

where students learn skills that are directly useful in industry-level jobs.  

1.4  Team Selected Architecture 

During Year 1 of the EMC, the WVU team conducted historical EcoCAR architecture research to 

learn about the challenges of integration and control of various hybrid architectures. Along with 

this research, the PCM team conducted analysis in the MIL environment to determine the size 

requirements for major powertrain components such as the engine and electric motor and to 

provide preliminary powertrain performance results based on potentially donated components. 

Based on these analysis as well as various rule sets from the competition, the team selected a P4 
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HEV architecture for the 2019 Chevrolet Blazer competition vehicle due to fuel economy 

modeling results as well as integration considerations given the available timeframe.  

The WVU Team selected the GM 4-cylinder 2.5L LCV engine rated for a maximum torque of 255 

Nm and a maximum power of 148 kW. The engine is paired to the 9-speed M3D 9T50 transmission 

with accumulator. The HV battery pack or ESS selected is the GM HEV4 battery pack with a total 

energy storage capacity of 1.5 kWh with a nominal voltage of 300V and peak power of 50 kW. 

The P4 electric motor came paired with an inverter from Magna Powertrain in a system called the 

electrified rear axle drive (ERAD), also referred to as the electric all-wheel drive (eAWD) system. 

The ERAD system is a production powertrain component in the European Volvo V60 hybrid 

which is a similar size vehicle as the Blazer. The ERAD system has a peak power of 50 kW, peak 

torque of 200 Nm, maximum continuous power of 20 kW, maximum continuous torque of 90 Nm, 

and a maximum motor speed of 12000 rpm. The gear ratio of the integrated differential gearbox is 

9.17. An overview of the WVU team architecture is shown in Figure 3. 
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Figure 3: WVU Team Competition Vehicle Architecture 

The P4 architecture supports three operating modes: FWD with opportunity charging, FWD with 

regenerative braking, and AWD. In FWD with opportunity charging, the engine produces excess 

torque to the front axle while the P4 traction motor “drags” the rear axle by producing negative 

torque. When producing negative torque, the electric motor is spun thus generating power that is 

stored in the ESS. In FWD with regenerative braking, the engine is supplying all of the positive 

propulsive torque for the vehicle. In situations where the driver requests a deceleration event, the 

electric motor is used to produce negative torque to meet the braking needs of the vehicle. This 

negative torque produced by the electric motor generates power that can be stored in the ESS. It is 

important to note that the amount of energy captured in a regenerative braking scenario is greater 

if the vehicle is slowed gradually, i.e., small negative torque command. In AWD both the electric 
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motor and engine produce positive torque to meet the needs of the driver. The operating mode of 

the vehicle can transition rapidly to meet the current driving conditions. Smooth transitions 

between these operating modes are a major consideration of the PCM team with respect to the ride 

quality of the competition vehicle.  

HEVs generally operate in two operational strategies: CS and CD as mentioned in Section 1.2.1. 

A HEV operating in CD mode favors the electric powertrain over the ICE or may run in a purely 

electric mode until a low threshold of ESS state of charge (SOC) is reached. At this SOC low 

threshold the vehicle will begin operating in a CS mode where the vehicle will maintain the SOC 

at a specified setpoint and avoid large variations from this setpoint. CD modes are commonly used 

in PHEVs as these vehicles generally have ESSs with a larger capacity, while CS modes are 

necessary for any HEV to ensure that the SOC of the ESS does not reach critically low levels. It 

is also important to note that for fuel economy results of HEVs, the vehicle is evaluated on a known 

drive cycle with the starting and ending SOC within a specified bound. This is commonly referred 

to as CS fuel economy.  

In the WVU team competition vehicle, the engine (148 kW) is capable of producing nearly three 

times the power compared to the electric powertrain (50 kW). This limits the electric powertrain’s 

ability to meet driver demands without the help of the engine. In addition, the selected ESS has a 

usable capacity of only 1.5 kWh with simulation results developed by the PCM team showing an 

all-electric range of only about 2 miles [5]. For these reasons, the team did not implement a CD 

mode in the 2019 Chevrolet Blazer competition vehicle. Based on the available power from the 

electric powertrain, the team competition vehicle would operate exclusively in a CS mode with the 

electric motor augmenting the operation of the engine. Specifically, the electric powertrain would 

be used to shift the operating point of the engine to more efficient regions.  
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1.5 HEV Supervisory Control and Energy Management Strategies 

When considering the control of the HEVs powertrain components, it is easy to assume that the 

problem is as simple as utilizing the electric motors as much as possible due to their high operating 

efficiencies. For HEVs equipped with CD modes, this would be the case. The strategy is to use the 

electric powertrain until the SOC reaches the low threshold. However, from a CS point of view, 

the control problem becomes far more complicated when attempting to achieve improved fuel 

economy over a conventional vehicle. An effective energy management strategy is essential to 

ensuring the efficient operation of the vehicle [2]. 

To understand the energy management problem, first consider a conventional vehicle powertrain. 

The ICE operates by converting chemical energy into mechanical energy to generate all of the 

energy required for the vehicle operation. The energy generated in the engine drives the 

accessories, driveline components, and ultimately the vehicle. For a given driver input and current 

driving conditions such as vehicle speed and grade, the operating condition of the engine (speed 

and torque) is determined by a single degree of freedom: transmission gear ratio. The energy 

management strategy for the conventional vehicle is the choice of this ratio. In a HEV, the 

additional torque path from the electric powertrain components creates a new degree of freedom, 

the ratio of energy supplied by the engine and electric motor, commonly referred to as the torque 

split ratio. Additionally, the electric motor can replace or supplement the mechanical brakes for 

deceleration requests from the driver. The additional freedom afforded by the electric components 

necessitates the use of an energy management strategy to improve the overall efficiency of the 

vehicle [2].  
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To implement the energy management strategy, the powertrain is commanded using a supervisory 

control algorithm. The flowchart of a general supervisory control system can be seen in Figure 4. 

 

Figure 4: Flowchart of an HEV Supervisory Controller [6] 

When the accelerator pedal is pressed, the first step in the torque control structure is the driver 

interpretation function that yields the total torque required at the wheels. The torque request is 

typically evaluated as a look-up table as a function of vehicle speed. In general, 100% pedal would 

correspond to the maximum torque available in the powertrain while 0% pedal would result in 

creep torque or engine braking depending on the speed of the vehicle. These look-up tables are 

commonly referred to as pedal maps and generally have a nonlinear relationship between 0% and 

100% pedal positions. The torque request is then sent to the energy management function which 

decides where torque should be produced following a specified strategy. Popular energy 

management strategies typically fall under the designation of heuristic or optimal control 

strategies. These energy management strategies are discussed in further detail in Section 2.0 of 

this thesis. The output of the energy management system are the raw setpoints for powertrain 

components. 

The inclusion of regenerative braking capabilities necessitates an additional torque path in the 

supervisory control strategy. When the brake pedal is pressed, the regenerative braking control 

function governs the use of the electric motor and friction brakes to reduce the vehicles speed. The 
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functionality of this system includes functional considerations such as not utilizing regenerative 

braking if SOC is too high as well as safety critical considerations of ensuring the driver is 

receiving enough brake force to slow the vehicle. It is important to note that any commands to the 

electric motor from the regenerative braking control function go through the dynamic coordination 

function. Coordinating the torque requests of powertrain components for both positive and 

negative torque requests is critical not only for driver comfort, but also for safe operation of 

powertrain components [6]. A critical aspect of this coordination is torque shaping where the 

component torque requests may be passed through various filters to remove harmful transients. 

For example, as the vehicle is driven down the road at very low SOC, the driver abruptly applies 

100% brake pedal. The output of the regenerative braking control function may be to command 

the maximum amount of torque from the electric motor; however, this command may damage the 

motor by switching quickly from positive torque to maximum negative torque. In this example, 

the torque shaping functionality would smooth the transition in torque values for the electric motor 

to prevent damage. After passing the component torque commands through the dynamic 

coordination function, the supervisory controller passes the coordinated setpoints to the component 

level controllers in the vehicle. This transfer of information takes place on electrical connections 

called a controller area network (CAN) bus. It is common for vehicles to have multiple CAN 

busses that are used to transfer sensor readings, diagnostic information, powertrain control 

information and any other information that may be relevant to vehicle operation between electronic 

control units. 

1.6 Importance of Benchmark Analysis for HEVs Powertrain Operation 

With the rise of HEVs in automotive markets across the world, each boasting improved fuel 

economy over their conventional counterparts, the question arises of the limit on how much 
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improvement is possible with these powertrains. In fact, the efficient control and implementation 

of HEV energy management strategies pose a global optimization problem. Many energy 

management strategies generally employ some level of optimization to achieve improvements in 

fuel economy. These strategies must often balance the level of optimization achieved with the 

available computation resources. Heuristic energy management strategies generally obtain 

optimization information offline which is then employed as rule based or fuzzy logic strategies 

that require minimal computational resources to make informed decisions. Because of the offline 

nature of the optimization, these energy management strategies must optimize vehicle operation 

over a known drive cycle. Because of this, heuristic energy management strategies typically 

operate significantly worse than the global optimal fuel efficiency when exposed to the unknown 

conditions of normal driving. Several online optimization strategies exist that perform simplified 

optimization problems based on instantaneous vehicle information. These strategies offer 

significant performance improvement over heuristic approaches but at the cost of computational 

load. Often, a trade-off is made between the complexity of the optimization problem and the 

computational resources necessary for finding the optimal solution. Regardless of the technique 

used to employ an energy management strategy, it can be stated that the goal is always to improve 

over a similar conventional powertrain. This goal represents the low threshold of achievement for 

a HEV powertrain. The upper threshold would be the global optimal solution.  

Based on the tradeoff nature of online optimal control algorithms between complexity and 

computation resources, it is clear that calculating the global optimal solution online is not feasible 

with current technology. However, by calculating the global optimal solution offline and using 

that information to design and calibrate online algorithms affords the ability to assess their 

performance against the upper threshold of achievement. For example, when designing an energy 
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management system, it is useful to know that a particular algorithm performed 30% better than a 

conventional counterpart, but if the algorithm is over 90% error from the global optimal solution, 

it becomes clear that additional improvements can be made. Dynamic Programming (DP) offers 

this ability to determine the global optimal solution for a given HEV architecture over a specified 

drive cycle. [7], [8], [9] 

2.0 Overview of HEV Energy Management Strategies 

Several families of energy management strategies have been investigated in existing literature. 

These strategies generally follow one of two trends, heuristic-based and model-based optimization 

methods [2]. These two trends are representative of the use of optimal control theory in the design 

of the controller or not. Heuristic energy management strategies are primarily based on intuition 

and logical relationships between variables and thus little optimization occurs. Heuristic control is 

popular among automotive manufactures and is widely adopted in modern HEVs. Model-based 

optimization methods, also known as optimal control, make use of optimal control theory to derive 

the controller. Optimal control strategies are currently subject to research and are gradually being 

introduced in the industry [6]. Heuristic and optimal control strategies have two distinct subgroups 

as shown in Figure 5. 



18 

 

 

Figure 5: Control Strategy Classification [10] 

2.1 Heuristic Control Methods 

The most attractive characteristic of heuristic control methods is their effectiveness in real-time 

implementation. Since these strategies rely on predefined sets of rules and logic rather than 

minimization or optimization, heuristic controllers require little computational resources to make 

decisions. These types of controllers generally fall into two categories: rule-based and fuzzy logic 

[2]. 

2.1.1 Rule-Based 

Rule based control is the traditional control methodology used in the automotive industry typically 

consisting of “if-then” and “switch” logic based on simulation data, intuition, or some other set of 

prescribed behavior based on constraints and conditions [10]. Bowles, Peng, and Zhang [11] 

discuss a PHEV with a continuous variable transmission (CVT) that operates with specific rules 

that govern the vehicles operating mode based on operational constraints and predetermined 
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efficiency calculations. The operational constraints are based on the stall speed and maximum 

torque available from the ICE. Additionally, Bowles et al. performed an offline optimization to 

generate lookup tables for CVT ratio and the engine throttle that correspond with fuel economy 

minimization. Based on these results, the group found that the engine operated inefficiently at low 

speeds so the motor would be used in these scenarios. As speed increased, the engine would be 

used to produce torque to meet the driver demand but if the demand exceeded the capabilities of 

the engine, the electric motor would assist. When SOC is low an additional recharge load was 

added to the engine at a specified power. Butler, Ehsani and Kamath [12] researched the 

implementation of two rule-based control strategies on a HEV architecture. The first operates such 

that the ICE runs at a constant fuel throttle angle and the electric machine makes up the difference 

between the torque requested by the driver and the torque produced by the ICE while the second 

allows the ICE to run over its entire speed range and makes the ICE throttle angle a function of 

speed to meet the steady-state road load. The general principal behind each strategy is that the 

electric motor provides power for propulsion during the transients and the ICE provides propulsion 

during a cruising condition. Rule-based energy management systems have been widely researched 

and shown to be practical and successfully implemented to control hybrid powertrains 

[13],[14],[15].  These strategies, however, require careful tuning to specific driving scenarios to 

achieve efficient performance. This major drawback leads to reduced performance in application 

of these control systems in consumer vehicles. 

2.1.2 Fuzzy Logic 

Fuzzy set theory contrasts conventional binary logic of “does” or “does not” by implementing 

varying degrees of belonging to a set. The use of fuzzy set theory to control systems is referred to 

as fuzzy logic. Fuzzy logic has been implemented in a multitude of fields where classic control 
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has long dominated such as home appliances, automobiles and chemical processes. Fuzzy control 

gives users the ability to implement expert knowledge through automation, provide robust 

nonlinear control and reduce development and maintenance time [16]. 

Hajimiri and Salmasi [17] implemented a fuzzy logic energy management system to a HEV with 

embedded features of predictive control to improve fuel economy and emission. The 

implementation of this controller showed improvement over a power follower rule-based 

approach. In [18], Xu et al. applied a fuzzy control strategy to a parallel HEV energy management 

system. Compared to a rule-based control strategy, the fuzzy logic controller showed more engine 

operation point distribution in the high load area where the efficiency is high. Many other examples 

of fuzzy logic use in powertrain control are available in literature [19],[20],[21] that show 

improvements over traditional rule-based control strategies. It is important to note that these 

control strategies are sub-optimal as any optimization is conducted offline and used to design the 

governing “if-then” statements of the fuzzy logic controllers.  

2.2 Optimal Control Methods 

Energy management of a HEV can be posed as an optimization problem over a finite time horizon 

whose solution can be found from optimal control theory. The methods used are aimed at finding 

a control law for a given system such that a specific optimality criterion, usually defined as an 

integral performance index, is achieved [2]. In an optimal strategy, an appropriate cost function is 

created which is minimized at each time step. There are two main areas of optimal control methods: 

real-time optimization and global optimization.  
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2.2.1 Real-Time Optimization: Equivalent Consumption Minimization Strategy 

In real-time optimization, the cost function is minimized at each timestep of the online controller. 

In these controllers, simple mathematical models of the system are generally used to keep the 

execution time within a short time window. Potentially the most popular real-time optimal control 

strategy is Equivalent Consumption Minimization Strategy (ECMS) which operates on the premise 

that in a CS HEV the differences between initial and final SOC is small. The ESS is as an energy 

buffer that if discharged will need to be charged at some point in the future. This creates a specific 

cost for utilizing electrical stored energy and draws an equivalence between using a certain 

quantity fuel or stored electrical energy [2].  

ECMS has been successfully implemented as an effective energy management strategy in 

literature. In [22], Sciarretta, Back, and Guzzella showed that ECMS has the potential to reduce 

fuel consumption by up to 30% of the conventional vehicle. In urban driving conditions, Sciarretta 

et al. showed that the potential fuel savings to be on the order of 50% over a conventional vehicle.  

An ECMS algorithm requires careful tuning of its equivalence factor to enable the fuel savings 

shown by Sciarretta et al. To expand the flexibility of ECMS, three main methods have been 

examined to create an adaptive-ECMS (A-ECMS) algorithm with a dynamically changing 

equivalence factor: drive cycle prediction, drive pattern recognition, and SOC feedback. These 

algorithms employ various novel tools such as artificial neural networks (ANN) to assist in the 

determination of this adaptive equivalence factor [9]. Most A-ECMS work is still conducted in 

literature and has not yet been applied to consumer HEVs. [23] 
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2.2.2 Global Optimization: Dynamic Programming 

Achieving a global optimal solution is generally directly correlated with highly complex and 

computationally expensive numerical solutions. One of the most popular methods for solving the 

optimal control problems for HEVs is Dynamic Programming (DP). DP is based on Bellman’s 

principal of optimality which reduces a multi-step decision making problem into a series of single-

step problems. These single step problems may be solved either forward in time or backwards 

from the last step to the first. The goal of DP is to minimize an incrementally increasing cost 

function at each step. After determining the control actions that lead to the minimum cost, the 

control actions can be observed to determine specific control policies that may be implemented in 

an online control strategy. DP offers dramatically reduced computation time compared to brute 

force methods as it only searches over admissible state or control values. It is important to note 

however, DP still requires the storage of all valid state transition costs [10].  

DP algorithms must accomplish two main functions. The algorithm must calculate and store the 

cost-to-go from every feasible state to every other admissible state for each timestep through the 

use of a state transition function and cost function. The algorithm must then use this information 

to determine the set control actions, constituted by the state transition function, that minimizes the 

overall cost from the first timestep to the final timestep.  

DP must be implemented offline as the knowledge of the full drive cycle a priori is required. 

Because of this, DP can be used to determine performance benchmarks. The results of the DP 

algorithm are used to determine appropriate control policies and the maximum efficiency a specific 

powertrain would be capable of achieving. Lin, Peng, Grizzle and Kang [24] implemented DP to 

solve the control optimization problem of a hybrid electric truck for both fuel economy and 
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emissions considerations. In this work, the cost function considered the minimization of fuel 

consumption and emissions. Additionally, the cost function is augmented with a quadratic penalty 

factor to constrain the optimization algorithm to CS performance. Lin et al. were able to reduce 

the performance gap from a rule-based strategy to the DP results by 50-70% by implementing 

control policies determined from the DP analysis.  

DP algorithms typically require a highly simplified vehicle model due to the computational 

resources required to calculate the cost-to-go matrices. Wang and Lukic [25] discuss a method for 

reducing the fidelity of a model to be used appropriately in a DP algorithm. This method is applied 

in a case study to evaluate the Toyota Prius with DP. After simplifying the Toyota Prius model 

available in Advisor2002, Wang et al. performed validation testing of the simplified vehicle model 

against the Advisor2002 model. From this analysis, an error of ~2.0 % was reported between the 

high fidelity Advisor2002 model and the simplified vehicle model. Wang and Lukic then executed 

the DP algorithm to analyze the hybrid system for optimal performance. From the results of the 

DP analysis, a rule-based controller was developed that yielded a 27% increase in overall 

efficiency.  

The benefits of DP have been assessed for various HEV architectures. Dokuyucu and Cakmakci 

[26] applied DP for a parallel HEV where they utilized a DP algorithm to identify optimal control 

performance for an energy management system and traction control system both as separate 

systems as well as together in a concurrent system. With the knowledge of the optimal control 

strategy of each system separately, the researchers were able to conclude that the concurrent 

controller design results were promising and worthy of future work. Patil, Filpi and Fathy [27] 

investigated its benefits for series HEV controller design. Patil et al. utilized DP as a benchmark 

to interpret the results of two online heuristic controllers more appropriately. All of the above 
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noted the benefits of extracting data from DP to improve and assess online control strategies. [9] 

[8] [7] 

3.0 Hybrid Vehicle Modeling Fundamentals 

Vehicle operation fundamentals mathematically describe vehicle behavior based on the general 

principals of mechanics. A vehicle consists of thousands of individual components that must 

effectively and reliably work together. To describe the behavior of a vehicle fully would require 

extensive and sophisticated mathematical knowledge as well as immense computational power. 

Although technically possible, the derivation of a complete vehicle model is not necessary to 

extract the benefits of a mathematical model.  

In this section, the concepts and strategies used in vehicle powertrain modeling, performance 

analysis, and/or control system development are discussed. Various examples are included from 

the WVU EcoCAR Mobility Challenge team’s propulsion system controls and modeling activities. 

This information is included to provide a background for the activities of the propulsion control 

and modeling (PCM) sub-team of the WVU EcoCAR team and for this thesis.  

3.1 Model Based Design and Core Concepts 

Model-based design (MBD) has transformed the way engineers and scientists work by moving 

design tasks from the lab and field to the desktop. Modeling and simulation play a key part in the 

design of HEVs by affording engineers the ability to rapidly develop models for various drivetrains 

and components. These models may be of very high fidelity and accurately model communication 

interfaces between components or may be low fidelity and only model relevant powertrain 
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components. The flexibility of various types, structures and fidelity levels reinforces the benefit of 

adopting MBD for HEVs. 

The MBD methodology typically follows a system engineering process called the v-model shown 

in Figure 6. 

 

Figure 6: V-Model of the Model Based Design Process 

Starting at the top left of the V-Model, high-level designs and system requirements are established. 

As one progresses through the process, the above steps are re-evaluated to ensure that the 

objectives and analysis remain valid. In the model-in-the-loop (MIL) portion, the model is 

evaluated to ensure full functionality of critical model components such as the controller, plant 

and driver. At the simulation-in-the-loop (SIL) stage the completed controller software is 

incorporated into the simulation of the plant model. In this environment the controller can be 

validated through rigorous testing but at this stage it does not run in real-time. At the hardware-in-

the-loop stage (HIL) the controller software is downloaded to the physical hardware and connected 

to the simulated plant. It is at this stage that the model must run in real-time. With all of the above 

steps completed and all requirements passing, the controller can be implemented into the physical 
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plant and validated to ensure it operates appropriately. It is important to note that the path of the 

V-model is not a straight line from left to right. Each step in the model should be revisited when 

necessary to support the verification and validation of the initial design and any implemented 

changes throughout the MBD process.   

A critical input to most powertrain modeling activities is the drive cycle. A drive cycle is a 

predefined set of data that specifies vehicle speed versus time. A range of standardized drive cycles 

are available from automotive regulatory agencies such as the environmental protection agency 

(EPA). These data sets represent a specific driving profile with some exhibiting vehicle maneuvers 

representative of urban driving, highway driving, or most commonly a combination of the two. 

Drive cycles give automotive designers and regulators the ability to directly assess different 

vehicles and architectures performance over a standardized set of data. An example of the EMC 

drive cycles is shown in Figure 7. 
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Figure 7: Mobility Challenge Energy Consumption Drive Cycles: a) {top} EMC City Cycle b) {bottom} EMC Highway Cycle  

In the EMC City cycle, the average speed is low and there are numerous sharp acceleration and 

decelerations with extended idle times to represent driving in traffic and signalized intersections. 

In the EMC Highway cycle, there are extended periods of driving between stops as well as higher 

average speeds to be representative of vehicle operation on a highway or interstate. These two 

cycles are used by the EMC organizers as the scored cycle for which every team’s competition 

vehicle’s fuel economy and emission are evaluated. A similar process occurs in the United States 

by the EPA for automotive manufactures to ensure every vehicle meets the regulations set forth 

by the agency.  
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3.1.1 Model Types 

There are two main categories of model types for HEV model-based design: empirical and physics 

based. The type of model governs the degree of abstraction from the physical principles that govern 

the system in a real-world environment. 

Empirical models make use of measured or otherwise captured data from an existing system. This 

data may be fit to represent a new system that does not exist, such as the Willans Line ICE scaling 

technique [28] or simply implemented as a look-up table to be used with other powertrain 

components. A major benefit of empirical models is that they offer quick and low-cost simulation 

solutions. Many models that are required to run online utilize empirical models to ensure a fast 

enough runtime. A drawback of empirical models is that the data they are based on is collected 

under specific operating conditions. Due to this, it is not guaranteed that the model will accurately 

reflect the system performance under different conditions. For example, empirical engine models 

generally operate under the quasistatic assumption and thus transient operation is not accurately 

modeled.  

In physics-based models, the state variables of the system are calculated according to the physical 

laws that govern the system in the real-world application. These types of models offer a more 

accurate representation of the true system but at the expense of higher computational load. Physics-

based models are inherently better at modeling the system in a wide range of operating conditions 

when compared to empirical models. Many physics-based models are packaged as a black box 

such that the user need only provide information to the input to receive outputs. This simplifies 

the overall modeling effort but may lead to inefficiency if the black box outputs more information 

than desired for a specific simulation. An example of this is in Mathworks Simulink Powertrain 
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Blockset. There are a multitude of useful physics-based models for automotive components 

provided as ready to go black box models. One of these models is for the high voltage battery. For 

a simulation determining component torque requests, the user is only interested in electrical 

parameters such as current, voltage and SOC however, the model will calculate temperature values 

that are never used, adding to the computation time. For use in any online application, physics-

based models must be tailored to a specific purpose or heavily simplified to keep the runtime at an 

appropriate level. 

