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Abstract

This work focuses on improving the fuel economy of parallel Hybrid Electric Vehicles (HEVs) and

dual-motor Electric Vehicles (EVs) through energy management strategies. Both vehicle models have

two propulsion branches, each powering a separate axle: An engine and an electric motor in the HEV

and two electric motors in the EV. This similarity in the vehicle models emphasises the need for

similar energy management solutions.

In Part Energy Management of HEVs of this thesis, a high-fidelity parallel Through-The-Road

(TTR) HEV model is developed to study and test conventional control strategies. The traditional

control strategies serve as a guide for developing novel heuristic control strategies. The Equivalent

Consumption Minimisation Strategy (ECMS) is an optimisation-based control strategy used as the

benchmark in this part of the work.

A family of rule-based energy management strategies is proposed for parallel HEVs, including the

Torque-levelling Threshold-changing Strategy (TTS) and its simplified version, the Simplified Torque-

levelling Threshold-changing Strategy (STTS). The TTS applies a concept of torque-levelling, which

ensures the engine works efficiently by operating with a constant torque as the load demand crosses

a certain threshold, unlike the load-following approach commonly used. However, the TTS requires

finely tuned constant torque and threshold parameters, making it unsuitable for real-time applications.

To address this, two feedback-like updating laws are incorporated into the TTS to determine the con-

stant torque and threshold online for real-time applications. Real-time versions of these strategies,

Real-time Torque-levelling Threshold-changing Strategy (RTTS) and Real-time Simplified Torque-

levelling Threshold-changing Strategy (RSTTS), are developed using a novel Driving Pattern Recog-

nition (DPR) algorithm. The effectiveness of the RTTS is demonstrated by implementing it on a

high-fidelity parallel hybrid passenger car and benchmarking it against ECMS.

In Part Energy Management of EVs of the thesis, a low-fidelity model of a novel EV powertrain

with two electric propulsion systems, one at each axle, has been developed to study and test its energy

management with one of the main conventional optimal control methods, Dynamic Programming

(DP). The EV model uses two differently sized traction motors at the front and rear axles. The

thermal dynamics of the utilised Permanent Magnet Synchronous Motors (PMSMs) are studied. DP

is first implemented onto the Baseline model that does not include any PMSM thermal dynamics,

referred to as the Baseline DP, which acts as a benchmark since it is the conventional case. The
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thermal dynamics of the traction motors are then introduced in the second DP problem formulation,

referred to as the Thermal DP, which is compared against the Baseline DP to evaluate the possible

benefits of energy efficiency by the more informed energy management optimisation formulation. The

best method is chosen to include these thermal dynamics in the overall energy management control

strategy without significantly compromising computational time.
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Chapter 1

Introduction

1.1 Rationale

According to the National Resources Defence Council (NRDC) [2], urban growth will continue to

rise between now and 2050. The world is facing tremendous challenges ahead with CO2 and NOx

levels growing at a fast pace. We are exceeding and eroding the earth’s carrying capacity by more than

40% each year. A 2014 Environmental Protection Agency (EPA) study showed that CO2 contributes

to 81% of total Greenhouse Gas (GHG) emissions. Consequently, the personal transport industry has

been recognised as an area where significant reductions in GHG emissions must be made.

Electric and hybrid electric vehicles represent some of the solutions to reduce GHG emissions. The

growth of hybridisation and electrification technologies could potentially reduce pollution and com-

ply with the worldwide regulations introduced by governments on emissions and fuel consumption.

Hybrid Electric Vehicles (Hybrid Electric Vehicle (HEV)s) combine the advantages of engine-based

and fully-electric vehicles, using fossil fuel and electric power sources to drive the vehicle. They are

regarded as a step in the right direction towards more practical and viable emission-free vehicles [3].

Electric Vehicles (Electric Vehicle (EV)s) have been gaining more popularity in today’s market, of-

fering environmental benefits and positively impacting the energy and transportation sectors. Addi-

tionally, they reduce noise pollution and are easy to operate and maintain. Furthermore, EVs make a

2
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significant contribution to the next-generation power grid, the ’smart grid’. All these benefits have led

to manufacturers’ and users’ piqued interest in EVs. HEVs are often seen as a transition between In-

ternal Combustion Engine (ICE) and fully electric vehicles. EVs can now have more than one motor,

which introduces the possibility of improved range. With the engine removed in an electric vehicle,

there is more space, design, and control flexibility [4].

The concept of HEV is almost as old as engine-based vehicles. Introducing HEVs into the market is

seen as a considerable contribution towards raising awareness about the need for eco-friendly vehicles.

However, there is an ongoing effort to push for better fuel economy from these vehicles and to make

them more competitive and affordable. This could be done by improving the vehicle’s aerodynamics,

materials used in its construction, and powertrain efficiency. Improving the energy management strat-

egy or the Supervisory Control System (SCS) is crucial to achieving better fuel economy, leading to

a more efficient powertrain operation [5]. The SCS’s critical function is to determine how the power

demand is split between the multiple energy sources during the vehicle’s operation.

Both HEVs and EVs are recognised as environmentally friendly modes of transportation. HEVs

are capable of reducing GHG emissions, whereas EVs can completely eliminate them. Addition-

ally, HEVs are known for producing less noise pollution than traditional vehicles, while EVs further

minimise noise pollution.

1.2 Motivation and Objectives

The research community has focused more on complex control theory concepts. Due to pursuing

advanced control theories, the complexity and accuracy of vehicle models have often been sacrificed.

The design of the new powertrains calls for further research in this field. Several recent papers on

HEVs have highlighted the need for developing control techniques to be tested on high-fidelity models

[3, 6].

This first part of this thesis, Energy management of HEVs, aims to develop a high-fidelity parallel

HEV model and implement conventional control strategies from the literature. This part also aims

to develop novel control techniques for parallel HEVs, inspired by conventional strategies. Within
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the category of parallel HEVs, a sub-category known as Through-The-Road (TTR) HEVs has been

identified as a research gap. Hence, further research on this configuration of HEVs can help improve

energy management strategies and make TTR HEVs more fuel-efficient [3].

There have been various studies conducted on the energy management of EVs with multiple energy

sources, including batteries, fuel cells, ultra-capacitors, flywheels, and solar panels. However, to

date, no academic literature has explored the use of dual-motor electric vehicles with non-identical

motors, and the effect of temperature on the efficiency of traction motors and its impact on the energy

management strategy.

The second part of the thesis, Energy management of EVs, involves the development of a backward-

facing dual-motor EV, as well as the implementation of two energy management strategies utilising

the DP method. The first DP problem assumes a constant motor temperature, whereas the second DP

problem utilises the Lumped Parameter Thermal Network (LPTN) method to estimate the tempera-

ture of the Permanent Magnet Synchronous Motors (PMSMs). This investigation examines how the

estimation and monitoring of motor temperature impact the energy management strategy.

The primary objectives of this study are listed below:

• To develop and employ a high-fidelity forward-facing parallel HEV model, based on the series

HEV model developed in [6], suitable for testing control strategies

• To study and learn from the standard control techniques for both HEVs and EVs in the literature

• To apply conventional control strategies to the developed TTR HEV model

• To utilise the insights gained by the implemented conventional control strategies to develop

novel heuristic strategies for parallel TTR HEVs

• To develop a backward-facing dual-motor electric vehicle model

• To explore the various thermal modelling techniques of the drivetrain components documented

in the literature

• To model the thermal dynamics of the electric motors, estimating the temperature at various

heat nodes
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• To apply the conventional DP control strategy to the developed dual-motor EV model

• To develop a novel energy management strategy using DP, enhancing the overall efficiency and

fuel economy of the developed dual-motor EV by incorporating the estimated motor tempera-

tures

1.3 Contributions

The main contributions of this thesis are as follows:

• The design and implementation of the heuristic methods for a parallel HEV based on the effi-

ciency maps of the powertrain components and inspired by the conventional methods used in

the literature

• The development of real-time heuristic methods for the energy management of HEVs, suitable

for industrial applications

• The development of a novel Driving Pattern Recognition (DPR) algorithm to be used in the

framework of real-time energy management strategies

• The modelling of electric motor thermal dynamics to estimate the temperature of the primary

heat paths of the traction motors in the dual-motor EV powertrains

• The design and implementation of a DP optimisation strategy for the energy management of

dual-motor EVs, considering the temperature of both motors, which provides new insights into

the optimal operation of such powertrains

1.4 Outline

In Chapter 2, a literature review of HEVs and EVs is presented. The chapter covers a brief history

of HEVs and EVs, HEV and EV architectures, as well as their respective advantages and disadvan-

tages. Furthermore, the chapter reviews vehicle modelling topology, including forward-facing and
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backward-facing modelling techniques. Finally, the chapter provides an overview of HEV and EV

control strategies, including optimisation-based, rule-based, and real-time control strategies, as well

as thermal modelling of electric motors, which includes Finite Element Method (FEM), Rotor Flux-

based Estimation, Rotor High-frequency Impedance-based Estimation, and Lumped Thermal Net-

work (LPTN) strategies. The software used in this work for modelling and optimisation is MATLAB,

and Simulink [7].

