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Abstract

Automated vehicles and advanced driver assistance systems bring computation, sensing, and com-

munication technologies that exceed human abilities in some ways. For example, automated vehicles may

sense a panorama all at once, do not suffer from human impairments and distractions, and could wirelessly

communicate precise data with neighboring vehicles. Prototype and commercial deployments have demon-

strated the capability to relieve human operators of some driving tasks up to and including fully autonomous

taxi rides in some areas. The ultimate impact of this technology’s large-scale market penetration on energy

efficiency remains unclear, with potential negative factors like road use by empty vehicles competing with

positive ones like automatic eco-driving. Fundamentally enabled by historic and look-ahead data, this dis-

sertation addresses the use of automated driving and driver assistance to optimize vehicle motion for energy

efficiency.

Facets of this problem include car following, co-optimized acceleration and lane change planning,

and collaborative multi-agent guidance. Optimal control, especially model predictive control, is used exten-

sively to improve energy efficiency while maintaining safe and timely driving via constraints. Techniques

including chance constraints and mixed integer programming help overcome uncertainty and non-convexity

challenges. Extensions of these techniques to tractor trailers on sloping roads are provided by making use

of linear parameter-varying models. To approach the wheel-input energy eco-driving problem over generally

shaped sloping roads with the computational potential for closed-loop implementation, a linear programming

formulation is constructed. Distributed and collaborative techniques that enable connected and automated

vehicles to accommodate their neighbors in traffic are also explored and compared to centralized control. Us-

ing simulations and vehicle-in-the-loop car following experiments, the proposed algorithms are benchmarked

against others that do not make use of look-ahead information.
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Chapter 1

Introduction

Driving style is widely acknowledged as a strong factor in multiple transport outcomes, for example,

energy efficiency, emissions, safety, comfort, and timeliness. This dissertation seeks to answer the question:

how can automated vehicles use their computation, sensing, and communication capabilities to improve trans-

port performance by anticipating a traffic scene’s future evolution? Driven by the social need to accomplish

freedom of movement while conserving limited environmental resources and promoting energy independence,

special attention is paid to energetic and ecological outcomes. Transport performance in this context not only

refers to the individual vehicle but also considers indirect impacts via micro- and macroscopic traffic interac-

tions.

The motivation is clear in terms of benefits for humanity. Automated driving is projected to become

increasingly common [125], which could provide individual transport to people like some elderly who cannot

currently enjoy manual driving [18]. Unfortunately, the performance of current road transport could struggle

as new users enter the roadway and cost is reduced for existing users [130]. A 2019 study found that in 2017,

U.S. road users typically lost 54 hours per year in traffic [108]. These traffic jams also involve wasted energy,

contributing to increasing petroleum use [15] despite increasingly stringent vehicle fuel economy standards

[90]. While the economic, environmental, and political benefits of reducing energy consumption in internal

combustion engines attract ample attention, electric vehicles (EVs) can also benefit from reduced energy

consumption. Range is currently a perceived disadvantage of EVs compared to combustion engine-powered

vehicles due to both battery and charging infrastructure limitations [97]. Lower-energy transport systems

could soften this drawback and encourage greater adoption of EVs. The future impact of automated driving on

energy consumption, however, is still uncertain. Wadud et al. [130] predicted that energy consumption could

1



be approximately doubled or halved depending on the future implementation and use practices of automated

vehicles. Currently, several commercial adaptive cruise control systems have been shown to be string unstable

[42], a harmful property for energy efficiency in traffic. The control techniques explored in this dissertation

seek a more favorable outcome by maximizing energy benefits from congestion mitigation and ecological

driving.

Of course, the costs of transport shortcomings are not limited to energy. Collisions cost the U.S.

economy an estimated $242 billion per year according to a 2010 NHTSA report revised in 2015 (the latest)

[12] and over 90 % of them are caused by driver-related factors ranging from perception error to car control

to drowsiness [112]. More importantly, 36,560 people in the U.S. died in motor vehicle collisions in 2018

[58]. An early study of prototype automated vehicles [37] found that they were rear-ended about twice as

often as their human-driven counterparts. Since then, several severe and sometimes fatal collisions involving

automated or partially-automated vehicles have captured the public’s attention via the lay media [41] [94]

[115]. Therefore, this research pays close attention to collision avoidance even under uncertainty.

The following section will first review existing automated driving technologies. Then, more detailed

technical background is provided as necessary to support this dissertation research. The chapter closes with

a summary of the contributions.

1.1 State of the Art

Automated driving is a highly active research topic in several disciplines and includes a multitude

of subtopics either closely or tangentially related to this research. This review will outline some of the main

categories and delve into more detail about particularly relevant ones.

1.1.1 Control Paradigms

Diverse overall paradigms have been used in automated driving and each involves a different set

of subsystems. The three categories considered here are end-to-end, modular machine learning, and model-

based.

1.1.1.1 End-to-End Approaches

End-to-end learning seeks to control the vehicle based on sensory data directly [117]. This typically

involves training a deep neural network to map data from camera, lidar, etc. to steering, acceleration and

2



braking commands. Advantages of end-to-end learning include simplicity of application and adaptability. As

more data becomes available, driving performance can improve without additional algorithm development.

The most oft-cited drawback of end-to-end learning is that it lacks physically-interpretable intermediate results

[19] and performance of complex neural network models is difficult to explain [138] and guarantee [86].

The large initial data requirement is another disadvantage [21], at least early in development. This factor

would have increased the difficulty of using end-to-end learning here. Moreover, most end-to-end systems

in the reinforcement learning category seek movement toward a goal and collision avoidance while those

in the imitation learning category seek human-like driving [117]. This dissertation seeks energy efficiency,

putting it in a less-explored area if end-to-end learning were used. It should be noted that some examples of

reinforcement learning for energy minimization do exist in the literature; see [104] on the related problem of

hybrid vehicle energy management and [74] on a model-based reinforcement learning approach to eco-driving.

1.1.1.2 Modular Machine Learning

Other machine learning approaches may still utilize data-driven techniques like neural networks,

but do so in several layers that produce more interpretable results [117]. For example, a convolutional neural

network could help identify obstacles from sensor data [84] and a separate neural network could then combine

all surrounding obstacles with the ego vehicle’s state to arrive at control inputs [35]. While the performance

of the individual modules still depends on the available data, separation of tasks into modules helps pinpoint

the source of malfunctions. The complexity of development can exceed that of end-to-end learning, however

[19]. It is also possible to mix machine learning and model-based elements. For example, [137] uses deep

reinforcement learning to track waypoints that are set by a model-based planner.

1.1.1.3 Model-Based Approaches

In contrast with machine learning, model-based approaches primarily rely on prior physical knowl-

edge of the vehicle and/or the surroundings to accomplish automated driving. This reduces the amount of data

that the system initially requires to operate. It also enables the controller to compute a solution that is optimal

in some physical sense (e.g. minimum-acceleration, minimum energy) from the outset rather than gradually

improving performance through a trial-and-error process. Hence, this energy-focused research takes a model-

based approach. The main drawback is lack of flexibility to operation in new domains that the control engineer

may not have considered, which may limit this approach to SAE Level 4 [106] and below without an artificial

intelligence-based supervisor. Examples include the trajectory planning research in [134] and the modular
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system successfully deployed in the DARPA Grand Challenge [119].

1.1.2 Perception

Automated vehicles and those equipped with advanced driver assistance systems (ADAS) use several

sensing technologies to measure the host vehicle and its environment [126]. This research will depend on sev-

eral of these measurements, so a brief review is appropriate. The host vehicle’s speed is obtained from speed

sensors in the wheel or drivetrain and its acceleration is measured using an inertial measurement unit (IMU).

A global positioning system (GPS) can roughly measure absolute position with meter-level accuracy, although

real-time kinematic (RTK) GPS can be used to obtain centimeter-level accuracy in a test track environment.

Particularly for adaptive cruise control (ACC) systems, the position and speed of surrounding vehi-

cles can be measured using camera and radar systems. Higher levels of automation often use lidar to provide a

more detailed, 360-degree view of the surroundings. Multiple sensors are often used together to produce more

reliable estimates via sensor fusion [72]. The field of simultaneous localization and mapping (SLAM) [17] is

devoted to finding the position of the host vehicle among measured obstacles in the absence of high-accuracy

GPS.

It is worth mentioning that the autonomous-vehicle perception technology is highly complex, safety-

critical, and subject to random failures depending on environmental factors like weather conditions [99]. Al-

though this dissertation focuses on motion planning and control including safety considerations, this emphasis

should not be taken to imply that all autonomous vehicle collisions are caused by motion planning and control

decisions. For example, the well-known collision in [118] was caused by a perception fault.

1.1.3 Motion Control and Planning

This topic refers to processing involved in driving a vehicle along a predetermined route. Various

approaches from existing literature dealing with both lateral and longitudinal control will be reviewed. The

broad categories of these approaches include classical control, analytical optimal control, numerical optimal

control, and reinforcement learning.

1.1.3.1 Classical Control

A class of motion control techniques are deemed "classical" because of their reliance on current state

feedback and explicit, model-based calculations. A few such techniques are reviewed here.
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Adaptive cruise control (ACC) has been implemented using velocity and gap feedback. Ntousakis et

al. [93] provide the following typical example.

ve = v−vd (1.1a)

asc = max
{
min

{
−0.4ve, 2

}
, −2

}
(1.1b)

de = d−dd , dd = T v (1.1c)

uc =

⎧⎪⎨⎪⎩

asc speed control

max
{
min

{
ḋ+0.25de, asc

}
, −2

}
gap control

(1.1d)

u =min
{
uc , u (v)

}
(1.1e)

The velocity error ve, equal to the difference between the desired velocity vd and the ego vehicle’s

velocity v, is multiplied by a gain to compute the free-flow acceleration asc . In gap control mode, however,

the gap d between the ego and preceding vehicle (PV) also plays a role. The deviation de from the desired

gap dd , is multiplied by a gain and used to compute the control move uc . The desired gap itself depends on

speed to target a time headway T . Since minimum and maximum constraints, including potentially complex

mechanical limits denoted u (v), are not explicitly included in the controller, saturation is needed afterward.

Controllers of this general type can be practical; [114] showed damping of traffic waves in a ring road exper-

iment by introducing just one automated vehicle.

Connected cruise control can also be implemented using classical control techniques. Milanés et

al. [87] obtain the preceding vehicle’s control action via connectivity and use it as a feedforward to improve

control performance. He et al. [50] use connectivity to track the speeds of multiple vehicles ahead, a topic

explored further in Chapter 3.

Another longitudinal control law called the Intelligent Driver Model (IDM) [120] was proposed for

human driver modeling. Required parameters not shared with the ACC above include minimum distance d0,
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maximum acceleration a0, and comfortable deceleration b0.

ddes = d0+max

(
0, T v+

vḋ√
4a0b0

)
(1.2)

ades = a0

⎡
⎢⎢⎣
1−

(
v

vd

)�

−

(
ddes

(
v, ḋ

)
d

)2⎤
⎥⎥⎦

(1.3)

Classical state-feedback techniques can also be applied to lateral motion control to achieve line track-

ing. A popular example is the pure pursuit controller [22], which geometrically computes the steering angle

necessary to drive the center of the rear axle to a lookahead point. This lookahead point lies a distance ld

away from the center of the rear axle, where ld can be chosen as a linear function of vehicle speed i.e. ld = kv.

Dollar and Vahidi [33] implemented the pure pursuit controller as

� = arctan
2Lsin

(
arcsin

yd−ya
ld

− 
)

ld
(1.4)

where the lookahead distance is

ld = max

{
kv,

√(
yd −ya

)2
+(1.5L)2

}
(1.5)

andL, yd , ya, , and� denote the vehicle length, lateral position of the lookahead point, actual lateral position

of the rear axle, yaw angle, and steering angle of the controlled vehicle, respectively.

In a structured environment with discrete lanes, rule-based algorithms can help extend explicit, state-

feedback car following controllers to include lane change decisions. One such algorithm is MOBIL [69], which

compares the current accelerations of the ego and nearby vehicles to their potential values if the ego vehicle

changes lanes. A lane change is executed if

ãc −ac +p
(
ãn−an+ ão−ao

)
> Δath (1.6)

where ac is the ego vehicle’s acceleration, an is the acceleration of the ego’s follower after the potential lane

change, ao is the acceleration of the ego’s current follower, Δath is a hysteresis threshold to prevent toggling,

and the accent tilde indicates the potential value after a lane change by the ego. An acceleration bias can be

added to the right-hand side to induce a keep-right or keep-left preference. The politeness factor p controls
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how much the controller prioritizes surrounding vehicles compared to itself. Other rule-based lane-change

algorithms also exist. For an early example, see the more complex decision process proposed by Gipps [40].

1.1.3.2 Analytical Optimal Control

In some cases, an optimal control can be determined analytically. This is desirable because it yields

optimal performance with minimal computation time, especially when compared to numerical techniques. It

also provides clear insight into what behavior results in good control, which can be used by manual operators

or simpler rule-based controllers. Pontryagin’s Minimum Principle is an important tool for this type of optimal

control and has been used in related applications like hybrid vehicle energy management [70]. Sciarretta and

Vahidi [109] and Han et al. [48] describe analytical solutions to several eco-driving problems. One elegant

example shows that the energy-optimal speed profile for an electric vehicle is parabolic. A more complex

solution considering acceleration and position constraints is also provided, along with feasibility analysis.

The preceding vehicle (PV) acceleration is assumed constant at ap. When the constraint is active, the ego

approaches the preceding vehicle (PV) with parabolic speed until the contact time �1 as formalized in Eqn.

(1.7). Let vi, vp,0, sp,0, and � denote the ego’s initial speed, PV’s initial speed, PV’s initial position relative to

the ego, and time relative to the present, respectively.

v (�) =vi+

(
ap+

4
(
vp,0−vi

)
�1

+
6sp,0

�2
1

)
�

−

(
6sp,0

�3
1

+
3
(
vp,0−vi

)

�2
1

)
�2, � ∈

[
0, �1

) (1.7)

The contact time �1 solves the following equation, where �f , sf , and vf are the final time, position, and

velocity, respectively.

(
vi −vf +ap�f

)
�3
1

+

(
4vp,0�f +vf �f −2vi�f +

ap�
2
f

2
−3sf

)
�2
1

+
(
6sp,0�f +vi�

2
f
−vp,0�

2
f

)
�1−3sp,0�

2
f
= 0

(1.8)

Then, the ego vehicle follows the standard parabolic profile until the end of the trip. Reference [47] proposes

an MPC using a similar concept and considering both speed and position constraints. Malikopoulos and

Zhao [83] provide another example of position-constrained closed-form optimal control using a Hamiltonian
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analysis.

It is also possible to use analytical optimal control techniques to describe the solution, then solve

those conditions numerically. For example, Hu et al. [56] applied PMP to efficient control of hybrid vehicles

considering variable road grade using such a technique.

1.1.3.3 Numerical Optimal Control

For greater flexibility, optimal control problems can be solved numerically. Dynamic programming

(DP) is a highly general but computation-intensive technique for doing so. It is typically used to find open-loop

solutions to complex problems. For example, [2] applies DP to optimize an EV speed profile over varying road

grade after using PMP to restrict the possible operating modes. Reference [85] uses DP for combustion engine

eco-driving with car-following constraints. DP infamously suffers from a “curse of dimensionality”[71] where

it scales poorly and becomes computationally intractable as the number of states increases. A diverse field of

approximate dynamic programming techniques has emerged to combat this problem [102] with some using

linear programming [24] or randomization [105].

Other numerical techniques exist to solve optimal control problems over a complete mission. For

example, [95] uses sequential quadratic programming (SQP) to eco-drive, enabling a shrinking-horizon im-

plementation where the problem is repeatedly solved from the current time to a fixed end point as real time

advances. GPOPS-II is a notable tool that solves optimal control problems using a collocation approach orig-

inally developed to find finite-element solutions to partial differential equations [96].

When computational resources are limited and distant-future references and disturbances are either

unimportant or uncertain, optimal control is often implemented in a receding horizon manner. This model

predictive control (MPC) technique, the fundamentals of which are the topic of Section 1.2.1, has found

extensive application in vehicle motion planning and control. Cruise control is one example, where [65] used

MPC to attenuate traffic jams in simulation and [107] evaluated an MPC car-following controller’s impact on

emissions using a real engine. Truck platooning presents an opportunity to reduce aerodynamic drag losses

using MPC, and [123] takes a coordinated approach to this task where a platoon coordinator supervises the

vehicles. Compared to the previously discussed classical ACC systems, MPC can readily consume preview

information and explicitly considers constraints, including collision avoidance. However, the shortsighted

receding horizon does not directly guarantee actual collision avoidance and stability guarantees are more

challenging compared to ACC. Dunbar and Caveney [36] provide an example of a string stability proof for

receding horizon control and [82] combines MPC with a second controller for which collision avoidance is
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formally guaranteed.

MPC has also been applied to lateral vehicle guidance. This can come in the form of continuous

nonlinear programs commanding yaw rate as in [133] or discrete formulations where the lane change decision

is the degree of freedom. Mukai and Kawabe [89] cast the latter problem as a mixed-integer linear program

(MILP) and Du et al. [34] describe it as a mixed logical dynamical (MLD) model.

1.1.3.4 Machine Learning

Machine learning has also been applied to motion control, especially when lateral control among ob-

stacles is considered. [98] used end-to-end learning in an off-road context that involves the same fundamental

source of non-convexity as the lane changing problem addressed in Chapter 4. Ngai and Yung [92] used speed

and heading in the reward function of a reinforcement learning controller for road vehicle overtaking. Later,

[132] proposed reinforcement learning for automated merging.

Machine learning has also been applied to longitudinal eco-driving. Ma et al. [80] did so in an eco-

coaching setting, where human drivers are shown how to improve their efficiency. Shi et al. [110] minimized

CO2 emissions during connected intersection approach using reinforcement learning. Using Q-learning and

deep deterministic policy gradients, [43] combined longitudinal eco-driving and lane selection. In general,

these machine learning approaches tend to handle more complex and realistic scenarios but do not result in as

clear physical insight compared to analytical optimal control methods.

1.2 Technical Background

This section introduces certain technical concepts that appear throughout. These include model pre-

dictive control, mathematical programming (optimization), and Pontryagin’s Minimum Principle.

1.2.1 Model Predictive Control

Model predictive control (MPC) is a central concept to both this dissertation and much of the state-

of-the-art that precedes it. The concept involves using a model, typically in state-space form, to predict the

future evolution of the controlled dynamic system. Conventional notation denotes the states, outputs, and
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manipulated inputs as x, y, and u respectively.

ẋ =f (x,u)

y =g (x,u)

(1.9)

A specified objective J that is a function of the system states and control inputs can then be optimized (usually

minimized) with respect to the vector U of manipulated inputs over time. Another key feature of MPC is the

application of only the current time’s control input and repetition of the process at the next sampling time

while rolling the optimization horizon forward [9]. This achieves closed-loop control.

Where other control techniques like proportional-integral-derivative (PID) and linear quadratic reg-

ular (LQR) require saturation for input constraints and do not readily accommodate output constraints, MPC

explicitly includes input constraints and can also include output constraints if feasibility is guaranteed. The

canonical model predictive control problem thus takes the following form.

min
U

J (x, u)

s.t. c (x, u) ≤ 0

ẋ = f (x,u)

y = g (x,u)

(1.10)

From this point forward, the presence of the plant model in the optimal control problem (OCP) is

implied and the last two constraints in (1.10) may be dropped from the notation. Along with the number of

decision variables, the form of the general nonlinear functions in (1.10) and the presence of integer decision

variables affect the OCP’s numerical tractability. For more detail on a variety of problem types and solution

methods in model predictive control, see [13]. A commonly-used form is introduced next.

1.2.1.1 Linear-Quadratic Model Predictive Control

The solution of OCP (1.10) can either be numerically solved or have its solution explicitly calculated

with the help of offline computations. The former method is called implicit MPC and the latter is called explicit

MPC [73]. This dissertation will focus on implicit MPC, where computation time is often a limiting factor in

control design. If the plant model i.e. functions f and g in (1.10) are linear and the cost is quadratic, (1.10)

can be transformed into a computationally inexpensive quadratic program (QP) using the process described

in [81]. A QP-based MPC can run sufficiently quickly for embedded control in commerical applications [10]
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[11]. Such an MPC solves the following problem, which is used extensively in this research. Let i denote the

prediction step and N denote the number of steps in the prediction horizon. Similar to U , X is the combined

vector of states over time. Equation (1.11) introduces the canonical linear-model form with matricesA, B, C ,

and D. The matrices P , Q, and R contain weights.

min
U

xT (N)Px (N)+

N∑
i=1

xT (i)Qx (i)+ uT (i)Ru (i)

s.t. K

[
XT UT

]T ≤w
ẋ = Ax+Bu

y = Cx+Du

(1.11)

1.2.1.2 State Constraint Softening for Feasibility

In experiments or simulations involving model mismatch, the MPC OCP can be infeasible if hard

output constraints are used. This causes the solver to exit without a solution, which is practically unacceptable.