3.1.2 Model Structures 

When designing a model to simulate the performance of a HEV, the structure of the model may 

vary depending on the type of simulation being conducted. Most HEV models will have three 

overarching sections: driver, controller and plant. A general basic structure of a model is shown in 

Figure 8. 

 

Figure 8: Basic Structure of a HEV model 

The purpose of the driver model is to communicate the requirements of the drive cycle to the rest 

of the HEV model by determining torque requests, pedal positions, or some other control variable. 
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The controller model is where the supervisory control strategy logic is implemented. This logic 

includes the implemented energy management strategy, regenerative braking control, dynamic 

coordination strategies, and any other necessary supervisory control information. Finally, the plant 

model contains all of the components that make up the powertrain components, driveline 

components, vehicle dynamics, and any other mathematical model relevant to the vehicle. There 

are often other partitions used to visualize or record data from the model, however these are 

optional and do not directly affect the mathematics of the model.  

When considering the structure of the overall model, it is important to understand the “flow” of 

information from the inputs of the modeled system to the outputs. There are two main structures 

for the flow of information: forward-looking and backward-looking structures. The choice of the 

direction of the flow of information is specific to the application of the model as the two directions 

are suited for different tasks.  

Forward-looking models are structured to capture the causal nature of real driving conditions. In 

this structure, the simulated driver views the specified drive cycle and produces driver requests in 

the form of pedal positions, torque requests or some other request variable. This request is sent to 

the powertrain to produce torque with those components. That torque in-turn acts on the driveline 

to increase or decrease the speed of the vehicle. This speed is fed back to the simulated driver 

which influences the requests for the next time step. Forward-looking models are beneficial in 

control system design as they closely simulate the communications that will occur in a real vehicle 

under operation. It is important to know that in forward-looking model structures, the driver 

generally bases acceleration or deceleration requests on the error between current speed and the 

drive cycle, thus the drive cycle will likely never be followed exactly. Typically, when conducting 
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simulations, the driver model will be required to be within a narrow error threshold of the actual 

drive trace.  

Backward-looking models however take a different approach that eliminates the error produced 

by the driver. In a backward-looking model the driver is essentially an extension of the drive trace. 

With the speed of the drive cycle known, the torque required to meet the specific speeds may be 

determined prior to conducting the simulation, or at each time step. With the required torque 

known at each timestep, the internal states of the vehicle components to achieve the path can be 

derived. With the known toque to achieve the specific speed of the drive cycle, the required torque 

can be propagated through the driveline to the vehicle components and determine their operating 

conditions. In a backward-looking model, the operating states of the vehicle need to be known a 

priori. In the HEV example, the torque split value needs to be known before the required torque 

can be appropriately accounted for when propagating torque values through the driveline to the 

powertrain components. Because of this, the backward-looking structure is ill-suited to develop 

control strategies; however, backward-looking models are useful for defining overall operating 

trends and performing high-level analyses of powertrain operation under different driving 

conditions. Backward-looking models are often used for determining global optimal solutions for 

the HEV control optimization problem using methods such as DP.  

3.1.3 Model Fidelity Levels 

Model fidelity defines the level of detail captured by the simulation model.  Models can be 

implemented with various levels of fidelity depending on the application. The level of fidelity of 

the model is strongly related to the model type with physics-based models generally providing 

higher levels of fidelity than empirical models. The fidelity level can also be directly associated 
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with the runtime of a simulation as it can be stated that high fidelity models will have a longer 

runtime than low fidelity.  

The key aspect of model fidelity is that the selection of the appropriate level depending on the 

model’s purpose and design task being performed. For a HEV powertrain there are multiple 

mechanical, electrical, and chemical processes that occur simultaneously, each of which can be 

modeled with varying degrees of fidelity. For example, depending on the application requirements, 

an ESS may be modeled as a constant voltage source, higher-order RLC circuit, a set of lookup 

tables derived from captured test data, or a complex multi-physics model simulating electro-

chemical reactions [10]. Each of these models has a place for a specific application, but an 

important aspect of a model to consider is a uniform level of fidelity across the board. It generally 

does not make sense to have a very high-fidelity battery and engine model in simulations that 

consider the design of a vehicle’s suspension system.   

Selection of model fidelity is influenced heavily by the application for which the model will be 

used. For many online applications such as model predictive control (MPC) or ECMS, the 

associated model must be low enough fidelity such that the algorithm can be solved within the 

real-time window. Similarly, for global optimal solvers such as DP and genetic algorithms, 

although they are executed offline, time constraints or computational limits may require lower 

fidelity models. High fidelity models are exceptionally useful in the late stages of control system 

development for uses in hardware-in-the-loop (HIL) environments. The WVU EcoCAR Team 

utilizes a dSPACE mid-size HIL simulator to test their hybrid supervisory controller (HSC). The 

HIL simulator relies on a high-fidelity full vehicle model and interfaces with the implemented 

control system on the HSC. The full vehicle model not only simulates the vehicle dynamics under 
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operation but simulates the CAN traffic between the HSC and the low-level powertrain controllers 

in the vehicle.  

3.2 Powertrain Simulation Environments and Tools 

There are many available simulation environments and tools available for applications to 

automotive systems. Some of these exist as black box solutions for powertrain simulation that can 

quickly be parameterized to provide capabilities for rapid prototyping and low fidelity results. 

Others provide a means to develop high fidelity models that can be customized to meet the needs 

of the user. Certain tools may be particularly useful in a specific simulation environment, such as 

MIL or HIL, and may provide a means to transition to another tool when progressing through the 

steps of MBD. The various tools used in each step of the MBD V-model are often referred to as a 

“toolchain”. For the WVU EcoCAR Team, the primary tools in the PCM and CAVs subteams’ 

toolchain are Mathworks MATLAB and Simulink packages as well as dSPACE’s Control Desk.  

The PCM subteam primarily uses Mathworks Simulink package for all powertrain and controls 

development within the MIL environment. Simulink is a graphical simulation environment that 

provides a means to design and simulate systems before moving to hardware without having to 

write C, C++, or other low level computational code [29]. In Year 1 of the EMC the PCM team 

developed a high fidelity forward-looking full vehicle model utilizing proprietary powertrain 

information from GM as well as the physics based models in the Simulink Powertrain Blockset 

[30]. With this model, the team was able to assess the performance of various vehicle architectures 

for the team competition vehicle long before ever receiving the physical vehicle. Based on these 

simulations, the team identified a set of vehicle technical specifications, determined the necessary 
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vehicle architecture to meet consumer needs, sized major powertrain components, and began 

developing the hybrid supervisory control system.  

As the PCM team transitions to more advanced testing methods such as SIL and HIL, dSPACE 

ControlDesk software is used. ControlDesk is a universal modular experiment and instrumentation 

for electronic control unit development [31]. ControlDesk allows for real-time implementation of 

the PCM team’s supervisory control code onto physical hardware for use in the team competition 

vehicle. The tool provides seamless integration with Simulink by implementing the ability to 

directly build Simulink code onto dSPACE hardware. In the HIL environment, the PCM team uses 

a dSPACE mid-size simulator to simulate the plant of the full vehicle model with the physical 

HSC in the loop. This functionality provides the team with a means to debug supervisory control 

code before implementing this code into the competition vehicle.  

3.3 Powertrain Subsystem Models 

This section outlines the formulation of key automotive component models, and describes the 

corresponding model used by the EcoCAR team. The majority of the EcoCAR Team’s component 

models are of the empirical type.  

3.3.1 Vehicle dynamics 

A real automobile moves through 3D space as a load varying distributed mass over a sprung 

suspension with various levels of traction on each wheel. The automobile is subject to various 

perturbations from windspeeds and experiences different forces and moments based on 

temperatures, body flex, material, etc. Development of a model with high enough fidelity to 

capture the dynamics of a real-world vehicle would require immense computational resources. 
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When modeling the powertrain and driveline behavior of the vehicle, it is often only necessary to 

consider 1-D motion in the longitudinal direction of the vehicle. The 1-D model generally provides 

enough fidelity to appropriately model powertrain performance and efficiencies and provides a 

foundation that can be expanded to include additional dimensions of motion if necessary.  

The movement behavior of a vehicle along its moving direction is completely determined by all 

of the forces acting on its direction [1]. Figure 9 shows the free-body diagram of a vehicle modeled 

as a point mass moving in 1-D along an arbitrary grade. 

 

Figure 9: Free-Body Diagram of Vehicle Moving in One Dimension [32] 

Applying Newton’s second law to the free-body diagram, the longitudinal motion of the vehicle 

can be described as shown in Equations (3.1) and (3.2): 

 𝐹𝑏 = 𝑚𝑎 (3.1) 

 𝐹𝑏 = 𝐹𝑥𝐹 + 𝐹𝑥𝑅 − 𝐹𝑑,𝑥 + 𝐹𝑒𝑥𝑡,𝑥 − 𝑚𝑔 sin (𝛾) (3.2) 

where 𝑚 is the mass of the vehicle, 𝑎 is the longitudinal acceleration, and 𝐹𝑏 is the total force. The 

term 𝐹𝑏 consists of longitudinal force components acting on the front axle (𝐹𝑥𝐹), longitudinal force 

components acting on the rear axle (𝐹𝑥𝑅), longitudinal drag force (𝐹𝑑,𝑥), external forces acting 

along the longitudinal axis (𝐹𝑒𝑥𝑡,𝑥) and gravitational considerations acting against the vehicle on a 
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grade (𝑚 ∗ 𝑔𝑟𝑎𝑣 ∗  sin (𝛾)). Each of the force components are computed based on the equations 

in [32] that correspond to the Mathworks Powertrain Blockset Vehicle Body 1DOF Longitudinal 

block as shown in Figure 10. 

 

Figure 10: Vehicle Body 1DOF Longitudinal Block 

In the EcoCAR team forward looking full vehicle model this block is parameterized with mass, 

drag coefficient, frontal area, vehicle dimensions, etc. to match the team competition vehicle. The 

block receives inputs of longitudinal forces on the front axle (FwF), rear axle (FwR), road grade 

(Grade) and longitudinal wind speeds (WindX). The outputs of vehicle speed (xdot), normal force 

on the front (FzF) and (FzR) axles as well as the “info” signal which contains additional 

information related to the vehicle such as drag, acceleration, etc.  

The Mathworks block shown above provides flexibility for parameterization and the inclusion of 

perturbations such as grade and wind speed which can prove useful in forward looking models. 

However, for backward looking models, the solution of Equations (3.1) and (3.2) can be difficult 

to obtain. Alternatively, the roadload method can be used to generate a polynomial that describes 

the forces on the vehicle resisting its longitudinal motion as shown in Equation (3.3): 

 𝐹𝑟𝑜𝑎𝑑𝑙𝑜𝑎𝑑(𝑡) = 𝐴 + 𝐵 ∗ 𝑉(𝑡) + 𝐶 ∗ 𝑉(𝑡)2 (3.3) 
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where the forces resisting longitudinal motion (𝐹𝑟𝑜𝑎𝑑𝑙𝑜𝑎𝑑(𝑡)) are calculated using vehicle speed 

(𝑉) at each timestep (𝑡) and the coefficients 𝐴, 𝐵 and 𝐶. Coefficients 𝐴 and 𝐵 represent the static 

and dynamic friction forces due to bearing losses and tire/road rolling resistance, and 𝐶 represents 

the aerodynamic resistance. The values of these coefficients are obtained in a standard procedure 

called a “coastdown” test. In this test, the vehicle is accelerated on a test track or dynamometer to 

a high speed, then allowed to coast to a stop while the velocity is recorded. With the mass known 

and coastdown velocity data, equation (3.3) can be derived via curve fitting [10]. The main model 

used by the EcoCAR team employs the Mathworks Simulink Powertrain Blockset Vehicle 

Dynamics 1DOF Longitudinal block, however, to allow for more flexibility in modeling efforts, 

GM provided the roadload coefficients for the team competition vehicle.  

3.3.2 Internal Combustion Engine 

The ICE is a highly complex machine that controls combustion reactions to convert the chemical 

energy of an air/fuel mixture into thermal energy. Some of this thermal energy is harnessed by a 

mechanical linkage to provide a power output. The most common engine used in automobiles 

today is the 4 stroke (4S), spark-ignited (SI) ICE. An illustration of the major components that 

make up a one of these engines is shown in Figure 11. The 4S-SI ICE relies on a multitude of 

subsystems to support the operation of the engine, but the basic principles of operation are as 

follows. The first stroke is the induction stroke where the inlet valve is opened, and the exhaust 

valve is closed. A fuel/air mixture is drawn into the cylinder via the inlet manifold as the piston 

travels downward. Next, the inlet and exhaust valves are both closed, and the piston begins moving 

upward, compressing the fuel/air mixture in the compression stroke. As the piston approaches top 

dead center, the spark plug produces a spark that ignites the mixture. Combustions propagates 

through the fuel/air mixture causing temperature and pressure to rise thus pushing the piston down 
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the cylinder. As the cylinder begins moving back up the cylinder, the exhaust valve opens allowing 

the combusted fuel/air mixture to be removed from the cylinder as exhaust. The next motion 

downward of the piston is the induction stroke of the next cycle [1].  

 

Figure 11: Illustration of the Components of a Four Stroke Spark-Ignition Internal Combustion Engine [1] 

It is through this process that the ICE is able to provide torque for either conventional vehicles or 

HEVs. When modeling the operation of an ICE, there are a wide variety of approaches that can be 

used with varying levels of fidelity. A few of these modeling types may be the following in order 

of increasing complexity: static map, static map and lumped-parameter dynamic model, one-

dimensional fluid-dynamic model and three-dimensional fluid-dynamic model. The latter two 

approaches are only necessary for detailed studies focused specifically on the engine subsystem, 

while the first two methods are well suited for use in models that include the engine as part of a 

comprehensive system (powertrain or vehicle).  

The static map approach assumes the engine to be a perfect actuator which responds immediately 

to commands. The torque availability is modeled as a function of engine speed and performance 
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metrics of fuel consumption and emissions are tabulated as functions of torque and speed. The data 

is typically based on collected data for existing engines or scaled from some other collected data 

meaning that the majority of static map models are of the empirical type. The data collected to 

parameterize these static maps is generally proprietary but to illustrate the structure of these maps, 

Figure 12 is included [2]. 

 

Figure 12: a) Engine Fuel Consumption Map {left}. B) Engine Efficiency Map {right} 

Using the data shown in Figure 12, the performance of an ICE can be modeled and used for energy 

analysis of a conventional or hybrid vehicle. It is important to note that the data collected to 

populate these tables is steady state operation and thus models that rely on these maps are often 

referred to under the “quasistatic” assumption. These maps may be paired with a transfer function 

to model the dynamic limitations of the torque output. 

The EcoCAR Team forward looking full fidelity model employs the Mathworks Simulink 

Powertrain Blockset Mapped SI Engine [33] as shown in Figure 13.  
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Figure 13: MathWorks Simulink Mapped SI Engine [33] 

The mapped SI engine block receives inputs of the torque command (TrqCmd) and engine speed 

(EngSpd) and outputs the actual engine torque (EngTrq) as well as the “info” signal that contains 

relevant information for temperatures, emissions, fuel consumption, etc. This block is 

parameterized utilizing proprietary GM information for the 2.5L LCV Engine including engine 

component geometry, dynamic information, and performance data tables. In the vehicle model, 

the mapped SI engine block is supported by the SI controller block from MathWorks [34] to model 

the subsystems that support the engine under operation.  

3.3.3 Energy Storage System 

The energy storage system (ESS) is one of the key components that support the HEVs electrified 

drivetrain. The main purpose of the ESS is to convert chemical energy into electrical energy in 

discharge scenarios and convert electrical energy into chemical energy during charging events. It 

is important that the ESS is able to do both of these conversions with a high level of efficiency. 

These electrochemical processes that occur within this system are complex and difficult to model, 

however the performance of the ESS significantly impacts the overall performance of a HEV. 

Similar to the ICE, the ESS can be modeled in a variety of ways from employing empirical lookup 
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tables to a complex multi-physics model of the electrochemical processes. A trade-off in modeling 

battery systems must be made between the inclusion of depth and the amount of computation effort 

required.  

In the EcoCAR full vehicle model, the ESS is modeled after the GM HEV4 rechargeable energy 

storage system (RESS). In the MathWorks Simulink model, the Datasheet Battery block from the 

Powertrain Blockset is employed [35] as shown  in Figure 14. 

 

Figure 14: MathWorks Simulink Datasheet Battery [35] 

 This battery model implements a lithium-ion battery that is parameterized using GM data for the 

HEV4 battery pack. The inputs to this block are the battery current (BattCurr), which is generally 

determined from the torque required at the electric motor, and the battery temperature (BattTemp). 

This block outputs the battery voltage (BattVolt) as well as the “info” bus which contains 

numerous relevant operating parameters of the battery pack. Relevant parameters such as open-

circuit voltage (OCV), internal resistance, state of charge (SOC) and battery temperature are 

determined using lookup tables.  

3.3.4 Electric Motor 

The electric motors integrated into the HEV drivetrain can be modeled similar to the ICE by 

utilizing maps of torque and efficiency. The relation between torque at the shaft and electric power 
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is provided by an efficiency map, which can be expressed as a function of speed and torque. The 

map may include the interactions with power electronics, such as the inverter, between the main 

electric bus and motor or a static efficiency value may be included to account for these 

components.  

The EcoCAR team full vehicle model employs the MathWorks Simulink Powertrain Blockset 

Mapped Motor [36] block as shown in Figure 15. 

 

Figure 15: MathWorks Simulink Mapped Motor [36] 

The Mapped Motor block is parameterized with data provided by Magna Powertrain to represent 

the P4 electric motor that makes up the eAWD system. This data includes the maximum torque 

versus speed curve and the electrical losses. With this information the inputs of battery voltage 

(BattVolt), motor speed (MtrSpd) and torque command (TrqCmd) are used to determine the 

required battery current (BattCurr), produced motor torque (MtrTrq) and the “info” bus that 

contains relevant information for the operation of the electric motor.  

3.3.5 Driveline 

The driveline of the vehicle represents the components of the vehicle that deliver torque from the 

torque generating devices such as the ICE and electric motor to the road surface. The friction 
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brakes are also included within the driveline model. The torque path of the driveline model for a 

parallel P4 HEV is shown in Figure 16. 

 

Figure 16: Driveline Torque Path for Parallel P4 HEV 

Starting from the ICE’s torque path, the torque converter is located on the output shaft of the 

engine. The torque converter is a fluid coupling device that is used to transmit motion from the 

engine to the transmission input shaft. It multiplies the torque similar to a reduction gear but unlike 

most other mechanical joints, it provides extremely high damping capabilities. The torque 

converter is made up of three co-axial elements: a pump (or impeller) connected to the engine 

shaft, a turbine connected to the transmission, and a stator in between as shown in Figure 17.  
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Figure 17: Torque Converter Schematic [2]  

The fluid in the torque converter is moved by the pump which drags the turbine and depending on 

the modification of the flow by the stator transmits torque from the engine to the transmission [2]. 

The EcoCAR full vehicle model employs the MathWorks Simulink Powertrain Blockset Torque 

Converter [37]. This block is parameterized with data from the 2019 Chevrolet Blazer to match 

the WVU Team competition vehicle.  

The next component in the conventional drivetrain torque path is the automatic transmission. The 

EcoCAR Team vehicle employs the GM M3D 9T50 9-speed transmission. In the full vehicle 

model, the MathWorks Simulink Powertrain Blockset Ideal Fixed Gear Transmission [37] is used. 

This model utilizes parameterized data as well as basic physical relationships to determine the 

speed and torque relationship between the inputs and outputs of the transmission. This block also 

requires the gear command from the HSC to determine the current gear selected and when shifts 

should occur. As the selection of the gear ratio is one of the degrees of freedom that the HEV can 

use to improve fuel economy, it is necessary for the transmission model to allow for the simulation 

of different ratios during a drive cycle.   
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The front and rear differentials are modeled utilizing the MathWorks Simulink Powertrain 

Blockset Open Differential [38] which is parameterized with inertial and damping data supplied 

from GM and Magna, respectively. This component is relatively simple as it utilizes a single gear 

ratio to transmit power from the source to the shafts attached to the wheels of the vehicle.  

The friction brakes are modeled as a simple relationship between the deceleration pedal request 

and the maximum braking pressure. For a 25% braking request, the friction brakes apply 25% of 

the maximum available braking pressure. This braking pressure value is used by the MathWorks 

Simulink Powertrain Blockset Longitudinal Wheel [39] model with the disk brake type selected. 

The wheel model is a physics-based model that accounts for friction braking in the vehicle as well 

the wheel torque delivered and tire friction related calculations. In the EcoCAR Team model, the 

driveline subsystem is closely integrated into the vehicle dynamics model as all of the vehicle 

dynamics operational inputs are either outputs from the driveline or environmental factors such as 

temperature, grade, and windspeed.  

3.3.6 Driver 

The driver is an integral part of a forward-looking model that can be modeled utilizing a vast 

variety of methods. The primary responsibility of the driver model is to interpret the drive cycle 

and issue commands to the vehicle to meet that cycle within a reasonable amount of error. In the 

EcoCAR Model, the MathWorks Simulink Powertrain Blockset Longitudinal Driver Model [40] 

is used as shown in Figure 18. 
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Figure 18: MathWorks Simulink Longitudinal Driver [40] 

The driver subsystem receives three input signals: the reference velocity of the drive trace 

(VelRef), the actual vehicle velocity (VelFdbk) and the road grade (Grad). Based on the error 

between the actual and drive cycle velocity, the driver model outputs acceleration commands 

(AccelCmd) and deceleration commands (DecelCmd) as well as an “info” signal that contains 

additional information related to the driver. Configuration parameters to the driver model include 

driver response time, preview distance, vehicle aerodynamic drag coefficient, rolling resistance 

coefficient, vehicle weight and driveline resistances. 

3.3.7 Overall Structure 

In this section, an in depth look at each of the powertrain and driveline component models has 

been discussed. Understanding how each of these components work is critical to designing a 

comprehensive HEV model that adequately captures the vehicle’s performance. Another aspect of 

the comprehensive model is where each of these components reside in the mathematical model. 

The EcoCAR Team full fidelity vehicle model contains a number of supporting subsystems that 

are necessary to the controls development side of their work; however, for the simulation of 

powertrain performance, these subsystems are not required. For the purposes of the model 

development for this these, the EcoCAR model has been stripped down to include only the 
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subsystems and logic required to adequately model the powertrain performance of the team 

competition vehicle. The structure of this simplified model is shown in Figure 19. 

 

Figure 19: Overall Structure of Simplified Powertrain Plant Model 

In the simplified model, the driver subsystem issues commands to meet the prescribed drive cycle. 

These commands are interpreted by the controller subsystem which in-turn issues commands to 

the components within the plant model. The engine torque command is issued to the 2.5L engine 

subsystem while the engine speed and vehicle speed are part of the feedback loop to this system. 

The 2.5L Engine subsystem issues the produced engine torque to the driveline subsystem and other 

informational signals such as the engine speed and fuel flow. The electric motor receives a motor 

torque command while the motor speed and battery voltage are part of the feedback loop. The 

electric motor subsystem produces a motor torque to the driveline subsystem as well as battery 

current to the ESS subsystem. Based on the current from the electric motor, the ESS determines 

its SOC and other operational parameters such as battery current, capacity and power. 

Additionally, the battery subsystem supplies the battery voltage to the electric motor subsystem. 
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The driveline receives the torque commands from the engine and motor and propagates those 

values through the relevant driveline components which ultimately calculate the torque and force 

values acting on the wheels of the vehicle. Those torques and forces are used by the vehicle 

dynamics subsystem to produce a vehicle speed. That vehicle speed is part of the feedback loop to 

the driver which is used to issue the next command. [7], [8], [41] 

4.0 Benchmark Analysis Methodology 

As mentioned in the introduction, the goal of the WVU EcoCAR Team is to design and build a 

vehicle with better than stock fuel economy, reduced emissions, and similar vehicle performance. 

The selected P4 parallel HEV architecture provides the powertrain with flexibility in meeting the 

driver’s torque requests. This flexibility can be exploited to achieve a reduced fuel consumption 

by successfully implementing a supervisory control strategy that employs an efficient and robust 

energy management strategy. As described in Section 2.0, there are numerous energy management 

strategies that could be used to achieve a range of fuel economy results.  