Chapter 3 describes the forward-facing modelling of a high-fidelity parallel TTR HEV, which is

then implemented into Simulink. The modelling of the powertrain components and the driver model

is explained with an emphasis on the primary source, secondary source and system integration. This

chapter mainly focuses on the significant changes and updates from the original series HEV model

in [6].

Chapter 4 introduces the optimisation-based strategy, Equivalent Consumption Minimisation Strat-

egy (ECMS), through a brief literature review. This is followed by the implementation and tuning of

the ECMS on the developed TTR vehicle model.

In Chapter 5, a family of heuristic methods inspired by ECMS have been developed with the aim

of maximising powertrain efficiency and improving fuel economy. The first method presented in

this chapter is called the Torque-levelling Threshold-changing Strategy (TTS). The chapter goes

on to discuss the design principles, tuning, and implementation of the TTS in Simulink, based on

the analysis conducted on powertrain efficiency and insights gained from the ECMS. In addition, the

chapter also introduces the Simplified Torque-levelling Threshold-changing Strategy (STTS). Finally,

two novel real-time controllers, the Real-time Torque-levelling Threshold-changing Strategy (RTTS)

and the Real-time Simplified Torque-levelling Threshold-changing Strategy (RSTTS) are developed.

In Chapter 6, the simulation results for both conventional and heuristic HEV energy management

strategies, as well as the utilised driving cycles, are presented. The TTS and STTS show impressive

performance and outperform the ECMS. Furthermore, the RTTS and RSTTS perform better than the

ECMS in most cases. The proposed novel real-time control strategies are found to be better suited for

real-driving scenarios.
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The forward-facing modelling of dual-motor EVs is explained in Chapter 7. Two traction motors

propel this electric vehicle - one at the front and one at the rear axle. The modelling of the powertrain

components and their efficiencies are presented.

In Chapter 8, two DP energy management strategies are explained and implemented for the dual-

motor electric vehicle. DP is used to solve the optimal energy management strategy problem. The first

DP is the standard method found in the literature with one state, which is the State of Charge (SOC).

The second DP considers the traction motors’ temperature variation and has three states: SOC and

the stator windings’ temperatures of both front and rear motors. The chapter also models the thermal

dynamics of the traction motors in this EV using the LPTN method, which is then validated against

experimental data provided by the industrial partner.

Chapter 8 also presents the simulation results for the energy management of EVs. The optimal

torque split between the two traction motors acquired in the first DP with one state is fed as input into

the DP framework, which considers the temperature and efficiency variations of the electric motors.

This is referred to as the ’Baseline DP’ case study. Next, the optimal torque split is determined with

knowledge of the stator windings’ temperatures of both front and rear motors and their impacts on

the PMSM efficiency and optimal energy management solution. This case study is referred to as the

’Thermal DP’. The cost functions are defined to achieve the optimal energy distribution between the

two traction motors in the Baseline and Thermal DP case studies for a given driving cycle. Finally,

the Thermal DP is compared to the Baseline DP for the same driving cycle.

The last part of this thesis, Chapter 9, provides a summary of the achievements and outlines future

work.



Chapter 2

Literature Review

2.1 Brief History

As climate change and energy concerns become more apparent, conventional fossil fuel-based vehi-

cles are being replaced by greener alternatives such as electric and hybrid vehicles. It is expected

that this alternative mode of transport will soon replace traditional vehicles, given current market

trends [8]. In response, many automotive companies are developing low-carbon vehicles such as hy-

brids and electric vehicles [4]. Some legislation has incentivised automotive companies and vehicle

users to opt for fuel-efficient options. For instance, in 2021, the UK government introduced a ban on

selling new petrol and diesel cars by 2030. This measure could make the UK the fastest G7 country

to decarbonise vehicles [9].

Besides the ban, the UK government has implemented additional measures to promote the adoption

of Electric Vehicles (EVs). As of June 2022, new homes with associated parking must have an EV

charging point, according to the government’s new EV charging requirements [10]. Furthermore, the

government has been offering a 25% subsidy on the purchase price of ultra-low emission cars since

early 2012 and has introduced tax breaks in favour of these vehicles. These initiatives are aimed

at incentivising consumers to choose eco-friendly alternatives and expedite the shift towards more

sustainable modes of transportation.

8
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The first experimental EV prototypes were built just after the discovery of electromagnetism in 1820

[11]. EVs were initially introduced as a solution in 1881, shortly after the invention of electric motors

and rechargeable batteries [12]. By 1897, EVs had taken over 28% of the market and were preferred

over ICE vehicles [13]. However, their reliance on bulky battery packs and limited driving range

hindered their widespread adoption [14]. As oil prices decreased and ICE vehicles became more

advanced, they gained more popularity and ultimately dominated the market.

HEVs were then introduced as an interim solution to EVs while technological advancements were

made in the energy sector. HEVs are often seen as a bridge between conventional cars and EVs, with

EVs being the ultimate goal. With ongoing technological advances aimed at making batteries more

powerful, governments’ pro-EV agendas, and the improvement of charging infrastructure, HEVs are

certainly a step in the right direction towards achieving emission-free vehicles [15].

In the early days of automotive transport, HEVs were primarily developed as a solution to address the

issues of EVs. The first hybrid vehicles were built by Pieper establishments in Belgium and Vendovelli

and Priestly Electric Carriage company in 1899 [16]. The former had a parallel architecture, while

the latter was a tricycle with a series architecture. In 1903, the Austrian company Jacob Lohner & Co.

developed one of the first series hybrids, the Lohner-Porsche vehicle [17]. In this design, dynamic

braking was used, in which one of the traction motors’ armatures was short-circuited or replaced by

a resistance. Different HEV architectures are further discussed in subsection 2.1.1.

While other HEVs were built from 1899 to 1914, power electronics were not incorporated into their

design until the 1960s [16]. As the limited range of EVs became more apparent, HEVs gained more

popularity in the 1990s. Major petrol and diesel car manufacturers built hybrid prototypes, such as the

Dodge Intrepid ESX 1, 2, 3, Ford Prodigy, and GM Precept in the United States. However, none of

these products made it to the production stage. In Europe, Renault developed a small parallel hybrid,

and Volkswagen prototyped an HEV called Chico. The Japanese manufacturers Toyota and Honda

made the most significant contribution in 1997, with the Toyota Prius, Honda Insight, and Honda

Civic being among the first HEVs to tackle vehicle fuel consumption [16].
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2.1.1 HEV Architectures

HEVs are categorised into four main types [1]:

1. Series Hybrid: The electric motor drives the vehicle. The engine-generator set either charges

the battery or powers the motor while coasting.

2. Parallel Hybrid: The electric motor and the engine can drive the vehicle individually or simul-

taneously.

3. Series-parallel Hybrid: Combination of both series and parallel configurations.

4. Complex Hybrid: Complex configurations that do not fall into the above categories.

These concepts are visualised in Figure 2.1. These HEVs are further sub-categorised into three main

types based on the location of the Electric Motor (EM) with respect to the transmission system:

• Pre-transmission (single-shaft): The EM is located between the engine and the transmission

system [18].