This dissertation addresses this problem by softening pure state constraints. The form of a single softened

constraint, shown below, can be applied to as many constraints as needed. A slack variable � is introduced as

a non-negative decision variable that can relax a constraint in the following fashion.

c (x, y, u)− � ≤ 0, � ≥ 0 (1.12)

The augmented objective Ja then penalizes � so that the constraints still influence the solution as intended,

where the slack variables are collected into the vector �. In Eqn. (1.13), the diag(q) transformation arranges

the elements of the n-vector q along the diagonal of an n×n matrix whose elements are zero otherwise.

Ja = J +�
T
l
�+ �

T
diag

(
�q
)
� (1.13)

As explained in [68], linear MPC can use linear or quadratic penalty functions on the slack variables �. Equa-

tion (1.13) includes both linear and quadratic penalties with weight vectors �l and �q , respectively. While they

render the cost non-smooth and can cause abrupt control action, linear penalty functions theoretically yield

the exact hard-constrained solution to hard-constrained feasible problems for sufficiently high penalty weight.

Quadratic penalties can provide smoother control performance but cannot deliver the exact hard-constrained

solution.
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1.2.1.3 Chance Constraints

When constraint satisfaction is especially critical and uncertainty especially great, constraints can

include a safety margin. As applied in [131], probability can help convert a random variable’s uncertainty

into such a deterministic safety margin. Constraints using this technique are called chance constraints. The

concept involves adjusting (usually tightening) the constraint so that the base constraint is satisfied with a

specified probability � when the chance constraint is active. In general terms,

EC (x, u)+d ≤ 0, (1.14)

with d chosen such that

EC +d = 0 ⟹ FC (x, u) (0) = � (1.15)

where F is the cumulative distribution function (CDF) of the random variable C and E is the expectation

operator. The distribution of C is translated by d to influence its value for zero input. A more in-depth

view of chance-constrained MPC can be found in [76]. An application of this idea to a practical problem by

assuming the multivariate normal distribution appears in Section 4.5.

1.2.2 Mathematical Programming

Since several of the algorithms involved in this dissertation rely on numerical optimization, a brief

overview of relevant mathematical programmingis in order. This will cover linear programming (LP), quadratic

programming (QP), and mixed integer programming (MIP) from an engineering viewpoint.

1.2.2.1 Linear and Quadratic Programming

A quadratic program is an optimization problem having a quadratic function of the decision variables

as an objective and affine constraints. These constraints may contain equalities and inequalities. Such a

problem is often expressed in the following canonical form. Here the symbol x, which usually denotes the
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state vector, is the vector of decision variables in the optimization.

min
x

1

2
xTQx+fTx

s.t. Ax ≤ b
Aeqx = beq

x ∈ Rn

(1.16)

A linear program can be described as a special case of optimal control problem (1.16) where Q = 0.

The computational ease of LP and QP results from their beneficial mathematical properties. First,

the objective is a convex function and the constraint-admissible set is a convex set. A convex function [8] is

defined as a function f (x) where

f
(
�x1+(1−�)x2

) ≤ �f (
x1
)
+(1−�)f

(
x2
)
, � ∈ [0, 1] (1.17)

and a convex set [8] is a set S where

x1, x2 ∈ S ⟹ �x1+(1−�)x2 ∈ S, � ∈ [0, 1] (1.18)

A local optimum of an optimization with convex objectives and convex constraints is also a global optimum.

This makes gradient search methods well-suited. Perhaps the best-known LP algorithm is the simplex method

due to Dantzig [23], which travels along edges of the constraint-admissible set until it reaches the optimum.

Quadratic programs also have the property that their Hessians are constant and specified, eliminating the need

for costly finite differences calculations. Polynomial time algorithms exist for QPs, and some LP algorithms

can be extended to solve them [91].

1.2.2.2 Mixed Integer Programming and Its Application

Mixed integer programs (MIPs) are a class of optimization problems involving both discrete and

continuous decision variables. Notice that the constraint-admissible set of an MIP is inherently non-convex

since the integers are not a convex set. The non-convexity of the integers can be leveraged to encode other

non-convexity in an MIP.

For example, some problems including those over non-convex sets contain disjunctions, or pairs of

constraints where either oneOR the other must be satisfied. Such a problem with a quadratic objective cannot

13



be cast as a QP, but it can be cast as a mixed-integer quadratic program (MIQP). One such method called Big

M [128] involves introducing binary decision variables � ∈ {0, 1} and a sufficiently large scalar M . Say the

problem contains the following disjunctive constraints.

aT
1
x ≤ b1 OR aT

2
x ≤ b2 (1.19)

Then for � and M as described previously, the following formulation allows one of (1.19) to be violated, but

not both.

aT
1
x−M� ≤ b1 AND aT

2
x−M (1−�)≤ b2 (1.20)

This dissertation will also use some binary variables, denoted�, as indicator variables. Such decision

variables are constrained to take a value of true or false when a certain event occurs. They can then be used

with Big M to relax constraints depending on that event. See [38] and Section 4.3 of this dissertation for

example applications.

1.2.3 Pontryagin’s Minimum Principle

Analytical tools exist to solve or at least implicitly describe the solutions of optimal control problems

(OCPs). This dissertation makes use of Pontryagin’s Minimum Principle (PMP) to solve certain OCPs with

only a few states and constraints. [49] uses the following notation, which is adopted here. This research will

mainly focus on the case where the initial time t0 and the final time tf are fixed.

min
u(t)

J = ∫
tf

t0

F (x (t) u (t))

s.t. ẋ = f (x,u)

g (x (t) u (t)) ≥ 0

ℎ (x (t)) ≥ 0

(1.21)

In PMP, the optimal control u∗ (t) is found by minimizing a quantity called the Hamiltonian at all

times. The Hamiltonian  with Lagrange multipliers � is formed according to Eqn. (1.22).

 = F (x (t) u (t))+�
T
f (x,u) (1.22)

When the problem involves state inequality constraints, the direct adjoining method can be used. This requires
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the following Lagrangian  with additional Lagrange multipliers �.

 = F (x (t) u (t))+�
T
f (x,u)+�

T
[
g (x (t) , u (t))T ℎ (x (t))T

]T
(1.23)

The following conditions are then necessary for optimality.

)
)u

= 0, �̇ = −
)
)x
, � ≥ 0, �g (x, u) = 0, �ℎ (x) = 0 (1.24)

The solution need not be continuous but can instead be a piecewise function of time [71]. In such cases, the

jump conditions with jump parameter � describe the solution at the contact time tc where two phases of the

solution meet.

�
(
t−
c

)
= �

(
t+
c

)
+ �

)ℎ

)x
,  (

t−
c

)
= (

t+
c

)
− �

)ℎ

)t
, � ≥ 0, �ℎ

(
tc
)
= 0 (1.25)

These necessary conditions describe the form of the solution, which can then be solved with the help

of boundary conditions on the states. In general, the result is a two-point boundary value problem. In some

cases, however, the result is a system of algebraic equations that can be solved quickly online.

1.3 Contributions

The overall contribution of this dissertation is the integration of look-ahead information in automated

driving through methods that require minimal data as input and are optimal in some known sense. Novel so-

lutions are presented to some challenges that arise when facing realistic applications, including non-convexity

and computational constraints. A strength of this work is that it encompasses a range of operational domains

and vehicles, including car-following with either one or multiple predecessors, multi-lane driving among ar-

bitrary obstacles, and varying road slope.

Chapter 2 deals with car following, where a relatively large body of research exists. The main algo-

rithmic contributions are a suite of controller variants enabling model predictive control in mixed strings of

automated and conventional vehicles, and the consideration of a speed-varying maximum acceleration con-

straint where a constant constraint is typically used [88] [131] [141]. This latter contribution was deepened by

applying mixed-integer programming to accommodate vehicles with highly non-convex powertrain operating

spaces. Such non-convexity occurs in heavy diesel trucks with high aerodynamic drag. The consideration
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of such heterogeneous strings consisting of both passenger, heavy, connected, and unconnected vehicles with

realistically varying parameters differentiates Chapter 2 from other speed smoothing studies like [139] and

[65]. The energy savings of the passenger vehicle car-following controllers that were developed in simula-

tion were validated on real vehicles running in vehicle-in-the-loop experiments. The author’s main individual

contributions in car following were vehicle motion algorithm development including the MPC formulation,

probability models, and chance constraints, as well as the MATLAB simulation tools and prototype simulation

studies that used them. Other team members’ contributions included but were not limited to VISSIM [103]

simulations, acceleration control via the test vehicles’ pedals, and connectivity implementation.

Where the algorithms in Chapter 2 plan motion considering the immediate predecessor, Chapter 3

uses information from multiple vehicles ahead that could be communicated using vehicle-to-vehicle (V2V)

connectivity [111]. Inspired by the more classical controller proposed in [140], Chapter 3 explores how

such information might assist MPC. A low-automation, medium-connectivity environment is assumed where

surrounding vehicles are not automated but may be connected. Most car-following controllers, including

the ones reviewed so far in this dissertation, only consider the immediate predecessor. Notably, [64] does

consider more distant connected vehicles in order to derive a road speed profile. The approach in Chapter

3 is more microscopic in the sense that individual occluded unconnected vehicles are identified in order to

predict transient gap adjustments. In addition to the algorithm itself, Chapter 3 contributes a comparison of

several algorithms to isolate the benefits of considering multiple predecessors, identifying occluded vehicles,

and using MPC.

The car following research is then expanded to multi-lane roads in Chapter 4. A novel model predic-

tive controller is proposed for coupled acceleration and lane change planning using mixed integer quadratic

programming. Because it combines a discrete lane selection input with continuous states, lane discipline is

built-in without approximating lane changes as one-step jumps as in [34]. This approach fully comprehends

that a vehicle engaged in a lane change obstructs two lanes at once. It can also be used to plan multiple lane

changes in a prediction horizon, differentiating it from [66]. In a second contribution, the receding horizon

planner is combined with references from a PMP-based shrinking horizon controller to enable eco-driving

while avoiding general dynamic obstacles. This addresses a gap pointed out by [85] where eco-driving opti-

mizers do not typically include traffic and goes a step further by considering lane changes. It also mitigates

the well-known shortsightedness of receding horizon control. The technical work presented in Chapter 4,

including algorithm design and simulation, was part of the author’s individual contribution to a larger project

on improving the energy efficiency of heterogeneous fleets. Extensions to tractor-trailers on sloping roads are
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also presented using linear parameter varying (LPV) MPC.

Varying road slope and the desire to minimize energy in the objective motivated enhancements be-

yond the PMP trip planner of Chapter 4. Since the computational burden of DP was too great for closed-loop

operation in the manner of Chapter 4, a novel formulation is developed in Chapter 5 to cast the wheel input

energy eco-driving problem over generally varying road slope as an easier-to-solve linear program (LP). DP is

typically used for this type of problem but is solved in open-loop, although [61] implemented an eco-driving

controller on a vehicle using a power-based formulation cast as a MILP. A MILP is inherently more complex

to solve than a similarly-sized LP since MILP involves multiple LP subproblems. Held [51] approaches a sim-

ilar problem to the one in Chapter 5 and, like this research, uses a position-discretized formulation. However,

the PMP-based solution involves a shooting method for boundary value problems. Because of the availability

of fast commercial and open-source simplex method solvers for LP, the formulation of Chapter 5 could be a

practical new alternative for online optimization in eco-driving over slopes. Physical insights are also gained

from the results and discussed.

Chapter 6 adds contributions in the more advanced topic of multi-agent control of automated road

vehicles. Centralized control is implemented and evaluated, but the main contributions are distributed collab-

orative algorithms. In car following, a considerate algorithm is proposed that includes neighboring vehicles

in each vehicle’s objective function. The distributed computation and constrained MPC distinguish this work

from the centralized LQR-based platooning controller in [63]. String simulations show that such an approach

can improve traffic compactness relative to strictly decentralized optimal control with a mild improvement in

energy efficiency. In a multi-lane context, a different approach is proposed where the network’s agents are

ordered such that the distributed solution is improved through sequential decentralized optimization. Unlike

the multi-agent consensus algorithms in [62] and [75] where the number of iterations may vary, the collabo-

rative algorithm here requires exactly two solutions for each control move computed. The proposed approach

also requires no roadside infrastructure or predefined conflict zones, distinguishing it from [60] and [79],

respectively.
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Chapter 2

Single-Predecessor Car Following

An anticipative cruise controller was developed to smooth traffic in a string of vehicles. It uses

model predictive control to consume the preceding vehicle’s (PV’s) intended motion and generate its own

future intentions. Four algorithm variants are proposed whose intended applications depend on the convexity

of the ego’s maximum acceleration constraints and the connectivity of the PV. MPC-C and MPC-U apply to

ego vehicles with convex acceleration constraints that follow connected and unconnected PVs, respectively.

Similarly, ego vehicles with non-convex acceleration constraints use MIPC-C or MIPC-U for connected or

unconnected PVs. MIPC abbreviates Mixed Integer Predictive Control, named for its use of integer decision

variables. The following sections will describe the base control with its objective and constraints, followed

by probabilistic techniques used to model unconnected preceding vehicles. The non-convex acceleration con-

straints are explained next, followed by the probability modeling. Finally, results are shown from simulation

and vehicle-in-the-loop (VIL) experiments.

This chapter contains algorithm development research that was published by Dollar and Vahidi in

[29] 1 and [30] 2 . The VISSIM results were published in Ard et al. [5] 3 and the VIL results are under review in

Ard et al. [6] 4, both of which list this dissertation’s author as a co-author. This research was supported in part

by an award from the U.S. Department of Energy Vehicle Technologies Office (Project No. DE-EE0008232).

1R. Austin Dollar and Ardalan Vahidi. Quantifying the impact of limited information and control robustness on connected automated

platoons. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages 1–7, IEEE, 2017.
2R. Austin Dollar and Ardalan Vahidi. Efficient and collision-free anticipative cruise control in randomly mixed strings. IEEE

Transactions on Intelligent Vehicles, 3(4):439–452, 2018.
3Tyler Ard, R. Austin Dollar, Ardalan Vahidi, Yaozhong Zhang, and Dominik Karbowski. Microsimulation of energy and flow effects

from optimal automated driving in mixed traffic. Transportation Research Part C: Emerging Technologies, 120:102806, 2020.
4Tyler Ard, Longxiang Guo, R. Austin Dollar, Alireza Fayazi, Nathan Goulet, Yunyi Jia, Beshah Ayalew, and Ardalan Vahidi.

Energy and flow effects of optimal automated driving in mixed traffic: Vehicle-in-the-loop experimental results. arXiv preprint

arXiv:2009.07872, 2020.
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2.1 Base Control

The model predictive controller uses the following linear plant model, a double integrator with first-

order lag between the acceleration command u and actual acceleration a. The position s and velocity v com-

plete the state vector.

⎡⎢⎢⎢⎢⎣

ṡ

v̇

ȧ

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 1 0

0 0 1

0 0 −
1

�

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

s

v

a

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0

0

1

�

⎤⎥⎥⎥⎥⎦
u (2.1)

The time constant � varies depending on whether the model represents a passenger or heavy vehicle. In the

simulation testbed, � is varied depending on whether the powertrain or brake system is used. Powertrain � is

either 0.45 s or 0.9 s and braking � is either 0.10 s or 0.25 s, with passenger vehicles taking the smaller value

and heavy vehicles taking the larger one. The mean of the powertrain and braking � is always used in the

MPC prediction model.

Together with the linear model, the controller uses a quadratic cost and linear constraints to produce

a quadratic program (QP). The following objective balances acceleration minimization with following the

preceding vehicle (PV). Let ra denote the anticipated PV position, lv the vehicle length, and dref the reference

distance.

J = qg
(
s (N)− sref (N)

)2
+ qaa

2 (N)

+

N−1∑
i=0

[
qg

(
s (i)− sref (i)

)2
+ qa

(
a2 (i)+ u2 (i)

)] (2.2)

sref = ra− lv−dref (2.3)

The constants qg and qa are tuning weights andN is the prediction horizon. These are set based on a parameter

sensitivity study in [30]. The index i denotes the prediction step.

The car following problem involves several constraints for safety, legal, and mechanical reasons.

Minimum and maximum speeds v and v are imposed along with a braking acceleration limit u.

u ≤ u, v− �3 ≤ v ≤ v+ �2 (2.4)

The slack variables �2 and �3 are for constraint softening as mentioned in Section 1.2.1.2. The maximum
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acceleration is a piecewise linear function of speed defined by the coefficients m1, m2, b1, and b2.

−m1v+ u ≤ b1 −m2v+ u≤ b2 (2.5)

−m1v+a ≤ b1+ �4 −m2v+a ≤ b2+ �4 (2.6)

The constraints on the acceleration state are also softened. The penalty on soft constraints and its role in the

objective are

J� =

4∑
j=1

�j
|||
|||�j

|||
|||∞ , Ja = J +J� (2.7)

where �j is the penalty weight on slack variable j.

An important constraint limits the gap between the ego and the PV to a safe minimum d.

d− �1 ≤ rc − s (2.8)

In the more ideal connected case where a preview of the PV position is available, that anticipated PV po-

sition ra is used directly as rc . When the PV is not connected, the position constraint must add additional

safety margin. A worst-case constraint was used to generate the results shown in Section 2.4. In worst-case

constraints, a safe PV position rwc is calculated by assuming that the PV maximally brakes and passing that

input sequence through linear model (3.1). This guarantees collision avoidance as long as the PV’s maximum

braking capability is weaker than or equal to the assumed value5. In summary,

rc =

⎧⎪⎨⎪⎩

ra ∶ MPC-C, MIPC-C

rwc ∶ MPC-U, MIPC-U
. (2.9)

Finally, a constraint on the terminal position and speed guarantees that the receding-horizon solution

will not only prevent collisions in the horizon, but also result in a safe situation at the end of the horizon. The

parameters m3 and � are recomputed at each step as described in [30].

−m3v (N)+ s (N) ≤ � (2.10)

5A less conservative alternative to the worst-case constraint is presented in Section 4.5.
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2.2 Non-Convex Constraints

Constraints of the form exemplified by (2.5) apply well to vehicles with approximately convex power-

train operating spaces as shown in Fig. A.1. In contrast, other vehicles like the Class 8 diesel truck modeled in

Section A.1 have highly non-convex operating spaces as in Fig. A.2. Use of (2.5) and (2.6) severely limits the

low-speed acceleration of heavy trucks, even beyond their restrictive hardware limits. To overcome the non-

convexity, the truck’s operating space is approximated as two disjunctive, rather than conjunctive, constraints

that are placed in canonical form using the Big M method. This results in a mixed integer quadratic pro-

gram (MIQP) instead of a quadratic program. Equations (2.11, 2.12) show the disjunctive constraints, where

� ∈ {0, 1} and the constant M is set to the maximum difference between the two acceleration constraints

within the feasible speed range.

u−m1v−M� ≤ b1, u−m2v−M (1−�) ≤ b2 (2.11)

a−m1v−M� ≤ b1, a−m2v−M (1−�) ≤ b2 (2.12)

2.3 Probability Modeling

As mentioned in Section 2.1, the ego vehicle relies on vehicle-to-vehicle (V2V) connectivity to obtain

the expected PV position ra when the PV is connected. When the PV is not connected, the ego must predict

ra by other means. In [30], the author proposed a Markov-like technique with the PV’s current speed v

(discretized as �) and brake light state � as inputs and the PV’s acceleration at a sequence of future steps

as output. The term Markov-like is used because although the algorithm involves a probabilistic transition

matrix similar to a Markov chain, the acceleration multiple steps in the future depends on the current state

and therefore lacks the Markov property.

The probability model’s function is briefly reviewed. At each step, the previous acceleration com-

mand is estimated since it is not directly measured by radar. Then, the transition matrix is updated according

to the following process. Let ℎ denote the index of the discrete acceleration bin, l denote the timestep, and

P denote the transition matrix composed of probabilities. The strength M of an input tuple is the number of

samples collected for that tuple.

1. Reconstruct the number of samples for the current transition: n��ℎl = P��ℎlM��l
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2. Increment n��ℎl

3. Increment the strength M��l

4. Compute the new transition probability: P��ℎl =
n��ℎl

M��l

After updating the transition matrix, the input ua can be predicted for a prediction step l using a weighted

average of the nbin,t acceleration bins’ values uℎ.

ua (l) =

nbin,t∑
ℎ=1

uℎPjℎl (2.13)

Despite only consuming the PV’s speed and brake light state without traffic context, the model was

able to improve prediction compared to the free response assumption for 5 s into the future as shown in Fig.

2.1. The PV in this evaluation used the Intelligent Driver Model [120] to follow an open-loop leader that

followed the EPA US06 cycle.
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Figure 2.1: Mean PV u residuals of the prediction algorithm after one cycle. ©2018 IEEE.

2.3.1 Application to Real-World Bus Data

To assess the applicability of similar probability modeling techniques to real-world vehicles, a pre-

diction model was developed and evaluated on GPS data obtained from Clemson University’s Tiger Commute

bus system. The highway trip down both directions of the segment of Interstate 85 shown in Fig. 2.2 was

extracted for the study. This provided about 149,000 data points from 18 different drivers, sampled at 5 Hz.

Only the speed and position of the bus was available, not the states of surrounding vehicles. This situation

posed a similar challenge to the car following problem described in the previous section, albeit at a lower

sampling frequency. Department of Energy project milestones set the accuracy target of 10 m maximum error

for 5 s predictions.
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Figure 2.2: The sample road segment for the Tiger Commute prediction study.