It is known that many of these strategies may increase fuel economy above the stock vehicle, but 

the knowledge of the global optimum is useful for ensuring that the selected control strategy is 

maximizing the usefulness of the flexibility. Additional operational benchmarks that are 

independent of any specific control strategy are also key to objectively evaluating the performance 

of any hybrid supervisory control strategy. The following points summarize the key information 

to be collected to evaluate the architecture and selected energy management strategy: 

1. The optimal control policies (component operating profiles) for the operating regimes of 

city and highway driving 

2. The optimal fuel economy from application of those control policies 
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3. The optimal power split between electrical and mechanical power 

4. The ideal operating regime to employ under specific driving conditions.  

This data will provide an insightful look at the potential gains from implementing this architecture 

into the EcoCAR team competition vehicle. This information can be used to guide the development 

and implementation for real-time supervisory control strategies. Because of this, the benchmark 

analysis of the WVU EcoCAR Team competition vehicle is the focus of this work.  

In order to conduct the analysis for the parallel P4 hybrid-electric 2019 Chevrolet Blazer, it is 

necessary to consider all events over the driving cycle. Decisions made at or near the beginning of 

the cycle will influence the ending conditions. For example, when starting from a high SOC, it 

would seem to make sense to use the electric motor heavily due to its high efficiency. However, 

this discharge event near the beginning of the cycle would require a corresponding charge event 

near the end of the cycle which may lead to overall lower efficiency. In real-world conditions, it 

is not possible to take these future events into consideration duo to the forward-looking nature of 

these control systems. It is also not possible to search through all feasible paths in real-time with 

the computational technology available in today’s automobiles. As mentioned in Section 2.2.2 

global optimization methods are well-suited for this type of analysis.  

The identification of optimal control policies over a given drive cycle is fundamentally a 

constrained global optimization problem. The control policies to be found are optimal over a 

complete drive cycle and thus drive cycle time is an additional variable in the optimization. This 

allows the optimization problem to be formulated as a path search problem. Because of this, of all 

other methods available, dynamic programming was selected for the benchmarking analysis. 
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Dynamic programming offers dramatically reduced computation time compared to other graph 

search methods. As this is an off-line global optimization problem, the computation time is not as 

much of a constraint as it would be in an on-line optimization problem; however, it is desirable to 

keep the computation time at a reasonable threshold to improve the usability of the program. DP 

was selected over other comparable graph and tree search methods due to the relative complexity 

of the cost calculation and the overlapping nature of the subproblems. Analyzing a powertrain 

operating over a drive cycle is more complex than a typical path search problem, as the transition 

costs change depending on the particular path selected. 

An added benefit is that DP implicitly excludes infeasible solution paths. This characteristic is 

particularly important as the use of backward-looking model requires that it follows a driving cycle 

perfectly. This requirement can yield many infeasible solutions where particular components or 

operating states cannot meet the required load.  

4.1 Dynamic Programming History and Fundamentals 

Before considering the application of Dynamic Programming to the HEV powertrain control 

problem, it is important to understand the fundamental mathematical concepts behind DP. DP was 

developed by mathematician Richard Bellman in the early 1950’s as part of work on stochastic 

multi-stage decision-making algorithms for the United States Air Force [42]. Since its inception, 

DP has be widely adopted in inventory management, scheduling, process planning, and other 

multi-stage decision making problems [43].  
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4.1.1 The Basic Problem 

Consider a discrete-time deterministic system, the states evolve over time as described by the 

transition function: 

 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘),          {𝑘 = 0, … , 𝑇} (4.1) 

where 𝑥𝑘, the state variable at stage 𝑘, exists in a space 𝑆𝑘, and 𝑢𝑘, the control input at time 𝑘 that 

modifies 𝑥𝑘, exists in space 𝐶𝑘. 

The set of control inputs, termed a policy, consists of a sequence of functions: 

 𝜋 = {𝑢0, 𝑢1 … , 𝑢𝑇−1} (4.2) 

 where each 𝑢𝑘 is constrained to take values in a subset of 𝐶𝑘, depending on the current state 𝑥𝑘. 

The specific constraints applied are part of the formulation of a particular DP problem, and serve 

to eliminate infeasible control inputs. The set 𝐶𝑘 is called an admissible policy. 

Each transition of 𝑥𝑘 between different values incurs a cost. The cost represents the effort of 

moving from one state to another and serves to differentiate the paths. In a literal path-search 

problem, the cost represents the distance required for each path step. The cost can also be used to 

enforce constraints, by highlighting infeasible state transitions and ensuring they will not be 

selected during the path search. The cost function describing the state transition and implementing 

constraints is given by 𝑔𝑘(𝑥𝑘, 𝑢𝑘).  

The cost of a given path is additive over time since it accumulates over each stage of the problem. 

The total cost of a path can be expressed as: 

 𝐽(𝑥0) =  𝑔𝑇(𝑥𝑇) + ∑ 𝑔𝑘(𝑥𝑘, 𝑢𝑘)

𝑇−1

𝑘=0

 (4.3) 
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thus, the cost of following a given policy 𝜋 starting from state 𝑥0 is:  

 𝐽𝜋(𝑥0) = 𝑔𝑇(𝑥𝑇) + ∑ 𝑔𝑘(𝑥𝑘, 𝜋𝑘)

𝑇−1

𝑘=0

 
(4.4) 

 

An optimal policy can be found, denoted 𝜋∗, that minimizes this cost, such that:  

 𝐽𝜋∗(𝑥0) = min { Jπ(𝑥0) }  (4.5) 

4.1.2 Bellman’s Principal of Optimality 

The cornerstone of DP is Bellman’s Principal of Optimality, which states that “An optimal policy 

has the property that whatever the initial state and initial decision are, the remaining decisions 

must constitute an optimal policy with regard to the state resulting from the first decision” [44]. 

This property suggests that if the following optimal policy: 

 𝜋∗ = {𝑢0
∗ , 𝑢1

∗ … , 𝑢𝑇−1} (4.6) 

passes through the state 𝑥𝑖 at time 𝑘 = 𝑖, and with the desire to find the optimal policy to get from 

𝑥𝑖 to 𝑥𝑇, one would do so by minimizing the truncated cost function: 

 𝐽𝜋(𝑥𝑖) = 𝑔𝑇(𝑥𝑇) + ∑ 𝑔𝑘(𝑥𝑘, 𝑢𝑘)

𝑁−1

𝑘=𝑖

  (4.7) 

and would find that the optimal policy is simply the truncated policy: 

 𝜋𝑖
∗ = { 𝑢𝑖

∗, 𝑢𝑖+1
∗ … , 𝑢𝑇−1} (4.8) 

Practically, this means that the overall optimal control policy can be derived by sequentially 

determining the set of optimal policies for a series of smaller sub-problems. Applying this to a 

road trip example, if the fastest route from New York, New York to Los Angeles, California passes 

through Morgantown, West Virginia, then the principal of optimality implies that the Morgantown 
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to Los Angeles section of the overall drive is also the fastest route from Morgantown to Los 

Angeles.  

4.1.3 Dynamic Programming by Backwards Induction 

There are several approaches to the practical implementation of the DP to solve for global optimal 

solutions. The selection of which approach to adopt depends on the particular characteristics of the 

problem that is being solved. In the HEV powertrain optimal control problem where knowledge 

of the drive cycle is known a priori, the optimal policy can be found with a DP algorithm that 

employs backward induction. This is where the problem is initially considered from the final, or 

terminal, point and the cost-to-go is calculated at each successive stage, working backwards in 

time toward the initial point.  

First, the final stage (𝑘 = 𝑇 − 1) is considered, and an optimal control policy is determined for 

this step. This is referred to as the “tail sub-problem”. Next, the optimal policy for the tail sub-

problem involving the final two stages (𝑘 = 𝑇 − 2: 𝑇 − 1)  is determined. This process is 

continued until the policy for the full problem (𝑘 = 0: 1) has been identified.  

This type of problem can be efficiently solved using a recursive algorithm, as follows. Starting at 

the final stage (𝑘 = 𝑇 − 1), the minimum cost is found to be: 

 𝐽𝑇−1
∗ (𝑥𝑇−1) = min { 𝑔𝑇−1(𝑥𝑇−1, 𝑢𝑇−1)}  (4.9) 

The minimum cost of the next stage (𝑘 = 𝑇 − 2) is therefore: 

 𝐽𝑇−2
∗ (𝑥𝑇−2) = min { 𝑔𝑇−2(𝑥𝑇−2, 𝑢𝑇−2) + 𝐽𝑇−1

∗ } (4.10) 

Working backwards from here toward the initial stage 𝑘 = 0, the total cost can therefore be found 

by the recursive equation: 



54 

 

 𝐽𝑘
∗(𝑥𝑘) = min { 𝑔𝑘(𝑥𝑘, 𝑢𝑘) + 𝐽𝑘+1

∗ }          𝑘 = {0, … , 𝑇 − 1} (4.11) 

where the cost 𝐽0
∗(𝑥0) is the optimal cost of the overall control policy 𝜋∗. 

4.1.4 Statement of the Optimization Problem 

For the benchmark analysis for the optimal control of a parallel P4 hybrid-electric 2019 Chevrolet 

Blazer, the basic objective function can be expressed as: 

 𝐽 = 𝑚𝑖𝑛 ∑ 𝑚̇𝑓𝑢𝑒𝑙

𝑇

𝑘=0

(𝑘) (4.12) 

where 𝑘 is the discrete time step of the drive cycle, 𝑚̇𝑓𝑢𝑒𝑙 is the fuel consumption rate of the engine 

(quasi-static over each timestep k), and 0 and T are the beginning and end points, respectively. It 

is important to note that the minimization here is not instantaneous fuel consumption, but instead 

the fuel consumption over the full drive cycle. Minimization of the instantaneous fuel consumption 

would simply drain the energy storage system (ESS) by maximizing electric motor use and then 

revert to conventional vehicle operation. Minimization of the fuel consumed over the full drive 

cycle takes a deeper look into where it makes the most sense to charge and discharge the ESS via 

the electric motor.  

For the benchmark analysis results to be directly comparable to outputs obtained via other control 

methods, or other powertrain architectures, one of two requirements must be met: CS operation 

must be maintained, or an energy equivalent fuel economy must be determined. In this work, CS 

operation is strictly enforced due to the convenience afforded by the necessity to pick the starting 

state when determining the optimal control policy. It is important to note that the explicit selection 

of the CS SOC as the starting point may artificially skew the optimization as the optimal policy 

from a different starting point with an included energy conversion may yield higher fuel economy. 



55 

 

To implement this requirement, the change in ESS SOC between the beginning and end of the 

drive cycle must be kept at zero, regardless of the level of SOC variation during the drive. Note 

that this restriction is required for comparison and would not normally be present in real-world 

operation. This generates the constraint: 

 ∑ 𝑃𝑏𝑎𝑡𝑡(𝑘) = 0

𝑇

𝑘=0

 (4.13) 

The charge sustaining constraint is not enforced explicitly in the mathematics of the backwards 

looking model, instead it is addressed in the DP algorithm formulation.  

A key constraint is imposed by the driver torque request 𝜏𝑤,𝑟𝑒𝑞; the powertrain cannot produce any 

more torque at the wheels than the driver commands in order to perfectly follow the drive cycle. 

To reduce the complexity of the problem, the independent variable is selected to be the wheel 

torque produced by the electric motor, 𝜏𝑤,𝑚𝑜𝑡. The wheel torque from the engine (𝜏𝑤,𝐼𝐶𝐸) or 

mechanical brakes (𝜏𝑤,𝑏𝑟𝑘), depending on whether the vehicle is accelerating or decelerating 

become the dependent variables. In order to represent the operating regimes of positive or negative 

acceleration in the parallel configuration the following constraints are used. 

 𝜏𝑤,𝑟𝑒𝑞(𝑘) = 𝜏𝑤,𝐼𝐶𝐸(𝑘) + 𝜏𝑤,𝑚𝑜𝑡(𝑘),          𝜏𝑤,𝑟𝑒𝑞(𝑡) > 0 (4.14) 

 𝜏𝑤,𝑟𝑒𝑞(𝑘) = 𝜏𝑤,𝑏𝑟𝑘(𝑘) + 𝜏𝑤,𝑚𝑜𝑡(𝑘) + 𝜏𝑤,𝐼𝐶𝐸(𝑘),          𝜏𝑤,𝑟𝑒𝑞(𝑡) < 0 (4.15) 

As mentioned above, the trivial solution for optimal fuel economy would be to never consume any 

fuel and only discharge the ESS to power the vehicle. Implementing a charge sustaining (CS) 

requirement is useful not only to provide a means for comparing fuel economy results, but also to 

avoid the trivial solution [45]. CS behavior can be strictly enforced by selecting the initial state to 

be equal to the predefined final state. Additional constraints are imposed on the optimization due 

to the physical limitations of the vehicle powertrain. There are finite limits to the amount of 
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instantaneous power the ESS, electric motor, and ICE can supply at a given vehicle speed, 

stemming from the limits on both torque output and rotational speed of the components. These are 

hard limits, meaning the simulation result is infeasible if it must exceed them. To deal with these 

cases, the algorithm checks the component operating points and power levels as they are calculated 

and discards any solutions that are tagged as infeasible. These constraints are as follows where the 

subscript 𝑐 identifies a component torque: 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑘) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (4.16) 

 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 ≤ 𝜏𝑐,𝐼𝐶𝐸(𝑘) ≤ 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑎𝑥 (4.17) 

 𝜔𝐼𝐶𝐸,𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸(𝑘) ≤ 𝜔𝐼𝐶𝐸,𝑚𝑎𝑥 (4.18) 

 𝜏𝑐,𝑚𝑜𝑡,𝑚𝑖𝑛 ≤ 𝜏𝑐,𝑚𝑜𝑡(𝑘) ≤ 𝜏𝑐,𝑚𝑜𝑡,𝑚𝑎𝑥 (4.19) 

 𝜔𝑚𝑜𝑡,𝑚𝑖𝑛 ≤ 𝜔𝑚𝑜𝑡(𝑘) ≤ 𝜔𝑚𝑜𝑡,𝑚𝑎𝑥 (4.20) 

4.2 DP Problem Formulation 

As backward induction dynamic programming requires the use of a discrete-time system, the 

powertrain and vehicle are modeled as such. The drive cycle is discretized to a time resolution of 

1 second per step. Each time step, referred to as a “stage” in DP terminology, is represented by the 

variable k. The SOC is selected as the state variable, thus: 

 𝑥𝑘 = 𝑓(𝑆𝑂𝐶) (4.21) 

The selection of this particular quantity is done to take advantage of an important aspect of the 

backwards-induction method of DP. In this case, the final state of the system at time 𝑘 = 𝑇 

becomes the initial state (at stage 𝑘 = 1), CS operation can be enforced. With the SOC as the state 

variable, the maximum and minimum SOC constraints can be easily imposed as these values are 
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inherently defined by the boundaries of the discretized state space. The state space is discretized 

with a step size based on the balance of execution time, quality of results, and memory.  

The motor wheel torque and the current transmission gear are selected as the control variables, 

thus: 

 𝑢𝑘 = [𝜏𝑤,𝑚𝑜𝑡(𝑘), 𝑁𝑔𝑒𝑎𝑟(𝑘)] (4.22) 

 The motor torque is useful to control as it is included in the driver torque request for either an 

acceleration or deceleration request as shown in Equations (4.14) and (4.15). Utilizing the motor 

torque as a control input effectively navigates the space for the torque split between the ICE and 

electric motor as well as determining the most efficient use of regenerative braking. The 

transmission gear ratio is used as a control input to investigate the effect of the transmission gear 

ratio on the fuel efficiency of the ICE. Identifying the optimal control policy of the transmission 

can assist in not only determining changes to the energy management strategy, but also potentially 

the shift schedule of the transmission. These control inputs influence the following state transition 

function: 

 𝑆𝑂𝐶𝑘+1 =
−𝑃𝑏𝑎𝑡𝑡Δt

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
+ 𝑆𝑂𝐶𝑘 (4.23) 

where 𝑃𝑏𝑎𝑡𝑡 is the battery current required to provide the requested motor torque, Δ𝑡 is the time 

step of the simulation in hours and 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the total energy capacity in Whr of the 

ESS. The negative sign is used to preserve the flow direction convention of positive current 

represents charge of the ESS and negative current represents discharge of the ESS. 
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4.3 Benchmarking Model 

4.3.1 Drive Cycle Data and Shift Schedule 

The benchmarking model is a backwards facing model, which means component speeds and 

torques are propagated from the wheels through the drivetrain and to the powertrain components. 

These torques and speeds are based on the drive cycle selected for this analysis. First, the drive 

cycle must be resampled to the discrete time step selected for the DP algorithm. In this analysis, 

the original drive cycle data has a time step of 0.1 seconds. The drive cycle is resampled at 1 

second by selecting the values of the drive cycle that correspond to the 1 second timestep and 

ignoring the other entries. 

Once the drive cycle has been resampled, the roadload polynomial equation is used to determine 

the force at the wheels at each vehicle speed as described in Equation 3.3. The coastdown test for 

the 2019 Chevrolet Blazer competition vehicle resulted in the following polynomial to describe 

the roadload force: 

 𝐹𝑟𝑜𝑎𝑑𝑙𝑜𝑎𝑑(𝑘) = 118.56 + 3.54 𝑉(𝑘) + 0.54 𝑉(𝑘)2 (4.24) 

where 𝐹𝑟𝑜𝑎𝑑𝑙𝑜𝑎𝑑(𝑡) is the roadload force at the wheels, in N, for each time step and 𝑉(𝑡) is vehicle 

speed. Applying Newton’s law for rigid bodies, the total force at the wheels of the vehicle can be 

determined as: 

 𝐹𝑡𝑜𝑡𝑎𝑙(𝑘) = 𝑚𝑉̇(𝑘) + 𝐹𝑟𝑜𝑎𝑑𝑙𝑜𝑎𝑑(𝑘) (4.25) 

where 𝐹𝑡𝑜𝑡𝑎𝑙(𝑡) is the total force at the wheels for each time step, 𝑚 is the mass of the WVU 

EcoCAR team competition vehicle, and 𝑉̇(𝑡) is the acceleration of the vehicle at each timestep. 

The wheel torque, 𝜏𝑤ℎ𝑒𝑒𝑙(𝑡), of the vehicle is then calculated as follows: 
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 𝜏𝑤,𝑟𝑒𝑞(𝑘) = 𝐹𝑡𝑜𝑡𝑎𝑙(𝑘) ∗ 𝑟𝑤ℎ𝑒𝑒𝑙 (4.26) 

where 𝑟𝑤ℎ𝑒𝑒𝑙 is the rolling radius of the tires of the 2019 Chevrolet Blazer. The rotational wheel 

speed must also be known for each time step. The wheel speed is calculated from the linear velocity 

of the vehicle as follows: 

 𝜔𝑤ℎ𝑒𝑒𝑙(𝑘) =
𝑉(𝑘)

𝑟𝑤ℎ𝑒𝑒𝑙
∗

30

𝜋
 (4.27) 

where 𝜔𝑤ℎ𝑒𝑒𝑙(𝑘) is the wheel speed in RPM. 

In the EMC, the WVU team is not permitted to modify the low-level controls of the M3D automatic 

transmission. This constrains the operation of the transmission to the shift map of the conventional 

2019 2.5L LCV Blazer. As part of the benchmark analysis, the constraint of the conventional shift 

schedule is implemented to capture the optimal fuel economy that can be achieved given the WVU 

EcoCAR Team’s constraints. The gear shift schedule is determined based on the current vehicle 

speed and accelerator pedal position. The speed of the vehicle is inherently known a priori due to 

DP’s reliance on a predefined drive cycle. The accelerator pedal position is determined by 

implementing the 2.5L LCV and M3D pedal map. This map specifies the accelerator pedal position 

as a function of vehicle speed and wheel torque requirement as shown: 

 𝑃𝑒𝑑𝐴𝑐𝑐𝑒𝑙(𝑘) = 𝑓(𝑉(𝑘), 𝜏𝑤,𝑟𝑒𝑞(𝑘)) (4.28) 

where 𝑃𝑒𝑑𝐴𝑐𝑐𝑒𝑙(𝑘) is the accelerator pedal position at time 𝑘. With the accelerator pedal known 

the upshift and downshift speed thresholds can be determined from tabulated data extracted from 

the low-level control system for the M3D transmission: 

 𝑉𝑢𝑝𝑠ℎ𝑖𝑓𝑡(𝑘) = 𝑓(𝑃𝑒𝑑𝐴𝑐𝑐𝑒𝑙(𝑘), 𝑉(𝑘)) (4.29) 

 𝑉𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡(𝑘) = 𝑓(𝑃𝑒𝑑𝐴𝑐𝑐𝑒𝑙(𝑘), 𝑉(𝑘)) (4.30) 
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where 𝑉𝑢𝑝𝑠ℎ𝑖𝑓𝑡(𝑘) is the upshift speed threshold and 𝑉𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡(𝑘) is the downshift speed 

threshold. The speed thresholds are used with the following control logic to determine the gear 

setting at each timestep of the simulation: 

 

𝑁𝑔𝑒𝑎𝑟(𝑡)

=  {

𝑁𝑔𝑒𝑎𝑟(𝑘 − 1) − 1           𝑖𝑓                      𝑉(𝑘) < 𝑉𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡(𝑘)           

𝑁𝑔𝑒𝑎𝑟(𝑘 − 1)                   𝑖𝑓        𝑉𝑑𝑜𝑤𝑛𝑠ℎ𝑖𝑓𝑡(𝑘) ≤ 𝑉(𝑘) ≤ 𝑉𝑢𝑝𝑠ℎ𝑖𝑓𝑡(𝑘)

𝑁𝑔𝑒𝑎𝑟(𝑘 − 1) + 1           𝑖𝑓                        𝑉𝑢𝑝𝑠ℎ𝑖𝑓𝑡(𝑘) < 𝑉(𝑘)               

 
(4.31) 

where 𝑁𝑔𝑒𝑎𝑟(𝑘) is the selected gear number at time 𝑡 and 𝑁𝑔𝑒𝑎𝑟(𝑘 − 1) is the selected gear number 

from the previous timestep 𝑘 − 1. This logic is applied multiple times per timestep to ensure that 

the appropriate gear is selected. For example, in a large deceleration event, the transmission may 

shift from gear 9 to gear 7 within a single timestep. This logic is implemented as a conditional 

statement that repeats until the vehicle speed is between the downshift and upshift thresholds for 

the given gear and accelerator pedal position. 

4.3.2 Electric Motor Torque Lookup Table 

In the DP algorithm, the state transition function is used to determine the battery power 

requirement to move from one SOC to another. The battery power value is the primary mechanism 

that drives the calculation of the cost-to-go for each transition, but obtaining the fuel consumed 

based on this battery power requires multiple subsequent calculations. The first calculation in this 

sequence is the determination of produced electric motor component torque based on the battery 

power requirement for the transition. This value is determined using empirical data in the form of 

a lookup table, however the performance data of the electric motor supplied by the manufacturer 

was in the format of power loss as a function of torque and speed. This data was converted into 

the electric motor torque lookup table using the following process. 
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First the speed and torque breakpoints of the empirical loss data were used to populate a table of 

mechanical power. Using the power loss data provided by the electric motor manufacturer as well 

as the mechanical power calculated from that data’s breakpoints, the electrical power at the 

breakpoints of the power loss data can be determined through the following relationship: 

 𝑃𝑒𝑙𝑒𝑐(𝜏𝑐,𝑚𝑜𝑡, 𝜔𝑚𝑜𝑡) = 𝑃𝑚𝑒𝑐ℎ(𝜏𝑐,𝑚𝑜𝑡, 𝜔 𝑚𝑜𝑡) + 𝑃𝑙𝑜𝑠𝑠(𝜏𝑐,𝑚𝑜𝑡, 𝜔𝑚𝑜𝑡) (4.32) 

where 𝑃𝑒𝑙𝑒𝑐 is the electrical power, 𝑃𝑚𝑒𝑐ℎ is the mechanical power, and 𝑃𝑙𝑜𝑠𝑠 is the power loss. 

Each as a function of electric motor component torque 𝜏𝑐,𝑚𝑜𝑡 and speed 𝜔𝑚𝑜𝑡 . With the electrical 

power table assembled, the breakpoints for the torque lookup table must be defined. As electric 

motor speed will remain as an input to the final lookup table, the identical breakpoints to the 

original power loss table are used. The power breakpoints for the table are determined from the 

electric power table by selecting the corresponding power for the maximum positive and negative 

torques at every given speed. Additional power breakpoints are arbitrarily added at power levels 

below those determined by the maximum mechanical power to fill the lookup table with more 

intermediate values. An algorithm is developed to perform a 1D lookup for each of the power 

values breakpoints for a given vehicle speed. The resulting table generated from this algorithm is 

a two-dimensional lookup table that identifies the electric motor torque as a function of battery 

power and electric motor speed.  