• Post-transmission (double-shaft): The electric motor is coupled to the engine branch after the

transmission system [19].

• Through-The-Road (double-drive): The engine and the EM act on two separate axles. The

only mechanical link between the two prime movers is through the road [20].

2.1.2 HEV Advantages and Disadvantages

The advantages and disadvantages of HEVs are briefly described in the following section.

Advantages

• Environmentally Friendly: HEVs reduce fossil fuel consumption and GHG emissions com-

pared to conventional vehicles and generally work in Charge-Sustaining (CS) mode in which

the final SOC of the battery at the end of the trip is close to the initial SOC [3].
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Figure 2.1: Classification of HEVs [1]

• Financial Benefits: Governments support green vehicles by introducing reduced tax bills and

incentives to help make HEVs more affordable.

• No Range Anxiety: There is little to no range anxiety associated with HEVs, as the engine is

present for backup once the battery is fully depleted. This means that users are not apprehensive

about locating charging stations [14].

Disadvantages

• Not Emission-free: HEVs have a smaller carbon footprint than ICE vehicles. However, HEVs

are still fossil fuel dependent.

• Purchase Cost: Hybrid cars are comparatively more expensive than their equivalent ICE vehi-

cles.

• Maintenance Cost: The complex nature of HEVs and their dependency on skilled mechanics

for repairs lead to high maintenance costs [3].
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• Poorer Handling: A typical HEV powertrain comprises a relatively lighter engine (compared

to a conventional car) and a powerful battery pack. Extra weight could lead to fuel inefficiency.

Hence, manufacturers try to reduce the weight of components such as EMs and batteries, lead-

ing to less support in the chassis and suspension system [14].

Parallel HEV Advantages and Disadvantages

Since the HEV under investigation in Part Energy Management of HEVs is a parallel HEV, the

advantages and disadvantages of such HEVs are briefly described in this section.

Advantages

• Energy loss caused by the indirect connection of the engine to the wheels is eliminated (i.e. no

energy form conversion) [21].

• Additional degree of freedom in direct torque supply to the wheels; this power-sharing can

optimise the power split between the electric and fuel paths. [22].

• As the powertrain does not comprise a generator, the engine and the EM can be sized for a

fraction of the maximum power. This results in compactness [21].

Disadvantages

• A clutch or some other mechanical coupling between the engine and the wheels is required [22].

• The complexity of this configuration results in a more challenging control problem. [21].

2.1.3 EV Architectures

Unlike ICE vehicles, EVs provide more design flexibility. Due to this flexibility, various EV configu-

rations have emerged, briefly explained in the following section.
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Single EM

• Conventional ICE Vehicle Converted Electric

The earliest EV type was converted from ICE vehicles [23]. An EM and battery pack replaced

the engine and the fuel tank. The transmission components used were the same as the ones

in an ICE vehicle, such as clutch, multi-ratio gearbox, and differential [4]. This configuration

was initially designed to be effective for an ICE vehicle; therefore, it did not achieve excellent

efficiency once converted to an EV as it involved unnecessary excess mass [24].

• Single EM with Final Drive

Electric motors are generally more efficient than engines and have near-maximum torque at

various speeds. The torque is reduced once the electric motor is operated above base speed due

to field-weakening. This is because the induced voltage almost equals the maximum source

voltage. For the induced voltage to be kept constant whilst the speed is increased, a negative d-

current is injected, producing a magnetic flux in the opposite direction to the permanent magnet

flux present [25]. Due to these specific characteristics of an EM, a multi-speed transmission

is unnecessary, so the clutch and the complexity associated with such a transmission can be

omitted. A single high-torque low-speed motor can be used along with a single-speed gearbox

[26–28]. This configuration of EV is one of the most dominant types in the EV market [4].

However, without a variable gearbox ratio, the motor can not be operated in a near-optimal

region with its maximum efficiency [29].

Multiple EMs

• Double EMs with Double-axle Drive

Each axle can be driven by an independent electric motor and gearbox. An appropriate power

split strategy must be chosen when traction is performed using two energy sources. This in-

troduces extra control and design flexibility. One vehicle that uses this configuration is Tesla

Model X [30], with separate front and rear electric motors, each coupled with fixed-ratio gear-

boxes.
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• Multiple EMs with Independently-driven Wheels

There is a possibility to eliminate differentials by incorporating separate electric motors to drive

left and right wheels on the same axle. This creates extra space in the chassis. Therefore, a

larger, more powerful battery can be used, resulting in a better driving range [31]. Furthermore,

with increased freedom, there is more room to implement energy management strategies to

operate these motors efficiently. This leads to increased overall efficiency and decreased energy

consumption [29]. However, an electronic differential is needed to control the torque between

the right and left wheels, which, if not done correctly, can lead to vehicle instability [27].

The cost of two small motors, the control units, and the power electronics are more expensive

than a single traction motor with the equivalent power rating and the hardware associated with

it [24, 27].

• In-wheel Motor Drive

It is possible to integrate the motor into the wheel [32]. There are still not many passenger

cars in the market that utilise this approach. They are, however, predominantly used in mobile

robotics [29, 33]. The main advantage of this method is the elimination of all the mechanical

gears and the losses associated with these parts [24]. This results in a lighter vehicle mass and

more flexibility in terms of space and the sizing of components [28, 34, 35].

2.1.4 EV Advantages and Disadvantages

In this section, the benefits and shortcomings of EVs are briefly introduced.

Advantages

• Reduced Fuel Cost and GHG Emissions

This is one of the main attractions of EVs. There are concerns that EVs could increase GHG

emissions from power plants during peak hours when fossil fuels are used to produce elec-

tricity [36]. However, taking into account other means of generating power that produce less

GHG, such as renewable sources, the GHG production from power plants due to EV penetra-
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tion is lower than that of equivalent power generation from ICE vehicles. The power plants also

produce energy in bulk, which minimises the per unit emission. With the vast integration of

renewable sources, which can be promoted and supported by EVs, the emissions from power

generation and transportation, can be reduced [37]. Over the lifetime of an EV, it produces

fewer emissions than a conventional vehicle [38].

• Higher Efficiency than Conventional Vehicles

The EV efficiency usually lies in the 70% region, whereas for ICE vehicles, the efficiency lies

in the 60 to 70% range [39]. This results in lower operating costs and increased durability of

EVs.

• Positive Impacts on the Grid

EVs facilitate the smart grid. Smart grid can make intelligent decisions based on interaction

and communication with EVs [40]. Smart grids offer robust power levels and voltage stability

and promote the integration of renewable energy sources. EVs also facilitate the bidirectional

Vehicle to Grid (V2G) system, in which the EV can return power to the grid. By incorporating

V2G, the peak power demand could be reduced to 56% [40]. This is an attractive technology

as it requires little to no change of infrastructure [41]. In a V2G framework, EV fleet operators

could potentially reduce operating costs by 26.5% [40].

• Reduced Noise Pollution

EVs produce less noise, which is an attractive characteristic, especially in urban areas.

Disadvantages

• Limited Battery Capacity

One of the main barriers to wide-scale EV adoption is the limited battery capacity [42]. The

range depends on factors beyond the battery’s capacity, such as driving style, vehicle speed, and

the use of auxiliary functions like air conditioning. This can cause range anxiety, particularly for

long-distance travel [43]. In other words, the user is concerned about finding a charging point

before the battery is fully depleted [44]. Tesla Model S 100D has a range of approximately 564

km with the air conditioning not in use [30], and the Chevrolet Bolt’s range is approximately
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383 km [45]. Although these cars can travel similar distances to ICE vehicles on a full tank

of fuel, range anxiety remains one of the barriers to entering the EV market. However, most

EVs’ range can easily support everyday urban use. [46] reports that the daily driving mileage

in the US is less than 100 miles and even lower in the UK according to UK’s Department for

Transport [47].

• Grid Dependency

EVs need electricity to charge up; this could stress the grid, especially in power-shortage re-

gions. Charging many EVs during peak time could lead to a considerable increase in electricity

demand, causing a significant grid overload and potential power cuts [48].