Because of the longer sample time, a speed-based approach was adopted rather than one based on

acceleration. This algorithm also used a true Markov chain where the state probabilities at each step only

depend on the states at the previous step. Figure 2.3 shows the algorithm as a block diagram where the

inputs to the transition matrices are the direction of travel �, position s, time t, instantaneous speed v, and

the difference between the instantaneous speed v and the effective speed ṽ that is obtained by dividing the

measured distance traveled during the last step by the step’s time duration. Separate transition matrices predict

the next instantaneous and effective speeds. The subsequent inputs can then be recursively computed by

maintaining constant direction, advancing time by the timestep, and computing the new position as the product

of the timestep and effective speed.

Figure 2.3: Block diagram of the Markov chain applied to the Tiger Commute data.
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The transition matrices were trained using 80 % of the Tiger Commute GPS data and the system

was validated using the remaining 20 %. In addition to comparing against the milestone target, the Markov

chain approach was also compared to simple kinematic predictions using constant instantaneous or effective

speed. The error results in Fig. 2.4 show that the Markov chain system exceeded its performance targets by

predicting position within 10 m, 10 s in advance. It should be mentioned that assuming constant effective

speed also met the target. Fig. 2.5 shows that constant instantaneous speed performed better than constant

Figure 2.4: Accuracy results of Markov chain and constant effective velocity predictions.

Figure 2.5: Markov chain and constant velocity RMSE at various prediction horizons.

effective speed, and the advantage of the Markov chain over these approaches appears in longer predictions of

15 s or more. Figures 2.6 and 2.7 offer further insight into where the Markov chain had an advantage and why.

The speed histogram shows that most data was collected at typical highway cruising speeds, but some points

at lower speeds were also observed. The RMSE curve in Fig. 2.7 then shows that constant speed performed
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similarly to the Markov chain in the cruising-speed points, but the Markov chain performed better at lower

speed points. Since slowdowns are typically fleeting compared to normal cruising, the Markov chain would

have been able to accurately predict transitions back to cruising speed. On the other hand, the constant-speed

algorithm would have predicted a continuation of low-speed driving, deviating from the data.

Figure 2.6: Speed histogram used in the Markov chain, with discretization boundaries.

Figure 2.7: Markov chain RMSE benefit vs. constant speed across the velocity levels marked in Fig. 2.6.

2.4 Results of Optimal Car-Following

This car following algorithm was initially simulated in a custom MATLAB environment. Written by

the author of this dissertation, this MATLAB simulator uses object-oriented programming to achieve multi-

agent microsimulation where information is appropriately restricted between vehicles. Later, the author’s

colleague Tyler Ard implemented this algorithm in C++ and evaluated a modified version in a customized

VISSIM setup. This C++ version was also evaluated in vehicle-in-the-loop (VIL) experiments involving
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several colleagues. The author’s role in these later efforts was to provide algorithm support, with colleagues

leading the VISSIM simulation and VIL sides of the project. This section focuses mainly on the author’s

individual results, although the subsequent group efforts are mentioned for the sake of completeness.

2.4.1 MATLAB Microsimulations

The algorithm was evaluated in randomly mixed 8-vehicle strings. An open-loop lead vehicle fol-

lowed the EPA US06 cycle exactly and the 8 following vehicles consisted of a random mix of heavy and

passenger vehicles with automated and modeled human drivers. The various vehicle and driver combinations

were simulated in 2224 different arrangements to arrive at the average results. Figures 2.8 and 2.9 show the

fuel economy and space utilization results as functions of the concentration of CAVs in the string, where

space utilization is defined as the mean distance from vehicle 1’s front bumper to vehicle 8’s rear bumper.

Fuel economy steadily improved with the addition of CAVs, although the presence of heavy vehicles with

limited acceleration reduced the benefit of CAVs by introducing their own damping effect. Overall fuel econ-

omy benefits of up to 19 % were observed in simulation. Figure 2.9 shows that while the 100 % CAV strings

were more compact than the 0 % CAV ones, the addition of CAVs increased string length at low CAV concen-

trations. This phenomenon results from the conservative worst-case constraints used in MPC-U and MIPC-U,

which are deployed more frequently when CAVs are rarer and more likely to follow a conventional vehicle.
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Figure 2.9: Space utilization at various string

compositions. ©2018 IEEE.

Computation time, a major consideration in the controller’s design, was also measured. Table 2.1

shows the results, where MPC denotes the convex QP-based formulation, MIPC denotes the mixed-integer

formulation, and the suffix specifies the connected (C) or unconnected (U) variant. Ctrl. Time is the total
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time needed to compute one vehicle’s control move at each step and Opt. Time is the time needed to solve the

mathematical program. For comparison, the later experimental implementation computed a new move every

0.1 s. Hence these results were considered promising for real-time implementation, especially considering the

improvement realized by transitioning from MATLAB to C++.

Table 2.1: As-calibrated computation time for car following.
Algorithm Mean Ctrl. Time [s] Max Ctrl. Time [s] Mean Opt. Time [s] Max Opt. Time [s]

MPC-C 0.0337 0.0561 0.0108 0.0444

MPC-U 0.0757 0.1134 0.0110 0.0892

MIPC-C 0.0435 0.0789 0.0148 0.0504

MIPC-U 0.0571 0.0919 0.0069 0.0425

2.4.2 VISSIM Microsimulations

As documented in [5], the author’s colleague Tyler Ard implemented the proposed optimal car fol-

lowing algorithm in C++ with the addition of a time headway term to the objective. In the unconnected PV

case, the worst-case constraints were replaced with chance constraints similar to Section 4.5 to improve string

compactness. This version was simulated in VISSIM [103], which uses the partially stochastic Wiedemann

human driver model and replicates traffic shockwaves without the need for an imposed drive cycle distur-

bance. Figure 2.4.2 shows the reduction in fuel consumption from CAVs at a range of traffic volumes using

the author’s internal combustion engine vehicle (ICEV) energy model that was described in Section A.1.
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Figure 2.10: VISSIM fuel savings. Figure by Tyler Ard [5], used with permission.

Reference [5] also provides energy results using the Autonomie vehicle and powertrain model [46].

That analysis showed up to 25 % fleet improvement from CAVs where the average CAV used 6.6 % to 22.1 %

less fuel than the average conventional vehicle depending on traffic volume.
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2.4.3 Vehicle-in-the-Loop Experiments

The same version of the algorithm that was used in the VISSIM study was implemented in Vehicle-

in-the-Loop (VIL) experiments. VIL enables real vehicles to interact with simulated ones by passing mea-

surements of the simulated vehicles’ states to the real vehicle(s) and vice versa. Thus VIL experiments can

include real vehicle dynamics and energy flows with reduced cost and improved safety compared to track-

only or real-world testing. Figure 2.4.3 illustrates the VIL architecture, using two real vehicles as an example.

While the team did conduct some testing with two real vehicles, the results shown in this section used one

real vehicle. A Nissan Leaf EV (Fig. 2.4.3(a)) and Mazda CX7 ICEV were equipped with steering and pedal

Figure 2.11: Schematic of a VIL system. The results shown here used one real vehicle.

actuators (Fig. 2.4.3(b)) along with RTK GPS and IMUs. A group effort involving numerous colleagues

assessed the energy benefit of CAVs equipped with MPC over simulated human drivers. The author’s main

technical contributions were optimal car following algorithm development and support, along with model-

ing ICEV fuel consumption from on-board diagnostics (OBD) data. The publication in review [6] lists the

author’s contributions as methodology, data curation, formal analysis and writing - reviewing and editing.

The results in Tables 2.2 and 2.3 show an energy benefit of 12 % or 23 % for the ICEV and 7.9 %

or 20.6 % for the EV, depending on whether or not the lead vehicle was connected. This was accomplished

without increasing travel time or mean time headway, which is important for maintaining road throughput.

These experimental results were calculated from a model that used OBD mass airflow and commanded equiv-

alence ratio as input and was fine-tuned based on historic fuel trim data and chassis dynamometer fuel volume

measurements. The Intelligent Driver Model (IDM) [120] and Wiedemann (WIE) [129] [135] driver model

were used as baselines.

The outcome of the VIL results is interesting from an algorithm development process perspective.

The controllers were designed and initially evaluated in simulation without any vehicle hardware; energy
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(a) (b)

Figure 2.12: The Nissan Leaf test vehicle (a) and its pedal actuators (b).

Table 2.2: Experimental performance comparison, VIL (Mazda, combustion) [6].

Metric WIE IDM MPC-U MPC-C

Travel Time (change) [min:s] 24:01 23:45 (-1.1%) 24:00 (0%) 23:34 (-1.9%)

Mean Headway (change) [s] 3.47 5.73 (+65.1%) 3.32 (-4.3%) 2.75 (-20.7%)

Net Fuel (change) [L] 2.556 2.174 (-15%) 2.241 (-12%) 1.978 (-23%)

Table 2.3: Experimental performance comparison, VIL (Nissan, electric) [6].

Metric WIE IDM MPC-U MPC-C

Travel Time (change) 23:49 23:49 (0%) 23:40 (-0.9%) 23:36 (-1.9%)

Mean Headway (change) [s] 3.96 5.81 (+46.7%) 2.93 (-26.0%) 2.82 (-28.8%)

Net Energy (change) [kwh] 4.090 3.730 (-8.8%) 3.766 (-7.9%) 3.247 (-20.6%)

use was modeled using dynamometer data from [116] and physical vehicle parameters. Nonetheless, the

magnitude of the benefits predicted in the MATLAB simulations of Section 2.4.1 is similar to that observed

in VIL. Table 2.2 for the ICEV reports a 12-23 % benefit from anticipative control and the MATLAB single-

vehicle results reported in [30] show about a 13-20 % benefit. Implementation was not without its challenges.

Specifically, variable latency in cellular communication and mismatch between the commanded and actual

acceleration were two of the most significant issues encountered at the test track. Even after improvement in

the low-level controller throughout the project, some jerks persisted as MPC brought the vehicle to a stop.

The VIL experiments enabled human operators to ride along in the vehicles, exposing this sort of comfort

issue more clearly than simulations do.
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Chapter 3

Multi-Predecessor Car Following

The previous chapter addressed model predictive control for car following. Although prediction

was explored including worst-case and probabilistic approaches, only one predecessor was considered. In

reality, each vehicle’s motion in traffic results from interactions with other traffic elements, particularly their

own predecessors in single-lane driving. Therefore, this chapter hypothesizes that information about vehicles

ahead of the immediate predecessor can improve prediction and ultimately control performance.

Assuming low automation and medium connectivity, this hypothesis is evaluated by designing algo-

rithms to predict predecessor motion using connected predecessors’ measurements. Since not all vehicles are

connected, an important part of this process is detection of unconnected vehicles that may lie between con-

nected ones in a vehicular string. The prediction is then applied to the previous chapter’s optimal controller.

The result is evaluated using experimental data from real human drivers as input. A classical controller using

multiple predecessors is benchmarked.

This chapter draws from research [25] 1 that has been accepted to the 2021 American Control Con-

ference at the time of writing. The study was a collaborative effort with Gábor Orosz and Tamás G. Molnár,

who worked at the University of Michigan. The Michigan team provided the experimental human dataset and

the benchmark classical controller. The dissertation author developed the detection, prediction, and optimal

control algorithms and simulated their performance.

1R. Austin Dollar, Tamás G. Molnár, Ardalan Vahidi, and Gábor Orosz. MPC-based connected cruise control with multiple human

predecessors. In 2021 American Control Conference (ACC). IEEE, 2021. To appear.
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3.1 Scenario and Assumptions

To focus on a realistic near-term scenario, only the ego vehicle is assumed to be automated. It senses

its immediate predecessor using state-of-the-art autonomous sensing, but further predecessors are assumed

occluded. The second predecessor is not connected and the connected automated vehicle (CAV) has no direct

information about its state. However, the third predecessor is connected and communicates its current position

and speed to the CAV. Figure 3.1 depicts the scenario, where Human-driven Vehicles are abbreviated HV and

Connected Human-driven Vehicles are abbreviated CHV.
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Figure 3.1: The three predecessors and the CAV to be controlled. ©2021 IEEE.

3.2 Modeling

To capture communication lag, the ego CAV is modeled using a double integrator with constant

delay � = 0.6s.

ṡ(t) = v(t)

v̇(t) = a(t)

a(t) = min
{
max

{
u(t−�), −u

}
, u

(
v(t)

)}
.

(3.1)

As in the previous chapter, s, v, a, and u denote the position, speed, acceleration, and acceleration command,

respectively. Time is denoted as t. The braking limit u and acceleration limit u (v) are incorporated into the

model.

The delay is captured exactly in the model predictive controller by adding delay states to the discrete-
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time model

s(k+1) = s(k)+v(k)Δt+a(k)Δt2∕2

v(k+1) = v(k)+a(k)Δt

a(k) = min
{
max

{
�q(k), −u

}
, u

(
v(k)

)}

�q(k+1) = �q−1(k)

⋮

�1(k+1) = �0(k)

�0(k) = u(k),

(3.2)

where k is the simulation step. In this case, the number q of delay states � is 3 since the timestep Δt = 0.2s

and the delay is 0.6 s. The delay is neglected when predicting the motion of human-driven predecessors.

A human driver model is needed to predict each predecessor’s motion based on its own predeces-

sor. Although the proposed algorithm is modular in the sense that general obstacle-aware longitudinal driver

models can be used, this study uses the Intelligent Driver Model (IDM) [120] that has been described earlier

in Section 1.1.3.1. It is important for this algorithm that the driver model parameters accurately describe the

encountered human drivers. Therefore, the following optimization was solved for the experimental dataset to

find the best IDM parameters for this group of drivers. The parameters were not individualized; one set was

used for the whole string.

min
xp

Jp =
1

Nv

Nv∑
n=1

√√√√ 1

Ns

Ns∑
k=1

(
d̂n(k)−dn(k)

)2

s.t. 0.1m∕s2 ≤ a0 ≤ 4m∕s2

0.1m∕s2 ≤ b0 ≤ 8.5m∕s2

0.1m ≤ dst ≤ 10m

0.1s ≤ �h ≤ 4s

0 ≤ vmax ≤ 36m∕s

1 ≤ � ≤ 10

xp =
[
a0 b0 dst �h vmax �

]

(3.3)
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The squared error between the IDM-based simulated gap d̂n and the actual gap dn was minimized over all

Nv vehicles andNs steps. The degrees of freedom xp are the standard IDM parameters from Section 1.1.3.1.

Table 3.1 lists the identified parameters.

Table 3.1: IDM parameters in multi-predecessor car following.

Parameter Description Result

a0 Maximum acceleration 2.43 m/s2

b0 Deceleration coefficient 8.5 m/s2

dst Stopped distance 3.3 m

�h Time headway 0.76 s

vmax Speed limit 36 m/s

� Exponent 6.13

Finally, an energy model is used for benchmarking. The energy input to the wheels E is calculated

using the formula

E = ∫
tf

0

max
{(
a (t)+ar + crv

2 (t)
)
, 0

}
v (t)dt. (3.4)

where tf denotes the final time. The resistance coefficients ar = 1.47×10−1m∕s2 and cr = 2.75×10−4m−1

were derived from the Ford Escape energy model of Appendix A.

3.3 Optimal Controller

The optimal controller follows the block diagram in Fig. 3.2. This section will describe each of

the three main processes: detection, prediction, and optimization. Figure 3.3 shows the past and future time

horizons involved in the process and defines the number of steps K , M , and N .

3.3.1 Detecting Hidden Vehicles

Hidden vehicles that may exist between connected and/or sensed ones are detected by simulating

nh ∈ Z hypothetical hidden vehicles between a known leader and follower. The value nh∗ that best explains

the follower’s recorded past motion according to the following optimization problem is selected.

n∗
h
(k) =argmin

nh(k)

ks

K

M∑
j=M−K+1

(
ŝ1
(
nh(k), j

)
− s1(j)

)2

s.t. 0 ≤ nh ≤min
j

sl(j)− s1(j)−l−dst

l+dst
,

(3.5)
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Figure 3.2: Block diagram of the multi-predecessor car following controller.
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Figure 3.3: The time horizons used for multi-predecessor detection and prediction. ©2021 IEEE.

where

ks =

⎧
⎪⎨⎪⎩

1 if nh(k) = n
∗
h
(k−1)

1.5 otherwise

(3.6)

The estimated position ŝ1 of the immediate predecessor, which trails the possible hidden vehicles, is compared

to its actual recorded position s1. The factor ks penalizes the act of switching the number of hidden vehicles,

which can ultimately cause jerk in the CAV’s control move. The number of hidden vehicles must be non-

negative and small enough for each vehicle of length l to physically fit with the IDM’s minimum stopped gap

dst between them. The initial conditions for vehicle p in these ID simulations are

sp (0) = s1 (0)+p
sl (0)− s1 (0)

nh+1
, (3.7)

and

vp (0) =
vl (0)+v1 (0)

2
, (3.8)
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where sl and vl are the position and speed of the lead vehicle and s1 and v1 are the position and speed of

vehicle 1 in Fig. 3.1. The purpose of simulating the 20 s before the data points used for comparison is to

reduce sensitivity to these initial conditions.

3.3.2 Prediction

With the number of hidden vehicles identified, the preceding string’s motion can be simulated into the

future. Simulation proceeds sequentially from front to rear using the driver model. The terminal states from

the optimal ID simulation serve as initial conditions for prediction. Once the CAV’s immediate predecessor

has been simulated, a usable predecessor trajectory is available for MPC.

Two other types of preview appear in the benchmark results. The term full preview means that MPC

was provided with it’s predecessor’s actual experimental trajectory. This is impossible in reality because it

assumes exact information about future events. The MPC was also benchmarked using only information from

its immediate predecessor in a probability model as in the unconnected case from Chapter 2.

3.3.3 Optimization

The core MPC is based on that of the previous chapter, tracking a time headway T behind the prede-

cessor. The maximum acceleration u (v) is carried over from the passenger car model in Section 2.1, illustrated

in Fig. A.1. The collision avoidance constraint is modified here to maintain a minimum time headway T . This

preserves the requirement that the baseline classical controller was developed to meet, enabling a more con-

trolled comparison. The weights qg and qa were balanced to observe a maximum time headway target.

min
u(i)

J = qg
(
s1(N)− s(N)−l−dst −T v(N)

)2

+

N−1∑
i=0

[
qg
(
s1(i)− s(i)−l−dst −T v(i)

)2
+ qa

(
u2(i)+a2(i)

)]

s.t. 0 ≤ v ≤ vmax

0 ≤ s1− s−l−Tv−d−dc

− u ≤ u ≤ u (v)
− u ≤ a ≤ u (v)
u (v) = min

{
m1v+ b1,m2v+ b2

}

(3.9)
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3.4 Performance Assessment

The experimental dataset shown in Fig. 3.4 was used to assess performance in simulation. In ad-

dition to energy, headway and detection accuracy were also examined. Several different controllers were

benchmarked and are now reviewed.
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Figure 3.4: The experimental trajectories of the human-driven predecessors. ©2021 IEEE.

3.4.1 Benchmark Controllers

In addition to the proposed MPC with multi-predecessor prediction and hidden vehicle identification,

an MPC using only a single predecessor for preview was simulated as a basis for comparison. Other simulated

MPCs included a high-performing benchmark that was supplied with perfect preview, the proposed system

omitting hidden vehicle identification, and the proposed system assuming perfect hidden vehicle identification.

These help to assess the necessity and quality of identification and the opportunity to improve performance

in future research.

A classical controller proposed in [140] that uses information from multiple predecessors was also

benchmarked. It explicitly calculates the CAV’s acceleration command as

u = �
(
V (d)−v

)
+

y∑
n=1

�n
(
W (vn)−v

)
(3.10)
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where

V (d) = min{max{0, (d−dst)∕T },vmax} (3.11)

and

W (vn) = min{vn,vmax}. (3.12)

The effect of the target speed V (d) is to drive the ego vehicle toward a target time headway T or, if the

predecessor is far away, a maximum speed vmax. The remaining terms involving W
(
vn
)

drive the CAV

to match speed with its predecessors, so long as they do not exceed the speed limit. The gains are set to

� = 0.4s−1, �1 = 0.2s−1, and �2 = 0.0s−1, and �3 = 0.6s−1. The setting �2 = 0.0s−1 implies that information

about the hidden vehicle is not used for control, which enables direct comparison with the proposed MPC.

3.5 Results

Table 3.2 shows the overall energy performance of each algorithm. Energy generally trades off with

gap in car following, so Table 3.2 also shows the corresponding average gaps. Each algorithm’s trajectories

in headway-speed space are shown in Fig. 3.5 to enable comparison with the target, minimum, and maximum

headways.

Table 3.2: Wheel-input energy and headway results.