It is critically important to note that based on this structure, positive torque and regenerative 

braking setpoints are selected. In automotive vehicle development, the method for decelerating the 

vehicle with regenerative braking capabilities is referred to in two ways: blended and over the top 

braking. Blended braking allows the electric motor and mechanical brake controller to 

communicate and determine the most efficient braking strategy. Over the top braking is where the 

amount of braking supplied by the mechanical brakes is fixed and the amount of regenerative 
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braking that occurs on top of that can change. In the EMC, teams are only allowed to apply over 

the top braking capabilities, however, due to the inability to model the driver brake pedal inputs, 

the DP model implements a blended braking system. This is a critical deviation from the 

capabilities of the EcoCAR team competition vehicle and thus, the regenerative braking commands 

should not be considered as part of the energy management strategy design.  

4.3.3 Dynamic Programming Algorithm 

The following steps describe the operation of the developed DP algorithm. In this model, 𝑖 

indicates the state grid position at 𝑘, while 𝑗 indicates the state grid position at stage 𝑘 + 1. The 

number of stages is indicated by 𝑇. To initialize the model, the transition cost from 𝑘 = 𝑁 − 1 to 

𝑘 = 𝑁 is calculated. The transition costs for each stage to every other stage are saved in the cost-

to-go matrix, 𝑔(𝑖, 𝑗). Figure 20 is included as a visual representation of this initialization step in 

the benchmarking model.  

 

Figure 20: Initial Stage Calculation of the Benchmarking Model 

In this initial stage, the transition cost from each SOC in the state grid to the target SOC is 

calculated as follows.  
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4.3.3.1 Electric Powertrain Model 

Rearranging the state transition equation to solve for battery power yields the following: 

 𝑃𝑏𝑎𝑡𝑡(𝑖, 𝑗) =
[𝑆𝑂𝐶(𝑗) − 𝑆𝑂𝐶(𝑖)] 𝐵𝑎𝑡𝑡𝑒𝑟𝑦𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Δ𝑡
 (4.33) 

In the initial stage, 𝑗 represents the target SOC while 𝑖 is each SOC in the state grid. Note that a 

negative battery power is a discharge from a higher SOC (at 𝑖) to a lower SOC (at 𝑗). The physical 

constraints of the electrical system (ESS and P4 motor) in the WVU team competition vehicle are 

matched at a power limit of 50 kW. Because of this pairing, it is convenient to impose the electrical 

system power limit constraints on the battery power in the following piecewise equation: 

 𝑃𝑏𝑎𝑡𝑡 =  {

𝑁𝑎𝑁               𝑖𝑓                            𝑃𝑏𝑎𝑡𝑡 ≤  𝑃𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 

𝑃𝑏𝑎𝑡𝑡                 𝑖𝑓         𝑃𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 < 𝑃𝑏𝑎𝑡𝑡 < 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥

𝑁𝑎𝑁               𝑖𝑓                             𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 ≤  𝑃𝑏𝑎𝑡𝑡  
 (4.34) 

where 𝑃𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 and 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 are the minimum and maximum battery power limits, respectively. 

The value “NaN” is useful in the DP model as it simplifies the removal of infeasible solutions as 

the value of “NaN” will persist through any mathematical operation and thus the transition will 

never be considered by the DP algorithm. With the entirety of the drive cycle known a priori, the 

rotational speed of the electric motor is determined from the rotational speed of the wheels of the 

vehicle as follows: 

 𝜔𝑚𝑜𝑡 = 𝜔𝑤ℎ𝑒𝑒𝑙 ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝑃4 (4.35) 

where 𝜔𝑚𝑜𝑡 is the P4 electric motor speed at stage 𝑘 and 𝐺𝑅𝑑𝑖𝑓𝑓,𝑃4 is the differential gear ratio of 

the P4 differential. It is important to note that the speed of the electric motor is independent of the 

state and thus takes a single value at each stage. The torque produced by the electric motor is 

determined by a lookup table generated from the powerloss data provided by Magna for the eRAD 

P4 electric motor as discussed in Section 4.3.2. The electric motor component torque produced for 
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the transition from state 𝑖 to state 𝑗, 𝜏𝑐,𝑚𝑜𝑡, is a function of the battery power and electric motor 

speed for that same state transition: 

 𝜏𝑐,𝑚𝑜𝑡 = 𝑓(−𝑃𝑏𝑎𝑡𝑡, 𝜔𝑚𝑜𝑡) (4.36) 

Note that the negative sign is used to preserve the battery power convention where negative power 

represents power discharged from the battery to produce positive propulsive torque from the 

electric motor.  

4.3.3.2 Conventional Powertrain Model 

With the produced motor torque known and the vehicle wheel torque requirements known a priori, 

the remaining torque to be produced by either the ICE or friction brakes is determined as follows: 

 𝜏𝑤,𝑟𝑒𝑚𝑎𝑖𝑛 = 𝜏𝑤,𝑟𝑒𝑞 − (𝜏𝑐,𝑚𝑜𝑡 ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝑃4) (4.37) 

   
where 𝜏𝑤,𝑟𝑒𝑚𝑎𝑖𝑛 is the remaining wheel torque after subtracting the wheel torque of the electric 

motor and 𝜏𝑤,𝑟𝑒𝑞 is the required wheel torque given by the roadload equation.  

The modeling of the conventional powertrain starts with the speed of the torque converter. The 

torque converter model utilized in the benchmark analysis is of very low fidelity to accommodate 

the runtime and memory considerations of the model. The turbine speed of the torque converter is 

propagated from wheel speed through the differential and transmission as follows: 

 𝜔𝑡𝑢𝑟𝑏 = 𝜔𝑤ℎ𝑒𝑒𝑙 ∗ 𝐺𝑅𝑡𝑟𝑎𝑛𝑠 ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝐼𝐶𝐸 (4.38) 

where 𝜔𝑡𝑢𝑟𝑏 is the turbine speed of the torque converter. The locking state of the torque converter 

is then determined on the condition that the turbine is spinning faster than the target idle speed 

( 𝜔𝑖𝑑𝑙𝑒,𝐼𝐶𝐸) of the engine as well as the clutch status: 
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 𝑆𝑡𝑎𝑡𝑇𝐶,𝐿𝑜𝑐𝑘 = {
0             𝑖𝑓         𝜔𝑡𝑢𝑟𝑏 < 𝜔𝑖𝑑𝑙𝑒,𝐼𝐶𝐸

1            𝑖𝑓         𝜔𝑖𝑑𝑙𝑒,𝐼𝐶𝐸 ≤ 𝜔𝑡𝑢𝑟𝑏
 (4.39) 

 𝑆𝑡𝑎𝑡𝑇𝐶,𝐶𝑙𝑢𝑡𝑐ℎ = {
0             𝑖𝑓         𝜏𝑤,𝑟𝑒𝑞 = 0

1            𝑖𝑓         𝜏𝑤,𝑟𝑒𝑞 ≠ 0
 (4.40) 

where 𝑆𝑡𝑎𝑡𝑇𝐶,𝐿𝑜𝑐𝑘 is the status of the torque converter lockup condition for the transition from 

state 𝑖 to state 𝑗 in gear 𝑁𝑔𝑒𝑎𝑟 with a value of 0 corresponding to the torque converter being 

unlocked and 1 being locked. 𝑆𝑡𝑎𝑡𝑇𝐶,𝐶𝑙𝑢𝑡𝑐ℎ is the status of the torque converter clutch with 1 

corresponding to the clutch engaged and 0 being disengaged. The speed of the ICE is then 

determined from the following piecewise function: 

 𝜔𝐼𝐶𝐸 = {
𝜔𝐼𝐶𝐸,𝑖𝑑𝑙𝑒         𝑖𝑓     𝑆𝑡𝑎𝑡𝑇𝐶 = 0 

𝜔𝑡𝑢𝑟𝑏              𝑖𝑓     𝑆𝑡𝑎𝑡𝑇𝐶 = 1 
 (4.41) 

where 𝜔𝑖𝑑𝑙𝑒,𝐼𝐶𝐸 is the target idle speed of the ICE. The speed ratio of the torque converter is 

determined by dividing the turbine speed by the impeller (ICE shaft) speed as shown: 

 𝜙𝑇𝐶 =
𝜔𝑡𝑢𝑟𝑏

𝜔𝑐,𝐼𝐶𝐸
 (4.42) 

where 𝜙𝑇𝐶 is the speed ratio of the torque converter. Using data provided by GM, the torque ratio 

can be determined as a function of speed ratio by implementing a 1D lookup table: 

 𝜓𝑇𝐶 = 𝑓(𝜙𝑇𝐶) (4.43) 

The remaining wheel torque is then transformed into a component torque request for the internal 

combustion engine by multiplying by the transmission gear ratio, differential gear ratio, 

transmission efficiency, and torque ratio, 𝐺𝑅𝑡𝑟𝑎𝑛𝑠, 𝐺𝑅𝑑𝑖𝑓𝑓,𝐼𝐶𝐸, 𝜂𝑡𝑟𝑎𝑛𝑠, and 𝜓𝑇𝐶  respectively: 

 

𝜏𝑐,𝑟𝑒𝑚𝑎𝑖𝑛 = 

𝜏𝑤,𝑟𝑒𝑚𝑎𝑖𝑛 ∗ 𝐺𝑅𝑡𝑟𝑎𝑛𝑠(𝑁𝑔𝑒𝑎𝑟) ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝐼𝐶𝐸 ∗ 𝜂𝑡𝑟𝑎𝑛𝑠(𝑁𝑔𝑒𝑎𝑟) ∗ 𝜓𝑇𝐶  
(4.44) 
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As shown in Equation (4.44), the component torque commands for the engine become a function 

of transmission gear ratio given by the index 𝑁𝑔𝑒𝑎𝑟 in addition to the indexes 𝑖 and 𝑗. This 

additional dimension captures the proportional component torque requirement from the engine and 

transmission combination to the wheel torque request for each state transition.  

Next, a series of 1D lookup tables are used to identify the maximum and minimum admissible 

operating points of the ICE where the speed of the ICE is the independent variable as follows: 

 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑎𝑥 = 𝑓1(𝜔𝐼𝐶𝐸) (4.45) 

 𝜏 𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝑟𝑢𝑛 = 𝑓2(𝜔𝐼𝐶𝐸) (4.46) 

 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝐹𝐶𝑂 = 𝑓3(𝜔𝐼𝐶𝐸) (4.47) 

where 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑎𝑥 is the maximum torque of the ICE, 𝜏 𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝑟𝑢𝑛 is the minimum running torque 

of the ICE, and 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝐹𝐶𝑂 is the fuel cut off torque of the ICE.  The 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑎𝑥 lookup table is 

based on the maximum torque curve for the 2.5L LCV engine, 𝜏 𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝑟𝑢𝑛 is the torque required 

to sustain idle for the engine, and 𝜏𝑐,𝐼𝐶𝐸,𝑚𝑖𝑛 𝐹𝐶𝑂 is the fuel cut off (FCO) torque at which fuel flow 

to the engine is zero. The conditions based around these parameters are that the ICE cannot exceed 

the maximum torque for a given speed, the ICE cannot operate below minimum running torque 

while the torque converter clutch is disengaged, and the ICE cannot operate below FCO torque 

while the torque converter clutch is engaged. If the calculated remaining ICE torque exceeds the 

maximum component torque, the ICE component torque is automatically assigned the value NaN.  

The ICE component torque produced is implemented in the MATLAB model as a piecewise 

function, but due to the length of the function, a flow diagram is instead used to show the logic 

implemented to determine this value. The ICE torque determination flow diagram is shown in 

Figure 21. 
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Figure 21: ICE Torque Determination Logic 

The ICE torque determination logic implements two critical constraints to the operation of the ICE. 

The first is that positive torque required from the ICE at wheel speeds below idle require the 

unlocked dynamics of the torque converter to be considered. Essentially, the torque produced by 

the engine will be less than the request due to the torque multiplication of the torque converter in 

an unlocked state. The other constraint is that the ICE cannot operate above its maximum torque. 

4.3.3.3 Additional Constraints 

With the operational points of the electric motor and engine known, two additional physical 

constraints must be imposed. The first is the requirement for mechanical braking to only apply 

“negative” torque to slow the vehicle down. Before calculating the braking torque, the component 

torques for both the electric motor and ICE must be converted to wheel torques by propagating the 

torques and speeds through each axle’s driveline. The conversion from component to wheel torque 

for the P4 electric motor and ICE are as follows, respectively: 

 𝜏𝑤,𝑚𝑜𝑡 = 𝜏𝑐,𝑚𝑜𝑡 ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝑃4 (4.48) 
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 𝜏𝑤,𝐼𝐶𝐸 = 𝜏𝑐,𝐼𝐶𝐸 ∗ 𝐺𝑅𝑑𝑖𝑓𝑓,𝐼𝐶𝐸 ∗ 𝐺𝑅𝑡𝑟𝑎𝑛𝑠 ∗ 𝜓𝑇𝐶 ∗ 𝜂𝑡𝑟𝑎𝑛𝑠 (4.49) 

   

The braking torque is then determined from the following relationship: 

 𝜏𝑤,𝑏𝑟𝑘 = 𝜏𝑤,𝑟𝑒𝑞 − 𝜏𝑤,𝑚𝑜𝑡 − 𝜏𝑤,𝐼𝐶𝐸 (4.50) 

The second is the required drive cycle torque not met. This constraint is mathematically expressed 

by the following equation: 

 𝜏𝑤,𝑟𝑒𝑞 = 𝜏𝑤,𝑚𝑜𝑡 + 𝜏𝑤,𝐼𝐶𝐸 + 𝜏𝑤,𝑏𝑟𝑘 (4.51) 

A violation of these constraints is imposed on the ICE torque value by assigning the location of 

the violation a “NaN”. This is done due to the convenience of further calculations being able to 

handle NaN values by simply skipping over them.  

4.3.3.4 Cost Function 

With the operational points of the engine known, the fuel flow rate can be determined by 

interpolating the fuel flow rate map as follows: 

 𝑚̇𝑓𝑢𝑒𝑙 =  𝑓(𝜏𝑐,𝐼𝐶𝐸 , 𝜔𝐼𝐶𝐸) (4.52) 

Where 𝑚̇𝑓𝑢𝑒𝑙 is the fuel flow rate for the torque (𝜏𝑐,𝐼𝐶𝐸) and speed (𝜔𝐼𝐶𝐸) for the transition from 

state 𝑖 to state 𝑗 in the gear 𝑁𝑔𝑒𝑎𝑟. With the fuel flow rate known, the cost to go matrix can be 

constructed. The DP algorithm is designed to assess the performance of the powertrain for both a 

defined shift schedule as well as the additional dimension for gear selection. For the second case, 

the famous curse of dimensionality for DP algorithms becomes an issue. To address this, an 

intermediate minimization is applied to identify the most efficient gear for each transition from 𝑖 

to 𝑗 which effectively removes the additional dimension 𝑁𝑔𝑒𝑎𝑟. This is accomplished by utilizing 

the following: 
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 𝑔𝑔𝑒𝑎𝑟(𝑖, 𝑗, 𝑁𝑔𝑒𝑎𝑟)  =  𝑚̇𝑓𝑢𝑒𝑙 (4.53) 

where 𝑔𝑔𝑒𝑎𝑟(𝑖, 𝑗, 𝑁𝑔𝑒𝑎𝑟) is the intermediate cost-to-go matrix for the transition from state 𝑖 to state 

𝑗 in the gear 𝑁𝑔𝑒𝑎𝑟. The final cost-to-go matrix is found by identifying the minimum of the 

intermediate cost-to-go matrix for a given transition from 𝑖 to 𝑗, effectively minimizing along the 

axis of the gear number. The cost-to-go matrix is formulated as follows: 

 𝑔(𝑖, 𝑗) = min (ggear) (4.54) 

where 𝑔(𝑖, 𝑗) is the cost-to-go matrix from state 𝑖 to state 𝑗. If the shift schedule is predefined, the 

final cost to go matrix, 𝑔(𝑖, 𝑗), will simply be equal to the intermediate cost to go 

matrix, 𝑔𝑔𝑒𝑎𝑟(𝑖, 𝑗, 𝑁𝑔𝑒𝑎𝑟). Finally, the total path cost for the initial step of the DP algorithm is 

simply equal to the cost-to-go matrix for every admissible transition from state 𝑖 to 𝑗: 

 𝐽(𝑖, 𝑘) = 𝑔(𝑖, 𝑘)               𝑓𝑜𝑟               𝑘 = 𝑇 − 1      (4.55) 

4.3.3.5 Remaining Stages of DP Algorithm 

This concludes the initial stage of the DP algorithm. For each remaining stage of the DP algorithm 

(𝑘 = 𝑇 − 1, … 1), Equations (4.33) through (4.54) are carried out for every transition from state 𝑖 

to state 𝑗 as shown in Figure 22. 
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Figure 22: Intermediate Stage Calculations of the DP Algorithm 

For intermediate stages (𝑘 = 𝑇 − 2, … 1) the total path cost, 𝐽(𝑖, 𝑘), is calculated according to 

Bellman’s Principal of Optimality as described in Section 4.1.2 by the following relationship: 

 𝐽(𝑖, 𝑘) = min [ 𝑔(𝑖, 𝑗) + 𝐽(𝑗, 𝑘 + 1)] (4.56) 

Using this relationship, the total path cost is minimized by identifying the combination of the 

current cost-to-go from state 𝑖 to state 𝑗 and the total path cost leading to that transition with the 

lowest cost at stage 𝑘. This method can be visualized as shown in Figure 23. 

 

Figure 23:Example of Intermediate Stages of the DP Algorithm at Stage k = T - 2 
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The red path indicates the selected transition path with the minimum total cost. This method 

implies that if at stage 𝑘 = 𝑇 − 2 the optimized control actions transition from the state 𝑆𝑂𝐶3 to 

state 𝑆𝑂𝐶2, then at an earlier stage 𝑘 = 𝑇 − 3, any transition from state 𝑆𝑂𝐶𝑖 to 𝑆𝑂𝐶3, the optimal 

control policy will include the previously determined control actions taken at stage 𝑘 = 𝑇 − 2. 

This methodology is visualized in the continued example shown in Figure 24. 

 

Figure 24: Example of Intermediate Stages of the DP Algorithm at Stage k = T – 3 

After reaching the final stage at 𝑘 = 1, the total cost and control actions that constitute the global 

optimal solution have been calculated. In contrast with the final time step, the starting SOC is 

difficult to enforce charge sustaining criteria. In this work, CS operation is imposed directly by 

selecting the initial state to be equal to the CS target SOC then following the optimal policy 

determined by the DP algorithm to the terminal SOC.   

4.3.3.6 Known Obstacles in DP Algorithms 

Due to the nature of DP, constraints are typically imposed by assigning high costs to infeasible 

solutions, or in the case of this work, costs that do not exist and are thus never considered. A 

problem that is known to occur in DP algorithms called “leaking” or the large propagation of large 
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penalties into the path of the optimal solution [46]. This phenomenon can be visualized as shown 

in Figure 25. 

 

Figure 25: Leaking Effect in DP Algorithm 

Leaking may cause the optimal solution trajectory to make bad decisions to avoid crossing the 

boundary into the infeasible region. Figure 25 shows the infeasible boundary receding from 𝑘 = 𝑇 

until reaching the low and high thresholds of SOC as the DP algorithm is solved backwards in 

time. In this example the infeasible boundary “leaks” back into the state space before receding 

back to the minimum SOC boundary. An example of why this may happen is because at the 

minimum SOC boundary, the torque requirement is so large that the ICE cannot satisfy the 

requirement on its own. Because of this, the cost of this transaction becomes massive. Now for 

subsequent points at the following stage, the previous infeasible point may be the only admissible 

transition although the cost is large. This has a cascading effect that causes the infeasible boundary 

to “leak” into the state space between the SOC boundaries until conditions (torque requirements) 

allow feasible transitions to push the infeasible boundary back out.  
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Another effect can also be recognized between feasible solutions where the distribution of total 

cost is such that for each step, every state 𝑖 will transition to state 𝑗 if admissible. This effect is 

referred to as uniform state transition where regardless of initial state, the solution will make poor 

decisions to reach the states associated with the optimal policy due to the collapse of different 

potential solutions. The uniform state transition effect can be visualized as shown in 

 

Figure 26: Uniform State Transition Effect in DP Algorithm 

 These two effects can be identified by what looks like discontinuities in the optimal solution 

determined by the DP algorithm.  

5.0 Results and Discussion  

This section outlines the results of the benchmark analysis using the DP algorithm. Included is the 

verification of successful operation and fuel consumption values determined by the DP algorithm. 

The results of the DP algorithm are validated against a higher fidelity Simulink model to identify 

where the simplified DP model significantly differs from the high-fidelity model it was derived 
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from. The results of the DP algorithm are discussed for both the predetermined shift schedule of 

the GM M3D transmission and intermediate minimization of gear selection problem.  

5.1 Model Verification 

Due to the complexity of HEV powertrain systems, the development of a powertrain model and 

the determination of an optimal performance solution analytically were not possible without 

making significant assumptions and simplifications. Drive cycles developed for the EcoCAR 

Mobility Challenge and the automotive industry are typically relatively long and include complex 

driving scenarios. To reduce the complexity of the verification process, a short verification cycle 

was developed where the optimal solution could be reasonably predicted. During the process of 

verification, aspects of the DP algorithm are modified to force the algorithm into specific 

conditions. 

5.1.1 Verification Cycle 

The verification cycle starts with the vehicle at rest where the operation of the ICE in idle can be 

verified. The cycle continues with a segment of constant acceleration to 65 mph, then a segment 

of sustained cruising at 65 mph, then a constant deceleration event, resulting with the vehicle at 

rest. A second acceleration to 25 mph, sustained cruise at 25 mph, and deceleration is defined for 

the second half of the cycle. The total distance of the verification cycle is 0.79 miles. The vehicle 

speed, wheel torque and wheel power of the verification cycle as determined by the are shown in 

Figure 27. 
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Figure 27: Verification Drive Cycle Data 

The validation cycle captures one aggressive driving acceleration where the driver demand is high 

for an acceleration to 65 mph and one modest acceleration to 25 mph. The deceleration events are 

similar with the 65-0 mph deceleration being more aggressive while the 25-0 mph is more 

conservative. The two cruise scenarios are similar with the major difference being the amount of 

sustained power required for each. The shift schedule for the verification test is shown in  Figure 

28. 
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Figure 28: Shift Schedule of Verification Drive Cycle 

The shift schedule is derived based on the pedal map and shift logic of the 2.5L LCV engine and 

M3D transmission combination. It should be noted that this shift schedule is discretized at the 

same 1s timestep as the drive cycle and thus for higher fidelity simulations and real-world 

situations the shift schedule for this same cycle may vary.  

5.1.2 Verification Tests 

To first verify the capabilities of the DP algorithm to determine optimal routes, the algorithm was 

tested against the trivial solutions of the HEV optimal control in two scenarios. The first scenario 

is conventional vehicle operation where the use of the electric powertrain is highly penalized and 

thus the required torque requirement for the drive cycle is supplied by only the ICE. The second 

scenario is CD operation of the HEV. In this scenario, the electric motor is utilized as much as 

possible to meet the required torque of the drive cycle. For these tests, the grid spacing of the state 

space is reduced to achieve faster runtime as the fidelity of the results is less important in the 

verification analysis. The summary of DP algorithm operating parameters are shown in Table 1. 
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Table 1: Verification Test DP Algorithm Parameters 

Parameter Value 

maximum SOC 60% 

minimum SOC 30% 

number of grid points 2000 

ΔSOC 0.015 % 

𝛥𝑃𝑏𝑎𝑡𝑡 810 W 

 

5.1.2.1 ICE Only Verification 

The ICE only verification test is conducted to verify that the conventional powertrain is capable 

of following the verification drive cycle without the help of the electric motor. In the real world 

2019 Chevrolet Blazer, the 2.5L LCV and M3D transmission is a commercially available front 

wheel drive powertrain option and thus the engine and transmission pair are appropriately sized to 

provide adequate propulsion to satisfy the driving cycle. It is important to note that due to the 

increase of mass from electric powertrain, the conventional vehicle would have better performance 

than the ICE only model evaluated in this test. ICE only operation is achieved in the DP algorithm 

by modifying the cost function to penalize the use of the electric motor as follows: 

 𝑔(𝑖, 𝑗) = min (𝑚̇𝑓𝑢𝑒𝑙 + |𝜏𝑐,𝑚𝑜𝑡|) (5.1) 

From this constraint, the DP algorithm will select the lowest amount of fuel consumed without any 

torque supplied from the electric powertrain. It should be noted that a scaling factor could 

potentially be necessary to ensure that the penalty on the electric motor torque outweighs the cost 

of fuel, however with fuel consumed in grams and motor torque in Nm and the large 𝛥𝑃𝑏𝑎𝑡𝑡 from 

the discretized state grid, the penalty for electric motor use outweighs the penalty of fuel 

consumed. The powertrain power outputs for the ICE only verification test is shown in Figure 29. 
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Figure 29: ICE Only Verification Test Powertrain Power Output 

In this figure, the vehicle speed and wheel power requirements are shown with the associated 

power produced by the ICE, P4 electric motor, mechanical friction brakes and the corresponding 

SOC of the ESS. The results of the ICE only verification test show that the algorithm selected the 

solution that used the ICE to meet exactly the positive torque requirements and the combination 

of ICE drag torque and mechanical brakes to satisfy the negative torque requirements of the 
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verification cycle. A summary of the energy analysis results for the ICE only verification test is 

shown in Table 2. 