• Social Acceptance

The adoption of EVs, like any new technology, requires changes in certain habits related to

refueling and driving that can be challenging for some users [49].

• Long Charging Time

This is another drawback of EVs. Charging times can take several hours, depending on the

battery type, voltage level, and connector type. On the contrary, with ICE vehicles, loading the

tank with fuel takes minutes. According to a study, some EV users are willing to pay extra to

reduce charging times by an hour, ranging from $425-$3250 depending on the user [50].

• Under-developed Charging Infrastructure

Even though there has been a surge in the number of charging stations, there are still fewer than

petrol stations. Furthermore, not all charging points are compatible with every car, making this

issue even more pronounced. Some car manufacturers such as Tesla and Nissan are developing

their bespoke charging stations [8].

• High Purchase Price

EVs are often more expensive than their equivalent ICE vehicles. This is due to the high cost of

battery packs [44]. However, EVs benefit from lower operating costs compared to conventional

vehicles. Furthermore, some governments, such as the UK and Germany, have lowered tax,

insurance and parking fees for EVs to encourage people to replace conventional cars with EVs.
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With the rapid pace of technological advances and mass production, EV prices will eventually

decrease [8].

2.2 Vehicle Modelling Topology

There are two main approaches to modelling vehicles: ’Forward-facing’ and ’Backward-facing’.

2.2.1 Forward-facing

Forward-facing models take motions as inputs instead of net forces. These models have high fidelity

and follow a specific drive cycle. It is essential to include a driver model to realistically represent

a human driver controlling the vehicle, which often takes the form of a Proportional-Integral (PI)

controller in its simplest form. Inevitably, an error between the drive cycle speed trace and the

vehicle speed will occur, and the driver’s controller tries to minimise this error. This approach to

modelling tests the limits of the physical system and provides insights into the vehicle’s driveability.

Forward-facing simulations are realistic but slow in execution [4]. A forward-facing approach has

been incorporated in this work to model an HEV in Chapter 3.

2.2.2 Backward-facing

In the backward-facing modelling approach, it is assumed that the vehicle follows a specific drive

cycle [51]. Both speed and torque are imposed onto the powertrain components, and the law of

conservation of energy is applied from one component to the next. The traction forces are calculated

from the known vehicle speed and acceleration. These forces are then converted to wheel torque

and angular speed and transferred to the respective energy sources via the transmission systems. The

appropriate losses in the power flow are introduced in the form of fixed efficiencies or quasi-static

n-dimensional efficiency maps. According to [52], a backward-facing model can be considered non-

causal. The backward-facing modelling approach does not represent the dynamic behaviour of the
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components (e.g. the use of steady-state maps for the electric maps); this is the main disadvantage

compared to the forward-facing approach. However, the simulations require less computational effort

than those of forward-facing models [53]. These models are often used along with optimal control

tools to set a benchmark. Two backward-facing vehicle models are introduced in Chapter 7. The first

model computes the PMSM efficiency based on motor angular speed and torque, whereas the second

model computes the efficiency based on motor temperature, angular speed, and torque.

2.3 HEV and EV Control Strategies

Over the past two decades, various supervisory control strategies have been developed for hybrid and

electric vehicles. This section briefly introduces the main control strategies used in the field.

2.3.1 Optimisation-based Strategies

Optimisation-based control methods determine the optimal power split ratio among multiple energy

sources by solving a complex optimisation problem. These optimisation-based methods can either

be static [54, 55] or dynamic [56–58]. In dynamic optimisation, the computational object is a finite

time horizon instead of instantaneous. DP is a commonly used optimisation-based control strategy

in which a cost function is minimised over a drive cycle [59]. The dynamic optimisation approach

relies on an analytical or numerical vehicle model [16]. The optimal solution in the DP approach

is a global one. However, as this method inspects all possible solutions to find the global solution,

it is computationally intensive and poorly suited for real-time applications nor high-fidelity complex

vehicle models [16]. Even though this method can not be implemented in real-time, it can help modify

the existing rule-based strategies or inspire new methods [60]. This method is discussed in greater

detail in Chapter 7. Pontrygain’s Minimum Principle (PMP) is another popular optimisation-based

method which can find the optimal control strategy by minimising the Hamiltonian function [61].

However, this is a necessary but not sufficient condition to achieve a globally optimal solution. PMP

can not be applied directly as the co-states in the function need to be determined by iteratively trying

[62].
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Model Predictive Control (MPC) is another optimal control method in which a speed or torque predic-

tor is used to predict a finite horizon vehicle speed or torque requirement [60]. Neural Network (NN)

models could implement the information found through prediction [63], torque requirement expo-

nentially decreasing models [64], or Markov-chain (MC) [65]. The information gathered via the

prediction model is then used to design the control strategy using an optimal control algorithm such

as DP [66], nonlinear programming [67], or quadratic programming algorithm [68].

The Equivalent Consumption Minimisation Strategy (ECMS) is one of the most commonly used

optimisation-based strategies for benchmarking. The power split between the energy sources is op-

timised every instant for a specific driving cycle [69]. This strategy is discussed in greater detail in

Chapter 4. The ECMS is the most promising optimisation-based approach, preferred by automotive

manufacturers, as the cost function depends on the current system variables without relying on pre-

diction. According to [70], the fuel economy for the optimal DP solution and the sub-optimal ECMS

solution is very similar. The ECMS has a reasonable definition for the equivalence factors and is

the best benchmarking tool for high-fidelity models. However, determining the equivalence factors is

not trivial [70, 71]. DP has not been pursued in the first part of this thesis, as the HEV model under

evaluation is a high-fidelity model; therefore, it is infeasible to perform DP on such a complex model

due to its high computational load.

The control solutions’ optimal nature is very attractive, but these strategies are time-consuming and

computationally expensive, and the required apriori knowledge of the driving cycle is impractical.

Therefore, they are mainly used for benchmarking and evaluating the controllers’ optimality [5].

2.3.2 Rule-based Strategies

Rule-based control systems could be developed based on human expertise, intuition, heuristics, driv-

ing cycles and mathematical models.

Rule-based strategies can be sub-categorised into fuzzy-based strategies and deterministic methods.

In the framework of HEVs, the former method is used to minimise the fuel economy and to ensure the

SOC of the battery is sustained within a specific range whilst meeting the driver’s torque request [59].
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Unlike fuzzy-based strategies, deterministic methods usually use look-up tables, which are not real-

time data. In deterministic methods, real-time parameters are used, and linguistic languages describe

the input variables as ’High’, ’Medium’ and ’Low’. This method requires real-time operations to

obtain the knowledge and experience to tune the controller; this can be time-consuming and costly

[16].

In the load-following principle, the fuel energy source is used to ’follow’ the load power, whereas the

electric branch is ideally used at zero power levels. In theSCS design for series HEVs, the concept

of power-following is used in the Power Follower Control Strategy (PFCS) [59], and the Exclusive

Operation Strategy (XOS) [6], which incorporates a power-following behaviour inspired by PFCS. In

the SCS design for parallel HEVs, The Electric Assist Control Strategy (EACS) is used in [72], based

on the power-following principle. This method is utilised in commercial HEVs such as Toyota Prius

and Honda Insight [73]. However, its design process is time-consuming. The main drawback of the

load-following principle is that the Charge-Sustaining (CS) operation in which SOC f inal ≈ SOCinit is

dependent on the regenerative braking mechanism; therefore, the CS operation can not be achieved

for all driving cycles as some have limited amount of regenerative braking.

In the load-levelling approach, the fuel energy source is operated steadily while the electric energy

source acts as a buffer and is used to ’level’ the load [74]. Thermostat Control Strategy (TCS) and

Optimal Primary Source Strategy (OPSS) are amongst the strategies which are based on the load-

levelling principle [6]. TCS and other load-levelling methods usually apply to series HEVs, where

there is no direct mechanical connection between the engine and the wheels. Thus, the engine-

generator set can be operated more steadily [16]. Load-levelling is discussed in Chapter 5.

Amongst various heuristic methods, NN can be pointed out [75, 76]. Even though the simulations

indicate that this method can improve fuel economy, the lack of experiments makes the results less

persuasive.