Controller Energy [J/kg] Mean Gap [m] Gap RMSE [m]

MPC 1 Pred. 6180 50.34 14.29

Classical 5868 42.45 6.95

MPC ID Off 5948 34.81 13.77

MPC ID On 5505 47.32 12.98

MPC Ideal ID 5395 48.29 12.29

MPC Full Prev. 4698 43.84 8.29

MPC with full preview performed the best overall, as expected. The classical controller with multi-

predecessor preview performed better than the MPC that only used a single predecessor; however, adding

information from vehicle 3 to MPC enabled it to save energy compared to the classical controller. Detection

of the hidden vehicle was necessary to realize this benefit, as demonstrated by the significantly worse per-

formance with ID off compared to ID on. Neglecting the hidden vehicle not only increased energy use but

also led to poor headway tracking and violation of the minimum headway constraint, see Fig. 3.5(c). The

consistent bias toward shorter headways results from the following process. If vehicle 2 is omitted from the
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Figure 3.5: Simulated trajectories of each algorithm in headway-speed space. ©2021 IEEE.

prediction simulation, the simulated vehicle 1 observes an oversized gap ahead. Vehicle 1 is then predicted

to accelerate harder or brake more softly to close this gap. The CAV then moves closer to its predecessor in

anticipation of exaggerated forward motion that never manifests.

Figure 3.6 assesses the accuracy of hidden vehicle detection (a) and its impact on the acceleration

command (b). The single vehicle was correctly identified 90.6 % of the time, even when the first 23 s were

spent accumulating data to run the detection algorithm. This accuracy explains the close performance of

MPC with ID on to MPC with Ideal ID, where the hidden vehicle was treated as connected. However, this

performance required identification of the IDM parameters based on the group of human drivers involved in

the experiments. To make this algorithm practical, further development is needed to identify human driver

characteristics online and integrate the results with the proposed controller.
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Chapter 4

Optimal Lane-Change Decision Making

Where the previous two chapters have only considered longitudinal motion control on a single lane,

this chapter adds lane-change decisions as a degree of freedom. The possibility of changing lanes alters the

problem substantially. In obstacle avoidance, it is no longer known which obstacles will be ahead of or behind

the ego vehicle at a given point in the prediction horizon. Without a fixed car to follow, the automated vehicle

needs to be capable of determining its own independent speed trajectory to complete its mission.

This chapter addresses these problems in the following fashion. Modeling is discussed first, includ-

ing the nonlinear simulation testbed, control-oriented approximations, and extensions to tractor-trailers. The

hierarchical architecture that introduces long-term speed planning is described next, followed by the reced-

ing horizon obstacle avoidance module and its extensions to tractor-trailers. Chance constraints for handling

mixed traffic are presented before proceeding to results in both homogeneous and heterogeneous traffic.

This section draws on published research by Dollar and Vahidi [31] 1 [32] 2 [33] 3 , and was supported

in part by an award from the U.S. Department of Energy Vehicle Technologies Office (Project No. DE-

EE0008232). The material in Section 4.4 was developed in collaboration with Cummins.

1R. Austin Dollar and Ardalan Vahidi. Predictively coordinated vehicle acceleration and lane selection using mixed integer program-

ming. ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers Digital Collection, 2018.
2R. Austin Dollar and Ardalan Vahidi. Automated vehicles in hazardous merging traffic: A chance-constrained approach. IFAC-

PapersOnLine, 52(5):218–223, 2019.
3R. Austin Dollar and Ardalan Vahidi. Multilane automated driving with optimal control and mixed-integer programming. IEEE

Transactions on Control Systems Technology, 2021
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4.1 Modeling

Modeling for the multilane guidance system involves nonlinear models for simulation and linear

approximations for control. The discussion begins with the nonlinear model.

4.1.1 Base Vehicle Model

The multi-agent simulations use a kinematic bicycle model for all vehicles. This model uses a path

coordinate frame based on normal and tangential unit vectors, where velocity, acceleration, and yaw angle

are states and tangential acceleration command and steering angle command are manipulated inputs. A rate

limit of 310 deg/s is applied to the steering angle � based on [59]. First, the longitudinal model from the

car-following simulations determines the tangential speed and acceleration vt and at from the tangential ac-

celeration command ut.

v̇t = at, ȧt = −
1

�
at+

1

�
ut (4.1)

Then, the normal acceleration an is calculated from the radius of curvature R, which is itself a algebraic

function of the steering angle and vehicle wheelbase L.

an =
v2
t

R
, R =

L

tan�
(4.2)

The yaw rate  ̇ can also be updated using the steering angle and tangential velocity.

 ̇ =
vt

L
tan� (4.3)

A final coordinate transformation then yields the change in position and new accelerations in the global coor-

dinate frame, where x is the longitudinal position and y is the lateral position.

ẋ = vt cos , ẏ = vt sin (4.4)

ax = at cos −an sin , ay = an cos +at sin (4.5)

To minimize the complexity that the optimal controller must handle, a lower-level pure pursuit con-

troller as described in Section 1.1.3.1 is implemented to track a target lane. This controller generates a line
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from the commanded lane center and computes the steering angle � required to track the line.

4.1.2 Linear Approximation for Passenger Vehicles

Although the lane change optimization contains integer variables, a linear control model permits the

subproblems of the mixed integer program to be QPs. Therefore, the lumped lateral response of the kinematic

bicycle model and pure pursuit steering controller is approximated as 2nd order linear. The longitudinal model

is retained from car following to form a 5th order model with position s, velocity v, acceleration a, lane l, and

lane rate rl as states. The lane state l is the lateral position normalized by the lane width such that l = 1 implies

the ego vehicle is centered in the right lane, l = nl implies the ego vehicle is centered in the far left lane, and

integer l always corresponds to a lane center, where nl is the number of lanes. The actual lateral position ya

is related to l by the formula

l =
ya

wl
+0.5 (4.6)

where wl is the lane width. The inputs to the linear model are the acceleration command u1 and the lane

command u2. Unlike the real-valued lane state, the lane command is integer-valued. This helps build lane

discipline into the controller.

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

v

a

l

rl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 −
1

�
0 0

0 0 0 0 1

0 0 0 −!2
n

−2�!n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

v

a

l

rl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1

�
0

0 0

0 K!2
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
u1

u2

⎤⎥⎥⎦
(4.7a)

[
s v a l rl

]T
∈ R5, u1 ∈ R, u2 ∈ Z (4.7b)

First, a series of unit u2 steps were simulated at various speeds. Then, the parameters listed in Table

4.1 were identified to fit the nonlinear response using classical system identification. Figure 4.1 shows the

model fit, which was better at higher speeds.
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Table 4.1: Linear model parameters.

Parameter Definition Unit Value

� Acceleration time constant sec 0.275

� Lane change damping ratio — 0.7077

!n Lane change natural frequency rad/s 0.9666

K Lane change static gain — 1
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Figure 4.1: Lane step responses at (top to bottom) 24.3 m/s, 7.7 m/s, and 3.9 m/s. ©2021 IEEE.

4.1.3 Lateral Tractor-Trailer Dynamics

Tractor-trailers are attractive for application of anticipative control, and their lateral dynamics re-

quire special modeling attention. Using the commercial dynamic model Truckmaker [122] as ground truth,

this section develops a fast-running nonlinear simulation model before approximating it as linear for control

purposes. First, lane steps at various speeds were simulated in Truckmaker. Examples of these responses

are shown in Fig. 4.2. In addition to the longer lane change time, the symmetry between the head and tail

of the lane change differs from the nonlinear passenger car model used to generate Fig. 4.1. This difference

combined with the near-constant lane rate during the lane change led to the conjecture that Truckmaker tracks

a spacially linear path between the current and target lane.

Based on this conjecture, the pure pursuit controller was deployed to track such a trajectory. The pure

pursuit control law is unchanged; only the the desired lateral position yd is now located on the linear target
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path. Since the lookahead point is also located on the circle around the ego vehicle’s rear axle with radius

equal to the lookahead distance ld , the roots of the following quadratic equation are candidates for yd .

((
vtl

wl

)2

+1

)
y2
d
+2

(
sgnΔu2

vtl

wl

(
s1−sgnΔu2

vtl

wl
y1− s

)
−ya

)
yd+

(
s1−sgnΔu

vtl

wl
y1− s

)2

+y2
a
−k2v2

t
=0

(4.8)

In Eqn. (4.8), sgnΔu2 denotes the sign of the change in lane command that triggered the lane change, that

is, leftward lane changes are positive and rightward lane changes are negative. The pure pursuit parameters k

and tl have the same meaning as in the passenger car application. The lane width and actual lateral position

are denoted wl and ya, respectively. The longitudinal position s1 is the location where the lane change path’s

ramp begins, which must be stored in memory until the lane change is complete.

Figure 4.2 compares the nonlinear model obtained from the kinematic bicycle model, pure pursuit

controller, and ramp path to the Truckmaker response. The two are nearly identical, so this simplified nonlinear

model was used as the plant in subsequent control simulations. An advantage of the ramp trajectory is that it

removes the initial acceleration spike caused by the stepped path.
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Figure 4.2: Various models of lateral tractor motion.
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A trailer model is also needed for collision avoidance simulations. Since the tractor dynamics were

replicated with sufficient accuracy using a kinematic model, one was also used for the trailer. See Fig. 4.3 for

a schematic of the trailer model. The no-slip condition on the trailer’s rear axle yields the following model for

the trailer’s yaw rate, where Lt denotes the length of the trailer.

Figure 4.3: Diagram of the trailer including the hitch point H and rear point R.

̇ =
wlrl cos −vHx sin

Lt
(4.9)

Since the trailer is rigid and attached to the tractor at point H , the angle  and the tractor position suffice to

fix the state of the trailer. The trailer’s lag behind the tractor in a lane change varies with speed as shown in

Fig. 4.4.

Equation (4.9) gives a nonlinear state-space description of the trailer state  . For control, a linearized

form along with linearized output equations for the longitudinal and lateral positions of the trailer’s rear edge

are needed. Applying the small angle approximations sin� = �, cos� = 1, tan� = �, and �2 = 0 to Eqn. (4.9)

yields

̇ =
wl

Lt
rl −

1

Lt
v (4.10)

The linearization is still incomplete since the second term includes the product of  and v. Applying the

first-order Taylor expansion about  = 0 and v = v0 resolves this issue.

̇ =
wl

Lt
rl−

1

Lt
0v−

1

Lt
v0 +

2

Lt
0v0 (4.11)

A linearization point must now be chosen that will apply to the entire prediction horizon. Since the vehicle is

expected to remain in the vicinity of  = 0 with small deviations during lane changes, 0 = 0 is selected. The

same linearization point would be unsuitable for speed since long cruising intervals are expected. Therefore,

the model is linearized at each step around v0 = v (k). Equation (4.12) describes the linear parameter varying
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Figure 4.4: Models of lateral trailer motion.

(LPV) model for trailer yaw rate.

̇ =
wl

Lt
rl −

1

Lt
v0 (4.12)

The output equations for the trailer longitudinal and lateral positions st and lt, where st has units of distance

and lt has units of lanes, are

st = s−Lt, lt = l−
Lt

wl
 (4.13)

which make use of the small angle approximation. Comparison of this LPV model to the nonlinear one is

provided in Fig. 4.4.

4.1.4 Linearized Modeling of Road Grade and Aerodynamic Drag

With an eye toward tractor-trailer applications where acceleration constraints are especially restric-

tive, a longitudinal LPV model is developed using tractive acceleration rather than body acceleration as a

manipulated input. This model is inspired by [4] and adds the effect of road grade �, which is approximated
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as a linear function of position s.

� (s) ≈ b0+ b1s (4.14)

The coefficients b0 and b1 are set using least-squares fitting such that �
(
s0
)
= �0 = b0+ b1s0 exactly and b1

best fits the road grade data over the expected position horizon. This position horizon is obtained from the

trip planner described in Section 4.2. Figure 4.5 provides an example of such a fit.
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Figure 4.5: Least-squares road grade approximation for receding horizon control.

Derivation of the linearized model begins with the state space equation for v̇ that results from dividing

the longitudinal force balance by the mass. Let g, �, m, �a, Cd , and A denote the gravitational acceleration,

vehicle mass, air density, drag coefficient, and frontal area, respectively.

v̇ = at−g� cos�−g sin�−
1

2m
�aCdAv

2 (4.15)

Substituting Eqn. (4.14) yields

v̇ ≈ at−g� cos
(
b0+ b1s

)
−g sin

(
b0+ b1s

)
−

1

2m
�aCdAv

2 (4.16)

which, after the first-order expansion, becomes

v̇ ≈at+gb1
(
� sin�0−cos�0

)
s−

1

m
�aCdAv0v

−gb1
(
� sin�0−cos�0

)
s0−g

(
� cos�0+sin�0

)
+

1

2m
�aCdAv

2
0
.

(4.17)
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Equation (4.17) can be more compactly written in terms of the constants c0, c1, and c2.

v̇ ≈ c1s+ c2v+at+ c0 (4.18)

where

c0 ≔ −gb1
(
� sin�0−cos�0

)
s0−g

(
� cos�0+sin�0

)
+

1

2m
�aCdAv

2
0

(4.19a)

c1 ≔ gb1
(
� sin�0−cos�0

)
(4.19b)

c2 ≔ −
1

m
�aCdAv0 (4.19c)

As in the body acceleration model, tractive acceleration is related to the commanded tractive acceleration by

a first-order lag.

ȧt = −
1

�
at+

1

�
u1 (4.20)

Equation (4.21) provides the combined linear model used for obstacle avoidance in tractor-trailer

applications. The 2nd order lane change model parameters !n and � maintain their meanings as the natural

frequency and damping ratio of the step response to u2.

d
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(4.21)

4.2 Hierarchical Control Using Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP) has its advantages, especially in problems where it can be

solved algebraically. In such cases, it delivers a solution considering the entire time span of the optimal control

problem with minimal computation time. It can also include nonlinearities in the objective and constraints.
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However, PMP can quickly become intractable as constraints are added. In contrast, receding horizon model

predictive control handles constraints well, even when they become numerous. Its main disadvantage is the

finite horizon. In [33], the author proposed the following hierarchical architecture with nomenclature listed

in Table 4.2 to combine the benefits of these two techniques.

Linearly Approximated

Line Tracking

Vehicle
u1

u2

�Maneuvering

z̃∗

ũ∗Pacing

lref

sf

tfRouting

Obstacles

sfs sSV lSV

z̃ z

Figure 4.6: Block diagram of the hierarchical automated driving system.

Table 4.2: Block diagram nomenclature.

Symbol Definition

sSV Surrounding vehicle’s longitudinal position

lSV Surrounding vehicle’s lane

sf Ego vehicle’s goal position

tf Ego vehicle’s goal time

sfs Surrounding vehicle’s goal position

lref Reference lane

z State vector

z̃ Longitudinal state vector

z̃∗ Reference longitudinal state vector

ũ∗ Reference acceleration command

u1 Acceleration command in the road frame

u2 Lane command

� Steering angle

This architecture involved a pacing module that uses PMP to provide a reference trajectory to an

MPC-based maneuvering module. The PMP analysis uses the reduced-order double integrator model shown

in the optimal control problem (4.23) and its state and control input results z̃∗ and ũ∗ become the MPC’s

references according to the relations

zref (i) =
[
z̃∗T (i) ũ∗ (i) lref 0

]T
, (4.22a)

uref (i) =
[
ũ∗ (i+1) lref

]T
(4.22b)

where the one-step time shift applied to ũ∗ approximates the first-order lag in the MPC model. The function
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of these references is to cause the MPC to track the long-term optimal trajectory as closely as possible. If no

obstacles are present, the MPC tracks the shrinking-horizon reference. To understand the advantage of such

an architecture, consider the performance of an acceleration-minimizing MPC without the pacing module,

starting from rest in the reference lane. The optimal trajectory is to remain stationary with zero acceleration.

A speed reference can be added to the MPC to cause the vehicle to move; in fact, the author did so in [31].

However, the form of the acceleration to the target speed is not generally optimal in the long run.

The implementation of the PMP-based pacing module is flexible, but the integrated controller pre-

viously developed by the author minimized the integral of the square of acceleration. In a collaboration with

Antonio Sciarretta, Laurent Thibault, and Mohamed Laraki at IFP Energies nouvelles, the author also solved

the PMP problem for diesel-engine nitrogen oxide NOx minimization with results in review [28].

Acceleration minimization is the objective of the pacing module in this chapter. The design reasoning

is twofold. On an individual vehicle level, acceleration minimization can reduce unnecessary braking relative

to human drivers or naïve algorithms. On a collective level, acceleration minimization can also realize sec-

ondary energy benefits through traffic smoothing. The corresponding OCP is given below, where response lag

is neglected to reduce model order and the control input ũ is the exact acceleration. The boundary conditions

sf and tf until the next stop need to be defined as inputs. It is envisioned that this would be accomplished by

a routing algorithm like [3] that considers travel times over links.

min J̃ = ∫
tf

t0

ũ2dt

s.t. s
(
t0
)
= s0, s

(
tf
)
= sf

v
(
t0
)
= v0, v

(
tf
)
= 0

ṡ = v, v̇ = ũ

v ≤ v̄

(4.23)

The solution, derived in [33], is piecewise and consists of parabolic velocity phases, possibly adjacent to a con-

stant maximum velocity phase. If a purely parabolic velocity profile satisfies the maximum speed constraint,

that profile is the solution. Otherwise, the following system is solved by using the boundary conditions on

speed and cumulative distance to find the coefficients c1, c2 and times t1 and t2. When v0 < v̄ and the constraint
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is active:

ũ∗ (t) =

⎧⎪⎪⎨⎪⎪⎩

1

2
c1t− c

I
2

; t < t1

0 ; t1 ≤ t < t2
1

2
c1t− c

III
2

; t2 ≤ t < tf
(4.24)

When v0 ≥ v̄:

ũ∗ (t) =

⎧
⎪⎨⎪⎩

0 ; t ≤ t1
1

2
c1t− c2 ; t1 ≤ t < tf

(4.25)

Details and a plot of this solution can be found in [33]. Refernece [109] shows that this velocity profile

is also energy-optimal for EVs. This might be expected since physically, EVs experience resistance losses

proportional to the square of motor torque.

4.3 Receding Horizon Control Using Mixed Integer Programming

Position constraints to avoid collisions are omitted from OCP (4.23) to keep the problem analytically

tractable for a general number of obstacles. As illustrated in Fig. 4.6, a numerical receding horizon controller

handles such constraints. This model-based controller uses the combined longitudinal and lateral model of

Section 4.1.2 with the following objective function where ze = z−zref is the combined lateral and longitudinal

state deviation from the reference zref and, similarly, ue is the deviation from the reference control input.

Recall that these references come from the pacing module according to Eqn. (4.22).

J = zT
e
(N)Pze (N)+

N−1∑
i=0

[
zT
e
(i)Qze (i)+ u

T
e
(i)Rue (i)

]
(4.26a)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 ql 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qs 0 0 0 0

0 qv 0 0 0

0 0 qa 0 0

0 0 0 ql 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.26b)

R =

⎡
⎢⎢⎣
qa 0

0 ql

⎤
⎥⎥⎦

(4.26c)
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Longitudinally, this quadratic objective penalizes the deviation from the reference acceleration command and

terminal state with weights qa, qv, and qs. Laterally, a constant target lane is tracked with weight ql to accom-

modate keep-right rules and navigational needs. The penalty weights are tuned such that the ego vehicle will

leave its reference lane to avoid slowing down for a slow-moving vehicle ahead.

The main challenge in the receding horizon lane optimization is the collision avoidance constraints.

Since the ego vehicle can permissibly drive either ahead of or behind any obstacle and can pass beside the

obstacle on a different and unspecified lane, the constraints involve logical disjunctions. Hence the problem

is cast as a mixed integer quadratic program (MIQP). Equation (4.27) introduces the collision avoidance con-

straints for safe gap d, which are repeated for all lanes � and obstacles � . The positions s
�

min
and s

�
max are the

downstream and upstream edges of obstacle � , respectively. The collision avoidance constraints are softened

with slack �1. Small violations are penalized quadratically, but a second linear penalty is imposed before a

collision would occur.

−s−M
(
2−��a−��b

)
−M

(
1−��

) ≤ −s
�

min
−d+ �1 (4.27a)

s−M
(
2−��a−��b

)
−M�� ≤ s�max−d− lv+ �1 (4.27b)

Equation (4.27) relies on binary variables �� , ��a, and ��b. The front-rear binary �� is a standard Big M

variable as described in Section 1.2.2.2. The term 2−��a−��b acts as an indicator that equals 0 if the ego

vehicle is in lane � and 1 otherwise, that is,

2−��a−��b =

⎧⎪⎨⎪⎩

0 �− � ≤ l ≤ �+ �
1 otherwise

(4.28)

where � is the maximum deviation from a lane’s centerline when a part of the vehicle still resides in that lane.

The following constraints on l guarantee proper function of ��a and ��b.

−l−M
(
1−��a

) ≤ −�+ �, l−M��a ≤ �− � (4.29a)

l−M
(
1−��b

) ≤ �+ �, −l−M��b ≤ −�− � (4.29b)
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4.4 Extension to Tractor-Trailers

Tractor-trailers require special attention because the rear of the trailer deviates laterally from the

tractor during lane changes. This impacts the occupied lanes and therefore the indicator variable setup. Rather

than introducing additional binary variables for the trailer, the constraints are modified to make use of the

existing two lane indicators ��a and ��b for each lane.