Table 2:ICE Only Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 16.86 

Fuel Used (g) 132.07 

Total Fuel Energy (MJ) 5.67 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0 

 

As the entirety of mechanical energy is provided by the ICE, a significant amount of fuel is 

consumed in this test. It should be noted that due to the short length and aggressive driving captured 

in the verification drive cycle, the fuel economy is low when compared to the stock 2019 Chevrolet 

Blazer with the 2.5L LCV engine. Additionally, the total electrical energy is zero, which for charge 

sustaining operation will also be true, but for this scenario, the SOC never changes because the 

electric motor is never used. The mechanical losses of the P4 gearbox are not considered as the 

Magna eRAD unit contains a clutch that effectively allows the rear axle to free spin if the P4 motor 

is not engaged. These results lay the baseline of the lowest “optimal” fuel economy for the 

hybridized vehicle as the optimal use of the electric motor will improve the fuel economy. 

Although the fidelity of the DP algorithm is reduced for the verification tests, the ICE was able to 

achieve exactly the torque requirements for the cycle. The structure of the algorithm calculates 

ICE torque based on the remaining torque after subtracting the produced torque by the electric 

motor. In this scenario, the optimal operating points are zero torque from the electric motor and 
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thus the torque requests are identical to the required torque of the drive cycle. This benefit is not 

present in the CD verification test.  

5.1.2.2 CD Verification 

With the selected gear number fixed based on the method described in Section 4.3.1, the DP 

algorithm has demonstrated the ability to select the optimal control of the conventional powertrain, 

the next step is to implement the electric drivetrain and assess the improvements. The DP algorithm 

relies on the CS constraint to select an optimal control policy that differs from the trivial solution 

of motor only operation. By removing the CS constraint, the optimal control policy would be to 

use the electric motor to provide the propulsive torque and keep the engine operating at a low idle.  

As described in Section 4.3.3.5, the CS constraint is imposed in the forward-looking analysis after 

the total path cost is calculated for each point in the state grid. The CS constraint is imposed by 

manually selecting the initial point to be the CS SOC and following the minimum total path costs 

to the resulting CS SOC at the terminal point of the algorithm. By selecting the initial point to be 

the minimum total path cost in the state grid, the trivial (CD) solution is selected. The results of 

the CD verification test are shown in Figure 30. 



81 

 

 

Figure 30: CD Verification Test Powertrain Power Output 

The control policy begins by using the electric motor for all propulsive torque, but the upper torque 

limit of the motor is reached requiring the ICE to contribute. After reaching the cruise portion of 

the drive cycle, the motor once again takes over. During the first braking event, the mechanical 

brakes are used to meet the torque requirement initially before the electric motor commands 

negative torque to capture regen. For the remainder of the drive cycle, the electric motor is able to 
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provide the required torque. This test verifies both the DP algorithm’s ability to select the optimal 

solution for the hybrid powertrain operation as well as the successful calculation of motor 

operation and constraints. A summary of the energy analysis results for the CD verification test 

are shown in Table 3. 

Table 3: CD Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 29.65 

Fuel Used (g) 75.10 

Total Fuel Energy (MJ) 3.22 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0.76 

 

As this test constituted CD operation, the SOC dropped over 14% from the initial state to the final 

state resulting in a significant amount of electrical energy depleted. It is critically important to note 

that the reported fuel economy is not adjusted for the energy used during the test. The goal of this 

verification test was to allow the DP algorithm to pick the control policy that utilized the electric 

motor to follow the required torque for the drive cycle. Because of this, the ability for the ICE to 

enter fuel cut off was disabled for this test as the DP algorithm would select the motor torque 

required to drag the ICE in fuel cut off as much as possible. This makes debugging difficult as the 

motor and ICE torque fluctuate throughout the control policy. This is relevant because the 

minimum possible fuel consumption for this powertrain is not identified in this control policy.  

Converse to the torque production of the ICE, the electric motor is not likely to produce the exact 

amount of torque required by the drive cycle. This is due to the direct relationship between the 

state grid and motor torque as described in Section 4.3.3.1. In the DP test, the electric motor 
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typically slightly overproduces torque and makes up the difference with the mechanical brakes. 

By ensuring the state grid is discretized at a fine step size, the error between the required torque 

and produced motor torque is low enough that the additional use of the mechanical brakes is 

negligible.  

5.1.3 Cost Function Evaluation 

With the DP algorithm and powertrain component models verified for realistic operation, the 

effects of various cost functions are evaluated. In literature, several cost functions have been used 

with DP algorithms to determine optimal control policies in HEV powertrain energy management 

strategies.  

5.1.3.1 Fuel Only Cost Function 

The most common cost function is the minimization of fuel consumption only, as discussed in [2] 

[25] [45], given by the following function: 

 𝑔(𝑖, 𝑗) = min(𝑚̇𝑓𝑢𝑒𝑙) (5.2) 

where 𝑔 is the cost-to-go from state 𝑖 to state 𝑗. This cost function identically specifies the goal of 

the DP algorithm, minimizing the fuel used over the drive cycle. The optimal policy determined 

for the fuel only cost function is shown to be impacted by leaking and uniform state transition in 

the results presented in Figure 31. 
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Figure 31: Fuel Only Cost Function Verification Test Powertrain Power Output 

The undesired effects discussed in Section 4.3.3.6 can be identified at 8s and 74s into the drive 

cycle where the ICE power and P4 power spike to counteract each other. Not only are these control 

actions highly inefficient, but in a real-world application, control actions like these could damage 

components. Careful inspection of the total path cost matrix shows that the transition cost from 𝑖 

to state 𝑗 are far outweighed by the total path cost at state 𝑗. This forces the solution trajectory in 
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the direction of the state 𝑗 with the lowest total cost regardless of the cost-to-go for the transaction 

from 𝑖 to 𝑗. 

Although the proposed solution from the DP algorithm is physically infeasible, the operating 

points of the powertrain components is shown. As the fuel consumption, power loss, and 

efficiency maps of both the ICE and P4 motor used in the benchmark analysis are protected by 

confidentiality agreements, the operating points of these components are shown overlaid with 

constant power lines and the maximum torque line as a frame of reference. It should be noted that 

the included line is a publicly available reported maximum torque determined from a 2016 

Chevrolet Colorado [47] and differs from the maximum torque used to model the powertrain as 

described in Section 3.3.2.  

It can be stated that the ICE generally uses more fuel as speed and torque increase. However, the 

most efficient use of fuel energy by the ICE occurs roughly in the region of 70% of maximum 

torque between 2000 and 4000 RPM reaching a maximum operating efficiency less than 40% 

with most maximum efficiency points accumulating closer to 35% efficiency. This efficiency 

diminishes in all directions outside of this envelope. The operating points of the powertrain are 

shown in Figure 32. 
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Figure 32: Operating Points of the Powertrain Components for the Fuel Only Cost Function Verification Test 

The operating points show the ICE operating in three distinct regions, near idle, high load, and 

fuel cut off (FCO)Additionally, the electric motor is used significantly throughout the test for both 

propulsive torque and regenerative braking. The distribution of operating points is useful to 

understand to identify how the other cost function tests deviate from this solution. The summary 

of the energy analysis of this solution shown in Table 4. 

Table 4: Fuel Only Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 28.08 

Fuel Used (g) 79.30 

Total Fuel Energy (MJ) 3.41 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0 

 

The overall performance of the DP algorithm using the fuel only cost function is desirable from 

an energy standpoint. The algorithm operated nearly as efficiently as the CD operating mode while 
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maintaining CS operation. Other cost functions are assessed to address the problems of the fuel 

only cost function.  

5.1.3.2 Quadratic SOC Penalty Factor Cost Function 

The use of an added quadratic penalty factor for the SOC location was successfully implemented 

by Lin et al. in [45]. The adoption of this term into the cost function is as follows: 

 𝑔(𝑖, 𝑗) = min(𝑚̇𝑓𝑢𝑒𝑙 + 𝛼(𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡)
2

 ) (5.3) 

where 𝛼 is a tunable weight factor. The quadratic term is used to allow the DP algorithm to select 

the CS optimal solution without manually selecting an initial value. The results of the verification 

drive cycle for the quadratic SOC penalty cost function applied to the DP algorithm is shown in 

Figure 33. 
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Figure 33:Quadratic SOC Penalty Cost Function Verification Test Powertrain Power Output 

The results show that the SOC penalty cost function demonstrated its ability to guide the DP 

algorithm to a near CS solution. This was achieved through the careful tuning of the weight factor, 

𝛼 via trial and error with results summarized in Figure 34. 
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Figure 34: Sensitivity Analysis of Quadratic SOC Penalty Factor Weight Factor 

For an 𝛼 value that is too low, the CS control policy is not determined as shown by the value 0.01, 

while a large 𝛼 will lead the DP algorithm to select a solution that never uses the electric motor. 

In this test, a weight factor of 0.1 was determined to balance CS operation with use of the electric 

powertrain. 

The control policy is still prone to the leaking effect which is still present at 8s and 74s but with 

less effect when compared to the fuel only cost function. With this cost function, the use of the 

electric motor is too heavily penalized to allow the motor to provide useful positive torque. This 

can be identified in Figure 35 where the operating profiles for the ICE and electric motor are 

shown. 
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Figure 35: Powertrain Operating Points for SOC Penalty Cost Function Verification Test 

Because of the penalty on the use of the electric motor, the ICE is relied on more heavily, especially 

at low load, thus burning more fuel. This is further expressed in the energy analysis of this 

verification test as shown in Table 5. 

Table 5:Quadratic SOC Penalty Cost Function Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 19.93 

Fuel Used (g) 111.73 

Total Fuel Energy (MJ) 4.80 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0.06 

 

The addition of this penalty factor shows only an 18.6% increase in fuel economy over the 

conventional powertrain only but while using 60 kJ of energy from the battery pack. As the 

quadratic SOC penalty term did not achieve an appropriate control policy or remove the effects of 

leaking, other penalty factors were investigated. 
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5.1.3.3 Motor and Braking Penalty Factor Cost Function 

 In [10], the use of an alternative penalty term is added to constraint the cost function as follows: 

 𝑔(𝑖, 𝑗) = min( ṁ𝑓𝑢𝑒𝑙 + 𝛾(𝛼|𝜏𝑚𝑜𝑡|) + (1 − 𝛾) ∗ 𝛽|𝜏𝑏𝑟𝑎𝑘𝑒|)) (5.4) 

where 𝛼 and 𝛽 are tunable weight factors and 𝛾 is 1 when the required wheel torque is positive 

and 0 when the required wheel torque is negative. This cost function is meant to penalize overuse 

of the electric motor for positive torque requirements and penalizing the overuse of the mechanical 

brakes for negative torque requirements. The addition of a small penalty for using the electric 

motor for positive torque is meant to influence the algorithm to select the efficient ICE operational 

states with the lowest corresponding motor torque. The penalty on the mechanical brakes is 

imposed to influence the DP algorithm to select solutions that maximize regenerative braking. 

Various simulations were carried out to tune the weight factors in a sensitivity analysis similar to 

what was used for the tuning of the weight factor for the quadratic SOC penalty cost function. 

From this analysis the values of the weight factors were determined to be 0.01 and 0.001 for are 𝛼 

and 𝛽, respectively. Results for the use of the motor and braking penalty factor with these values 

for the weight factors are shown in  Figure 36. 
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Figure 36: Motor and Braking Penalty Cost Function Verification Test Powertrain Power Output 

The motor and braking penalty cost function showed that the impacts of leaking and uniform state 

transition were present in solutions for low values of the motor torque weight factor. Increasing 

this value eliminated the undesirable effects of these issues, but also affected the usability of the 

electric motor when positive torque is required. The operating profiles of the powertrain 

components shown in Figure 37 give more insight into these drawbacks of the motor and braking 

penalty cost function. 
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Figure 37: Powertrain Operating Points for Motor and Braking Cost Function Verification Test 

The ICE is allowed to operate at low load at the beginning of the first acceleration event and 

throughout the entire second event. Regeneration torque however is appropriately used throughout 

the drive cycle. The summary of the energy analysis for this test is shown in Table 6. 

Table 6: Motor and Brake Penalty Cost Function Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 23.42 

Fuel Used (g) 95.08 

Total Fuel Energy (MJ) 4.08 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0 

 

The energy analysis showed a clear improvement in fuel economy when compared to the quadratic 

SOC penalty function with a 17.5% decrease in fuel consumption. Another benefit of the motor 

and brake penalty function is that CS operation can be strictly enforced resulting in zero net 

electrical energy used. This cost function yielded fuel results within 16.6% difference of the CD 

maximum electric motor use solution.  
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5.1.3.4 Torque Overproduction Penalty Factor Cost Function 

Drawing from the improvements of the motor and brake penalty cost function, a final cost function 

was developed for use in the DP algorithm. This cost function implemented an overproduction of 

torque penalty factor to the cost function as shown: 

 𝑔(𝑖, 𝑗) = min(𝑚̇𝑓𝑢𝑒𝑙 + 𝛼(|𝜏𝑤,𝐼𝐶𝐸| + |𝜏𝑤,𝑚𝑜𝑡| + |𝜏𝑤,𝑏𝑟𝑎𝑘𝑒|)) (5.5) 

where 𝛼 is a tunable weight factor. With this cost function, all production of torque is penalized in 

the cost function. This effectively converts the goal of the DP algorithm to minimize the fuel 

consumed with the lowest possible production of torque. The careful calibration of the weight 

factor is critical to ensuring that the fuel term of the cost function is the driving force behind the 

decision making of the DP algorithm, while the additional overproduction term differentiates the 

total path cost. This term eliminates the uniform transition cost effect by making each cost unique 

and equally penalizing the use of each torque source in the vehicle powertrain. The powertrain 

power output results for an 𝛼 value of 0.008 is shown in Figure 38. 
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Figure 38:Overproduction Penalty Cost Function Verification Test Powertrain Power Output 

The overproduction penalty factor strikes an appropriate balance between ICE and motor torque 

production, specifically in low speed and low gear regimes. The electric motor maximizes the 

amount of regenerative braking extracted from the drive cycle. The operating points of the 

powertrain components for the overproduction penalty cost function is shown in Figure 39.  
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Figure 39: Powertrain Operating Points for Overproduction Cost Function Verification Test 

The operating points show improved use of the electric motor as well as the shift of ICE operating 

points to more efficient regions. The negative effects of leaking and uniform transition cost are 

avoided and realistic operation of the powertrain is achieved. The energy analysis results for the 

overproduction penalty cost function are shown in Table 7. 

Table 7: Overproduction Penalty Cost Function Verification Test Energy Summary 

Parameter Value 

Fuel Economy (MPG) 25.03 

Fuel Used (g) 88.96 

Total Fuel Energy (MJ) 3.82 

Total Mechanical Energy (MJ) 2.44 

Total Electrical Energy (MJ) 0 

 

Of the modified cost functions, the overproduction penalty cost function has the highest 

performance with respect to fuel economy with a 48.8% decrease in fuel consumption when 

compared to the engine only operation and within 10.9% of the CD operation of the vehicle.  
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5.1.3.5 Summary of Cost Function Evaluation 

The resulting performance of each of the cost functions evaluated in this analysis are shown in 

Table 8. 

Table 8: Cost Function Evaluation Summary 

Cost Function 

Total Fuel 

Energy 

(MJ) 

Total Electrical 

Energy 

(MJ) 

Drawback 

Fuel Only 3.41 0 Unrealistic control actions 

Quadratic SOC Penalty 4.80 0.06 Reduced range of SOC use 

Motor and Braking Penalty 4.08 0 Reduced use of electric motor 

Torque Overproduction 3.82 0 Penalized opportunity charging 

 

Based on these results, the overproduction penalty factor was selected to augment the penalty 

function in the benchmark analysis of the hybrid 2019 Chevrolet Blazer. 

The effects of leaking and uniform transition costs present difficult challenges to overcome without 

additional terms in the cost function. As such, additional terms in the cost function are to be viewed 

as soft constraints compared to the hard constraints of powertrain limit violation. The main soft 

constraint in the benchmark analysis conducted in this work is the overproduction of torque. This 

constraint shifts the goal of the DP algorithm from producing the optimal control policy that 

minimizes fuel consumption to the optimal control policy that minimizes fuel consumption with 

the lowest overproduction of torque. The largest implication of this constraint is the penalization 

of opportunity charging. While analyzing the results for the selection of the cost function for the 

benchmark analysis, the fuel consumption only cost function would command opportunity 

charging for massive magnitude torques for short periods which are physically infeasible. 

Otherwise, the solutions determined were nearly identical to the solution obtained with the torque 
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overproduction penalty. Because of this, it is concluded that it is not an efficient decision to use 

opportunity charging in this powertrain and that the use of the overproduction penalty is admissible 

for the global optimal solution of the fuel consumption minimization problem. 

5.2 DP Solution Simulink Validation 

It is necessary to ensure that the highly simplified vehicle model developed in the MATLAB 

environment adequately represents the general performance of the high-fidelity vehicle model 

from which it was developed. In this work, the torque commands that correspond to the optimal 

control policy determined by the DP algorithm are used in an open loop feed-forward powertrain 

model in Simulink. This model was developed directly from the full fidelity vehicle model used 

by the WVU PCM team by eliminating non-powertrain related interactions and rebuilding the 

supervisory control system to interpolate and issue the torque commands determined by the DP 

algorithm. The validation Simulink model is of considerably higher fidelity than the DP powertrain 

models including the full functionality of MathWork’s Powertrain Blockset models for the ICE, 

Battery, Electric Motor, Torque Converter, Automatic Transmission, Front and Rear Differentials, 

Wheels and Brakes, Shaft Compliance, and 1DOF Vehicle Dynamics. The results for the 

powertrain torque production are shown in Figure 40. 
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Figure 40: Simulink Validation Model Torque Production Compared to DP Algorithm 

The electric motor was able to perfectly follow the commands issued by the hybrid supervisory 

subsystem, likely due to the simple nature of the electric motor model. The validation model 

implements the maximum torque curve and the loss data provided by the electric motor 

manufacturers to model the electric motor. This same data was used to generate the flipped torque 

lookup table implemented in the DP algorithm. The ICE torque production from the validation 

model reasonably follows the commands from the DP algorithm with an expected transient lag 

due to the lumped-parameter dynamics modeling present in the full fidelity ICE model. There are 

significant differences at idle and after returning from fuel cut off (FCO) conditions in the ICE 

model. This is likely due to the highly simplified torque converter adopted for the DP algorithm 

model. In the full fidelity model, there is a longer time constant for the dynamics of the torque 

converter to lock and unlock to facilitate idle and FCO. Although there are obvious differences, 

the DP algorithm’s powertrain model successfully selects operating conditions that can be 

reasonably reproduced in a higher fidelity model. 
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After determining that the higher fidelity powertrain is capable of reproducing the control actions 

determined by the DP algorithm, the resulting vehicle state and key operating parameters must be 

validated to show that the DP model can reasonably relate powertrain operation to vehicle 

dynamics and operation. The resulting battery SOC, vehicle speed, and fuel flow rate comparison 

from the validation Simulink model are shown in Figure 41. 

 

Figure 41: Simulink Validation Model Vehicle State and Dynamics Compared to DP Algorithm 

The overall vehicle state and dynamics results are that the validation model reasonably reproduces 

the modeled dynamics and states used in the DP algorithm. The SOC has the largest deviation 

from the DP results with the final SOC at 46.8%, likely due to the more robust modeling of the 

battery pack in the validation model. In the DP algorithm, the change of SOC is directly correlated 

to the power of the electric motor. In the validation model, the battery pack model implements 

lookup tables for relevant battery operating parameters such as open circuit voltage, internal 

resistance, chemical losses, etc. The large differences in how the SOC of the battery is modeled 

are what drives the large differences between results. In discharge events, the high-fidelity model 



101 

 

produces a similar curve as the DP algorithm, while in regeneration, much less energy is recovered 

into the battery pack due to the additional modeling of electrical, chemical, and mechanical losses.  

The control actions determined by the DP algorithm are shown to accurately propel the vehicle 

within a reasonable margin of error. The general trend of the initial acceleration event is followed 

well by the validation simulation with a total speed error of 3 mph. Following the initial 

acceleration, cruise and deceleration, the vehicle does not come fully to rest in the validation model 

likely because of the open loop nature of the validation model. The model explicitly follows the 

braking commands issued by the hybrid supervisory subsystem and with the minimization of 

overproduced torque, the mechanical brakes and negative torque from the electric motor do not 

supply sufficient braking to stop the vehicle with the additional vehicle dynamics modeled. During 

the second acceleration event, the top speed is overshot by 6 mph, but cruise is adequately 

maintained. Overall, the speed profile of the validation model adequately follows the DP algorithm 

within acceptable margins of error.  

Finally, the fuel consumption comparison gives insight to how well the DP algorithm models the 

key cost function parameter. The comparison between the validation model and DP algorithm 

show that the fuel values are extremely similar with the total fuel consumed by the validation 

algorithm being 90.05g while the DP algorithm uses 88.96g. These results show that although the 

DP algorithm ICE model is highly simplified compared to the full fidelity validation model, the 

quasistatic nature of the two models still govern the overall results of the two models. Overall, the 

results of the validation testing in Simulink show that the operating conditions determined by the 

DP algorithm are admissible and adequately capture the general steady state dynamics of the WVU 

EcoCAR team competition vehicle.  
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5.3 Benchmark Analysis 

With the DP algorithm verified to produce an optimal set of control actions that have been 

validated to appropriately model the performance of the hybrid 2019 Chevrolet Blazer, the 

benchmark analysis can be conducted to extract the optimal control policies over relevant drive 

cycles such that the results can be implemented into the control strategy adopted by the WVU 

EcoCAR team.  The benchmark analysis will examine 5 drive cycles to determine the optimal 

control policies and relevant parameters that are beneficial with the design of the control system. 

The drive cycles are the EMC City EMC Highway, US06, UDDS, and HWFET drive cycles. The 

EMC drive cycle are the criteria on which the WVU EcoCAR team is evaluated for energy 

consumption in the EMC. The optimization of fuel efficiency on target cycles is a common practice 

for automotive manufacturers to maximize the advertised performance of vehicles and meet 

corporate requirements by set forth by environmental protection agencies. Similarly, if the team 

vehicle’s control system is optimized to the target of the EMC competition, the vehicle will 

perform better while under evaluation of the competition. The additional drive cycles in the 

benchmark analysis each offer a specific road condition that makes each one unique. The 

performance of the powertrain over these cycles can give insight for how an online control should 

handle specific situations.  

5.3.1 EMC City 

The EMC City cycle is designed to be representative of city driving conditions with two long 

driving events with variable speed followed by a multitude of quick acceleration and braking 

representative to stop and go traffic from a stop light. The speed and time profile with associated 
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wheel torque and power requirements determined from the vehicle glider model described in 

Section 4.3.1 are shown in Figure 42. 

 

Figure 42:EMC City Drive Cycle Speed, Torque and Power Requirements 

The torque and power requirements are relatively low compared to the verification cycle with the 

largest demands occurring near the end of the cycle. The shift schedule of the cycle is determined 

according to the strategy discussed in Section 4.3.1 and is shown in Figure 43. 
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Figure 43: EMC City Shift Schedule 

Similar to the torque and power requirements, the shift schedule is relatively relaxed compared to 

the verification cycle. Relevant information for the EMC City drive cycle and DP algorithm 

initialization are shown in Table 9. 

Table 9:EMC City Information and DP Algorithm Initialization Parameters 

DP Algorithm EMC City 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 3.34 

Minimum SOC (%) 20 Total Time (s) 740 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5,000 Maximum Acceleration (m/s2) 2.09 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -1.86 

𝛥𝑃𝑏𝑎𝑡𝑡 (W) 648  Mechanical Energy Required (MJ) 3.87 

 

Discretizing 5,000 points within the state grid strikes a balance between runtime and memory 

requirements. The constraints of the ESS state that the SOC should remain between 20% and 80% 

and although the optimal control policy likely exists within a far more narrow window of SOC, 
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the entire feasible range of the ESS is included. The powertrain power output results are shown in 

Figure 44. 

 

Figure 44: EMC City Powertrain Power Output 

Early in the EMC City drive cycle, the ICE is used for the majority of propulsive torque while the 

electric motor is typically used for low power requirements. The braking torque is primarily 

supplied by the electric motor with the mechanical brakes used only to supplement the braking 

effort. Later in the cycle, the electric motor is used much more heavily for both positive and 
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negative torque as the vehicle accelerates and brakes more frequently. The largest deviation from 

the target SOC is to 47.02% during the stop and go portion of the drive cycle. 