Heuristic methods are easily implementable, but there is no guarantee of efficiency and robustness as

it is based on engineering experience.
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2.3.3 Real-time Control Strategies

The global optimisation methods are not directly suitable for real-world applications as they are causal

solutions. Real-time energy management must be simple enough to avoid high computational load

and keep the memory resources low so that it can be executed in real time. Several attempts have been

made to develop real-time control strategies for HEVs; the strategies in [69, 72, 77, 78] are based on

instantaneous optimisation. The cost functions in these optimisation-based real-time control strategies

are only based on the system’s current control variables rather than apriori knowledge of the driving

conditions.

The general approach to designing real-time controllers is summarised in the following design steps

[79]:

• Solve the offline optimisation-based optimal control problem globally to be used as a bench-

mark and to extract some simple rules for the real-time controller.

• Make the controller causal by solving the optimal control problem to predict future driving con-

ditions. The prediction horizon must be selected as a trade-off between the prediction accuracy

and the time scale of the dynamics of the model.

• Make the controller more robust against modelling and prediction uncertainties, for instance,

by introducing penalty functions, rule functions, or feedback control systems.

The real-time controllers introduced in this work are inspired by the heuristic methods introduced in

Chapter 5 and are discussed in detail in section 5.3.

Driving Pattern Recognition (DPR) is one of the most widely used approaches in real-time strategies

[80]. DPR contains a set of strategies designed for specific situations, such as different driving styles

or traffic conditions. However, the occasional wrong classification of driving patterns impacts the

performance even though DPR promotes robustness. In [81], a learning vector quantisation-based

DPR module was suggested. In the literature, the load-following and load-levelling approaches have

been extensively employed in rule-based SCSs for HEVs [6,16,59,72,74,82]. A novel DPR algorithm

is developed in this work and presented in section 5.3.
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2.4 Thermal Modelling of Electric Motors

Permanent Magnet Synchronous Motors (PMSMs) are widely used in the automotive and HEV/EV

sectors. PMSMs have high efficiency, power density and reliable performance [83–85]. Monitor-

ing the critical temperatures of electric machines is crucial as there can be risks of demagnetisation

and inefficient operation of the motors [86, 87]. A few methods in the literature to model electric

machines’ thermal dynamics are briefly described in this section.

2.4.1 Finite Element Method (FEM)

In FEM, multi-physics coupling is used to simulate the electromagnetic and temperature field of the

motor [88, 89]. This method has high estimation accuracy but depends on factors such as motor ge-

ometry, boundary conditions, and material properties, leading to computationally heavy and complex

solutions. Furthermore, due to the complex nature of this solution, it can only be used offline for

analysis purposes.

2.4.2 Rotor Flux-based Estimation

In [90], a method based on rotor flux has been proposed. Although this method is simple and easy

to conduct, unlike FEM, it can only predict the rotor temperature. Moreover, the estimation accuracy

depends on the observation accuracy of the rotor flux linkage; the relationship between flux linkage

and temperature is not always linear.

2.4.3 Rotor High-frequency Impedance Based Estimation

Compared to the rotor flux-based method, this estimation method has the advantage of being able to

capture the transient impedance change in the rotor. However, the injection of high-frequency signals

may lead to additional rotor losses, which could result in a significant temperature increase. Some

examples can be found in [91–93].
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2.4.4 Lumped Parameter Thermal Networks (LPTNs)

LPTN is a simplified alternative to monitor the motor temperature. This method is based on the

simplified physical motor model and its structure; LPTN can estimate the motor temperature online

[94, 95]. Three LPTN-based methods are mainly characterised by the number of thermal nodes.

Dark Grey-box LPTN

This method usually comprises two to five nodes representing the most dominant heat paths in the

motor; these LPTNs do not involve complicated motor thermal structures. The thermal parameters

are identified based on experimental data obtained from sensors [96–102].

Light Grey-box LPTN

Compared to the previous method, light grey-box LPTN involves more thermal nodes (five to fifteen

nodes), and more heat paths in the motor are considered to design the LPTN based on heat transfer

theory [103, 104]. The dependency of this LPTN method on the geometrical characteristics and the

material of the motor are the main drawbacks.

White-box LPTN

This method involves more nodes than the Light Grey-box and accurately represents the thermal

dynamics; however, the significant number of nodes leads to high computational cost [105, 106].

Comparison of LPTN Methods

In most EV and HEV applications, the Dark Grey-box LPTN method is used due to its lack of de-

pendency on the motors’ full material and geometric characteristics. Furthermore, its easy implemen-

tation and low computational cost make it suitable for real-time applications. Some EV application
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examples can be found in [96, 98, 99, 107]. The Dark Grey-box LPTN method is used in subsec-

tion 8.3.1 to estimate the temperature of the PMSM motor, which is then used as a state in an optimal

control framework in Chapter 8. The simplified nature of this method makes it suitable for optimal

control problems. Light Grey-box and White-box LPTNs are based on the heat transfer theory [108].

There is no guarantee of high accuracy with these methods as they strongly depend on the motor ge-

ometry and heat transfer characteristics of the motor material. Moreover, due to their complex nature,

they are unsuitable for real-time temperature estimation.
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Chapter 3

Hybrid Electric Vehicle Model

3.1 Background

The vehicle model considered in the present work is a parallel TTR HEV with two different propul-

sion systems acting on separate axles. The powertrain architecture of the TTR HEV is presented

in Figure 3.1. The engine branch (primary power source) drives the front axle. The battery branch

(secondary power source) includes a battery, DC-DC converter, DC link, DC/AC inverter, PMSM

and a fixed gear transmission connected to the rear axle. Figure 3.2 shows a block diagram with

detailed interconnections of powertrain components and the Supervisory Control System (SCS). In

the first section of the work, the powertrain components used are the same as those in the series HEV

model developed in [6] and [109]. This section describes the TTR HEV powertrain model, with the

modelling of each powertrain component and its integration.

3.2 Primary Source

In this section, two engine models are presented. Model Alpha in section 3.2.1 represents a high-

fidelity 2.0L diesel engine. Model Beta in section 3.2.1 represents a 2.0L petrol engine.

26
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Figure 3.2: Block diagram showing the interconnection of the Battery, DC-DC converter, DC link,
Inverter, PMSM, Gearbox (Gbox), Rear transmission system (Transmission), ICE, SCS, Driver and
Car.

3.2.1 Engine Model

Engine Model Alpha

Similarly to the engine model in [110], the present work considers a turbocharged Puma 2.0L diesel

engine with the engine efficiency map ηe(Te,ωe) presented in Figure 3.3a, which is obtained from

Ricardo Wave full CFD model simulation results as a function of the engine torque Te and engine
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speed ωe [111]. The engine dynamics are as follows:

dm f

dt
= q f (Te,ωe). (3.1)

The fuel chemical power is:

Pf = QLHV q f (Te,ωe) (3.2)

where m f and q f (Te,ωe) are the engine fuel mass and fuel consumption rate, respectively. QLHV is

the fuel lower heating value, which is converted into the engine mechanical power Pe:

Pe = Teωe (3.3)

Pe = ηe(Te,ωe)Pf . (3.4)

According to (3.2) and (3.4), the fuel consumption rate q f (Te,ωe) is determined by

q f (Te,ωe) =
Pe

ηe(Te,ωe)QLHV
. (3.5)

The engine parameters are summarised in Table 3.1.
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(a) Engine efficiency map for varying engine load
torque Te, and engine speed ωe, for model Alpha.
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(b) Engine efficiency map for varying engine load
power Pe, and engine speed ωe, for model Alpha.

Figure 3.3: Engine model Alpha efficiency maps
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Table 3.1: Engine model Alpha parameters

Parameter Symbol Value
Engine max power Pe,max 58 kW

Lower heating value QLHV 42.8 MJ/kg
Engine idle speed ωidle 800 rpm

Engine maximum speed ωmax 3200 rpm

Engine Model Beta

This section describes the second engine model, referred to as model Beta. The main engine pa-

rameters are listed in Table 3.2. Similarly to [112], the present work considers a 2.0L petrol engine

with the efficiency map ηe(Te,ωe) presented in Figure 3.4a. Efficiency has been displayed for every

engine torque Te and engine speed ωe operating point in Figure 3.4a, and for every engine power Pe

and engine speed ωe operating point in Figure 3.4b.