The following indicator setup equations are retained from the passenger car formulation.

l−M��a ≤ �− �, −l−M��b ≤ −�− � (4.30)

The remaining passenger vehicle indicator setup constraints from Eqn. (4.29) are omitted. While they

strengthen the formulation by excluding some solutions, the constraints above are sufficient to guarantee that

��a and ��b are equal to 1 when needed. Otherwise, the solver automatically selects 0 if it is possible and

necessary to relax the position constraint in an optimal solution. The constraints below guarantee that the

indicators also reflect the trailer’s lateral position.

lt−M��a ≤ �− �, −lt−M��b ≤ −�− � (4.31)

Substituting the small-angle approximation for the trailer’s lateral position yields

l−
Lt

wl
 −M��a ≤ �− �, −l+

Lt

wl
 −M��b ≤ −�− � (4.32)

Notice that the constraints above are effective even in the extreme case where the trailer straddles lane � but

neither the tractor nor the trailer have their rear edges located in lane �. The component (i.e. tractor or trailer)

with the larger lateral position will force��a = 1 and the other with the lower lateral position will force��b = 1.

This imposes an identical tightening of the position constraint to what would occur if the entire truck were

in lane �. However, the validity of the small angle approximation used to linearly model  should be further

investigated in this case.

Longitudinally, the small angle approximation cos ≈ 1 results in the following modified minimum

position constraint. The passenger car maximum constraint still applies by letting the vehicle length equal the

tractor length.

−s−M
(
2−��a−��b

)
−M

(
1−��

) ≤ −s
�

min
−d−Lt+ �1 (4.33a)
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s−M
(
2−��a−��b

)
−M�� ≤ s�max−d− lv+ �1 (4.33b)

The issue of highly non-convex powertrain operating spaces observed in Section 2.2 applies here as

well. Since an LPV approach is already needed to capture road grade and trailer dynamics, a more accurate

model of maximum acceleration’s dependence on speed is developed. The model is based on constant max-

imum tractive acceleration in each gear, with gear changing as a function of speed. The maximum tractive

acceleration ut
(
v0
)

at the current speed v0 is thus looked up and used as the linearization point. The linearized

constraint has the structure

ut ≤ ut (v0)+mu (v−v0) (4.34)

so that planned changes in speed are approximately accounted for in the future acceleration constraint.

One of two methods is used to determine the coefficient mu depending on speed. Normally, mu is

obtained by linearizing a constant-power approximation, which leads to the formula

m̃u = −
ut
(
v0
)

v0
. (4.35)

At lower speeds, this tangent-line approach can prevent the controller from planning to reach maximum speed.

Therefore, the slope mu is limited according to

mu =max

{
m̃u, −

ut
(
v0
)

v−v0

}
. (4.36)

Figure 4.7 illustrates the piecewise-constant maximum acceleration function and its linearized approximation.
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Figure 4.7: An example of the online-linearized truck acceleration constraint.
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4.5 Chance Constraints

Additional safety margin for collision avoidance is needed when dealing with unconnected surround-

ing vehicles whose future intentions are not known. However, worst-case constraints can result in excessive

following distances and reduced road throughput. Instead, chance constraints seek to avoid collisions assum-

ing reasonable surrounding vehicle (SV) behavior. In this context, the collision avoidance constraints are

expressed in terms of the expected SV edges ES
�

min
and ES

�
max where S is a random variable. The goal of

the chance constraint calculation is to find the safe distance dr.

−s−M
(
2−��a−��b

)
−M�C

�
≤ −ES

�

min
−dr+ �1 (4.37a)

s−M
(
2−��a−��b

)
−M�� ≤ ES�max−dr+ �1 (4.37b)

�� , ��a, ��b ∈ {0,1} (4.37c)

This section will present a sketch of the chance constraint derivation. For a more complete version, see

[5]. First, the SV’s position and speed are assumed to be measured with certainty at the current time and

the uncertainty arises from the SV’s acceleration. These assumptions are formalized in the following initial

covariance Λ0.

Λ0 =

⎡⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 �2
a

⎤⎥⎥⎥⎥⎦
(4.38)

The following formula for the SV state covariance at future stage i is derived from properties of the

multivariate normal distribution under linear transformation [45]. The upper-left element of Λi is the variance

�2
s

of the SV position.

Λi = A
iΛ0

(
Ai
)T

(4.39)

Thus the SV position S ∼ (
ES,�2

s

)
. The probabilistic goal of the chance constraints is formally restated.

Pr
(
Smax ≥ s|�� = 0∩

(
2−��a−��b

)
= 0

) ≥ � (4.40a)
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Pr
(
Smin ≤ s|�� = 1∩

(
2−��a−��b

)
= 0

) ≥ � (4.40b)

Then, the derivation in [5] is followed to obtain the following formula for dr where F−1
s

(�) is the inverse

cumulative distribution function of the SV position evaluated at the desired safe probability �.

dr = F
−1
S

(�)−ES (4.41)

Selection of � is a design choice. Since the closed-loop controller has greater opportunity to correct

for prediction errors that occur farther in the future, � is specified as a linear function of prediction step

such that � (i = 1) = 0.99999 and � (i =N) = 0.5. The latter condition causes dr = 0 for i =N . Figure 4.8,

reproduced from Dollar and Vahidi [32], shows the function F−1
s

at various i and � along with the results of

Eqn. (4.42). This implementation uses a 0.4 s timestep with a prediction horizon of N = 25.

� (i) = −0.020833i+1.020823 (4.42)
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Figure 4.8: Safe distance as a function of prediction step and robustness [32].

4.6 Results

The decentralized mixed-integer programming lane change algorithm was evaluated in phases as

features were added. The results of the initial two-lane formulation were published in [31]. Then, chance

constraints were added and assessed in mixed traffic in [32]. Reference [33] presents the results of the multi-

lane formulation in two fully connected environments. The same algorithm was also evaluated in mixed traffic

and the results were submitted in various U.S. Department of Energy project reports including [124].
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4.6.1 Two Lanes with Full Connectivity

This preliminary assessment used only the maneuvering module and omitted the nonlinear simulation

model. It involved 4 CAVs with target speeds of {35, 32, 29, 26}m∕s, assigned full-factorial, passing a slow-

moving vehicle that traveled at approximately 4.5 m/s. Performance was compared to a reactive model that

combined the Intelligent Driver Model with gap-based lane change rules. The optimal algorithm reduced

fuel consumption by 8.4 %. Further comparison to ideal constant-velocity travel revealed that the fuel saved

amounted to 80 % of the congestion-induced fuel consumption. Moreover, travel time was also reduced by

6.2 % as shown in Fig. 4.9, reproduced from Dollar and Vahidi [31].

Figure 4.9: Comparison of aggregate rule-based and MPC results to the ideal free-flow case [31].

Computation time was measured for the MATLAB implementation. The mean times shown in Fig.

4.10, reproduced from [31], are promising for real-time implementation, especially when move blocking is

used to reduce the size of the MIQP. This does not, however, exclude overruns in rare cases.
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Figure 4.10: Mean computation time during a sample reference velocity case [31].
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4.6.2 Collision Avoidance in Merging

The state of California publishes police reports of automated vehicle collisions online. When Apple’s

prototype AV experienced its first collision, the author analyzed the police report and a map of the relevant

intersection to reproduce the scenario in simulation [32]. A human driver rear-ended the AV while the AV

was nearly stopped as it waited for a safe merging opportunity. By applying exceptionally dangerous human

driver model parameters and introducing a perception fault in the rear-ending vehicle, a hazardous scenario

was simulated to stress-test the chance-constrained algorithm. Figure 4.11, reproduced from [32], depicts the

scenario, which also serves as an example of the custom MATLAB simulator’s capability.

Figure 4.11: Approximate road geometry with the AV (solid) and surrounding vehicles (hatched) [32].

The three algorithm variants Yield Except Following (YEF), Yield To All (YTA), and Yield Except

Following with Avoidance (YEFa) differ in the set of surrounding vehicles that they include in the constraints.

YEF omits the following vehicle in the same lane from the constraints similarly to car following algorithms

that only consider the lead vehicle. YTA simply includes all surrounding vehicles in the constraints. YEFa

typically ignores the following vehicle, but adds it to the constraints when an imminent collision is detected.

In such an event, the chance constraints are also relaxed to � = 0.5 so that they ego vehicle drives more

aggressively when attempting to avoid a collision.

Since YEF does not attempt to avoid the following vehicle even under a perception fault, it is expected

that it incurred the most collisions. YTA reduced the number of collisions compared to YEF, but YEFa had the

fewest AV-involved collisions overall. Figure 4.12, reproduced from [32], compares these results. Looking

deeper, most YEF collisions involved the AV being rear-ended as in the real Apple collision. The AV would

not have been at-fault in such incidents.
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Figure 4.12: Frequency of AV-involved collisions with 95 % confidence intervals [32].

4.6.3 Multiple Lanes Including Partial Connectivity

With multi-lane capability, chance constraints for mixed traffic, and the pacing module implemented,

the lane selection algorithm was evaluated in multi-lane environments. Highway merge and arterial scenarios

were evaluated with homogeneous traffic. Then, the percentage of traffic made up of CAVs was varied in the

arterial scenario to obtain mixed traffic results.

Figure 4.13 provides a detailed view of several vehicles’ optimal lane change plans during the high-

way merge. The color gradients show the progression of prediction time. Longitudinal acceleration u1 and

velocity v are also shown for the ego vehicle, whose index is 1.
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Figure 4.13: Position plans including the ego’s (green), with the ego’s longitudinal plan. ©2021 IEEE.

Figure 4.14 demonstrates the impact of the planning module on collective control performance.

Dashed lines mark the separation of the right lane and the start of the left turning lane. An orderly long-

term speed profile is obtained on average despite the trip’s length exceeding that of the receding horizon. This

is possible because the RHC’s reference results from the full-length optimal control problem.

Table 4.3 lists the quantitative improvements over the baseline algorithm with 100 % CAVs. As in

the two-lane preliminary results, both travel time and energy benefits were realized.
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Figure 4.14: Speed profiles and 20 m space-averages in the arterial scenario. ©2021 IEEE.

Table 4.3: Change relative to IDM-RB in multi-lane guidance.

Scenario Fuel [L/veh] Time [s/veh] Lane Success [%]

Hwy. 4 s -8.9 -5.2 +13.8

Hwy. 2 s -10.0 -9.7 +99.6

Arterial -13.7 -10.3 +12.1

In the mixed traffic simulations, travel time was held approximately constant to isolate the energy

savings shown in Table 4.4. Under these conditions, 16 % energy savings was attained at 100 % CAVs with

steady improvements as CAVs were added.

Table 4.4: Change relative to IDM-RB in the arterial scenario at various CAV fractions.

CAV Fraction 1/3 2/3 1

Energy Chng. [%] -3.4 -9.4 -16.2

Time Chng. [%] 0.0 +0.8 -0.7
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Chapter 5

Advanced Long-Term Speed Planning

This chapter will enhance the existing shrinking horizon planning module by relaxing the flat road

assumption, directly minimizing wheel-to-distance energy, and introducing position-varying speed limits. An

additional anticipative speed constraint based on macroscopic traffic conditions is also explored, although it

did not improve performance in simulation and was not needed to meet the proposed targets. These innovations

will be evaluated in a Class 8 truck application using microscopic simulations designed to target specified

macroscopic traffic conditions.

The planning module described in Section 4.2 adds a shrinking horizon reference to the receding

horizon controller. This allows the receding horizon controller to follow an optimal eco-driving trajectory

until the next stopping point, even if the time until that stopping point exceeds the finite horizon. However,

Section 4.2’s planning module is limited to a single maximum speed limit. This means it cannot account

for regulatory speed limit changes or physical speed limits around curves, nor can it comprehend bulk traffic

speed changes like those caused by congestion. Section 4.2 also neglected road slope, which is a consideration

for all vehicles but especially important for heavy tractor-trailers with more restrictive maximum acceleration

constraints.

Reference [7] proposed a dynamic programming (DP) approach to long-term planning. However,

closed-loop operation in traffic demands that the optimization be repeated online. This presents a problem

for DP because of its sensitivity to discretization and high computation times that increase exponentially with

the number of states [71]. The method proposed in this section reformulates the problem as a linear program

(LP) for greatly improved computability and scalability. LP can be solved in polynomial time [67] and several

commercial and open source solvers exist [39] [44] [77].
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This research was conducted in collaboration with Ali Borhan, Bibin Pattel, and Jingxuan Liu at

Cummins. The author’s contribution was the LP formulation and MATLAB simulation environment.

5.1 Performance Requirements

Table 5.1 summarizes the requirements stated in the research proposal. The lateral model deviation

target was set between known tolerable and intolerable deviations at low speed in past studies; see Fig. 4.1.

The fuel economy target was set based on improvements realized in Chapter 4, which addressed a similar

problem with more assumptions. Anticipating that chattering would reduce the acceptability of a given accel-

eration level, the acceleration chattering magnitude requirement was set to under half of the subjective "just

noticeable" threshold listed in [52]. Although it was not a specific requirement in the proposal, near real-time

computation times are desirable. Some increase over real time is accepted because of the addition of detail

and features compared to Chapter 4 and the use of MATLAB in algorithm prototyping.

Table 5.1: Performance targets.

Metric Target

Lateral model deviation 0.1 lanes

Acceleration chattering magnitude 0.2 m/s2

Fuel economy improvement 10 %

5.2 Architecture

The LP speed planner is implemented as part of the hierarchical lane change algorithm described in

Section 4.2 as shown in Fig. 5.1. The new or updated components are highlighted and include the dynamic

model, macroscopic traffic prediction, planning module core, and maneuvering module core. The signals

exchanged between the modules match Chapter 4 except that tractive acceleration is used in place of body

acceleration. In Fig. 5.1, the state is denoted x instead of z to reserve z for another purpose in this chapter.

5.3 Core Formulation

The core formulation includes the dynamic modeling, objective, constraints, and approximation tech-

niques that enable the eco-driving problem over general sloping roads to be cast as an LP.
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Figure 5.1: Block diagram of the LP speed planner’s integration with obstacle avoidance.

5.3.1 Dynamic Model

A work-energy approach is used to model the vehicle’s longitudinal dynamics with position as the

independent variable. The position step is denoted i. The basic equation is the first law of thermodynamics

applied to one step, where ΔKE and ΔPE are the changes in kinetic and potential energy, respectively, Wf

is the frictional work excluding actuators, Ee is the energy added to the vehicle by the powertrain, and Eb is

the energy removed from the vehicle as heat by friction braking.

ΔKE+ΔPE+Wf = Ee−Eb (5.1)

The terms of Eqn. (5.1) are now developed in more detail. Beginning with the kinetic and potential energies,

ΔKE =
1

2
mv2 (i+1)−

1

2
mv2 (i) , ΔPE = mgΔℎ = mgΔssin� (5.2)

where m denotes the vehicle mass, v the speed, g the gravitational acceleration, Δℎ the elevation change, Δs

the position step tangent to the road, and � the road slope. The unactuated frictional work is computed using

the following model.

Ff = �rmgcos�+
1

2
�aCdAfv

2, Wf = FfΔs (5.3)

Substituting Eqns. (5.2) and (5.3) into Eqn. (5.1) yields the dynamic model

1

2
mv2 (i+1)−

1

2
mv2 (i)+mgΔssin� (i)+�rmgΔscos� (i)+

1

2
�aCdAfΔsv

2 (i) = Ee (i)−Eb (i) . (5.4)
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Notice that all terms in Eqn. (5.4) are either known since the road grade profile is a known function of

position, or vary with the square of speed. To take advantage of this fact, the state z≔ v2 is defined to render

the dynamic model linear.

1

2
mz (i+1)−

1

2
mz (i)+mgΔssin� (i)+�rmgΔscos� (i)+

1

2
�aCdAfΔsz (i) = Ee (i)−Eb (i) (5.5)

While Eqn. (5.5) handles the system’s energy dynamics exactly, it results in elapsed time as a nonlinear

function of z. The next section will address the approximation of time.

5.3.2 Piecewise-Linear Approximation of Time

As a result of aerodynamic drag loss increasing quadratically with speed, wheel-input energy mini-

mization favors slower average speeds unless arrival time is either penalized in the objective or constrained.

This formulation will constrain the final time after N steps according to

t (N +1) ≤ tf , t (N +1) =

N∑
i=0

Δt (i) (5.6)

The change in time Δt from one position step to the next after dropping the argument i is

Δt =
Δs

v
=

Δs

z
1

2

(5.7)

Given a nominal trajectory z0 (i), it is possible to linearize Eqn. (5.7) using the first-order Taylor expansion.

However, this approach yields the approximation demonstrated in Fig. 5.2 where elapsed time is underesti-

mated at the extreme upper and lower bounds on z. Since final time is upper-bound constrained, this model

deviation has the especially harmful effect of giving a fictitious time advantage to extreme speeds. The model

then predicts that if extreme speeds are used, slower speeds can be selected overall to reduce drag. In reality,

switching between extreme speeds increases aerodynamic drag loss compared to driving at constant speed,

and the spurious time benefit does not manifest in reality. Another negative effect of the first-order expansion

approach is that time is underestimated, resulting in consistent delays.

To improve the result, a piecewise-linear approximation inspired by [100] is used instead. Elapsed

time is approximated as

Δt = t (i+1)− t (i) ≈ Δt0+p1z̃u−p2z̃l, z = z0+ z̃u− z̃l, z̃u, z̃l ≥ 0 (5.8)
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Figure 5.2: Block diagram of the multi-predecessor car following controller.

where z̃u and z̃l represent the deviations from the nominal square of speed z0 and Δt0 is the elapsed time at z0.

The solver decides z̃u and z̃l subject to the constraints in Eqn. (5.8). The coefficients p1 and p2 are computed

as

p1 =
Δt−Δt0

z−z0
, p2 =

Δt0−Δt

z0−z
(5.9)

where z, z, Δt, and Δt denote the maximum and minimum z values and their corresponding elapsed times,

respectively. This produces a secant-line approximation that intersects the true elapsed time at the nominal

and extreme speeds. These extreme speeds are computed according to

z =max
{
�l ,

(
1− �z

)
z0
}
, z = min

{(
1+ �z

)
z0, ze

}
(5.10)

where ze is the environmental maximum speed described later in Section 5.4. The constants are set to �l =

0.1m∕s and �z = 0.2 for the remainder of the chapter, although Fig. 5.2 uses �z = 0.4 for illustrative purposes.

While the introduction of z̃u and z̃l adds a degree of freedom, the optimizer finds an appropriate

solution for the following reason. The desired piecewise function shown in Fig. 5.2 assumes that at least

one of z̃u and z̃l is equal to 0. For z < z0, the time estimate increases as z̃l increases according to the slope

p2 < 0. For z > z0, the time estimate increases as z̃u increases according to the slope p1 < 0. Notice that

the true function Δt (z) is strictly convex for z > 0, so p1 > p2. A malfunction might occur if the solver

could find z̃u and z̃l such that the estimated Δt, denoted Δt̂, was less than the one shown in Fig. 5.2. Then,

the optimization would predict satisfaction of the final constraint when it would be violated according to the

intended approximation. The opposite malfunction could occur if some constraint forced the solver to select

z̃u and z̃l so that the estimated time was greater than the intended function, resulting in unneeded selection of

a faster speed trajectory. Therefore, we need to show that Δt̂ is minimized by letting at least one of z̃u and z̃l
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equal 0, given a candidate z trajectory1. For each stage, this minimization is the LP

min
z̃u, z̃l

Jt = Δt0+p1z̃u−p2z̃l

s.t. z̃u− z̃l = z−z0

z̃u ≥ 0

z̃l ≥ 0

(5.11)

which, after dropping the fixed Δt0 from the objective, exploiting the equality constraint to eliminate z̃u, and

subsequently dropping the fixed z and z0 from the new objective, becomes

min
z̃u, z̃l

J ′
t
=
(
p1−p2

)
z̃l

s.t. z̃l ≥ z0−z
z̃l ≥ 0

(5.12)

Consider the case where z ≥ z0. Then the constraints of (5.12) reduce to z̃l ≥ 0. Since p1 > p2 and hence the

coefficient of z̃l is positive, J ′
t

is minimized when z̃l = 0. Now, consider the case where z < z0. Then, the first

constraint in (5.12) becomes active and the minimizer is z̃l = z0−z. Recovering z̃u from z̃l using the equality

constraint of (5.11) reveals that z̃u = 0. Therefore, the assumption that at least one of z̃u and z̃l is equal to 0

holds. We emphasize that the convexity of Eqn. (5.7) over the relevant interval was critical to this reasoning.

The piecewise-linear approximation is compared to the first-order expansion in Fig. 5.2. In addition

to improving overall accuracy, the piecewise technique imposes zero deviation from the true elapsed time at

the nominal and extreme speeds. This resolves the motivating problem where the tangential approximation

rewarded extreme speeds with incorrectly low elapsed time, according to the model. All other deviations of

the piecewise approximation from the actual time are positive, which causes the model to slightly overestimate

total time over all steps. When the modeled final time is equal to the boundary condition tf , this biased model

mismatch causes solutions to arrive slightly early rather than late. More formally,

Δt̂ (i) ≥ Δt (i) ∀i,

N∑
i=0

Δt̂ (i) ≤ tf ⟹

N∑
i=0

Δt (i) ≤ tf . (5.13)

In contrast, the tangential approximation consistently underestimates travel time, biasing the result toward

1This reasoning focuses on the case where the maximum final time constraint is active. If it is inactive, then the elapsed time estimate

has no effect on the solution because t (i) only appears in the final time constraint.
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lateness. This risk-aversion could offer a relative advantage to some users.