As the fuel consumption, power loss, and efficiency maps of both the ICE and P4 motor used in 

the benchmark analysis are protected by confidentiality agreements, the operating points of these 

components are shown overlaid with constant power lines and the maximum torque line as a frame 

of reference. It should be noted that the included line is a publicly available reported maximum 

torque determined from a 2016 Chevrolet Colorado [47] and differs from the maximum torque 

used to model the powertrain as described in Section 3.3.2. 

It can be stated that the ICE generally uses more fuel as speed and torque increase. However, the 

most efficient use of fuel energy by the ICE occurs roughly in the region of 70% of maximum 

torque between 2000 and 4000 RPM reaching a maximum operating efficiency less than 40% with 

most maximum efficiency points accumulating closer to 35% efficiency. This efficiency 

diminishes in all directions outside of this envelope. 

The selected operating points for the powertrain components are shown in Figure 45. 
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Figure 45: Operating Points of ICE and P4 Motor for EMC City Drive Cycle 

The ICE can be identified operating at its minimum admissible running points such as minimum 

running power near the zero constant power line, and FCO in the negative region of torque. The 

ICE is shown to frequently operate around 2000 RPM with the majority of torque commands 

between 0 and 75 Nm of component torque produced. The ICE operates outside of this region a 

few times with speeds reaching up to 2500RPM and torques of up to 100Nm. The electric motor 

typically operates between ±60Nm over a large range of speeds.   

To examine the operating efficiency of the powertrain, a set of histograms were developed to look 

at the distribution of operating points. The efficiency values are determined as follows: 

 𝜂𝐼𝐶𝐸 =
𝑃𝐼𝐶𝐸

𝑃𝑓𝑢𝑒𝑙
 (5.6) 

 𝜂𝑚𝑜𝑡 =
𝑃𝑚𝑜𝑡

𝑃𝑙𝑜𝑠𝑠
 (5.7) 

 𝜂𝑡𝑜𝑡𝑎𝑙 =
𝑃𝑤ℎ𝑒𝑒𝑙

𝑃𝑓𝑢𝑒𝑙
 (5.8) 
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where 𝜂𝐼𝐶𝐸, 𝜂𝑚𝑜𝑡 and 𝜂𝑡𝑜𝑡𝑎𝑙 are the efficiency of the ICE, electric motor, and total system, 

respectively. The ICE efficiency determined from ICE only operation of the vehicle over the EMC 

City drive cycle is used to demonstrate the efficiency improvements from implementing the 

electric drivetrain in urban conditions. The distribution of ICE efficiencies for ICE only operation 

over the EMC City drive cycle is shown in Figure 46. 

 

Figure 46: Efficiency Distribution of ICE Only Operation for EMC City Drive Cycle 

The distribution of operating efficiencies for hybrid vehicle operation are shown in Figure 47.  

 

Figure 47: EMC City Optimal Operating Efficiency Distribution 
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Comparing the ICE only operation to hybrid operation, there is a clear shift in ICE efficiency from 

a nearly uniform distribution to a significant skew to the right between 25-30% efficiency. There 

are noticeable peaks between 25 and 30% with few operating points achieving efficiency greater 

than 30%. It is critical to note that for 18% of the drive cycle, the engine was in FCO and as such 

no fuel was burned. These points are not captured in the histogram as there is no associated 

efficiency for these points. The efficiency distribution for motor operation is significantly skewed 

to the right with peaks between 85-90% efficiency that cover 57% of the operating points. It is 

important to note that for 62% of the drive cycle the motor is not used and thus no efficiency value 

is assigned to these points. Considering the system as a whole, the total fuel efficiency is skewed 

to the left with the majority of points operating below 20% efficiency. This distribution is expected 

due to the effects of losses from the driveline and energy conversions.  

By examining the torque split decisions of the optimal policy determined by the DP algorithm, the 

criteria for operating at specific torque split ratios can be assessed. The torque split ratio is a key 

part of energy management in parallel HEVs and is often communicated in various forms. For 

consistency, in this work, the torque split ratio is defined as follows: 

 𝑇𝑆𝑅 =
𝜏𝑤,𝐼𝐶𝐸

𝜏𝑅𝑒𝑞
 (5.9) 

where TSR is the torque split ratio between ICE wheel torque and the required torque by the cycle. 

The torque split ratio defined as such represents the amount of required torque to follow the drive 

cycle that is produced by the ICE. In the EMC City drive cycle, two distinct driving conditions are 

captured. The first condition is a low-speed cruise with slight perturbations to the speed. Figure 48 

shows the torque production of the hybrid powertrain for the second cruise condition of the EMC 

City Cycle.  
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Figure 48: Torque Production Analysis of Cruise Portion of EMC City Drive Cycle 

From the torque visualization of the torque split ratio of the cruise portion of the EMC City drive 

cycle, the electric motor is primarily used to assist the ICE at low speeds and high torque 

requirements. There is a corresponding significant increase in instantaneous fuel efficiency as the 

electric motor is used to provide positive propulsive torque. As speed increases, the ICE takes over 

to produce the entirety of required torque. For negative torque requirements, the ICE goes into 

FCO, as shown by the callout in Figure 48, while the electric motor supplies the remaining braking 

torque with regenerative braking.  
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During the stop and go traffic driving condition portion of the EMC City drive cycle, the torque 

requirements are much higher with large speed variation. The vehicle is quickly accelerated and 

decelerated multiple times throughout this portion of the drive cycle. The torque production 

analysis of the stop and go point of the EMC City drive cycle is shown in  Figure 49. 

 

Figure 49: Torque Production Analysis of Stop and Go Portion of EMC City Drive Cycle 

Throughout the examined portion of the drive cycle in Figure 49, the electric motor is used 

significantly to produce both positive and negative torque to the wheels of the vehicle. The general 
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trend during braking is that the ICE is pushed into FCO and the electric motor is used to capture 

regenerative braking. Throughout this portion of the drive cycle, there is significant increase in 

instantaneous fuel efficiency as the electric motor is heavily used.  

Investigating the relationship between the power produced by the ICE and the torque split ratio 

reveals more about the control policy determined by the DP algorithm. The torque split ratio in the 

positive torque and power regime are shown in Figure 50. 

 

Figure 50: EMC City Torque Split Ratio in Positive Torque and Power Regime 

As noted in the results in Figure 49, the TSR is 1 for low torque requests, specifically torque 

requests under 112 Nm. For higher torque requests there is a loose correlation with smaller values 

of TSR. In general, the TSR splits between 20-80% of torque between the ICE and electric motor 

with few operating points outside of that envelope. At very low power requests the ICE generally 

provides 100% of the torque request, but as the power requirement increases, there is a strong 

decreasing trend in the torque split ratio. This suggests that at high power requests, the electric 

motor plays a much larger role in the torque production in the optimal control policy. The TSR in 

the negative torque and power regime is shown in Figure 51. 
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Figure 51: EMC City Torque Split Ratio in Negative Torque and Power Regime 

In the negative regime, the TSR is much less useful as it indicates the amount of braking supplied 

by the ICE while in FCO which is consequential based on the speed of the vehicle, not an amount 

that is dependent of decisions of the energy management system. 

The energy consumption of the vehicle for the EMC City drive cycle is shown in Figure 52. 

 

Figure 52: Energy Analysis for EMC City Drive Cycle 
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A performance summary of the energy used by the optimal control policy as determined by the 

DP algorithm is shown in Table 10. 

Table 10: EMC City Energy Summary 

Parameter Value 

Fuel Economy (MPG) 30.18 

Fuel Used (g) 311.20 

Fuel Energy (MJ) 13.36 

Net Wheel Energy (MJ) 3.87 

Net Electrical Energy (MJ) 0 

Kinetic Energy Recovered (MJ) 0.73 

 

There is significantly more fuel energy consumed throughout the EMC City drive cycle. This result 

is expected as the ICE does not have engine start/stop functionality thus continuously burning fuel 

unless in FCO. As expected, the energy produced by the ICE is far lower than the total available 

fuel energy due to the inherent inefficiencies associated with the ICE. The produced ICE energy 

exceeds the net energy at the wheels due to the losses associated with drivetrain component 

efficiencies. Comparing hybrid performance with non-hybrid performance, the 0.73 MJ of energy 

recovered using regenerative braking throughout the drive cycle that is, in turn, used for propulsive 

torque saved a total of 3.0 MJ of fuel energy. The resulting fuel economy of the vehicle following 

the optimal control policy is 30.11 MPG. 

5.3.2 EMC Highway 

The EMC Highway drive cycle is designed to be representative of highway driving conditions 

with the beginning portion of the cycle representing the portion of a drive to reach a highway and 

the remaining repeating portion representative of merging onto the highway, cruising on a 
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populated road, and exiting the highway multiple times. The speed and time profile with associated 

wheel torque and power requirements are shown in Figure 53. 

 

Figure 53: EMC Highway Drive Cycle Speed, Torque and Power Requirements 

The torque and power requirements are very different for the two driving conditions. The first 

condition is much more relaxed while the highway driving portion of the cycle has similar torque 

and power requirement transients with higher cruise requirements. The shift schedule of the cycle 

is determined according to the strategy discussed in Section 4.3.1 and is shown in Figure 54. 
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Figure 54: EMC Highway Shift Schedule 

Due to the length of the EMC highway cycle, the transmission appears to shift directly into higher 

gears; however, at low speeds the transmission remains in lower gears. During the acceleration 

events, the transmission cycles through lower gears quickly as speed increases. Relevant 

information for the EMC Highway drive cycle and DP algorithm initialization are shown in Table 

11. 

Table 11: EMC Highway and DP Algorithm Initialization Parameters 

DP Algorithm EMC Highway 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 29.63 

Minimum SOC (%) 20 Total Time (s) 2962 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5,000 Maximum Acceleration (m/s2) 1.99 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -1.60 

𝛥𝑃𝑏𝑎𝑡𝑡 (W) 648 Mechanical Energy Required (MJ) 21.90 
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As shown, the number of grid points and SOC limits are identical to the analysis of the EMC City 

benchmark analysis. The powertrain power output results for the EMC Highway drive cycle are 

shown in Figure 55. 

 

Figure 55: EMC Highway Powertrain Power Output 

Similar to the EMC City Drive cycle, the ICE is used for the majority of propulsive torque while 

the vehicle experiences small perturbations in speed while the electric motor is primarily used 
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when the vehicle is significantly accelerating. The mechanical brakes are not significantly used 

throughout the cycle as the electric motor is able to provide all of the required braking torque. The 

SOC dips slightly early in the cycle but is recovered before transitioning to the second part of the 

drive cycle. The peaks in SOC reach 54.2% due to the significant braking at those location. The 

rise in SOC is short lived as the motor is quickly discharged to assist with the acceleration event. 

Near the end of the cycle, the largest deviation from the target SOC occurs at 46.1%. 

To identify the operating conditions of the ICE and electric motor, the torque and speed values of 

the optimal control policy are shown in Figure 56. It should be noted that the static maps used for 

fuel consumption and operating efficiency are protected by confidentiality agreements, thus only 

the maximum torque line is included. It should be noted that the included line is a publicly available 

reported maximum torque determined from a 2016 Chevrolet Colorado and differs from the 

maximum torque used to model the powertrain as described in Section 3.3.2. 

 

Figure 56: Operating Points of the ICE and P4 Motor for the EMC Highway Drive Cycle 
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The ICE is shown to operate at its minimum operating points at both minimum running power near 

the zero-power line and at FCO in the negative torque region of the plot. The ICE operates at 

torques and speeds similar to the EMC City cycle, between 1700 and 2500RPM, but at higher 

torque values. In contrast to operation for the EMC City cycle, there is a higher concentration of 

ICE operational points above 10kW of power. Further contrasting the EMC City cycle, the electric 

motor is seldom used for positive propulsive torque. In the negative operating region of the electric 

motor, there is a higher concentration of operating points that range from 0 to -75Nm of torque at 

various speeds.  

The ICE efficiency determined from ICE only operation of the vehicle over the EMC Highway 

drive cycle is used to demonstrate the efficiency improvements from implementing the electric 

drivetrain. The distribution of ICE efficiencies for ICE only operation over the EMC Highway 

drive cycle is shown in Figure 57. 

 

Figure 57: Efficiency Distribution of ICE Only Operation for EMC Highway Drive Cycle 

Considering the efficiency of the powertrain operating in hybrid mode, the following set of 

histograms in Figure 58 investigate the distribution of operating point efficiency throughout the 

EMC Highway drive cycle. 
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Figure 58: EMC Highway Optimal Operating Efficiency Distribution 

For ICE only operation, there is a skew to the right, however the efficiency is clearly improved by 

operating in hybrid mode with clear peaks between 27.5-32.5% efficiency making up 40% of the 

operating points of the ICE. It is important to note that the ICE operated in FCO for only 8% of 

the drive cycle which is not captured by the histogram. The electric motor efficiency is largely 

distributed above 85% for nearly 54% of operating points in the cycle; however, compared to the 

electric motor performance in the EMC City drive cycle, there is a much higher concentration of 

low operating efficiency in the electric motor with several peaks occurring below 50% efficiency. 

Additionally, the electric motor was not used to provide propulsive torque for 85% of the drive 

cycle which is not represented in the histogram. Considering the entire systems fuel economy, the 

overall system fuel efficiency operates between 15 and 25% efficiency for more than 67% of the 

drive cycle. In contrast with the EMC City drive cycle results, there is not significant operation of 

the system above this range of efficiencies.  

Understanding that in the EMC Highway drive cycle the electric motor is seldom used, identifying 

where the electric motor provides propulsive torque is critical to understand where the gains in 



121 

 

efficiency occur. Figure 59 shows the production of torque by the hybrid powertrain for the 

beginning segment of the EMC Highway drive cycle. 

 

Figure 59: Torque Production Analysis of Cruise Portion of EMC Highway Drive Cycle 

For sharp accelerations the electric motor is used for positive propulsive torque, however, during 

the majority of the cruise portion of the drive cycle, the ICE generates all of the torque to the 

wheels. There are several occasions where negative torque is required to follow the drive cycle, 

and the system responds by pushing the ICE into FCO and the electric motor to decelerate the 

vehicle where it is able to capture a portion of the energy. As the drive cycle transitions into the 
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higher demand highway driving segment, there remains to be little use of the electric motor as 

shown in Figure 60. 

 

Figure 60: Torque Production of Highway Driving Portion of the EMC Highway Cycle 

As the vehicle accelerates near the beginning of the highway driving segment of the drive cycle, 

the electric motor is used significantly to provide positive propulsive torque for the vehicle. The 

typical torque split during acceleration events falls between 0.4 and 0.8, meaning the ICE provides 

between 40 and 80% of the torque. Throughout the highway segment braking torque is required in 

short intervals. Similar to the previous driving segment, the system pushes the ICE into FCO while 
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the electric motor provides a portion of the braking. In both driving segments, there are significant 

peaks in fuel efficiency as the electric motor is used to provide positive propulsive torque. 

The torque split ratio of the positive torque and power operating regime is shown in Figure 61. 

 

Figure 61: EMC Highway Torque Split Ratio in Positive Torque and Power Regime 

The ICE operates on its own for a large majority of the cycle predominately at torque requests 

below 200Nm with a single outlier at 97Nm. For higher torque requests the TSR is generally 

between 0.2 and 0.6 with few operating points extending above 0.8 or below 0.2. There is little 

operation of the electric motor at power requests below 10kW. Similar to the trend from the EMC 

City drive cycle, there is a strong decreasing relationship for TSR values as the power request 

increases. The torque split ratio in the negative torque and power operating regime is shown in 

Figure 62. 



124 

 

 

Figure 62: EMC Highway Torque Split Ratio in Negative Torque and Power Regime 

In the negative torque and power regime, the results of the TSR are generally consequential. The 

energy consumption of the vehicle over the EMC Highway drive cycle is shown in Figure 63 

 

Figure 63: Energy Analysis for EMC Highway Drive Cycle 

Table 12 summarizes the relevant overall performance metrics and energy values for the EMC 

Highway drive cycle.  
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Table 12: EMC Highway Energy Summary 

Parameter Value 

Fuel Economy (MPG) 37.24 

Fuel Used (g) 2238.2 

Fuel Energy (MJ) 96.11 

Net Wheel Energy (MJ) 21.88 

Net Electrical Energy (MJ) 0 

P4 Propulsive Energy (MJ) 1.68 MJ 

 

Throughout the EMC Highway drive cycle, there is significant fuel consumption. There is a 

significant amount of kinetic energy recovered throughout the drive cycle although the electric 

motor does not have many operating points. During the times that the electric motor operated, the 

ICE consumed less fuel leading to a difference of 11.8 MJ of fuel energy savings from hybrid 

operation compared to ICE only operation. The resulting fuel economy of the vehicle following 

the optimal control policy is 37.24 mpg.  

5.3.3 US06 

To provide a comprehensive benchmarking analysis, the DP algorithm is used to determine 

optimal control policies for other popular EPA drive cycles.  The US06 cycle is an aggressive drive 

cycle that captures both urban and highway driving conditions [48].  The speed and time profile 

of the US06 drive cycle with associated wheel torque and power requirements are shown in Figure 

64. 
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Figure 64: US06 Drive Cycle Speed, Torque and Power Requirements 

The torque and power requirements for the US06 drive cycle are considerably more demanding 

than the previously examined drive cycles. The associated shift schedule for the US06 drive cycle 

is shown in Figure 65. 

 

Figure 65: US06 Shift Schedule 

Additional relevant parameters for the US06 drive cycle and DP algorithm initialization 

parameters are shown in Table 13. 



127 

 

Table 13: US06 Cycle Information and DP Algorithm Initialization Parameters 

DP Algorithm US06 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 8.01 

Minimum SOC (%) 20 Total Time (s) 600 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5,000 Maximum Acceleration (m/s2) 3.76 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -3.08 

𝛥𝑃𝑏𝑎𝑡𝑡 (W) 648  Mechanical Energy Required (MJ) 14.43 

 

This drive cycle was analyzed due to the sharp accelerations and higher speeds to provoke greater 

power and torque demands from the vehicle. The powertrain power output results for the US06 

drive cycle are shown in Figure 66. 
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Figure 66: US06 Drive Cycle Powertrain Power Output 

The demanding nature of the US06 drive cycle results in significant use of the ICE and electric 

motor together. Many of the power outputs are near the component maximums to be able to 

achieve the torque requirements of the drive cycle. The US06 drive cycle yields the largest 

deviation from the CS target, reaching a maximum of 53.4% and a minimum of 30.5%. The 

braking maneuvers in this drive cycle also require the use of the mechanical brakes several times.  

The operating points of the ICE and electric motor are shown in  Figure 67. 
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Figure 67: US06 Drive Cycle Powertrain Operating Points 

Throughout the US06 drive cycle, the ICE operates under a much higher load. There are several 

operating points that extend into high power regions of operation. In the US06 cycle, there is little 

idle time and thus the ICE has few operating points at idle speeds; however, there is considerable 

use of FCO throughout the cycle. Considering the operating points of the electric motor, the 

maximum capabilities of the eRAD system are used to provide sufficient torque to achieve the 

drive cycle. Due to the high speeds of the US06 drive cycle, the electric motor exceeds its 

maximum speeds. In the real-world vehicle, the disconnect clutch in the eRAD system would open 

allowing the shaft to free spin at high speeds. This transaction is observed as the zero-torque 

production at the highest speeds on the plot of electric motor operating points.  The ICE efficiency 

determined from ICE only operation of the vehicle over the UDDS drive cycle is shown in Figure 

68. 
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Figure 68:Efficiency Distribution of ICE Only Operation for US06 Drive Cycle 

The efficiency distribution of the hybrid powertrain operation is shown in Figure 69. 

 

Figure 69: US06 Optimal Control Policy Operating Efficiency Distribution 

The high-power requirements of the US06 drive cycle allow the ICE to operate at high efficiency 

in engine only operating modes. The additional torque from the electric motor improves the 

efficiency by allowing the ICE to operate within its highest efficiency region for 45% of the drive 

cycle. The remaining efficiency distribution is largely skewed toward higher ICE efficiencies with 

the exception of idle which only accounts for 10% of the operating points of the ICE. A critical 



131 

 

consideration of this drive cycle is that the ICE operates in FCO region for 17.5% of the cycle. 

The electric motor operates above 90% efficiency for 65% of operating points with the remaining 

distribution skewed toward higher efficiencies, however, the electric motor is not used for 60.1% 

of the drive cycle. The resulting overall efficiency is between 20 and 25% efficiency for half of 

the drive cycle. 

The cruise portion of the US06 drive cycle has significantly higher torque requirements than 

previous cycles examined in this analysis as shown in Figure 70. 

 

Figure 70: Torque Production Analysis of Cruise Portion of US06 Drive Cycle 
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Throughout the cruise portion of the US06 drive cycle, the ICE is the primary producer of torque, 

however, the electric motor contributes large portions of the torque at various points throughout 

this driving condition. This is likely due to the excessive regenerative braking available in the 

US06 drive cycle. Due to the availability of electrical energy, the motor is used to keep the ICE 

operating at its highest efficiency. The majority of regenerative braking occurs near the end of the 

US06 drive cycle where multiple sharp acceleration and braking events occur. The torque 

production near the end of the US06 cycle is shown in Figure 71. 

 

Figure 71: Torque Production Analysis of Stop and Go Portion of US06 Drive Cycle 



133 

 

In this portion of the US06 drive cycle, there is significant use of the electric motor to assist with 

the sharp accelerations and decelerations. Throughout this portion of the drive cycle, substantial 

regenerative braking energy is captured by the electric motor. Looking deeper into the amount of 

torque split, the torque split ratio of the positive and negative operating regime is shown in Figure 

72 and Figure 73, respectively. 

 

Figure 72: US06 Torque Split Ratio in Positive Torque and Power Regime 

 

Figure 73: US06 Torque Split Ratio in Negative Torque and Power Regime 

In Figure 72, there is a clear grouping of low TSR values around 500Nm and 40kW. These values 

occur during the electric motor assist throughout the cruise portion of the US06 drive cycle shown 

in Figure 70. The remaining points in the positive regime follow a similar trend as previous drive 
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cycles with a decreasing relationship as power request increases. In the negative regime, TSR is 

less useful to discuss as it is a result of the ICE in FCO and electric motor used for regen. 

The energy consumption of the vehicle over the US06 drive cycle is shown in Figure 74. 

 

Figure 74: Energy Analysis for US06 Drive Cycle 

Table 14 summarizes the relevant overall performance metrics and the energy values for the US06 

drive cycle.  

Table 14: US06 Energy Summary 

Parameter Value 

Fuel Economy (MPG) 24.64 

Fuel Used (g) 914.00 

Fuel Energy (MJ) 39.24 

Net Wheel Energy (MJ) 14.43 

Net Electrical Energy (MJ) 0 

P4 Propulsive Energy (MJ) 2.37 
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The fuel economy of this drive cycle is much lower than other cycles examined in this work. This 

is due to the aggressive driving that occurs throughout this drive cycle. Figure 74 shows that the 

fuel energy far exceeds the energy generated at the wheels. However, although significant amounts 

of fuel were consumed over the drive cycle, the ICE operated near peak efficiency for the majority 

of the drive cycle. This was accomplished with the help of the electric motor using the significant 

amount of kinetic energy extracted from the drive cycle. With the electric motor assist, the wheel 

energy produced exceeded the energy produced from the ICE.   

5.3.4 UDDS 

The UDDS drive cycle simulates the urban driving conditions in stop-and-go traffic [48]. The 

speed and time profile of the UDDS drive cycle with associated wheel torque and power 

requirements are shown in Figure 75. 

 

Figure 75: UDDS Drive Cycle Speed Torque and Power Requirements 



136 

 

The torque and power requirements for the UDDS drive cycle are relatively consistent with the 

EMC City drive cycle. Both drive cycles capture urban driving conditions; however, UDDS is 

much longer with many more rapid acceleration and deceleration events. The shift schedule for 

the UDDS drive cycle is shown in Figure 76. 

 

Figure 76: UDDS Shift Schedule 

Additional relevant parameters for the US06 drive cycle and DP algorithm initialization 

parameters are shown in Table 15. 

Table 15: UDDS Drive Cycle Information and DP Algorithm Initialization Parameters 

DP Algorithm UDDS 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 7.45 

Minimum SOC (%) 20 Total Time (s) 1370 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5,000 Maximum Acceleration (m/s2) 1.48 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -1.48 

𝛥𝑃𝑏𝑎𝑡𝑡 (W) 648  Mechanical Energy Required (MJ) 9.46 
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The stop and go nature of the UDDS drive cycle is generally detrimental to conventional vehicles 

as the ICE operates inefficiently at low load and low speeds. This drive cycle provides insight to 

how beneficial the electric powertrain can be for urban conditions. The powertrain power output 

results for the UDDS drive cycle are shown in Figure 77. 