Table 3.2: Engine model Beta parameters

Parameter Symbol Value
Engine max power Pe,max 120 kW

Lower heating value QLHV 44.4 MJ/kg
Engine idle speed ωidle 1000 rpm

Engine maximum speed ωmax 6000 rpm

(a) Engine efficiency map for varying engine load
torque Te, and engine speed ωe, for model Beta.

(b) Engine efficiency map for varying engine load
power Pe, and engine speed ωe, for model Beta.

Figure 3.4: Engine model Beta efficiency maps
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3.2.2 Start-Stop System (SSS)

To consider the losses associated with engine switching on/off and engine idling, a Start-Stop System

(SSS) is also included in the vehicle model similar to the one used in [6]. In this work, the penalty

has been defined according to the method used in [6] and in such a way that it corresponds to the fuel

consumed by idling the ICE for 1s. A penalty of 0.11g is added to the base fuel consumption every

time the engine switches on, which is captured when the ICE speed exceeds the idle speed, defined

for models Alpha and Beta in Table 3.1 and Table 3.2, respectively.

3.2.3 ICE Gearbox

This vehicle model uses a 6-speed automatic gearbox to connect the ICE and the front axle. The

engine speed ωe is determined by the vehicle wheel speed ωwheel , and is described as follows:

ωe = gei g f d ωwheel (3.6)

with gei being the gear ratio of the ith gear and g f d representing the final drive ratio. The gear ratios

are specified in Table 3.3, which are changed according to the vehicle speed shown in Figure 3.5.

The gearbox efficiency is assumed to be a constant value of ηg=0.96. The ICE driving power Ped is

described as follows:

Ped = Peηg (3.7)

where Pe is the ICE output power and Pe,d is the driving power of the primary source.

Table 3.3: Gear ratio values

Gear number Gear ratio Vehicle velocity threshold km/h
1st 3.20 15
2nd 1.62 30
3rd 1.28 52
4th 0.91 72
5th 0.67 100
6th 0.53 120

Final drive ratio 4.30 -
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Figure 3.5: Gear ratio as a function of vehicle speed.

3.3 Secondary Source

The secondary source of this HEV is comprised of a battery, DC-DC converter, DC link, Inverter,

PMSM and motor transmissions. The modelling of these components is described in this section.

3.3.1 Battery

In this HEV model, a Lithium-ion battery is used, and the battery model is built according to [113]

and [114]. The battery voltage is:

Vb = Eb −RbIb (3.8)

with Ib being the average current drawn from the battery and Eb being the open circuit voltage defined

by:

Eb =


E0 − QmaxK1Q

Qmax−Q − QmaxK2I∗b
Qmax−Q +Aexp(−B.Q), I∗b ≥ 0

E0 − QmaxK1Q
Qmax−Q − QmaxK2I∗b

Q−0.1Qmax
+Aexp(−B.Q), I∗b < 0

(3.9)

where Q is the consumed charge, and i∗b is the filtered battery current which can be expressed by:

I∗b =
1

τrs+1
Ib, (3.10)

with s being the standard Laplace variable. By defining the battery state of charge (SOC) as SOC ≜

1−Q/Qmax, the battery dynamics are presented as:

d
dt
(SOC) =− Ib

Qmax
. (3.11)
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The battery parameters are summarised in Table 3.4.

Table 3.4: Li-on battery parameters

Parameter Symbol Value
Rated capacity Qmax 14.4 Ah

Nominal voltage Vnom 296 V
Initial state of charge SOCinit 65%

Battery constant voltage E0 320.6795 V
Polarisation constant K1 0.116 V/(Ah)

Polarisation resistance K2 0.116 Ω

Internal resistance Rb 0.2056 Ω

Time constant for filtered current τr 10 s
Exponential zone amplitude A 25.1477 V

Exponential zone time constant inverse B 4.2404 (Ah)−1

Battery maximum power Pb,max 42 kW
Battery minimum power Pb,min -21 kW

3.3.2 DC-DC Converter

The bidirectional DC-DC converter used in the model connects the battery to the DC link and in-

creases the battery voltage to a higher level. The DC-DC converter dynamics have been described

in [115], and its efficiency against various load powers is presented in Figure 3.6. The converter’s

average efficiency is approximately 96%; however, the efficiency becomes very low at low power

loads and rises quickly as the load power increases. Therefore, to ensure high operation efficiency,

low power loads must be avoided.

3.3.3 DC Link

The DC link comprises a capacitor Co=3 mF, operated with a constant voltage vdc,re f =700 V, using an

appropriate power flow controller. The dynamics of the DC link are described as follows:

Co
dvc

dt
= ISS − Ilm (3.12)

where vc is the DC link voltage, ISS is the current coming from the DC-DC converter and Ilm is the

current drawn from the inverter. In the present work, ISS < 0 indicates a charging operation, and

ISS < 0 represents a discharging operation.
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3.3.4 Inverter

The PMSM is connected to the DC link through a bi-directional inverter. The detailed model of

the inverter can be found in [6]. The inverter’s efficiency against various load powers is shown in

Figure 3.7.
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Figure 3.6: DC-DC converter efficiency for varying values of load power.
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Figure 3.7: Inverter efficiency for varying values of load power.

3.3.5 Permanent Magnet Synchronous Motor (PMSM)

The PMSM model is based on the EVO Electric AFM-140 [116], and its detailed dynamics described

by the standard 2-phase d-q rotating reference frame can be found in [6]. In the present work, the max-
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imum speed of the PMSM is 5000 rpm, and the maximum output torque is 400 Nm. The efficiency

map of the PMSM against the rotor speed ωm and load torque Tm is shown in Figure 3.8.

Figure 3.8: PMSM steady-state power efficiency map for variations in the load torque Tm, and rotor
speed ωm. As only forward vehicle motion is considered in this work, the rotor speed is always non-
negative, and the PMSM has two modes of operation: 1) positive Tm (motoring) and 2) negative Tm
(regenerating). The contours correspond to constant efficiencies in the range 75-96%.

3.3.6 PMSM Transmission

The PMSM is mechanically connected to the rear axle via a fixed-gear transmission. The motor speed

ωm, is determined by the vehicle wheel speed ωwheel , and is described as follows:

ωm = gmωwheel (3.13)
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with gm=4.3. In this HEV model, the transmission efficiency is assumed to be ηt=0.96. The following

equation describes the power transmission:

Pmd = Pmη
sign(Pm)
t (3.14)

where Pm = ωmTm is the motor mechanical power, and Pmd is the electrical driving power.

3.4 Driver Model

In the TTR architecture, there is no mechanical connection between the ICE and the motor. Despite

both axles running at the same speed, the engine and the electric motor can provide propulsion load

individually. The forward velocity of the vehicle vcar follows the reference velocity vcar,re f , which is

given by a specific driving cycle. The mathematical form of the driver model is defined as:

Tre f = kP(vcar − vcar,re f )+ kI

∫
(vcar − vcar,re f ) dt (3.15)

where v(t) = vcar − vcar,re f , and the PI gains are tuned by trial and error. In this work, only the

longitudinal motion of the vehicle is considered; hence a PI model would suffice.

3.5 System Integration

The model used in this work captures the longitudinal vehicle dynamics and is based on the multi-

body model presented in [117]. The forward and vertical translations of the main body and the

pitch rotation are captured. The front wheel is connected to the engine shaft via a 6-speed automatic

transmission. The rear wheel is connected to the motor shaft via a fixed-ratio gearbox. The parameters

used in this model represent an average European saloon. The total mass is 1476.6 kg, the drag

coefficient is 0.35, and the pitch inertia is 2152.1 kgm2. The vehicle parameters and detailed multi-

body dynamic model can be found in [117]. The car dynamics are implemented in Simulink using

the SimMechanics toolbox.
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The total propulsion load PPL = Tre f ωwheel , is the sum of (3.7), and (3.14) which are the powers

provided by the fuel path Ped , and the electrical path Pmd , respectively.