5.3.3 Optimal Control Problem

Since powertrain and braking energies are used as the inputs in (5.5), minimization of the total energy

transferred from the powertrain to the wheels results in a linear objective function. This energy is called wheel-

to-distance energy. The effect of this objective choice is that the tradeoff between the efficient practices of

minimizing braking and minimizing speed variation is understood in the optimal control problem (OCP), but

changes in engine efficiency are not. A second term, lightly weighted by qz, helps to reduce chattering in

closed-loop operation by penalizing the upper and lower speed deviations z̃u and z̃l from the initial guess.

Since the previous solution is used as the initial guess, this second term promotes consistency. As in previous

chapters,N is the prediction horizon. Since a shrinking-horizon scheme is used in closed-loop,N decreases

as the vehicle moves forward. The final time tf is an input to the planner.

min J =

N∑
i=1

Ee (i)+

N+1∑
i=1

qz
(
z̃u (i)+ z̃l (i)

)

s.t. z (i) ≤ z (i) ≤ z (i)
0 ≤ Ee (i) ≤ Ee (i)
0 ≤ Eb (i) ≤ Eb
t (N +1) ≤ tf

(5.14)

The minimum and maximum constraints z and z on the speed-related state z depend on stage not only because

of practical needs for position-varying speed limits, but also because the approximation of time is only locally

valid.

Although the slack variables are omitted from OCP (5.14) to reduce clutter, the minimum speed and

final time constraints are softened using linear penalties to guarantee feasibility. Specifically, final time may

be infeasible if maximum speed and/or acceleration capacity is too low to meet the goal in time. The minimum

speed constraint can also be infeasible in the presence of a steep uphill grade.

Notice that the maximum input energyEe is a function of stage i. Typically, Ee (i) is conservatively

approximated as constant using the maximum acceleration at maximum speed. However, a tighter upper bound

can be obtained for the solution’s first several stages by simulating speed under a true maximal acceleration

and recovering the energy input during this process as a function of position. This takes advantage of the
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fact that the vehicle may begin at a sub-maximal speed and cannot reach the maximum speed instantaneously.

Therefore, there is no need to restrict it to the maximum speed’s acceleration constraint immediately.

5.4 Speed Constraints

Two types of speed constraints are considered: regulatory and traffic. The regulatory speed limit

is known precisely as a function of position. The same algorithm could also handle known speed limits

on upcoming curves, although no curves were simulated in this study. Traffic-based constraints were also

explored as a way to account for expected future congestion in the speed planner. This system was not used

in the full-length simulations because early evaluation did not show a fuel economy benefit. It is, however,

documented here to support the results and possible future development.

The regulatory speed limit vr (i) is assumed to be known. In the absence of traffic, this directly

establishes the environmental speed limit ze (i) = v
2
r
(i). The nominal trajectory z0 is also saturated to ze (i),

then rate limited based on the maximum and minimum accelerations to prevent impossibly quick transitions

between speed limits from appearing in the nominal trajectory.

Traffic constraints are more complex. First, the traffic speed v′
t (s, t) depends on both position and

time. Furthermore, slow-moving but sparse traffic may not present an obstacle to longitudinal motion at all if

passing is consistently possible. In this design, the nominal speed trajectory is used to establish a position-time

relationship for the traffic speed constraint. This approach enables anticipation of congestion that predictably

occurs at a certain position, such as what might occur near a busy interchange or lane bottleneck. However,

it does not attempt to optimize the position-time relationship to, for example, wait until a temporary jam

has dissipated before arriving at its location. Such optimization is left for future research. The algorithm’s

equations are

t0 (i) = t (0)+

i−1∑
j=0

Δs

v0 (j)
, vt (i) = v

′
t

(
s (i) , t0 (i)

)
(5.15)

The expected maximum speed v of the lane-changing ego vehicle as a function of the regulatory

speed vr and the traffic speed vt is now derived using probability. A moving reference frame of constant

speed equal to the traffic speed is used. As a first approximation, the following assumptions are adopted.

1. All surrounding vehicles travel at constant speed.

2. All surrounding vehicles travel at the same speed, equal to the expected traffic speed.
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3. Density in both lanes is equal.

4. Vehicles are evenly spaced within a lane.

5. Phasing of vehicular strings is uniformly distributed between lanes.

Let lv, ls, Δtc , and vw, denote the ego vehicle length, surrounding vehicle length, time needed to

change lanes, and the maximum weaving speed of the ego vehicle, respectively. Then the gap required to

change lanes is

Δsw = vwΔtc + lv ⟹ vw =
1

Δtc
Δsw−

1

Δtc
lv. (5.16)

This same gap can be expressed in terms of the minimum safe gap d and the preceding and following vehicles’

positions sB and sA.

Δsw = sA− sB −2d− ls (5.17)

The phase difference � between the two lanes is defined as

�≔ sA− sB

ℎ
(5.18)

The maximum relative weaving speed can now be found be combining Eqns. (5.16), (5.17), and (5.18).

The relative weaving speed cannot exceed the regulatory speed, nor can it fall below the speed of traffic since

remaining in a single lane is always an option. Hence vw (�) is piecewise. Let ṽr = vr−vt denote the regulatory

speed limit relative to the traffic speed.

vw (�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0;
ℎ

Δtc
�−

1

Δtc

(
2d+ ls+ lv

)
< 0

ℎ

Δtc
�−

1

Δtc

(
2d+ ls+ lv

)
; otherwise

ṽr;
ℎ

Δtc
�−

1

Δtc

(
2d+ ls+ lv

)
> ṽr

(5.19)

The expected weaving speed relative to traffic is now computed, assuming the phase� is uniformly distributed.

Integrating the product of the probability density function and the random variable yields the expectation.

Taking the smallest gap between the staggered traffic strings results in symmetry that is exploited to simplify

the integration.

v = vt+Evw = vt+∫
1

0

vw (�)d� = vt+2∫
1

2

0

vw (�)d� (5.20)
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When traffic preview is used, ze (s) = v
2
(s) from Eqn. (5.20).

Figure 5.3 shows the results of this integration in a sample case where vr = 31m∕s and vt = 25m∕s.

As expected, maximum speed is equal to the traffic speed at high density and increases to approach the regu-

latory speed as density decreases.
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Figure 5.3: The expected maximum weaving speed, shown as functions of headway and density.

5.5 Initialization and Iteration

This section addresses the generation of the nominal trajectory v0 (s) that is needed to approximate

time in the LP. An initial trajectory is generated by explicitly solving for a trajectory combining constant

acceleration, constant speed, coasting, and braking. After an LP solution is obtained, it is used as an interpolant

to generate the subsequent nominal trajectory in the process demonstrated in Fig. 5.4. In this way, the LP

solution is steadily improved as real time advances and only one LP is needed per step.

On the first step when an old LP solution is unavailable, the following procedure is used to generate

an initial guess. First, the transient from the initial speed v (0) to the maximum speed v at the true maximum

acceleration a (v) is simulated. This results in the position sa where the maximum speed is reached, as well

as a function Ea (v) that is used in the LP itself to improve constraint accuracy in the shortest-term steps. A

heuristic constant acceleration for the initialization process is calculated as

ã = �a
(
a
(
v0
))

+
(
1−�a

)(v2−v20
2sa

+ar+ crv
2

)
(5.21)

where ar and cr are the coastdown acceleration coefficients and �a = 0.7. The vehicle’s maximum braking

acceleration is taken as input a. Recall that the final time tf and position sf are known. These are used to

compute an approximate coastdown acceleration r0 = ar+ cr

(
sf

tf

)2

.
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Figure 5.4: The first 5 LP solutions in a closed-loop simulation.
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With these approximate capacities, several possible forms are considered for the initial trajectory.

The goal is to select a relatively low-energy trajectory from the ones that are feasible. Under certain boundary

conditions, zero input energy may be possible. In the first such case considered, the CAV coasts until it reaches

speed v1 and then brakes. The degrees of freedom are v1 and the braking acceleration ab, and the equations

are the total time and position boundary conditions

tf =
v1−v0

−r0
+
vf −v1

ab
(5.22)

and

sf =
v2
1
−v2

0

−2r0
+
v2
f
−v2

1

2ab
. (5.23)

If a feasible solution to the above system is found, that trajectory is taken as the initial guess. If not, a lower-

speed zero energy case is attempted where braking occurs before coasting, resulting in the equations

tf =
v1−v0

ab
+
vf −v1

−r0
(5.24)

and

sf =
v2
1
−v2

0

2ab
+
v2
f
−v2

1

−2r0
(5.25)

where the degrees of freedom are again v1 and ab.

If neither of the previously described solutions are feasible, some energy must be expended. A family

of trajectories can be derived from the equations

tf =
vc −v0

a1
+Δtc +

vf −vc

a2
(5.26)

and

sf =
v2
c
−v2

0

2a1
+vcΔtc +

v2
f
−v2

c

2a2
(5.27)

where the constant speed vc and the time tc spent at constant speed are the degrees of freedom. Different

trajectories are tried by setting
(
a1, a2

)
to one of the possible orderings

 =
{(
ã− r0, a

)
,
(
ã− r0, −r0

)
,
(
−r0, ã− r0

)
,
(
a, ã− r0

)
,
(
−r0, −r0

)
,
(
−r0, a

)
,
(
a, −r0

)
,
(
a, a

)}
,

(5.28)
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which represent various permutations of acceleration, coasting, and braking.

One additional possibility is considered where the maximum speed is reached and acceleration, coast-

ing, and braking intervals are all present. In this case, the equations are

tf =
vc −vc

ã− r0
+Δtc +

v3−vc

−r0
+
vf −v3

a
(5.29)

and

sf =
v2
c
−v2

0

2
(
ã− r0

) +vcΔtc +
v2
3
−v2

c

−2r0
+
v2
f
−v2

3

2a
(5.30)

and the degrees of freedom are the time at maximum speed Δtc and the transition speed from coasting to

braking v3. The constant speed vc is not a degree of freedom since it is fixed at v.

The energy input in candidate solutions is evaluated as

We = ∫
sf

0

mutds (5.31)

which has a nonzero integrand under acceleration and constant speed. In the latter case, ut = ar + crv
2
c
. If

multiple trajectories are feasible, the one that minimizesWe is selected as the initial guess. Finally, the initial

speed trajectory is saturated to any position-dependent speed limits and rate limited to ã and a in acceleration

and braking, respectively.

It is emphasized that despite the relatively lengthy description, this kinematic system is only used

on the first step to initially linearize before solving the LP. Although the interval types chosen were selected

from the possible optimal ones in combustion-engine eco-driving, there is no theoretical guarantee that the

solution is energy-optimal. Besides, road grade is ignored and the boundary conditions may not be met if the

trajectory needs to be saturated. It is therefore important that the LP be used for subsequent solutions and

linearization trajectories in closed-loop operation.

5.6 Simulation Methods

The proposed algorithms introduce several features that derive their information and benefits from

different aspects of the problem. The pacing module takes advantage of road grade and speed limit information

over a whole trip, while the maneuvering module is concerned with microscopic obstacle avoidance. The

simulation testbed should include the effects of both scales. Simulation of a realistically long highway route
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is desired to show the trip planner’s benefits, and the project’s industry partner Cummins provided road grade

information over a suitable 69.7 km route along Interstate 64 from Lanesville, IN to Siberia, IN. Simulations

of this length present challenges, including long run times that can slow early prototype assessment and the

need to compute and store data from many surrounding vehicles.

This section describes the various ways in which these challenges are overcome. It begins with the

plant model used to simulate the vehicles. Then, the different scenarios used to select prototypes and assess

overall performance are introduced. Techniques for simulating microscopic obstacles within computational

resource constraints while targeting given macroscopic conditions are described. The section closes with a

review of the lateral and longitudinal driver model used for the baseline and surrounding vehicles.

5.6.1 Plant Model

The simulation testbed is the nonlinear form of the kinematic bicycle model and pure pursuit steering

controller with the ramped lane changing path described in Section 4.1.3. The lane change time tl was 5 s for

the tractor-trailer and 2 s for the passenger vehicles. The tractor and surrounding vehicles were 5 m long. A

15 m trailer was added to the ego CAV using the nonlinear kinematic model in Section 4.1.3.

The longitudinal parameters from the heavy vehicle in Appendix A were used in earlier prototyping.

They were modified slightly to move friction and accessory loss into the vehicle-level resistance model before

the full-length Lanesville-Siberia simulations. Cummins also provided parameters obtained by either physical

measurement or, in the case of the resistance coefficients, fuel economy model correlation. These parameters

were also used in the Lanesville-Siberia simulations, enabling a comparison of two different trucks. Table 5.2

summarizes these parameter sets.

Table 5.2: Truck parameter sets.

Parameter Value, Set A Value, Set B

Mass 19400 kg 30391 kg

Drag coefficient 0.5489 0.5

Frontal area 10.8m2 10.22m2

Rolling resistance coefficient 0.0162 0.0051

Maximum Torque 1425 Nm 2208 Nm

Air density 1.184 kg/m3 1.184 kg/m3
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5.6.2 Scenarios

The main purpose of the simulations was to assess the functionality of the optimal control algorithm’s

new features. Therefore, variations in road grade and regulatory speed limit were present and the optimal

controller was provided with preview of both. Traffic was also introduced and a preview of its macroscopic

speed and density characteristics was provided to MPC when traffic preview features were enabled. Long

simulation run times motivated a preliminary study using a 6 km segment of the Lanesville-Siberia route to

check functionality and decide which features were beneficial. Figure 5.5(a) depicts this shortened scenario,

contrasted with the full-length one in Fig. 5.5(b). The longer scenario was subdivided into 13 sequentially-run

time segments to help manage data storage.

0 2 4 6

Position [km]

0

10

20

30

S
p
ee
d
[m

/s
]

(a)

0 2 4 6

Position [km]

-5

0

5

G
ra
d
e
[%

]

0 20 40 60

Position [km]

0

10

20

30

S
p
ee
d
[m

/s
]

(b)

Speed Limit

Start of Traffic

Start of Dissipation

0 20 40 60

Position [km]

-5

0

5

G
ra
d
e
[%

]

Figure 5.5: The shortened 6 km scenario (a) and the full Lanesville-Siberia route (b).

Both scenarios used a default speed limit of 31 m/s, intended to match common interstate highway

speeds. A reduced speed limit of 25 m/s, which might realistically occur in a construction zone, was imposed

over a segment of each scenario. The boundary condition on the final time tf targeted an average speed

of 25 m/s, anticipating that traffic-induced slowdowns and grade fluctuation would drive speeds in excess of

25 m/s elsewhere, speed limits permitting. Initial and final speed boundary conditions were both set at 26 m/s.

To simulate a traffic jam that formed behind a obstruction that was eventually cleared, traffic was

released from rest at a fixed position and time. The positions from which traffic was released are marked in

green in Fig. 5.5, and the release times were 65 s in the 6 km scenario and 660 s in the full-length scenario.

Targets for macroscopic speed, speed variance, and density of the surrounding traffic were precomputed by
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Tyler Ard using methods from [54] and [55]. The input traffic data was calculated for a ring road, which traps

vehicles on a fixed length of road. In reality, vehicles with different desired speeds will eventually dissipate

given enough space. Therefore, density was ramped down starting at the positions s� marked in red in Fig.

5.5 to simulate such dissipation. The target density after the ramp is

�t (s, t) = max
{
�t (s, t)+m�

(
s− s�

)
, �

t

}
(5.32)

where �t, and �t are the raw ring-road traffic density and final target density, respectively. In the 6 km scenario,

the density rate m� was -0.004 veh/km per m and the minimum density target �
t

was 2 veh/km. In the full-

length scenario, the density rate was -0.002 veh/km per m and the minimum density target was 5 veh/km. The

density reduction’s realism is bolstered by the method used to target it, since vehicles are only removed from

the simulation if their relative speed naturally increases their distance from the ego. The following section

elaborates on this technique for microscopically realizing the macroscopic traffic targets.

5.6.3 Targeting Macroscopic Conditions in a Sliding Window

Running a 70 km highway simulation including all vehicle simultaneously would be computationally

prohibitive and generate an excessive amount of log data. Moreover, long range radar (LRR) can only sense

up to about a 150 m range [113] and so inclusion of more distant unconnected vehicles in obstacle avoidance

is not generally realistic. Therefore, the specified macroscopic traffic conditions are approximately imposed

on a smaller frame of width wf = 0.34km. The frame translates so that it is always centered around the ego

vehicle. An example simulation frame with the ego truck and surrounding vehicles is shown in Fig. 5.6.
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Figure 5.6: The simulation window in a sparse traffic scene during a CAV lane change.
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Surrounding vehicles are generated near the edges of the window. The criterion for generating a new

surrounding vehicle is

nv < �tnlwf (5.33)

where nv is the number of vehicles in the frame, �t is the target density per lane, and nl is the number of lanes.

Vehicles are removed from the simulation when they reach the edge of the reference frame. Once vehicle

generation is triggered, the new vehicle’s lane and speed must still be determined. First, a vehicle speed is

randomly drawn from the predicted traffic distribution. If the speed is greater than the ego vehicle’s, the new

vehicle is inserted behind the ego. Otherwise, it is inserted ahead of the ego. Vehicles initialize in the lower-

density lane unless that lane’s initialization zone is occupied. These zones Sus and Sds are defined relative to

the edges of frame according to

Sus =
{
x | x < s− 1

2
wf +dg +Tgv

}
, Sds =

{
x | x > s+ 1

2
wf −dg −Tgv

}
(5.34)

where Tg and d
g

are time headway and fixed distance constants.

5.6.4 Baseline and Surrounding Vehicle Algorithm

The lane-changing model MOBIL after [121] coupled with the Intelligent Driver Model (IDM) [120]

is used as a baseline. MOBIL works by using a longitudinal driver model to compare the potential accelera-

tions of the ego vehicle and its neighbors in the current and candidate lanes. The IDM equations are listed in

Section 1.1.3.1 and the MOBIL lane change criteria are provided in Section 1.1.3.1. The parameters used for

the surrounding vehicles are provided in Table 5.3. When each vehicle is generated, it is assigned a reference

speed vref = vt+ct, where the random part of speed ct is drawn fromCt ∼ (
0, �2

t

)
, the normal distribution

with the predicted macroscopic traffic variance. Surrounding vehicles used a reduced time headway parameter

�h relative to [30] in order to reproduce the target traffic conditions. As in [30], a log-normal distribution with

parameters �� and �� was used to randomly vary �h. The mean of a log-normally distributed variable X as

provided in [45] is

EX = e
�+

1

2
�2 (5.35)

and the variance is

VarX = e2�
(
e2�

2
− e�

2
)
, (5.36)
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resulting in a mean of 0.5125 s and a variance of 0.07610 s2.

Table 5.3: IDM parameters in the tractor-trailer simulations.

Parameter Description Value

a0 Maximum acceleration 1.0 m/s2

b0 Deceleration coefficient 1.5 m/s2

dst Stopped distance 4 m

�� Time headway � -0.7956

�� Time headway � 0.5044

� Exponent 4

One drawback of the sliding window scheme is that it does not simulate some downstream vehicles’

predecessors, causing them to accelerate in a way that would not be possible in true traffic of the target density.

To mitigate this problem while still simulating drivers’ tendency to acceleration in the absence of obstacles,

the IDM desired speed v0 is computed as a blend of the vehicle’s reference speed vref and the maximum speed

v.

v0 = �
(
v+ ct

)
+(1−�)vref (5.37)

Although vref is updated for each surrounding vehicle on each step, only vt is modified. The random part ct

is usually maintained and only updated rarely to break unrealistic equilibria. The expected time until such an

update is 5 min.

Some parameters differ where the IDM is used as part of the baseline algorithm to control the ego

truck. In this case, a longer time headway of �h = 1.4s is used to promote smoother driving. The target speed

v0 is tuned to match MPC’s average speed in each scenario and is saturated to the local speed limit as needed.

5.6.5 Sampling and Statistics

For both scenarios, three runs were performed using each candidate algorithm. In the 6 km scenario,

the first two candidates used optimal control with and without traffic preview and one used MOBIL. Because

of the results of the 6 km study, the full Lanesville-Siberia study only compared optimal control without

traffic preview and MOBIL. Multiple runs are needed because the surrounding vehicles’ reference speeds

and time headway parameters are pseudorandomly generated as described in the previous section, and these

parameters affect the speed adjustments that the ego must perform for obstacle avoidance. On the other hand,

the full Lanesville-Siberia route is costly to simulate in terms of computation time and storage. Hence, it

was necessary to limit the number of samples while tracking the statistical confidence in any energy benefits.
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Because of the small sample size, Student’s t-distribution was used with the sample standard deviation to

determine the confidence intervals.

5.7 Results

Results of the 6 km scenario are provided first, followed by those obtained over the full Lanesville-

Siberia route. Discussion of these results will follow in Section 5.8. Separate from the closed-loop results, an

open-loop computation time test matrix was also run for the LP formulation and solution. These results are

provided in Section 5.7.3.

5.7.1 Initial Study on a Shortened Trip

Figure 5.7 provides the resulting trajectories from the 6 km scenario and Fig. 5.8 shows the perfor-

mance metrics for each algorithm. Traffic preview did not significantly improve fuel economy, although it

did improve consistency of fuel economy. Both optimal control variants improved fuel economy compared

to MOBIL by 15 % on average, based on a small sample of 3 runs each. Results for wheel-input energy,

which was optimized in the LP, were similar to the fuel results. Traffic preview reduced MPC’s mean energy

consumption slightly in this sample, but statistical confidence in the difference is low at this sample size. MO-

BIL’s v0 parameter was tuned to deliver similar average speed to MPC, and the difference in average speed

between the algorithms was not significant.