 

Figure 77: UDDS Drive Cycle Powertrain Power Output 
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In this drive cycle, there is significant use of the electric motor with the various acceleration and 

braking portions of the drive cycle. On several occasions, the ICE is assisted by the electric motor, 

likely due the amount of regenerative braking available in the drive cycle. Due to this availability, 

the electric motor can be used more often outside of vehicle launch assist. The operating points of 

the powertrain are shown in Figure 78. 

 

Figure 78: UDDS Drive Cycle Powertrain Operating Points 

In the UDDS drive cycle, the ICE operates at low power as expected by the low torque 

requirements to meet the drive cycle. The electric motor operates frequently in both the positive 

and negative torque regimes as it is heavily used to launch and brake the vehicle. The ICE 

efficiency determined from ICE only operation of the vehicle over the UDDS drive cycle is shown 

in Figure 79. 
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Figure 79: Efficiency Distribution of ICE Only Operation for UDDS Drive Cycle 

The efficiency distribution of the powertrain components operating in hybrid mode is shown in 

Figure 80. 

 

Figure 80: UDDS Optimal Control Policy Operating Efficiency Distribution 

 The distribution of ICE operating efficiencies shifts from a near uniform distribution for ICE only 

operation to a significant peak between 25 and 30% for hybrid operation, with a normal distribution 

spread across the admissible efficiency range. As expected, due to the stop and go nature of the 

UDDS drive cycle, the ICE is at idle for 26% of the drive cycle where it burns fuel and produces 

no propulsive torque while the ICE is in FCO for only 15.7% of the drive cycle. The electric motor 
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operates above 85% efficiency for over 65% of the drive cycle with few points operating at low 

efficiencies. The electric motor is not used for 61% of the drive cycle. The overall operating 

efficiency of the system is distributed between primarily between 10 and 20% efficiency with few 

points operating at higher efficiencies. A portion of the UDDS drive cycle is examined to identify 

the torque production by powertrain components. This analysis is shown in Figure 81. 

 

Figure 81: Torque Production Analysis of UDDS Drive Cycle 

Similar to the EMC City drive cycle, the electric motor is used as the vehicle is launch, however, 

throughout the cruising portion of the drive cycle, the electric motor produces substantial torque 
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where in other drive cycles it typically does not. This is likely due to the abundance of regenerative 

braking energy the electric motor is able to extract from the cycle. This occurs as more energy 

recovered using regenerative braking allow for more use of the electric motor to provide propulsive 

torque due to the CS constraint. The torque split ratio in both positive and negative operating 

regimes is shown in Figure 82 and Figure 83, respectively. 

 

Figure 82: UDDS Torque Split Ratio in Positive Torque and Power Regime 

 

Figure 83: UDDS Torque Split Ratio in Negative Torque and Power Regime 

In the positive torque and power regime, there is a similar trend as previously examined in other 

drive cycles for ICE only operation at low torque and power requirements, however, in the UDDS 



142 

 

cycle, the largest torque requests correspond to lower values of TSR. These large torque requests 

are likely vehicle launches. A similar trend as in previous drive cycles is identified with decreasing 

TSR values for increasing power requests. The negative torque and power regime follow the same 

trend as previously discussed in other drive cycles with a decreasing relationship for increasing 

magnitude negative torque and power values. The energy analysis for the UDDS drive cycle is 

shown in Figure 84. 

  

Figure 84: Energy Analysis for UDDS Drive Cycle 

Table 16 summarizes the relevant overall performance metrics and the energy values for the UDDS 

drive cycle.  



143 

 

Table 16: UDDS Energy Summary 

Parameter Value 

Fuel Economy (MPG) 30.74 

Fuel Used (g) 681.61 

Fuel Energy (MJ) 29.29 

Net Wheel Energy (MJ) 9.46 

Net Electrical Energy (MJ) 0 

P4 Propulsive Energy (MJ) 1.98 

 

As expected, the fuel economy of this drive cycle is comparable to the EMC City drive cycle. The 

1.98 MJ of kinetic energy captured by regenerative braking was used to save a total of 7.80 MJ of 

fuel energy from the comparison of ICE only operation to hybrid operation of the vehicle. The 

resulting fuel economy of the vehicle following the optimal control policy determined for the 

UDDS drive cycle is 30.74 MPG.  

5.3.5 HWFET 

The HWFET drive cycle represents highway driving conditions under 60 mph [48]. The speed and 

time profile with associated wheel torque and power requirements are shown in Figure 85. 
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Figure 85: HWFET Drive Cycle Speed, Torque, and Power Requirements 

The torque and power requirements of the HWFET drive cycle are comparable to the EMC 

Highway drive cycle; however, in this drive cycle there is far less regenerative braking 

opportunities and longer cruise conditions. The drive cycle is also significantly shorter than the 

EMC Highway drive cycle. The shift schedule of the HWFET drive cycle is determined according 

to the strategy discussed in Section 4.3.1 and is shown in Figure 86. 
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Figure 86: HWFET Shift Schedule 

After the vehicle reaches cruising speed there is little variation in the gear position. Relevant 

information for the HWFET drive cycle is shown in Table 17. 

Table 17: HWFET and DP Algorithm Initialization Parameters 

DP Algorithm HWFET 

Parameter Value Parameter Value 

Maximum SOC (%) 80 Distance (mi) 10.26 

Minimum SOC (%) 20 Total Time (s) 766 

Target SOC (%) 50 Sample Time (Hz) 1 

Number of Grid Points 5,000 Maximum Acceleration (m/s2) 1.43 

ΔSOC (%) 0.012 Maximum Deceleration (m/s2) -1.48 

𝛥𝑃𝑏𝑎𝑡𝑡 (W) 648 Mechanical Energy Required (MJ) 9.61 

 

The powertrain power output results for the EMC Highway drive cycle are shown in Figure 87. 
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Figure 87: HWFET Powertrain Power Output 

In the HWFET drive cycle, the electric motor is primarily used to launch the vehicle at the start of 

the test and provide braking. There is very little regenerative braking available in the HWFET 

drive cycle and thus the torque production of the electric motor is limited. The SOC reaches a 

maximum value of 51.48% and a minimum of 43.57%. The operational points of the powertrain 

for the HWFET cycle are shown in Figure 88. 
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Figure 88: HWFET Drive Cycle Powertrain Operating Points 

Throughout the HWFET cycle, there is little variation in speed and thus the ICE operates within a 

narrow window of speeds over a large range of torques. The electric motor is shown to have 

operated significantly at high speed. This occurred during the second acceleration event where the 

majority of electrical energy was spent throughout the drive cycle. The ICE efficiency determined 

from ICE only operation of the vehicle over the UDDS drive cycle is shown in Figure 89. 

 

Figure 89: Efficiency Distribution of ICE Only Operation for HWFET Drive Cycle 
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The operating efficiency distribution for the powertrain is shown in Figure 90. 

 

Figure 90: HWFET Optimal Operating Efficiency Distribution 

For both ICE only and hybrid operation the operating efficiency of the ICE is skewed to the right. 

There is improvement for HEV operation with increased ICE efficiency with operating between 

30-35% efficiency for over 55% of the drive cycle. Throughout the HWFET drive cycle the ICE 

was at idle for less than 2% of operating points and in FCO for only 7.7% of the cycle. The electric 

motor operated above 90% efficiency for 53% of the drive cycle with near uniform distribution 

for lower efficiencies. This is likely due to the little use of the electric motor as it did not operate 

for 86% of the drive cycle. The total system operated between 15 and 25% for the nearly 87% of 

the drive cycle. This low overall efficiency is due to the reliance on the ICE to provide the majority 

of propulsive torque throughout the HWFET drive cycle. The torque evaluation for the HWFET 

drive cycle is shown in Figure 91. 
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Figure 91: Torque Production Analysis of HWFET Drive Cycle 

A similar trend as previous drive cycles is exhibited where the electric motor is only used for the 

large torque requests corresponding with major acceleration events. An interesting transaction 

occurs near 330s where the electric motor provides significant propulsive torque. This location is 

likely a large fuel consumption power for the ICE and thus was the best location to spend the 

limited electrical energy available in the cycle. The torque split ratio in the positive torque and 

power regime is shown in Figure 92. 
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Figure 92: HWFET Torque Split Ratio in Positive Torque and Power Regime 

Similarly, to previous drive cycles, the ICE operates on its own for torque requests under 250Nm 

and powers under 15kW. Crossing that threshold, the electric motor provides significant 

propulsive torque, between 20 and 60% of the request. Similar to previous drive cycles the 

relationship between increasing power and decreasing TSR is preserved. The torque split ratio in 

the negative torque and power regime is shown in Figure 93. 

 

Figure 93: HWFET Torque Split Ratio in Negative Torque and Power Regime 

In the negative torque and power regime, there is little significant of the TSR value as its value 

depends on the ICE being in FCO and regenerative braking from the electric motor. These values 

are not control actions as much as consequences of the powertrain operating appropriately. 
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The energy consumption of the vehicle over the EMC Highway drive cycle is shown in Figure 94. 

 

Figure 94: Energy Analysis for HWFET Drive Cycle 

Table 18 summarizes the relevant overall performance metrics and energy values for the HWFET 

drive cycle. 

Table 18: HWFET Energy Summary 

Parameter Value 

Fuel Economy (MPG) 32.95 

Fuel Used (g) 875.57 

Fuel Energy (MJ) 37.60 

Net Wheel Energy (MJ) 9.61 

Net Electrical Energy (MJ) 0 

P4 Propulsive Energy (MJ) 0.61 

 

Throughout the HWFET drive cycle, there is significant fuel consumption. Due to the substantial 

reliance on the ICE throughout the cycle the fuel economy gain is low. There is little energy 
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produced by the electric motor in both braking and propulsion with a total of 0.61 MJ of energy 

extracted using regenerative braking. This results in a fuel energy savings of 3.47 MJ. The resulting 

fuel economy of the vehicle following the optimal control policy is 32.95 MPG.  

5.4 Summary of Benchmark Analysis Results 

In addition to the hybrid vehicle benchmarking, the non-hybrid fuel economy results for the Table 

19 presents a summary of the performance results determined from the benchmark analysis.  

Table 19: DP Algorithm Powertrain Performance Results 

Parameter EMC 

City 

EMC 

Highway 

US06 UDDS HWFET 

Non-Hybrid Fuel Economy (MPG) 24.64 33.17 19.15 23.26 29.16 

Fuel Economy (MPG) 30.18 37.24 24.63 30.74 32.95 

Fuel Used (g) 311.19 2238.5 914.20 681.61 875.57 

Total Fuel Energy (MJ) 13.36 96.12 39.26 29.29 37.60 

Total Wheel Energy (MJ) 3.87 21.89 14.43 9.46 9.61 

Total ICE Energy (MJ) 3.27 26.36 13.77 7.56 12.15 

Maximum SOC (%) 53.85 54.22 53.41 51.66 51.48 

Minimum SOC (%) 47.02 46.09 30.07 33.74 43.57 

 

According to the EMC rules, the combined fuel economy of the vehicle is determined based on 

the following relationship: 

 

𝐸𝑀𝐶 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑
𝐹𝑢𝑒𝑙 𝐸𝑐𝑜𝑛𝑜𝑚𝑦

=
1

(
0.55

𝐸𝑀𝐶 𝐶𝑖𝑡𝑦 +
0.45

𝐸𝑀𝐶 𝐻𝑖𝑔ℎ𝑤𝑎𝑦
)
 

(5.10) 
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with this relationship the combined fuel economy of the hybrid 2019 Chevrolet Blazer developed 

by the WVU EcoCAR team is 32.99 MPG compared to the 21.6 MPG of the stock 3.6L 2019 

Chevrolet Blazer.   

Throughout the benchmark analysis, the torque split ratio was examined as a function of torque 

request and power request. The relationship between the optimal torque split ratio and these 

parameters is often used to determine rule sets for heuristic controllers. To summarize the 

relationships determined from each drive cycle, a composite plot of the optimal torque split ratio 

is generated to identify overall control policies that may be useful for general operation of the 

vehicle. This composite plot is shown in Figure 95 and Figure 96. 

 

Figure 95: Optimal Torque Split Ratio as a Function of Torque Request for Multiple Drive Cycles 
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Figure 96: Optimal Torque Split Ratio as a Function of Power Request for Multiple Drive Cycles 

Several general control policies can be established from these composite figures. In the positive 

regime of Figure 95, the torque split ratio never drops much below 0.6 unless the torque request 

exceeds roughly 200Nm. There is a clear relationship between power request and torque split ratio 

in both the positive and negative regimes. The data shown in Figure 95 and Figure 96 can be used 

to generate a quasi-optimal torque split ruleset by using curve fitting tools to generate trendlines 

for this data.  

For urban driving conditions captured by the EMC City and UDDS drive cycles, the ICE operates 

over a range of low speeds and torques with the electric motor used to assist the engine in stop-

and-go scenarios. In highway driving conditions captured by the EMC Highway and HWFET drive 

cycles, the ICE operates within a tighter envelope around 2000RPM compared to urban driving 

with higher torque production. The electric motor is not heavily relied on for torque production in 

the highway driving scenarios. The seldom times that the electric motor does operate in this 

condition typically correspond to large power requests. The optimal control policy of the US06 
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drive cycle does not follow the trends of either urban or highway driving. The aggressive nature 

of this drive cycle result in wide operating envelopes of both powertrains. The ICE operates over 

nearly its entire admissible range of speeds and torques with several values reaching the maximum 

available torque from the ICE and electric motor. This operating strategy is likely due to the vehicle 

model attempting to keep up with the aggressive driving conditions of the US06 drive cycle.  

5.5 Computational Considerations 

The step size of 5,000 steps, the memory requirement for the 5,000 by 5,000 arrays are 200MB 

each. At each stage, 24 5,000 by 5,000 matrices are computed with 150 smaller arrays and variables 

with the total memory corresponding to the length of the drive cycle. The shortest drive cycle is 

US06 at 600 seconds which has a memory requirement of 8.58GB and the longest drive cycle is 

EMC Highway at 2962 seconds with a memory requirement of 9.97GB. Doubling the step size to 

10,000 steps substantially increases the runtime and memory requirements. A 10,000 by 10,000 

matrix requires 800MB each with US06 and EMC Highway requiring a total of 24.43GB and 

26.47GB, respectively. A PC equipped with 32GB of memory can execute the DP algorithm with 

10,000 steps providing higher resolution in the state grid, however, the additional runtime is 

significant. 

For the EMC City drive cycle, the runtime for 5,000 steps is 26.5 minutes while 10,000 steps have 

a runtime of 105.0 minutes, nearly four times longer than 5,000 steps. This difference in runtime 

is further recognized in the EMC Highway drive cycle with the 5,000 and 10,000 step runtimes of 

102 minutes (1.7 hours) and 436 minutes (7.3 hours), respectively. Examining the difference in 

fuel used results, the fuel used for the optimal policy determined for EMC City drive cycle with a 

step number of 5,000 and 10,000 steps is 286.3g and 284.6g, respectively, with a percent difference 



156 

 

of 0.55%. It is clear that for the considerable increase in runtime and memory requirements, the 

additional resolution of the optimal control policy is not necessary for the benchmarking activities 

presented in this work.  

6.0 Conclusions and Recommendations 

The objective of this work was to develop and execute a benchmark analysis for a hybrid 2019 

Chevrolet Blazer using DP by backward induction. The end goal was to determine the global 

optimal control policy consisting of the TSR and transmission gear number for a variety of drive 

cycles to provide a frame of reference for the maximum possible performance of the powertrain. 

Throughout this work, several important takeaways and recommendations were discovered and 

are discussed in this section. 

• The development of an appropriate backward facing model is critical to the efficient 

operation of a DP algorithm.  

• The model must be of high enough fidelity to adequately captures the performance of a 

vehicle while being low enough fidelity to have extremely fast execution time.  

• Keeping as many of the calculations as possible in matrix form gave the DP algorithm 

incredible speed compared to using loops.  

• Memory requirements are a key design parameter for the DP algorithm.  

• Increased state grid resolution results in increased memory requirements and runtime. 

• There are diminishing returns on increasing state grid resolution. 

• Modifying the constraints can be useful for verification as well as generating more 

benchmark data for the system. 

• The cost function for the DP algorithm can include soft constraints. 
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• The cost function represents the overall goal of the DP algorithm optimal policy selection 

process. 

• An appropriately selected cost function should mitigate the negative effects caused by 

leaking and uniform transition cost. 

• The ability of the DP algorithm to select an appropriate set of control actions is highly 

dependent on the selection of a cost function.  

• In the WVU EcoCAR Team competition 2019 Chevrolet Blazer, the electric motor is 

primarily used to provide propulsive torque as the primary method from zero speed and 

between 60-80% of torque requests at low speeds.  

• For higher speeds, the ICE remains the primary torque producer even as speed fluctuates. 

• The ICE should be pushed into FCO as much as possible in deceleration events and the 

electric motor should be used to make up the remaining braking torque as regenerative 

braking.  

• Mechanical brake usage should be minimized as they essentially waste braking energy 

that should be captured by the electric motor. 

7.0 Contributions and Future Work 

The central contribution of this work is the development of a proof-of-concept energy management 

strategy analysis algorithm based on dynamic programming. The results from this work serve as 

the highest attainable performance of the powertrain in the WVU EcoCAR team competition 

vehicle which can be used to assess the online energy management algorithms being developed by 

the team. This work also lays the framework for a powertrain performance benchmarking tool that 
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can be used for a multitude of different hybrid vehicle architectures and components due to the 

versatility and format of parameterizing the model.  

The work presented in this thesis can be expanded along several avenues. One of these avenues 

are the development of online rule-based algorithms from the optimal control policy determined 

in the benchmark analysis. This rule-based controller can be developed from the relationship 

between the torque split ratio, driver request, and vehicle speed by interpolating the results of the 

benchmark analysis. Another avenue of future work can be to include the shift schedule as part of 

the DP analysis such that the most efficient gear is selected as part of the optimal control policy. 

This would require modification of several parts of the DP algorithms framework, but the analysis 

could prove useful to understand how the use of the electric motor effects the relationship between 

the engine and transmission. Finally, the backwards looking model and DP algorithm may be 

modified via the cost function to determine the optimal control policy for other criteria other than 

fuel consumption. The optimization of energy use, ICE efficiency, and emissions all have the 

potential to change the optimal control strategy to develop additional frames of reference to be 

used as design criteria for an online control algorithm.   
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9.0 Appendix 

9.1 DP algorithm and Backward-Looking Model MATLAB Code: 

% Load Component Data 
run('ComponentData.m') %File that contains all of the component data that I 

should need 

  
% Load Drive Cycle Data 
SelectedCycle =input('Select Drive Cycle\n 1 = EMC City\n 2 = EMC Highway\n 3 

= US06\n 4 = UDDS\n 5 = HWFET\n 6 = FU505\n 9 = Verification\n\n'); 

  
%Script that resamples the selected drive cycle and provides necessary drive 

cycle information 
run('DriveCycleDiscretize.m')  

  
% Simulation Parameters 
T = length(Trq_Whl); %number of stages 

  
%Start Timer to keep track of runtime and provide estimated time remaining 
tstart = tic; 

  
% --- Discretize the State Space Grid --- % 
% Discretize State Space Grid 
SOCmin =20; %Minimum SOC in State Space [%] 
SOCmax =80; %Maximum SOC in State Space [%] 
SOC_Target = 50; %Target SOC [%] 
Steps = 5000; %Number of steps in state space 

  
%Assemble the SOC vector 
SOCa = [SOCmin:(SOCmax-SOCmin)/Steps:SOC_Target-((SOCmax-SOCmin)/Steps)]'; 

%Minimum SOC to Target SOC [%] 
SOCb = [SOC_Target+((SOCmax-SOCmin)/Steps):(SOCmax-SOCmin)/Steps:SOCmax]'; 

%Target SOC to Maximum SOC [%] 
SOC = [SOCa; SOC_Target; SOCb]; %SOC grid of state space [%] 

  
%Build initial SOC vector that only includes the transition from the target 

SOC 
targ_SOC_pos = find(SOC==SOC_Target); %Position of target SOC in SOC vector 

[%]  
SOC_init = zeros(size(SOC)); %Layout zero matrix with the appropriate size 

[%] 
SOC_init(SOC == SOC_Target) = SOC_Target; %Place the target SOC in the 

appropriate position [%] 
SOC_init(SOC_init==0) = NaN; %Convert remining zeros to NaN 

  
%Simulation Setup Information 
deltaSOC = (SOCmax-SOCmin)/Steps; %SOC step size for the given state grid [%] 
deltaPwr = deltaSOC.*(BattEnergyCapacity*3600*0.01); %Battery Power step size 

for the given state grid [W] 
AdmissibleSOCTransition = 0.93; %Maximum transition size for SOC(i) to SOC(j) 

[%] 
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% --- Determine Shift Schedule --- % 
% Initialize Gear 
gear = 1; %Start in first gear [N_gear] 
for x=2:T 
% Determine the Gear we should be in based on the Pedal Map 
% Calculate Pedal Position 
AccPdlPos = 

interp2(VehSpd_Bpts,WhlTrq_Bpts,AccelPdl_table,VehSpd(x)*3.6,Trq_Whl(x))*.01; 

%Accelerator Pedal Position [dec] 
AccPdlPos(isnan(AccPdlPos))=0; %Find NaN locations from above interpolation 

and set them to zero 
AccPdl(x) = AccPdlPos; 

  
%Calculate Upper and Lower Speed Thresholds 
UpperSpdThreshold = interp2(Gear_Up_bpt,Pdl_Pos_Up_bpt,Up_Shft_Spd,gear(x-

1),AccPdlPos); %Upper Spd Thresh [m/s] 
LowerSpdThreshold = interp2(Gear_Dn_bpt,Pdl_Pos_Dn_bpt,Dn_Shft_Spd,gear(x-

1),AccPdlPos); %Lower Spd Thresh [m/s] 

  
%Interpolate the selected gear based on the speed thresholds. 
gear(x) = gear(x-1) + (1.*(UpperSpdThreshold<VehSpd(x))) + (-

1.*(LowerSpdThreshold>VehSpd(x))); %Selected gear [N_gear] 

  
%Check to determine if additional shifts are required.  
check = 1; %Initialize the check criterai 
while check == 1 
gearx = gear(x); %Previously determined selected gear 

  
%Use previously determined gear to redefine the up and downshift thresholds 
UpperSpdThresholdCheck = 

interp2(Gear_Up_bpt,Pdl_Pos_Up_bpt,Up_Shft_Spd,gearx,AccPdlPos); %Upper Spd 

Thresh [m/s] 
LowerSpdThresholdCheck = 

interp2(Gear_Dn_bpt,Pdl_Pos_Dn_bpt,Dn_Shft_Spd,gearx,AccPdlPos); %Lower Spd 

Thresh [m/s] 

  
%Determine the gear based on the up and downshift thresholds 
gear(x) = gearx + (1.*(UpperSpdThresholdCheck<VehSpd(x))) + (-

1.*(LowerSpdThresholdCheck>VehSpd(x))); 
%Check if the newly determined gear is the same as previously determined gear 
if gearx==gear(x) 
check = 0; %True condition changes the value of check 
else %Otherwise additional iterations are needed 
end 
end 
end 

  

  
% --- Preallocate Space --- % 
TransTo = zeros(size(SOC,1),T-2); 
Loc = zeros(size(SOC,1),T-2); 

  
%% -------------------------------- Start of Algorithm ----------------------

----------------- % 
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% Start by assessing the transition to the final stage 
k = T-1;  

  
%Display to user the current stage 
fprintf('The Current stage is k = %.2f\n',k) 

  
% --- Electric Powertrain Calculations --- % 
Pwr_Mot = (SOC_init'-SOC).*(BattEnergyCapacity*3600*0.01); %Motor Power [W] 
Pwr_Mot(abs(Pwr_Mot)>=50000) = NaN; %Apply the Motor/Battery Power 

Constraints 
Spd_Mot = Spd_Whl(k)*Ndiff_P4*(pi/30).*ones(size(Pwr_Mot)); %Motor Speed 

[rad/s] 
% Trq_Mot = 

[interp2(ElecPwr_bpts,P4Mtr_spd_bpts,P4_Trq_Pwr,Pwr_Mot,Spd_Mot)]'; %Motor 

Component Torque [Nm] 
Trq_Mot = interp2(PwrBpts,P4Mtr_spd_bpts,PwrTrq_tbl,0.95*Pwr_Mot,Spd_Mot); 

%Motor Component Torque [Nm] 
Trq_Mot_Whl = Trq_Mot.*Ndiff_P4; %Motor Wheel Torque [Nm] 

  
% Remaining Torque to be supplied by either the ICE or the friction brakes 
Trq_Rem = Trq_Whl(k)-Trq_Mot_Whl; %Remaining Wheel Torque [Nm] 

  
% --- Conventional Powertrain Calculations --- % 
%Transmission Efficiency Lookup Table 
TransEff = 

reshape(interp1(transeff_Spdbpts,transeff_table',Spd_Whl(k)),[1,1,9]); 

  
% Calculate Torque Converter Turbine Speed 
Spd_turb = 

Spd_Whl(k).*ones(size(Trq_Rem_ICE)).*TransGearRatio(gear(k)).*Ndiff; %Turbine 

Speed - Propogated back through wheel speed [RPM] 

  
Stat_Lock = (Spd_turb>=Spd_ICE_Idle).*(Spd_turb<=Spd_ICE_limit); %Torque 

converter lock status (1 - locked, 0 - unlocked) 
Stat_Clutch = (Trq_Whl(k)~=0); %Torque Converter clutch status (1 - closed, 0 

- open) 

  
% Calculate the speed of the ICE with following piecewise equation 
Spd_ICE = (Spd_turb.*(Stat_Lock==1))+... 
    