3.6 Chapter Summary

The modelling of the powertrain components of a high-fidelity TTR HEV model was described along

with their interconnection. Emphasis was given to these components’ efficiencies, performance-

related core operational behaviour, and the significant changes and updates from the original series

hybrid model presented in [6]. Two engine models have been introduced: Alpha and Beta. Engine

model Alpha is a turbo-charged diesel engine which includes engine dynamics, whereas engine model

Beta is a look-up table which evaluates fuel economy based on the engine torque demand and engine

speed. The presented high-fidelity parallel TTR HEV vehicle model is used in the framework of

conventional control strategies in Chapter 4 and novel heuristic methods in Chapter 5.



Chapter 4

Conventional Control Strategies for the

Energy Management of HEVs

This section describes the design of the most common conventional control strategy ECMS. The SCS

decides how the requested power demand for a given driving cycle is distributed between the multiple

energy sources in the vehicle’s powertrain. This method is implemented on the TTR vehicle model,

presented in Chapter 3. The implementation of ECMS provides insights for new heuristic control

strategy design, used to benchmark the developed novel heuristic strategies in section 5.1. In addition

to the ECMS, a uniform evaluation rule for the fuel economy is also presented to assess different

control strategies.

4.1 Design and Implementation of ECMS

As a conventional control strategy for HEVs, the ECMS has been widely studied in the literature

[5, 69, 118]. The ECMS can achieve similar control performance as DP for simple vehicle models

[5, 119]. The ECMS can benchmark against other energy management control strategies, especially

for complex vehicle models for which the DP is unsolvable; however, ECMS may not achieve optimal

global solutions.

37
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4.1.1 Fuel Economy Evaluation

To evaluate various energy management control strategies, a uniform rule is proposed for calculating

fuel economy:

me f c =


m f +Sd,e f c∆SOC QmaxEb

QLHV
∆SOC ≥ 0

m f +Sc,e f c∆SOC QmaxEb
QLHV

∆SOC < 0
, (4.1)

where Sd,e f c is the discharging equivalence factor, Sc,e f c is the charging equivalence factor, ∆SOC =

SOCinit − SOC f inal , and Eb is the battery open-circuit voltage. The SCS used to derive these equiva-

lence factors is a simple Proportional (P) control strategy according to [120], given by:

Ped,re f = ue f c PPL (4.2)

where ue f c is a constant. A sweep is then performed for ue f c ∈ [1−α,1+α], in steps of 0.05 with

α=0.5 in this work, to obtain a wide set of power shares between the primary and secondary sources.

According to the line-chart method in [120], at the end of each drive cycle, the accumulative values of

the electrical energy Ee presented in Equation 4.3, and the fuel energy E f presented in Equation 4.4,

for every ue f c as specified in Equation 4.2 are collected and plotted against each other in Figure 4.1 and

Figure 4.3, for the model Alpha and Beta, respectively. The slope of the plot for ue f c ≥ 1, corresponds

to the negative value of Sc,e f c and the slope of the line plotted for ue f c < 1, gives the negative value of

Sd,e f c. The Equivalent Fuel Consumption (EFC) factors can intuitively be regarded as the conversion

factors between the fuel energy and the electrical energy for discharging (data marked as plus signs),

and charging (data marked as circles), respectively.

Ee = ∆SOC Qmax (4.3)

E f = m f QLHV (4.4)

The EFC equivalence factors are evaluated for every driving cycle and summarised in Table 4.1 and

Table 4.2, for the model Alpha and Beta, respectively. The equivalence factors are then used to

calculate the fuel economy for various energy management strategies.
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Table 4.1: EFC equivalence factors for the model Alpha

Drive cycle Sc,e f c Sd,e f c
WL-L 1.4256 3.1823
WL-M 1.5176 3.1368
WL-H 1.8464 3.2806
WL-E 2.3912 3.7198

Table 4.2: EFC equivalence factors for the model Beta

Drive cycle Sc,e f c Sd,e f c
WL-L 3.3934 4.3344
WL-M 3.4386 4.0228
WL-H 3.6725 3.4379
WL-E 2.3743 3.2261

4.1.2 Equivalent Fuel Consumption Minimisation Strategy (ECMS)

This section describes the optimisation problem formulation for ECMS using the EFC equivalence

factors described in subsection 4.1.1. In the ECMS, the objective is to minimise the equivalent fuel

consumption meq, defined as:

meq =
∫ t f

0
q̇eq(Ped,vre f ,Pmd,Sd,Sc)dt (4.5)

with

q̇eq =


q̇ f (Ped,vre f )+Sd

Pmd
QLHV

Pmd ≥ 0

q̇ f (Ped,vre f )+Sc
Pmd

QLHV
Pmd < 0.

(4.6)

with q̇eq being the equivalent fuel consumption rate and t f being the duration of the given drive cycle.

The ECMS equivalence factors Sd and Sc are constant over each driving cycle and are used to evaluate

the fuel equivalent of the positive and negative electrical energies used over the corresponding driving

cycle [120]. Based on PMP, the optimisation problem can be formulated as follows:
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min
u

q̇eq(Ped,vre f ,Pmd,Sd,Sc) (4.7a)

subject to : PPL = Ped +Pmd (4.7b)

0 ≤ Ped ≤ Pedmax (4.7c)

Pmdmin ≤ Pmd ≤ Pmdmax (4.7d)

SOCL ≤ SOC ≤ SOCU (4.7e)

q f (0) = 0, SOC(0) = 0.65 (4.7f)

where Pedmax denotes the maximum power of the primary source, Pmdmin and Pmdmax represent the

minimum and maximum power of the secondary source, respectively. These values can be calculated

from Pemax, Pbmin and Pbmax.

Thus, for each time instant t, a given driving cycle with the speed vre f , propulsion load PPL =

Ped +Pmd , and the engine angular speed ωe, an optimal power share factor solution of us f ≜ Ped/PPL

is determined for each pair of equivalence factors Sd and Sc. To select an optimal (Sd,Sc), the opti-

misation problem is repeated for various (Sd,Sc) pairs. A sweep is performed in steps of 0.1 for Sd

and Sc. As the HEV model is complex, the regions where the sweep for Sd and Sc take place must

be limited and well-defined. The derived EFC equivalence factors presented in Table 4.1, and Ta-

ble 4.2 can be used as a guideline to appropriately select the sweep intervals for Sd and Sc; otherwise,

the computational time of this method would be too long. This means that the solution achieved by

ECMS is not globally optimal. The optimal (Sd,Sc) pair is the one that minimises the equivalent fuel

consumption me f c. The optimal control maps for four standard drive cycles are shown in Figure 4.2

and Figure 4.4, and the corresponding optimal equivalence factors are summarised in Table 4.3 and

Table 4.4 for the model Alpha and Beta, respectively.

Table 4.3: Optimal ECMS equivalence factors for the model Alpha

Driving cycle Sc Sd
WL-L 1.8 4.1
WL-M 1.4 3.7
WL-H 1.6 3.7
WL-E 2.4 3.4
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Figure 4.1: Correlation between the electrical energy Ee, and the fuel energy E f , for driving cycles
WL-L (a), WL-M (b), WL-H (c) and WL-E (d) for the model Alpha.

Table 4.4: Optimal ECMS equivalence factors for the model Beta

Driving cycle Sc Sd
WL-L 2.8 4.4
WL-M 2.7 4.3
WL-H 2.8 4.1
WL-E 2.6 3.6
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(a) WL-L (b) WL-M

(c) WL-H (d) WL-E

Figure 4.2: Optimal ECMS power share factor maps for the standard driving cycles for the model
Alpha; dark blue corresponds to pure electric mode, and white represents the infeasible region. The
maps are for driving cycles WL-L (a), WL-M (b), WL-H (c) and WL-E (d).
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(a) WL-L (b) WL-M

(c) WL-H (d) WL-E

Figure 4.3: Correlation between the electrical energy Ee, and the fuel energy E f , for driving cycles
WL-L (a), WL-M (b), WL-H (c) and WL-E (d) for the model Beta.
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(a) WL-L (b) WL-M

(c) WL-H (d) WL-E

Figure 4.4: Optimal ECMS power share factor maps for the standard driving cycles for the model
Beta; dark blue corresponds to pure electric mode, and white represents the infeasible region. The
maps are for driving cycles WL-L (a), WL-M (b), WL-H (c) and WL-E (d).
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4.2 Chapter Summary

The conventional strategy ECMS was described and implemented on the developed TTR HEV model

from Chapter 3. The optimal equivalence factors were identified for two models (i.e. the model Alpha

and Beta). The EFC optimal equivalence factors were then used to compute the fuel economy in four

standardised drive cycles WL-L, WL-M, WL-H and WL-E. This method is used as a benchmark in

the subsequent chapters of this part of the thesis to evaluate the performance of the heuristic methods

implemented in Chapter 5.