5.7.2 The Lanesville-Siberia Route

The full-length Lanesville-Siberia results begin by verifying the effectiveness of the traffic simulator.

Figure 5.9 provides an example of how the target speed and density supplied to the traffic simulator compared

with the actual speed and density achieved in the simulation window. It also shows which portions of the trip

had the greatest impact from traffic. Figure 5.9 was taken from the case where MPC was used with parameter

set B.

Two different truck parameter sets were simulated. Set B, which was provided by Cummins, had

high mass and lower rolling resistance compared to set A. Figure 5.10 shows the trajectories obtained from

model predictive control (MPC) coupled with the LP speed planner and MOBIL for parameter set A and

Fig. 5.11 shows the same for set B. Figure 5.12 shows the overall performance in energy, fuel economy, and

average speed for parameter set A and Fig. 5.13 shows the same for parameter set B. Error bars represent the
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Figure 5.7: Trajectories for MPC and the baseline MOBIL in the 6 km scenario.
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Figure 5.8: Fuel consumption and speed in the 6 km scenario with 90 % confidence intervals.
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Figure 5.9: Example comparison of the microscopic traffic conditions to the macroscopic targets.
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95 % confidence intervals based on the sample standard deviation and t-distribution. MPC did not use traffic

preview in this case.

5.7.3 Computation Time

Tables 5.4 and 5.5 provide computation times for various prediction horizons and discretization steps.

Assembly time is the amount of time needed to build the matrices that define the LP and solution time is the

amount of time needed to solve the LP after assembly. Table 5.6 compares computation times for three LP

solution methods. All LPs were assembled using custom MATLAB code and solved using Gurobi [44]. The

primal simplex method was used to generate Table 5.5. Blank table cells indicate that MATLAB memory

limits were reached due to large problem sizes.

Although the exact computation time of the industry partner’s dynamic programming tool for this

purpose is kept confidential, these results show that the LP can be solved orders of magnitude faster. This

substantial difference enables repeated solution of the LP in a closed-loop setting, a use case that is not practical

with DP.

Table 5.4: Speed planner assembly time under various settings.

Position Step Time, 1 km [s] Time, 10 km [s] Time, Lanesville-Siberia [s]

10 m 0.044 0.582 —

20 m 0.038 0.195 —

50 m 0.037 0.062 1.094

Table 5.5: Speed planner solution time using various settings.

Position Step Time, 1 km [s] Time, 10 km [s] Time, Lanesville-Siberia [s]

10 m 0.019 0.313 —

20 m 0.014 0.103 —

50 m 0.012 0.032 0.522

Table 5.6: Speed planner solution time for the Lanesville-Siberia route with 50 m steps.

Algorithm Solution Time [s]

Primal Simplex 0.522

Dual Simplex 0.530

Barrier 0.684
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Figure 5.10: Closed-loop trajectories over the Lanesville-Siberia scenario using parameter set A.
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Figure 5.11: Closed-loop trajectories over the Lanesville-Siberia scenario using parameter set B.
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Figure 5.12: Energy, fuel consumption, and speed, Lanesville-Siberia, parameter set A, 95 % confidence.
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Figure 5.13: Energy, fuel consumption, and speed, Lanesville-Siberia, parameter set B, 95 % confidence.

5.8 Discussion

This section reviews the impact of and seeks to explain the results shown in Section 5.7.

5.8.1 Conclusions from the Shortened Route

Based on the results in Section 5.7.1, traffic preview was switched off during the full-length simula-

tions. While some consistency was lost, the optimal controller was still able to meet the project’s targets and

improve consistency compared to MOBIL.

The observed fuel economy improvement over MOBIL in the 6 km route was much greater than the
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one in the Lanesville-Siberia route for a similar parameter set. This could be explained by the greater relative

impact of traffic in the 6 km route, which necessitated a higher target speed in MOBIL order to match average

speed with the optimal controller. This higher target speed required energy input to accelerate early, and that

energy was dissipated in braking when the CAV encountered traffic.

5.8.2 Explanation for Parameter Sensitivity

Wheel-to-distance energy savings were highly sensitive to the truck’s physical parameters, as shown

by the< 1% and 17 % improvements in parameter sets A and B. A simple analysis based on an energy balance

explains this difference and could help predict which parameter sets will enjoy significant benefits from energy

optimization when driving over a given road slope profile. The energy balance when driving from point 0 to

point 1 reads

Ee = ΔKE+ΔPE+Wf +Eb. (5.38)

Since the initial and final elevations ℎ0 and ℎ1 are fixed and ΔPE = mg
(
ℎ1−ℎ0

)
, the change in potential

energy ΔPE is fixed. We respect boundary conditions on the speeds v0 and v1, so ΔKE =
1

2
m
(
v2
1
−v2

0

)
is

also fixed. The friction work Wf is composed of the rolling resistance loss

Wr = ∫
sf

0

�mg cos� (s)ds (5.39)

which depends only on the road slope � (s) and is therefore fixed, and the aerodynamic loss

Wa = ∫
tf

0

1

2
�aCdAv

3 (t)dt (5.40)

which can be optimized. The braking energy Eb is a manipulated input, so it can also be optimized. Thus,

energy input minimization can be reduced to finding the optimal tradeoff between braking and aerodynamic

drag. Aerodynamic drag losses subject to a fixed average speed are minimized by a constant-speed policy, as

proven here. After dropping the positive coefficient 1

2
�aCdA, the functional to minimize becomes

Fa (v (t)) = ∫
tf

0

v3 (t)dt, (5.41)

which can be expressed as

Fa (v (t)) = ∫
tf

0

(ṽ (t)+ v̄)3dt, (5.42)
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where v̄ is the average speed and ṽ is the deviation from that speed. The constraint on average speed results

in

v̄ =
1

tf ∫
tf

0

(ṽ (t)+ v̄)dt ⟹ v̄ =
1

tf ∫
tf

0

ṽ (t)dt+ v̄ ⟹ 0 = ∫
tf

0

ṽ (t)dt. (5.43)

Expanding Eqn. (5.42) yields

Fa (v (t)) = ∫
tf

0

(
ṽ3+3v̄ṽ2+3v̄2ṽ+ v̄3

)
dt (5.44)

which, after exploiting the conclusion of Eqn. (5.43), becomes

Fa (v (t)) = ∫
tf

0

(
ṽ3+3v̄ṽ2+ v̄3

)
dt. (5.45)

The v̄3 term can be dropped since it is fixed, leaving

F ′
a
(v (t)) = ∫

tf

0

(
ṽ3+3v̄ṽ2

)
dt = ∫

tf

0

ṽ2 (ṽ+3v̄)dt (5.46)

Clearly, F ′
a
(v (t)) can be made equal to 0 by letting ṽ = 0 for all t. This is the constant-speed policy. To

improve on that solution, the integrand of Eqn. (5.46) must be less than 0 for some t. Since ṽ2 ≥ 0 for any ṽ,

the only way to accomplish this is for

ṽ+3v̄ < 0 ⟹ ṽ < −3v̄. (5.47)

Speed must be non-negative, so

ṽ+ v̄ ≥ 0 ⟹ ṽ ≥ −v̄ (5.48)

Since v̄≥ 0, conditions (5.47) and (5.48) are contradictory. Therefore, constant speed minimizes aerodynamic

drag loss.

The braking termEb can take no better value than 0. This leads directly to a fundamental conclusion

about wheel-to-distance energy minimization over varying road grade: if braking is never required to maintain

constant speed, then constant speed is optimal. This explains why some parameter sets on some roads may not

experience a benefit from wheel-to-distance energy minimization when compared to a constant-speed policy

like the baseline of this study.

The LP reduces braking energy and increases aerodynamic drag relative to constant speed, so the
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amount of braking energy places an upper bound on the potential gain from optimization. Fig. 5.14 shows

the energy loss pathways for parameter sets A and B traveling over the Lanesville-Siberia Route at 25 m/s.

Parameter set A loses 3.2 % of its input energy to braking, while parameter set B loses 32.7 %2. This difference

explains the large gap in fuel economy improvement during closed-loop simulation. Since braking occurs at

constant speed when

−mg sin� > �mg cos�+
1

2
�aCdAv

2, (5.49)

more massive vehicles dealing with steeper slopes with lower rolling resistance, lower speed, and lower drag

properties are likely to gain more from this type of optimization.

Losses, Parameter Set A
3%

40%

57%

Braking Aero Rolling

Losses, Parameter Set B

29%

39%

32%

Figure 5.14: Energy loss breakdown for the two truck parameter sets.

5.8.3 Eco-Driving Guidelines

Figure 5.11 shows general behavior over rolling hills that could serve as a guideline for human drivers.

Even the optimal controller must brake if the maximum speed constraint is encountered while coasting down

a hill, so it uses its preview capability to cease engine power and slow down before reaching the hill’s crest.

This causes it to reduce engine power sooner than MOBIL does at various points. The slowdown allows more

margin for speed to rise while coasting down the hill before braking is needed.

Therefore, it is recommended that drivers follow the following guidelines to reduce energy use on

hilly roads. If the slopes are mild enough that no braking is expected, constant speed should be maintained. If

2These percentages based on input energy differ from the loss-based annotations in Fig. 5.14 because the change in potential energy

is nonzero.

88



braking is expected after the crest of a hill, it is recommended to lift the accelerator pedal before peak elevation

to allow the upward slope to slow the vehicle, then coast down the hill until the maximum speed is reached.

Of course, the magnitude of this slowdown must depend on the minimum safe speed for the traffic conditions.
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Chapter 6

Collaborative Guidance

The previously summarized algorithms used a fully decentralized and ego-centric architecture, mean-

ing that each vehicle computes its own control move and does so considering only its own states in the objec-

tive. While such an informed but greedy approach can realize improvements over reactive algorithms, groups

of vehicles can further benefit from collaboration. For example, vehicles on a highway may adjust their speeds

to allow a merging vehicle to enter, reducing the overall disturbance to traffic flow.

Centralization has been proposed to realize such control performance. Centralized algorithms del-

egate control move determination to one agent that commands the others. This agent can be a lead vehicle

in a string or a roadside server. Ideally, a centralized system can find the global optimum for the network

and thereby achieve the best control performance. However, such systems can be practically limited by com-

putational cost, delays, and communication volume. They also transfer control of the vehicle to a remote

supervisor, reducing the user benefit relative to mass transit. Therefore, the main goal of this section is to

propose distributed collaborative approaches where vehicles maintain autonomy but work toward a group

objective. Centralized control is also implemented as a high-performing benchmark. Unlike the preceding

studies, these focus on electric vehicles and therefore the energy results account for regenerative braking.

The collaborative guidance research is divided into car following and multi-lane algorithms, each

with accompanying simulation methods and results. These two sections summarize the author’s prior re-

search in [26] 1 and [27] 2 , respectively, and more detail can be found in those references. This research was

1R. Austin Dollar, Antonio Sciarretta, and Ardalan Vahidi. Information and collaboration levels in vehiclar strings: A comparative

study. In 21st IFAC World Congress. International Federation of Automatic Control (IFAC), 2020. To appear.
2R. Austin Dollar, Antonio Sciarretta, and Ardalan Vahidi. Multi-agent control of lane-switching automated vehicles for energy

efficiency. In 2020 American Control Conference (ACC), pages 422-429. IEEE, 2020.

90



conducted under the supervision of Antonio Sciarretta at IFP Energies nouvelles, and was supported by the
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States and the U.S. Department of Energy Vehicle Technologies Office (Project No. DE-EE0008232).

6.1 Car Following

This section will focus on collaborative guidance in a single lane. Algorithms are presented first,

followed by simulation methods and finally results.

6.1.1 Algorithms

This section’s decentralized car following controller is a single-lane form of the hierarchical lane

change algorithm in Section 4.2. Equation (6.1) summarizes the optimal control problem (OCP), where xe

and ue are the state and control input deviations from the reference. As before, these references are based on

the parabolic velocity profile in Section 4.2. The matrices P , Q, and R are weights. Other constraints follow

Chapter 2’s notation. The maximum acceleration constraint defined by the bound a and mixed constraint

coefficientsmc and bc is set up to capture the electric vehicle’s (EV’s) maximum acceleration limit as a function

of speed. A notable difference between OCP (6.1) and Eqn. (2.2) is that this problem lacks a gap tracking

term. This means that the ego vehicle will follow the energy-optimal parabolic trajectory even if the preceding

vehicle (PV) is moving fast enough to pull away. A constraint relative to the preceding vehicle’s position sp

is retained for collision avoidance.

min J =xT
e
(N)Pxe (N)+

N−1∑
i=0

[
xT
e
(i)Qxe (i)+ u

T
e
(i)Rue (i)

]

s.t. u ≤ u (i) ≤ u
u (i)−mcv (i) ≤ bc , i ∈ {0, 1, ⋯ N −1}

v (i) ≥ 0

v (i) ≤ v
a (i) ≤ a
a (i)−mcv (i) ≤ bc
s (i) ≤ sp (i)−d, i ∈ {1, ⋯ N}

(6.1)
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In contrast, the centralized OCP version considers not only the ego vehicle’s xe and ue, but the

deviations of the entire network from their individual references. Therefore, the centralized OCP in Eqn.

(6.2a) deals with the group state and control deviations e and e. The group weighting matrices  , , and

 are formed by arranging each vehicle’s weighting matrices block-diagonally. Where the decentralized OCP

only needed a single position constraint to prevent unsafe proximity to the PV, (6.2a) uses several constraints

that keep each of the m vehicles of index j a safe distance from its leader with index j−1. Other individual-

vehicle constraints like acceleration and speed limits are retained and encapsulated in the constraint-admissible

set Ξ. The symbol ⊗ denotes the Kronecker product [127].

min  =T
e
(N)e (N)+

N−1∑
i=0

[T
e
(i)e (i)+ T

e
(i)e (i)

]

s.t. sj (i) ≤ sj−1 (i)−d
{
xj , uj

}
∈ Ξ

i ∈ {1, ⋯ N} , j ∈ {1, ⋯ m}

(6.2a)

 = Im⊗P,  = Im⊗Q,  = Im⊗R (6.2b)

The distributed and cooperative version of the single-lane algorithm uses OCP (6.2a) with network

and architectural differences. Instead of a single vehicle optimizing over the whole network and dictating

control moves to the other vehicles, each cooperative vehicle solves its own OCP that involves itself and its

immediate neighbors. This means that at most 3 vehicles are included in each OCP, which promotes scalability.

More formally, the constraints for vehicle q become

 = {j|j ∈ {q−1, q, q+1}∩{1, ⋯ m}} , (6.3a)

{
xj , uj

}
∈ Ξ

sj (i) ≤ sj−1 (i)−d
i ∈ {1, ⋯ N} , j ∈ ,

(6.3b)

where is the set of vehicle indices whose trajectories are optimized. The trajectory of vehicle j =max{0, q−2},

received from the previous step’s solution via connectivity, is considered fixed. The objective of OCP (6.2a)
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is retained, except that e and e are only composed of vehicles whose indices belong to . Only the ego

vehicle’s control input is applied, but it is decided considering potential responses of neighboring vehicles.

6.1.2 Simulation Methods

These three algorithms were simulated in 8-vehicle strings following a lead vehicle. This leader

tracked either the Worldwide Light-duty Test Cycle (WLTC) High or Low [136], which is shown in Fig. 6.1,

reproduced from [26]. These two cycles exposed the controllers to different speeds. The WLTC Low involves

complete stops. Since some stops like those at stop signs cannot be avoided using anticipative driving, the

WLTC Low cycle was divided into five separate simulations. These segments of the cycle corresponding to

each simulation are demarcated using arrows in Fig. 6.1. Classical ACC (Section 1.1.3.1) and a position-
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Figure 6.1: The drive cycles for single-lane multi-agent simulations [26].

constrained shrinking horizon controller (PCSHC) from [109] served as bases for comparison. Two ACC

time headways were used: 0.8 s to represent a string unstable controller and 1.5 s to represent a string stable

one.

6.1.3 Results

This section provides the results for net energy from the EV’s battery, mean string length, acceleration

over the string, and speed trajectories. Acronyms are used for each algorithm throughout and their meanings

are listed in Table 6.1, which is adapted from [26].

The two different ACC time headways outline the tradeoff between string length and energy effi-

ciency when preview is not used (Figure 6.2, reproduced from [26]). While PCSHC outperformed ACC for

a single vehicle [26], its string instability worsened the combined performance over 8 vehicles. The hier-
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Table 6.1: Acronyms for single-lane multi-agent algorithms.

Controller Acronym

Adaptive Cruise, 0.8 s Headway ACC, 0.8 s

Adaptive Cruise, 1.5 s Headway ACC, 1.5 s

Position-Constrained Shrinking Horizon PCSHC

Decentralized Hierarchical DHC

Centralized Hierarchical CHC

Cooperative Hierarchical CoHC

archical algorithms all realized similar energy improvements relative to ACC. However, the centralized and

cooperative algorithms managed to do so in a more compact way, pushing them toward the higher-performing

bottom-left corner of Fig. 6.2. Overall, the cooperative controller performed similarly well or, in the case of

string length, better than the centralized approach.

80 100 120 140 160 180 200 220

Mean String Length (m)

6

8

10

T
o
ta
l
E
n
er
g
y
(M

J
) WLTC Low

0.8s

1.5s

ACC
PCSHC
DHC
CoHC
CHC

150 200 250 300 350 400 450 500

Mean String Length (m)

26

28

30

32

T
o
ta
l
E
n
er
g
y
(M

J
) WLTC High

0.8s

1.5s

ACC
PCSHC
DHC
CoHC
CHC

Figure 6.2: Energy use and string length in WLTC High and Low cycles [26].

String stability is examined to help explain the results in Fig. 6.2. Since not all algorithms tracked

a target headway, changes in mean acceleration from the front (lower index) to the rear (higher index) of the

string were used to indicate string stability. If a controller is string stable, accelerations are expected to fall

as vehicle index increases. The results, shown in Fig. 6.3 which is reproduced from [26], verify that ACC’s

string stability depends on time headway. The hierarchical algorithms all returned similar performance where

the first CAV achieved relatively low average acceleration, which did not change significantly throughout

the rest of the string. The analytical position-constrained shrinking-horizon controller (PCSHC) performed

similarly to the hierarchical MPC algorithms for the first vehicle, but was string unstable. The latter property

was responsible for PCSHC’s higher string energy use.
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The velocity trajectories shown in Fig. 6.4, reproduced from [26], further demonstrate the phenom-

ena that led to the performance differences in Fig. 6.2. PCSHC’s trajectories are smoother than the cycle near

the front of the string but amplify toward the rear of the string. On the other hand, the hierarchical controllers

are consistently smooth in their interactions with PVs.
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Figure 6.4: Velocity trajectories in the WLTC Low Cycle [26].

Perhaps the most surprising result in this single-lane multi-agent study is that collaboration or even

centralization of the hierarchical MPC made less than a 2 % impact on energy use. Instead, collaborative guid-
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ance mainly reduced the road space occupied by the string. This result suggests that, given similar eco-driving

controller designs and vehicle hardware, decentralized control is sufficient under sparse traffic conditions. Col-

laborative guidance would become more critical when closer spacing is required to support elevated demand.

6.2 Multi-Lane Guidance

As in car following, three lane-change algorithms are presented: ego-centric decentralized, central-

ized, and distributed cooperative. After these variants on Chapter 4’s hierarchical MPC are described, a 3-lane

collaboration-intensive obstacle avoidance scenario is presented for use in evaluation. The chapter closes with

results on the effectiveness of collaborative guidance in this multi-lane situation.

6.2.1 Algorithms

From a multi-agent control perspective, multi-lane guidance differs from car following in the highly

time-varying spacial arrangement of vehicles in the network. For example, a vehicle may lead the ego at

one time and, several seconds later, move into a different lane and expose the ego to a different leader. This

presents a problem for position constraints like the one in (6.1) that only consider vehicles that are known

to be neighbors a priori. Therefore, a centralized multi-lane guidance formulation must consider position

constraints between arbitrary vehicles p and q in the network as in Eqn. (6.4). Notation is borrowed from

Chapter 4 with the addition of subscripts to distinguish different controlled vehicles. Binary variables � with

subscript I indicate whether vehicle p or q is ahead.

sp− sq −M�Ij −M
(
2−�a

�p
−�b

�p

)
−M

(
2−�a

�q
−�b

�q

)
− �1j ≤ −d (6.4a)

−sp+ sq−M�C
Ij
−M

(
2−�a

�p
−�b

�p

)
−M

(
2−�a

�q
−�b

�q

)
− �1j ≤ −d (6.4b)

Collisions with obstacles that are outside the network are handled using the method from Chapter 4.

As in car following, the centralized multi-lane objective considers the group state vector deviation

e and the group control vector deviation e relative to nominal trajectories that the vehicles compute indi-

vidually. The affine constraints include the position constraints above along with each vehicle’s speed limits,

acceleration limits, etc. described previously in Section 4.3. These constraints are encapsulated in Sa and Ξ
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for brevity. The decision variables for all vehicles in the network compose the vector  .

min


 =T
e
(N)e (N)+

N−1∑
i=0

[T
e
(i)e (i)+ T

e
(i)e (i)

]
+� (�)

s.t. a ≤ Ξ

(6.5)

This centralized optimal controller is abbreviated CO.