(Spd_ICE_Idle.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0)).*(VehSpd(k)<5)+... 
(Spd_ICE_limit.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0).*(VehSpd(k)>=5)); 

%ICE Speed [RPM] 

  

%Additional Torque Converter Parameters 
SR = Spd_turb./Spd_ICE; %Speed ratio of TC 
TR = interp1(SpdRatio_bpts,TrqRatio,SR); %Torque tatio of TC 

  
%Calculate the Engine Operational Constraints 
Trq_ICE_max = interp1(ICE_spd_bpts,max_trq_line,Spd_ICE); %Maximum ICE 

component torque [Nm] 
Trq_ICE_minrun = interp1(ICE_spd_bpts,min_trq_line,Spd_ICE); %Minimum running 

ICE component torque [Nm] 
Trq_ICE_fco = interp1(f_tbrake_n_bpt,min_trq_fco,Spd_ICE); %Fuel cut off ICE 

component torque [Nm] 
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Trq_Rem_ICE = 

(Trq_Rem)./TransGearRatio(gear(k))./Ndiff./TransEff(gear(k))./TR; %Remaining 

torque in terms of ICE component torque [Nm] 
Trq_Rem_ICE(Trq_Rem_ICE>Trq_ICE_max) = NaN; %Impose maximum ICE torque 

production constraint 

  
% ICE torque calculation 
Trq_ICE = Trq_Rem_ICE.*(Trq_Rem>0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem>0).*(Trq_Whl(k)<=0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE>Trq_ICE_fco).*(St

at_Lock==1)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(S

tat_Lock==0)+... 
Trq_ICE_fco.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(Stat

_Lock==1); %ICE component torque [Nm] 

  
Trq_ICE_Whl =  

(Trq_ICE).*TransGearRatio(gear(k)).*Ndiff.*TransEff(gear(k)).*TR.*(Stat_Clutc

h == 1); % ICE wheel torque [Nm] 

  
%Torque requirement not met and negative mechanical braking torque only 

constraints 
Trq_brk = Trq_Whl(k)-(Trq_Mot_Whl)-(Trq_ICE_Whl); %Cacluate mechanical brake 

wheel torque [Nm] 
Trq_ICE(Trq_brk>0.0001)=NaN; %Impose constraint 

  
% --- Special Case --- % 
% For situations where the produced torque by the ICE is not sufficient, the 

selected gear is modified to achieve the desired torque 
if sum(~isnan(Trq_ICE),'all')==0 %Checks if ICE torque is insufficient 
lowestgearreached=0; %Initialize logical for determining if already at lowest 

gear 
while sum(~isnan(Trq_ICE),'all')==0 %Start conditional loop to identify 

admissible ICE torque 
% Check if lowest gear has been reached, determines direction of gear shift 

(0 - downshift, 1 - upshift) 
if gear(k)==1 
lowestgearreached = 1; %Lowest gear has been reached 
elseif gear(k) == 9 
lowestgearreached = 0; %Lowest gear has not been reached 
end 

  
% Change gear  
if lowestgearreached == 0 
gear(k) = gear(k)-1; 
else  
gear(k) = gear(k)+1; 
end 

  
% Recalculate the conventional powertrain operating parameters 
% Calculate Torque Converter Turbine Speed 
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Spd_turb = 

Spd_Whl(k).*ones(size(Trq_Rem_ICE)).*TransGearRatio(gear(k)).*Ndiff; %Turbine 

Speed - Propogated back through wheel speed [RPM] 

  
Stat_Lock = (Spd_turb>=Spd_ICE_Idle).*(Spd_turb<=Spd_ICE_limit); %Torque 

converter lock status (1 - locked, 0 - unlocked) 
Stat_Clutch = (Trq_Whl(k)~=0); %Torque Converter clutch status (1 - closed, 0 

- open) 

  
% Calculate the speed of the ICE with following piecewise equation 
Spd_ICE = (Spd_turb.*(Stat_Lock==1))+... 
    

(Spd_ICE_Idle.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0)).*(VehSpd(k)<5)+... 
(Spd_ICE_limit.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0).*(VehSpd(k)>=5)); 

%ICE Speed [RPM] 

  
%Additional Torque Converter Parameters 
SR = Spd_turb./Spd_ICE; %Speed ratio of TC 
TR = interp1(SpdRatio_bpts,TrqRatio,SR); %Torque tatio of TC 

  
%Calculate the Engine Operational Constraints 
Trq_ICE_max = interp1(ICE_spd_bpts,max_trq_line,Spd_ICE); %Maximum ICE 

component torque [Nm] 
Trq_ICE_minrun = interp1(ICE_spd_bpts,min_trq_line,Spd_ICE); %Minimum running 

ICE component torque [Nm] 
Trq_ICE_fco = interp1(f_tbrake_n_bpt,min_trq_fco,Spd_ICE); %Fuel cut off ICE 

component torque [Nm] 

  
Trq_Rem_ICE = 

(Trq_Rem)./TransGearRatio(gear(k))./Ndiff./TransEff(gear(k))./TR; %Remaining 

torque in terms of ICE component torque [Nm] 
Trq_Rem_ICE(Trq_Rem_ICE>Trq_ICE_max) = NaN; %Impose maximum ICE torque 

production constraint 

  
% ICE torque calculation 
Trq_ICE = Trq_Rem_ICE.*(Trq_Rem>0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem>0).*(Trq_Whl(k)<=0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE>Trq_ICE_fco).*(St

at_Lock==1)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(S

tat_Lock==0)+... 
Trq_ICE_fco.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(Stat

_Lock==1); %ICE component torque [Nm] 

  
Trq_ICE_Whl =  

(Trq_ICE).*TransGearRatio(gear(k)).*Ndiff.*TransEff(gear(k)).*TR.*(Stat_Clutc

h == 1); % ICE wheel torque [Nm] 

  
%Torque requirement not met and negative mechanical braking torque only 

constraints 
Trq_brk = Trq_Whl(k)-(Trq_Mot_Whl)-(Trq_ICE_Whl); %Cacluate mechanical brake 

wheel torque [Nm] 
Trq_ICE(Trq_brk>0.0001)=NaN; %Impose constraint 
end 
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end 

  
%Calculate fuel flow 
EngFuelFlw = interp2(ICE_spd_bpts,ICE_trq_bpts,fuel_table,Spd_ICE,Trq_ICE); 

%This is my map that I created 

  

  
% --- Cost Function Calculations --- % 
%cost-to-go-matrix with additional torque overproduction term 
g_gear = 

EngFuelFlw+(0.008.*(abs(Trq_Mot_Whl)+abs(Trq_ICE_Whl)+abs(Trq_brk)));%  

  
%Remove arbitraty gear selected (FUNCTIONALITY NOT USED) 
g = zeros(size(SOC,1)); 
[g,gloc] = min(g_gear,[],3); 
g(g==0) = nan; 

  
% visualization of operating parameters, selects the associated values from 

the gear minimization (FUNCTIONALITY NOT USED) 
% Linear indexes of selected variables (FUNCTIONALITY NOT USED) 
ind = reshape(1:numel(gloc),size(gloc))+(numel(gloc).*(gloc-1)); 

  
% Operating parameters of the selected gear (FUNCTIONALITY NOT USED) 
Selected_Trq_ICE = Trq_ICE(ind); 
Selected_Trq_brk = Trq_brk(ind); 
Selected_Trq_Rem_ICE = Trq_Rem_ICE(ind); 
Selected_EngFuelFlw = EngFuelFlw(ind); 
Selected_Spd_ICE = Spd_ICE(ind); 

  
%Calculate the total cost of the path, at the first stage (k=N, the total 

path cost is equal to the cost-to-go matrix) 
[J(:,k),Jloc] = min(g,[],2,'linear'); 

  
%Visualization of operating parameters for transition from k=N-1 to k=N 
vis_Trq_Mot(:,k) = Trq_Mot(Jloc); %Electric motor component torque [Nm] 
vis_Trq_ICE(:,k) = Selected_Trq_ICE(Jloc); %ICE component torque [Nm] 
vis_Trq_brk(:,k) = Selected_Trq_brk(Jloc); %Brake wheel torque [Nm] 
vis_Trq_Rem_ICE(:,k) = Selected_Trq_Rem_ICE(Jloc); % Remaining ICE component 

torque [Nm] 
vis_selectedgear(:,k) = gloc(Jloc); % Selected gear  
vis_Trq_Rem(:,k) = Trq_Rem(Jloc); % Remaining wheel torque [Nm] 
vis_EngFuelFlw(:,k) = Selected_EngFuelFlw(Jloc); %ICE fuel flow [g/s] 
vis_Spd_ICE(:,k) = Selected_Spd_ICE(Jloc); % ICE speed [RPM] 
vis_Stat_Clutch(:,k) = double(Stat_Lock(Jloc)); %Clutch lock status  

  
%Timer and estimated time remaining calculations 
tt = []; 
tk = toc(tstart); 
tt = [tt tk]; 
timerem = mean(tt)*(k); 
tt = []; 

  
%% ------------------------- Continue Algorithm for T-2,T-3...1 -------------

----------------- % 
for stage=2:T-1 
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%Start Timer to keep track of runtime and provide estimated time remaining 
tstart = tic; 

  
%Current Stage 
k=T-stage; 

  
%Display current stage and estimated time remaining to user 
fprintf('The Current stage is k = %.2f\n Estimated time remaining %.0f 

minutes\n\n\n\n',k,timerem/60) 

  
%Calculate the transition for every i to each j 
% --- Electric powertrain calculations --- %; 
Pwr_Mot = -(SOC'-SOC).*(BattEnergyCapacity*3600*0.01); %Motor Power [W] 
Pwr_Mot(abs(Pwr_Mot)>=50000) = NaN; %Apply the Motor/Battery Power 

Constraints 
Spd_Mot = Spd_Whl(k)*Ndiff_P4*(pi/30).*ones(size(Pwr_Mot)); %Motor Speed 

[rad/s] 
% Trq_Mot = 

[interp2(ElecPwr_bpts,P4Mtr_spd_bpts,P4_Trq_Pwr,Pwr_Mot,Spd_Mot)]'; %Motor 

Component Torque [Nm] 
Trq_Mot = interp2(PwrBpts,P4Mtr_spd_bpts,PwrTrq_tbl,0.95*Pwr_Mot,Spd_Mot); 

%Motor Component Torque [Nm] 
Trq_Mot_Whl = Trq_Mot.*Ndiff_P4; %Motor Wheel Torque [Nm] 

  
% Remaining Torque to be supplied by either the ICE or the friction brakes 
Trq_Rem = Trq_Whl(k)-Trq_Mot_Whl; %Remaining Wheel Torque [Nm] 

  
% --- Conventional powertrain calculations --- % 
%Transmission Efficiency Lookup Table 
TransEff = 

reshape(interp1(transeff_Spdbpts,transeff_table',Spd_Whl(k)),[1,1,9]); 

  
% Calculate Torque Converter Turbine Speed 
Spd_turb = 

Spd_Whl(k).*ones(size(Trq_Rem_ICE)).*TransGearRatio(gear(k)).*Ndiff; %Turbine 

Speed - Propogated back through wheel speed [RPM] 

  
Stat_Lock = (Spd_turb>=Spd_ICE_Idle).*(Spd_turb<=Spd_ICE_limit); %Torque 

converter lock status (1 - locked, 0 - unlocked) 
Stat_Clutch = (Trq_Whl(k)~=0); %Torque Converter clutch status (1 - closed, 0 

- open) 

  
% Calculate the speed of the ICE with following piecewise equation 
Spd_ICE = (Spd_turb.*(Stat_Lock==1))+... 
    

(Spd_ICE_Idle.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0)).*(VehSpd(k)<5)+... 
(Spd_ICE_limit.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0).*(VehSpd(k)>=5)); 

%ICE Speed [RPM] 

  
%Additional Torque Converter Parameters 
SR = Spd_turb./Spd_ICE; %Speed ratio of TC 
TR = interp1(SpdRatio_bpts,TrqRatio,SR); %Torque tatio of TC 

  
%Calculate the Engine Operational Constraints 
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Trq_ICE_max = interp1(ICE_spd_bpts,max_trq_line,Spd_ICE); %Maximum ICE 

component torque [Nm] 
Trq_ICE_minrun = interp1(ICE_spd_bpts,min_trq_line,Spd_ICE); %Minimum running 

ICE component torque [Nm] 
Trq_ICE_fco = interp1(f_tbrake_n_bpt,min_trq_fco,Spd_ICE); %Fuel cut off ICE 

component torque [Nm] 

  
Trq_Rem_ICE = 

(Trq_Rem)./TransGearRatio(gear(k))./Ndiff./TransEff(gear(k))./TR; %Remaining 

torque in terms of ICE component torque [Nm] 
Trq_Rem_ICE(Trq_Rem_ICE>Trq_ICE_max) = NaN; %Impose maximum ICE torque 

production constraint 

  
% ICE torque calculation 
Trq_ICE = Trq_Rem_ICE.*(Trq_Rem>0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem>0).*(Trq_Whl(k)<=0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE>Trq_ICE_fco).*(St

at_Lock==1)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(S

tat_Lock==0)+... 
Trq_ICE_fco.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(Stat

_Lock==1); %ICE component torque [Nm] 

  
Trq_ICE_Whl =  

(Trq_ICE).*TransGearRatio(gear(k)).*Ndiff.*TransEff(gear(k)).*TR.*(Stat_Clutc

h == 1); % ICE wheel torque [Nm] 

  
%Torque requirement not met and negative mechanical braking torque only 

constraints 
Trq_brk = Trq_Whl(k)-(Trq_Mot_Whl)-(Trq_ICE_Whl); %Cacluate mechanical brake 

wheel torque [Nm] 
Trq_ICE(Trq_brk>0.0001)=NaN; %Impose constraint 

  
% --- Special Case --- % 
% For situations where the produced torque by the ICE is not sufficient, the 

selected gear is modified to achieve the desired torque 
if sum(~isnan(Trq_ICE),'all')==0 %Checks if ICE torque is insufficient 
lowestgearreached=0; %Initialize logical for determining if already at lowest 

gear 
while sum(~isnan(Trq_ICE),'all')==0 %Start conditional loop to identify 

admissible ICE torque 
% Check if lowest gear has been reached, determines direction of gear shift 

(0 - downshift, 1 - upshift) 
if gear(k)==1 
lowestgearreached = 1; %Lowest gear has been reached 
elseif gear(k) == 9 
lowestgearreached = 0; %Lowest gear has not been reached 
end 

  
% Change gear  
if lowestgearreached == 0 
gear(k) = gear(k)-1; 
else  
gear(k) = gear(k)+1; 
end 
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% Recalculate the conventional powertrain operating parameters 
% Calculate Torque Converter Turbine Speed 
Spd_turb = 

Spd_Whl(k).*ones(size(Trq_Rem_ICE)).*TransGearRatio(gear(k)).*Ndiff; %Turbine 

Speed - Propogated back through wheel speed [RPM] 

  
Stat_Lock = (Spd_turb>=Spd_ICE_Idle).*(Spd_turb<=Spd_ICE_limit); %Torque 

converter lock status (1 - locked, 0 - unlocked) 
Stat_Clutch = (Trq_Whl(k)~=0); %Torque Converter clutch status (1 - closed, 0 

- open) 

  
% Calculate the speed of the ICE with following piecewise equation 
Spd_ICE = (Spd_turb.*(Stat_Lock==1))+... 
    

(Spd_ICE_Idle.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0)).*(VehSpd(k)<5)+... 
(Spd_ICE_limit.*ones(size(Trq_Rem_ICE)).*(Stat_Lock==0).*(VehSpd(k)>=5)); 

%ICE Speed [RPM] 

  
%Additional Torque Converter Parameters 
SR = Spd_turb./Spd_ICE; %Speed ratio of TC 
TR = interp1(SpdRatio_bpts,TrqRatio,SR); %Torque tatio of TC 

  
%Calculate the Engine Operational Constraints 
Trq_ICE_max = interp1(ICE_spd_bpts,max_trq_line,Spd_ICE); %Maximum ICE 

component torque [Nm] 
Trq_ICE_minrun = interp1(ICE_spd_bpts,min_trq_line,Spd_ICE); %Minimum running 

ICE component torque [Nm] 
Trq_ICE_fco = interp1(f_tbrake_n_bpt,min_trq_fco,Spd_ICE); %Fuel cut off ICE 

component torque [Nm] 

  
Trq_Rem_ICE = 

(Trq_Rem)./TransGearRatio(gear(k))./Ndiff./TransEff(gear(k))./TR; %Remaining 

torque in terms of ICE component torque [Nm] 
Trq_Rem_ICE(Trq_Rem_ICE>Trq_ICE_max) = NaN; %Impose maximum ICE torque 

production constraint 

  
% ICE torque calculation 
Trq_ICE = Trq_Rem_ICE.*(Trq_Rem>0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)>0)+... 
Trq_ICE_minrun.*(Trq_Rem>0).*(Trq_Whl(k)<=0)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE>Trq_ICE_fco).*(St

at_Lock==1)+... 
Trq_ICE_minrun.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(S

tat_Lock==0)+... 
Trq_ICE_fco.*(Trq_Rem<=0).*(Trq_Whl(k)<=0).*(Trq_Rem_ICE<=Trq_ICE_fco).*(Stat

_Lock==1); %ICE component torque [Nm] 

  
Trq_ICE_Whl =  

(Trq_ICE).*TransGearRatio(gear(k)).*Ndiff.*TransEff(gear(k)).*TR.*(Stat_Clutc

h == 1); % ICE wheel torque [Nm] 

  
%Torque requirement not met and negative mechanical braking torque only 

constraints 
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Trq_brk = Trq_Whl(k)-(Trq_Mot_Whl)-(Trq_ICE_Whl); %Cacluate mechanical brake 

wheel torque [Nm] 
Trq_ICE(Trq_brk>0.0001)=NaN; %Impose constraint 
end 
end 

  
%Calculate fuel flow 
EngFuelFlw = interp2(ICE_spd_bpts,ICE_trq_bpts,fuel_table,Spd_ICE,Trq_ICE); 

%This is my map that I created 

  
%Cost Function Calculations 
%cost-to-go-matrix as a function of gear (FUNCTIONALITY NOT USED) 
g_gear = 

EngFuelFlw+(0.008.*(abs(Trq_Mot_Whl)+abs(Trq_ICE_Whl)+abs(Trq_brk)));% <- 

This one works 

  
%Remove gear variable by finding minimum cost in terms of gear selection 

(FUNCTIONALITY NOT USED) 
g = zeros(size(SOC,1)); 
[g,gloc] = min(g_gear,[],3); 
g(g==0) = nan; 

  
% This is for the visualization of operating parameters, selects the 

associated values from the gear minimization (FUNCTIONALITY NOT USED) 
%Linear indexes of selected variables (FUNCTIONALITY NOT USED) 
ind = reshape(1:numel(gloc),size(gloc))+(numel(gloc).*(gloc-1)); 

  
Spd_ICE = Spd_ICE.*(ones(size(Trq_ICE))); %ICE speed [RPM] 
Stat_Lock = Stat_Lock.*(ones(size(Trq_ICE))); %Torque converter locking 

status 
Selected_Trq_ICE = Trq_ICE(ind); %ICE component torque [Nm] 
Selected_Trq_brk = Trq_brk(ind); %Mechanical brake component torque [Nm] 
Selected_Trq_Rem_ICE = Trq_Rem_ICE(ind); %Remaining ICE component torque [Nm] 
Selected_EngFuelFlw = EngFuelFlw(ind); %Engine fuel flow [g/s] 
Selected_Spd_ICE = Spd_ICE(ind); %ICE speed [RPM] 

  
%Calculate total path cost & parameter visualization 
for ii=1:size(SOC,1) % Assess each transition for every i 
jj = find(abs((SOC(ii)-SOC))<=AdmissibleSOCTransition); %Determine the 

corresponding admissible j values 
totalg = g(ii,jj)'+J(jj,k+1); % Combined cost of current cost-to-go and total 

path cost  
[J(ii,k),Jloc] = min(g(ii,jj)'+J(jj,k+1),[],1); %Determine the minimized 

combined cost for best transition 
if isnan(J(ii,k)) == 1 %Determine if transition exists 
%If transition does not exist, populate variable for NaN condtion 
TransTo(ii,k) = nan;  
vis_Trq_Mot(ii,k) = nan;  
vis_Trq_ICE(ii,k) = nan;  
vis_Trq_brk(ii,k) = nan;  
vis_Trq_Rem_ICE(ii,k) = nan;  
vis_Trq_Rem(ii,k) = nan;  
vis_EngFuelFlw(ii,k) = nan;  
vis_Spd_ICE(ii,k) = nan;  
vis_Stat_Clutch(ii,k) = nan;  
else  
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%If transition does exist, populate variables with corresponding transition 
minloc = 1;  
here = jj(1)+Jloc-1; 
TransTo(ii,k) = here(minloc); 
vis_Trq_Mot(ii,k) = Trq_Mot(ii,here(minloc)); 
vis_Trq_ICE(ii,k) = Selected_Trq_ICE(ii,here(minloc)); 
vis_Trq_brk(ii,k) = Selected_Trq_brk(ii,here(minloc)); 
vis_Trq_Rem_ICE(ii,k) = Selected_Trq_Rem_ICE(ii,here(minloc)); 
vis_Trq_Rem(ii,k) = Trq_Rem(ii,here(minloc)); 
vis_EngFuelFlw(ii,k) = Selected_EngFuelFlw(ii,here(minloc)); 
vis_Spd_ICE(ii,k) = Selected_Spd_ICE(ii,here(minloc)); 
vis_Stat_Clutch(ii,k) = Stat_Lock(ii,here(minloc)); 
end 
end 

  
%Timer and estimated time remaining 
tk = toc(tstart); 
tt = [tt tk]; 
timerem = mean(tt)*(k); 
 end 

  
%% ------------- Determine the Best Path and Calculate Operating Parameters -

----------------- % 
BestPath = [find(SOC==50)]; %Select starting point to be the CS target SOC 
%Follow the TransTo variable to determine the best path 
for search = 2:T-2 
BestPath(search) = TransTo(BestPath(search-1),search-1); 
end 
%The final entry in best path is the CS target 
BestPath(T-1) = find(SOC==SOC_Target); 
%Determine the SOC that corresponds to the best path  
BestSOC = SOC(BestPath); %Best SOC [%] 

  
%Calculate operating parameters following the best path  
for time = 1:T-1 
BestTrq_Mot(time) = vis_Trq_Mot(BestPath(time),time); %Optimal motor 

component torque [Nm] 
BestTrq_ICE(time) = vis_Trq_ICE(BestPath(time),time); %Optimal ICE component 

torque [Nm] 
BestTrq_brk(time) = vis_Trq_brk(BestPath(time),time); %Optimal brake wheel 

torque [Nm] 
BestGear(time) = gear(time); %Selected gear 
BestTrq_Rem(time) = vis_Trq_Rem(BestPath(time),time); %Optimal remaining 

wheel torque [Nm] 
BestTrq_Rem_ICE(time) = vis_Trq_Rem_ICE(BestPath(time),time); %Optimal 

remaining ICE component torque [Nm] 
FuelFlow(time) = vis_EngFuelFlw(BestPath(time),time).*(264.17/743000); 

%Optimal Fuel flow [gallon/s] 
BestSpd_ICE(time) = vis_Spd_ICE(BestPath(time),time); %Optimal ICE speed 

[RPM] 
TransEff1 = interp1(transeff_Spdbpts,transeff_table',Spd_Whl(time)); 

%Transmission Efficiency as a funciton of optimal ICE parameters 
BestTransEff(time) = TransEff1(BestGear(time)); %Optimal transmission 

efficiency 
BestTransRatio(time) = TransGearRatio(BestGear(time)); %Optimal transmission 

ratio 
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