The decentralized algorithm was described earlier in Chapter 4. That algorithm, here termed De-

centralized Ad-Hoc (DAH), is first-come-first-served in the sense that each vehicle computes its control move

subject to currently available SV trajectories and claims a certain spatiotemporal zone. Thus the network

solution depends on the computation order and it is not guaranteed that the order will be a good one for the

group objective.

Therefore, the cooperative multi-lane algorithm seeks an improvement in the group objective com-

pared to DAH by finding a good ordering dynamically. It does so by establishing a priority measure Pp for

each vehicle, then ordering control move computation by decreasing priority. The priority is chosen as the

optimal objective gradient of a nominal problem assuming that other vehicles yield to the ego.

Pp = ‖∇UJp‖ = ‖1
2

(
Gp+G

T
p

)
U⋆
p
+fp‖ (6.6)

The intuitive idea behind Eqn. (6.6) is now explained. In the absence of other CAVs in the network,

each vehicle faces a different situation with respect to fixed obstacles and vehicles that do not belong to the

collaborative network. Each vehicle thus has its own ideal trajectory that it would follow if it were first in

the computation order. If other vehicles compute first instead, more constraints are present that may cause a

deviation from this ideal solution at an excess cost. However, this order-dependent excess cost is not equal

for all vehicles. Therefore, the multi-agent objective can be reduced by prioritizing those vehicles that suffer

the most from the imposition of additional constraints. This expression of the total cost  in terms of each

vehicle’s ideal cost J⋆
q

and the excess cost ΔJq for m vehicles is formalized as

 =

m∑
q=1

(
J⋆
q
+ΔJq

)
. (6.7)
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The variable part of the total cost is approximately

m∑
q=1

ΔJq ≈

m∑
q=1

∇
U
Jq ⋅dq (6.8)

for local deviations dq from the nominal optimum. Placing a vehicle later in the priority order adds to dq ,

although the precise impact on its magnitude and direction is unknown in advance. The objective gradient

∇
U
Jq , on the other hand, can be readily obtained by solving only the ideal problem where vehicle q is unim-

peded by other in-network vehicles. Using this gradient as the priority measure in Eqn. (6.6) seeks to pair

larger gradients with smaller deviation vectors dq , thereby reducing the overall cost.

The network solution is computed in a sequence of steps at each control loop. In the first step, each

vehicle solves such a nominal problem to obtain a solution U⋆
p

along with MIQP coefficients Gp and fp.

Then, each vehicle p computes its priority Pp and communicates it to the other vehicles. All vehicles can now

determine the ordering and assemble their MIQPs such that position constraints with lower-priority vehicles

are relaxed. Finally, each vehicle solves its MIQP and applies the resulting optimal control. Algorithm 1 from

[27] captures this process. The decentralized controller with sensitivity-based prioritization is abbreviated

DSP.

6.2.2 Simulation Methods

Figure 6.5 illustrates the collaboration-intensive simulation scenario used to evaluate the proposed

algorithms. Three vehicle begin and end the simulation at rest and a constant final time boundary condition is

used for all of the MPC variants. The side-by-side initial vehicle placement and severe bottleneck induced by

the obstacles demand that the vehicles adjust their speeds away from their individually optimal trajectories to

avoid a collision. This emphasizes collaboration. The obstacles are shown in black in Fig. 6.5 and the vehicles

are in color. A segment of road exists beyond the frame shown in Fig. 6.5, but no obstacles are present there.

The total distance of the simulations can be found in Fig. 6.6.

All 6 possible DAH orderings were simulated to avoid focusing on just one possible computation

order. The MOBIL lane change model [121] was introduced as a baseline, with a few modifications to enable

MPC-like travel times. One of these changes was the addition of an enlarged buffer distance when approach-

ing static obstacles, based on [32]. Existing MOBIL parameters were also altered as shown in Table 6.2,

reproduced from [27]. An acceleration Δabias was applied to the right-hand side of inequality (1.6) to mimic

each MPC vehicle’s lane preferences.
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Algorithm 1 Communication and optimization in collaborative decentralized control.

1: procedure COMPUTE NETWORK CONTROL MOVES

2: ← Set of cooperative agents

3:  ← Set of other obstacles

4: ∖∖xpq (i) denotes agent p’s stored state of object q

5: for prediction step i ∈ Z.

6: ∖∖Ppq denotes agent p’s stored priority of object q.

7: ∖∖Superscript ∗ indicates an optimal solution.

8: for p ∈  do

9: xp(∪) (0)← sense(∪)
10: for p ∈  do

11: ∖∖ Solve the nominal problem, unimpeded by cooperative vehicles.

12:

{
U
⋆

p
,Gp,fp

}
← solveNomOCP

(
xp(∪) (0)

)
13: ∖∖ Evaluate Eqn. (6.6).

14: Ppp ← computePriority
(
U
⋆

p
,Gp,fp

)

15: send
(
Ppp

)
16: for p ∈  do

17:
{
Pp(∖p),xp(∖p) (i)

}
← getComm, i ∈ [1,N]

18: for p ∈  do

19: ∖∖ Solve the decentralized OCP with all constraints.

20:

{
U

∗

p
,x∗
p
(i)
}
= solveFinalOCP

(
Pp, xp(∖p) (i) , xp (0)

)

21: setControl (u∗ (0)) ∖∖U
∗

p
contains u∗ (0).

22: send
(
xp (i)

)
, i ∈ [0,N]
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Figure 6.5: Collaborative vehicles navigate the case study’s scenario. ©2020 IEEE.

6.2.3 Results

To observe the operation of the proposed prioritization approach, see Fig. 6.7. Since the right-hand

vehicle must change lanes twice to avoid the obstacle, it is highly sensitive to the other vehicles’ decisions and

therefore has a higher initial priority. The other agents allow it to reserve its trajectory first. Once vehicle 3’s

situation improves, the priority order changes to allow other vehicles to compute first as appropriate.

The multi-agent system’s initial sensitivity to the computation order causes variation in the DAH

results, both qualitatively in Fig. 6.6 and in the error bars of Fig. 6.2.3. These error bars mark the best- and

worst-case results. DSP consumed less energy than even the best DAH ordering. This is possible because

DAH maintains a fixed ordering at all times while DSP dynamically reevaluates the priorities to find the best
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Table 6.2: Modified IDM and MOBIL Parameters

v0 (m∕s) a0 (m∕s2) b0 (m∕s2) Δabias (m∕s2)

Standard 15 1.0 1.5 0.3

Modified 33.3 2.8 4.2 1.0

Figure 6.6: Velocity trajectories resulting from the three presented algorithms. ©2020 IEEE.

one. The centralized optimal controller (CO) performed best as expected given the idealized computation and

communication, reducing energy consumption by 8.6 % relative to DAH. The distributed sensitivity-based

DSP, which used 6.7 % less energy than DAH, realized most of CO’s benefit. Its computation time was also

much more promising as shown in Table 6.3. Network computation times in Table 6.3 account for stacked

sequential computation in DAH and parallel computation in DSP.
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Figure 6.7: The DSP priority order’s evolution. ©2020 IEEE.
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Figure 6.8: MOBIL, decentralized, collaborative, and centralized performance. ©2020 IEEE.

Table 6.3: MATLAB computation time for collaborative algorithms.

MOBIL DAH DSP CO

Vehicle Mean (s) 0.0011 0.4552 0.6919 N/A

Network Mean (s) 0.0017 1.3553 0.9247 7.4093
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Chapter 7

Summary

This dissertation has addressed the use of anticipation for safe and ecological control of automated

vehicles with emphasis on non-convexity and uncertainty issues. It consists of four technical chapters: car fol-

lowing, lane selection, collaborative guidance, and nonlinear motion planning. The completed research on car

following, lane change decisions, and collaborative guidance was summarized drawing on the author’s publi-

cations [29], [30] (car following), [25], [31], [32], [33] (lane change), [26], and [27] (collaborative guidance).

Chapters 3 and 6 document research collaborations with Gábor Orosz and Tamás G. Molnár at the University

of Michigan and Antonio Sciarretta at IFP Energies nouvelles, France. Motivated by a project with Cummins,

Chapter 5 went beyond the published research to focus on long-term speed planning over varying road grade.

The same project also led to additional techniques for extending the lane change algorithms to tractor-trailers

on sloping roads. This concluding chapter will summarize the accomplishments, state the limitations, and

envision future research.

7.1 Accomplishments and Contributions

Optimal control algorithms have been designed and evaluated for several applications related to an-

ticipative automated driving. This first of these was a car-following algorithm for heterogeneous strings using

model predictive control. Probability models were developed to predict the predecessor’s motion and one such

model was applied to real-world Tiger Commute bus data. In vehicle-in-the-loop experiments, car following

with model predictive control yielded 8 % to 23 % reduction in energy use relative to the Wiedemann human

driver model depending on scenario and powertrain type. This result was in-line with MATLAB and VISSIM
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simulations. Car following with multiple predecessors was also explored, with a combination of MPC and

multiple-predecessor information improving energy performance compared to using either alone. That study

used measurements from a string of real human drivers as input to simulate the research controllers’ responses.

The car following research expanded naturally into non-convex lane change planning. A higher-

level planner based on Pontryagin’s Minimum Principle enabled a mixed integer receding horizon controller

to follow a more optimal overall velocity profile. A systematic constraint formulation enabled anticipative

avoidance of multiple dynamic obstacles. The energy performance of this algorithm was compared to a rule-

based lane change approach in both homogeneous and mixed-traffic situations, resulting in improvements of

3.4 % fleet energy when one in three vehicles were connected and automated up to 16.2 % when all vehicles

were automated. Chance constraints were introduced to help avoid collisions in dense traffic, and design

variants were evaluated using an exceptionally hazardous scenario based on a real AV collision.

This lane change algorithm was extended to tractor-trailers on sloping roads. The mixed-integer

programming formulation was modified to include the effects of tractor-to-trailer angle change and the model

was linearized online to approximately comprehend speed and road grade effects. The resulting MPC was

coupled with an improved long-term speed planner that minimized wheel input energy including the effects

of road grade and aerodynamic drag. A novel LP formulation enabled this optimization to be solved online

in closed-loop. This system was evaluated over the real road slope profile from Lanesville, IN to Siberia,

IN. A target fuel consumption reduction of 10 % was set based on experience with optimal passenger-vehicle

lane changing in [31] [33], and the system was compared to a commonly used rule-based baseline algorithm.

Depending on the truck’s parameters such as mass and rolling resistance, fuel consumption benefits were

either insignificant or exceeded the target at 13.7 %. Failure to meet the 10 % target with one of the parameter

sets motivated an investigation of the fundamental energy pathways, optimal strategies, and possibilities for

energy savings. The results were ultimately explained by first showing that constant speed is energy-optimal

if it does not require braking, and then noticing that the second parameter set required several times as much

braking energy as the first did to maintain constant speed.

Collaborative guidance algorithms were proposed and evaluated for both car following and lane

changing, showing that in some scenarios, traffic compactness and/or energy benefits are possible over opti-

mal decentralized algorithms. The multilane algorithm assigned each vehicle a priority based on its objective

gradient, enabling vehicles to help others that may be in more difficult situations. Where centralized optimiza-

tion was able to reduce EV energy use by 8.6 % relative to decentralized MPC, the prioritization approach was

able to realize most of this benefit with 6.7 % savings.
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7.2 Limitations

The algorithms presented here have handled surrounding obstacles, lane count, speed limits, and road

slope features generally. Nonetheless, the model-based approach used relies on some prior knowledge of the

environment’s structure and therefore cannot generalize to all possible situations. Therefore, these algorithms

only apply through SAE autonomy level 4. Various situations encountered over the course of a real vehicle’s

life, off-road use and non-standard event parking for example, would require intervention by either a human

or a well-trained machine learning system.

This also raises the question of how to recognize when an optimal algorithm for a given situation is

available and select the appropriate one. Real-world implementation would require a solution to this problem

that has not been presented here. A similar situation exists with other surrounding software components

including sensing and routing.

The use of kinematic models for control throughout also presents limitations. Kinematic models

approximate wheel motion on the pavement using a no-slip lateral condition. In reality, a difference between

wheel direction and actual motion exists and corresponds to the forces that move the vehicle body. More

complex dynamic models include these physics [78]. Polack et al. [101] found that kinematic models only

match dynamic models up to about 0.5g on dry pavement, meaning that these algorithms are not suitable for

limit-handling situations.

As pointed out in [53], a limitation of most optimal-control, model-based vehicle guidance algo-

rithms is the assumption that surrounding vehicle trajectories are fixed. That is, the future impact of the

ego’s decisions on the decisions of surrounding vehicle is neglected. This limitation applies to the base car-

following and lane-change algorithms presented here. Although the collaborative algorithms in Chapter 6 do

consider coupling between multiple agents, they only enable collaboration with other CAVs in their present

form. Collaboration and even competition with human drivers is especially important in near-term practical

applications and was not addressed here.

7.3 Recommendations for Further Research

Most of the limitations above could inspire future research. For example, one can imagine how the

sensitivity-based collaboration algorithm in Section 6.2 could be extended to detect when a human driver faced

a difficult situation, then accommodate that human with cooperative driving. Game-theoretic approaches may
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be more appropriate when dealing with uncooperative human drivers and preventing platoon cut-ins.

Advanced human driver modeling is critical for such research. While several longitudinal models ex-

ist and have been correlated based on macroscopic metrics [14], correlated multi-lane human driver models are

more sparse. More research is also needed to determine human driver models’ accuracy at the sub-microsopic

level. In other words, a model may predict traffic flow down a road segment while missing the specific path the

vehicles follow between lanes or the initial reaction to a change in lateral position by a surrounding vehicle.

The validity of popular human driver models for this type of prediction needs to be understood.

Assuming that the technical challenges above can be solved and automated vehicles can cooperate

with other AVs and humans, each vehicle owner and operator should benefit from using such features. For

example, a currency-based system might help compensate vehicles that slightly increase their own energy use

to more significantly reduce overall energy use. This topic is inherently multidisciplinary and could benefit

from expertise in controls, economics, and psychology, to name a few broad fields.

A less futuristic research direction could seek eco-coaching and driver assistance applications of the

LP speed planner presented in Chapter 5. While this dissertation integrated the energy-minimizing LP with

an automatic controller, it could also provide a human driver with instructions based on preview of upcoming

road slopes. This guidance could instruct a driver to follow a specific speed. An even simpler interface might

advise the driver that the downward slope following an upcoming hill crest is steep enough that braking will

be needed to maintain the speed limit. It could then coach the driver to lift the accelerator pedal and allow

the vehicle to slow down before the crest. Even without an online optimization, insights from the LP could be

reduced to simple rules on when to maintain constant speed and when to coast while driving on a hilly road.

Development of such rules and quantification of their benefits is interesting from an energy perspective since

they could be widely deployed in driver education without new technology or hardware.

From the necessity of final-time boundary conditions in eco-driving solutions to the dependence of

energy benefits on baseline final time in Section 4.6, this dissertation has frequently encountered the tradeoff

between travel time and energy. While some trips may face hard constraints on travel time like those generally

assumed here, some users may be willing to extend travel time on certain trips to save energy. On the other

hand, using more energy to travel more quickly on one trip could enable a slower subsequent trip for an overall

energy benefit. Accounting for the present value of uncertain future benefits and accurately informing users

of the potential immediate benefit of a later arrival time could be addressed in a rigorous thermoeconomic

analysis.
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Appendix A

Energy Modeling

All energy models used to evaluate the proposed algorithms must consume vehicle-level kinematic

information like velocity and acceleration and output instantaneous energy consumption. This involves a

Newton’s law calculation of the tractive force Ft applied by either the engine or brake actuators, which are

assumed to be applied at strictly separate times. Resistive forces are modeled with the coefficients ar and cr,

mv is the vehicle mass, and g is the acceleration due to gravity. The model accounts for road grade �, although

� = 0 until Chapter 5.

Ft = ar+ crv
2+mvgsin�+mva (A.1)

The torque at the wheel Tw is then determined using the tire radius rt.

Tw = Ftrt (A.2)

From here, the energy computation diverges depending on powertrain type.

A.1 Internal Combustion Engine Vehicles

In internal combustion engine vehicles (ICEVs), energy use takes the form of fuel flow ṁf out of the

tank. To a quasi-static approximation, the fuel flow rate is a function of engine speed ne and engine torque Te.

This operating point can be calculated from the speed v and acceleration a of the vehicle using the drivetrain

gear ratio, which is itself a function of vehicle operating point.

Hence, the first step in the ICEV modeling workflow is to develop a gear lookup table ig

(
ntro

,Ttro

)

107



where the arguments are transmission output speed ntr,o and transmission output torque Ttr,o. Because of

engine mechanical limits, not all gears are feasible for a given vehicle operating point. The fuel consumption

is computed for each feasible gear and the fuel-minimizing gear is placed in the gear map. The following

process results in the fuel consumption given a gear index ig .

First, the engine speed ne and torque Te are computed from the given transmission gear’s ratio.

ne = ntr,ortr Te =
Ttr,o

rtr
(A.3)

Then, the mass fuel flow from the engine is looked up based on this engine operating point. Te,crk denotes the

crankshaft engine torque i.e. the sum of Te and accessory torque. Brake specific fuel consumption (BSFC)

data from [116] is used to include quasi-static nonlinear phenomena in the fuel calculation. Speeds n have

dimensions of revolutions per unit time.

ṁf = 2�neTe,crkBSFC
(
ne,Te,crk

)
(A.4)

With the gear lookup table established, the model can be run on a sequence of vehicle operating

points. The transmission output conditions are computed at each point according to Eqn. (A.5). Once these

are determined, the fuel consumption is calculated from Eqns. (A.3, A.4) where rf denotes the final drive

ratio.

Ttr,o = Ft
rt

rf
, ntr,o = v

rf

2�rt
(A.5)

Fuel consumption for the modeled 1.6 L turbocharged Ford Escape was computed for the U.S. En-

vironmental Protection Agency (EPA) fuel economy drive cycles, enabling comparison against the window

sticker fuel economy after the proper calculation [1]. Table A.1 lists the results.

Table A.1: Powertrain model results.
Cycle EPA Label [MPG] Model Result [MPG]

City 23 22.9

Highway 31 31.3

By substituting the model’s constants and BSFC map, a Class 8 line haul truck was also modeled.

Table A.2 lists the differences in parameters between the passenger and heavy vehicles used in the simulation

studies. Figures A.1 and A.2 show the resulting maximum acceleration limits and gear maps (color contours),

along with sample operating point traces. The operating point traces were obtained by following a vehicle

that exactly tracked the EPA US06 cycle.
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Table A.2: Powertrain model constants.
Symbol Definition Light-Duty Heavy-Duty

m mass 1671 kg 19400 kg

meff effective mass 1706.9 kg 19616 kg

lveℎ overall length 4.52 m 22 m

Cd drag coefficient 0.29 0.544

Av frontal area 2.733 m2 10.8 m2

� friction coefficient 0.0150 0.0150

rf final drive ratio 3.21 4.88

rt tire radius 0.3454 m 0.60 m

amin braking capacity -8.5 m/s2 -6.0 m/s2
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Figure A.1: Passenger vehicle gear map from

Dollar and Vahidi [30]. ©2018 IEEE.
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Figure A.2: Heavy vehicle gear map from Dollar

and Vahidi [30]. ©2018 IEEE.

A.2 Electric Vehicles

An important feature of electric vehicles (EVs) compared to ICEVs is their ability to recover kinetic

energy through regenerative braking. However, not all energy can be recaptured in this way. The Nissan Leaf

that was modeled is front wheel drive and as such cannot recover braking energy dissipated at the rear wheels.

The rear wheels must provide some braking effort to maintain safe vehicle dynamics. Based on guidelines

from [20], Eqn. (A.6) introduces a brake split model to apportion traction force between the front and rear

axles where F
t

denotes the maximum brake force.

Ff =

⎧
⎪⎨⎪⎩

Ft
Ft

F
t
(v)

≤ 0.04

0.73Ft+0.0108F
t
(v)

Ft

F
t
(v)
> 0.04

(A.6)
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Figure A.3: Battery output power from Dollar et al. [27]. ©2020 IEEE.

Another limit on regenerative braking comes from the battery itself. The maximum charging rate was obtained

from [57] as a function of state-of-charge (SOC).

The vehicle’s power electrical circuit is modeled as two parallel power sinks: one for the motor power

Pm and another for auxiliary loads Pa. These make up the total power Pl = Pa+Pm, where Pm is computed

from the demanded motor speed and torque while accounting for motor and inverter efficiency using maps

from [16]. The current ib and the total power PT then follow from a circuit analysis. Rb and V0 denote the

electrical resistance and battery voltage, respectively. In Eqn. (A.7a), the sign is used which yields battery

output power within the charge and discharge limits. This sign is unique throughout the operating space.

ib =
V0 (SOC)±

√
V 2
0
(SOC)−4RbPl

2Rb
(A.7a)

PT = Pl + i
2
b
Rb = V0ib (A.7b)

Figure A.3 shows the battery output power as a function of vehicle speed and acceleration on a flat

road with SOC = 60%.
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