Chapter 5

Heuristic Control Strategies for the Energy

Management of HEVs

In this chapter, the knowledge gained from implementing the ECMS presented in Chapter 4 is utilised

to develop heuristic strategies. The chapter starts with the Torque-levelling Threshold-changing Strat-

egy (TTS) in section 5.1, followed by the simplified version, Simplified Torque-levelling Threshold-

changing Strategy (STTS) in section 5.2. The real-time versions, Real-time Torque-levelling Threshold-

changing Strategy (RTTS) and Real-time Simplified Torque-levelling Threshold-changing Strategy

(RSTTS), are discussed in subsection 5.3.1 and subsection 5.3.2, respectively.

5.1 Torque-Levelling Threshold-Changing Strategy (TTS)

This section describes the main design principles of the TTS inspired by [112, 121].

Torque-levelling

In the load-levelling approach, the fuel energy source is operated steadily while the electric energy

source acts as a buffer and is used to ’level’ the load [74]. The TCS and OPSS are amongst the

strategies which are based on the load-levelling principle [6]. In [72] and [82], the SCS of the parallel

46
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HEV is based on the load-levelling concept, in which the engine’s operating point is forced to be at

or near the maximal efficiency point; this requires the engine power to be changed accordingly. The

TCS, as well as other load-levelling methods, are usually applicable to series HEVs, in which there is

no direct mechanical connection between the engine and the wheels. Thus, the engine-generator set

can be operated more steadily [16].

In the TCS, the state of the engine (i.e. on/off) is controlled by the SOC of the battery. As the SOC of

the battery reaches the upper limit, the engine is turned off, and the vehicle is propelled only using the

electrical power source. Once the SOC of the battery hits the lower limit, the engine is turned back

on again. As long as the engine is on, it is operated on its optimal curve.

In a parallel architecture, the engine speed is constrained by the wheel speed as there is a mechanical

connection between them (i.e. the transmission). Therefore, there is more control over the choice of

the engine rather than wheel speed. By observing the typical engine efficiency maps such as the one

shown in Figure 3.3b and Figure 3.4b, it can be observed that for constant power, as the engine speed

increases, the efficiency fluctuates and in most cases, decreases. The engine’s operation is infeasible

at high powers and low speeds due to torque saturation.

The above-mentioned issues and remarks call for a new load-levelling strategy for parallel HEVs, in

which constant engine torque is applied, irrespective of the engine speed.

The new concept of ’Torque-levelling’ was inspired by the power-following concept. For a constant

load power, the power share factor increases as the engine speed increases (i.e. vertically). This trend

can also be seen in the heuristic control maps Figure 5.1 and Figure 5.2, which will be discussed in

Chapter 6. A similar toque-levelling behaviour can be observed in ECMS control maps visualised in

Figure 4.2.

Threshold-changing

The HEV is operated in pure electric mode if the load power is lower than the power threshold. In

this concept, power thresholds determine the activation of the engine. This mechanism has been

used in the context of series HEVs in strategies such as the Efficiency Maximising Map Strategy
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(EMMS), OPSS, and XOS [6, 122]; these thresholds are generally SOC-dependent; The operation

of the secondary source is encouraged when SOC is high and discouraged when SOC is low; this

mechanism leads to a more effective CS operation compared to the state-changing approaches such

as TCS and PFCS [6]. In parallel HEVs, the threshold-changing mechanism has also been used in

EACS and ECMS.

The above-mentioned design principles can now be applied to develop a novel heuristic control strat-

egy for parallel HEVs. The power thresholds in this work are both SOC and engine speed dependent:

Pedmin(SOC,ωe) = Pth +Pth
SOC−SOCmid

SOCrange
+Pω +Pω

ωe −ωmid

ωrange

= Pth
SOC−SOCmin

SOCrange
+Pω

ωe −ωmin

ωrange
(5.1)

where Pth and Pω are the power thresholds dependent on SOC and engine speed (ωe), respectively.

Xmid =
XU+XL

2 , Xrange =
XU−XL

2 with X ∈ {SOC,ωe}, XU being the upper limit and XL being the lower

limit and Pedmin being the minimum engine driving power. The control maps of the TTS for engine

model Alpha and Beta are presented in Figure 5.1 and Figure 5.2, respectively, with two cross-sections

at ω = ωmid and SOC = SOCmid taken from a 3D map of SOC, ωe and PPL. In these control maps,

Ted is the output torque from the primary power source, Pedmax is the maximum engine driving power,

and Pmdmax is the maximum secondary source driving power.

The operating rules of the TTS are presented in Figure 5.3. The control map in Figure 5.3a is captured

at the cross-section ω = ωmid , in which the speed-dependent threshold Pω decides whether the engine

is operated with constant torque. If Pω < PPL < Pedmax and SOCU < SOC < SOCL, then the torque-

levelling mechanism is applied, and the engine is operated with a constant torque Ted = Tc (green

regions). If SOC < SOCL or PPL > Pedmax, then PPL = Pedmax (blue regions). This design uses insights

from rule-based strategies developed for series HEVs such as OPSS and XOS [6]. The control map in

Figure 5.3b is captured at the cross-section SOC = SOCmid , in which the SOC-dependent threshold Pth

defines the slope of the map. The threshold-changing mechanism visualised in Figure 5.3 is similar

to the engine’s activation pattern at medium loads and medium to high engine speeds in the ECMS.

When Pth < PPL < Pemax and ωL < ω < ωU , then the torque-levelling approach is applied (green



5.1. Torque-Levelling Threshold-Changing Strategy (TTS) 49

Figure 5.1: Optimal TTS power share factor for WL-L, WL-M, WL-H and WL-E, left to right,
respectively; the top row consists of maps at the cross-section of ω = ωmid and the bottom row at
SOC = SOCmid . Dark blue corresponds to pure electric mode, and white represents the infeasible
region. These maps are for the engine model Alpha.

Figure 5.2: Optimal TTS power share factor for WL-L, WL-M, WL-H and WL-E, left to right,
respectively; the top row consists of maps at the cross-section of ω = ωmid and the bottom row at
SOC = SOCmid . Dark blue corresponds to pure electric mode, and white represents the infeasible
region. These maps are for the engine model Beta.
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regions). The TTS has three tuning parameters and a reduced tuning time compared to the ECMS.

The globally tuned optimal parameters for the TTS are summarised in Table 5.1 for the model Alpha

and in Table 5.2 for Beta.

O PPL

SOC

1
SOCU

SOCL

Pω Pmdmax Pedmax Pmdmax+
Pedmax

Ped = Pedmax

Ped = 0 Ted = Tc

(a) The cross-section of control rules at ωe = ωmid .

O PPL

SOC

ωU

ωL

Pth Pmdmax Pedmax Pmdmax+
Pedmax

P e
d
=

P e
dm

ax

Ped = 0
Ted = Tc

(b) The cross-section of control rules at SOC =
SOCmid .

Figure 5.3: The TTS operates in three distinct modes depending on the given SOC, ωe and PPL:
Electric mode (yellow), constant ICE torque mode (green), maximum ICE power mode (blue). White
represents the infeasible region.

5.2 Simplified Torque-levelling Threshold-changing Strategy

(STTS)

The engine speed variation is not significant during all standardised driving cycles studied in this

work; therefore, to eliminate a tuning parameter and to make TTS more practical, a simplified version
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Table 5.1: TTS optimal parameters for the model Alpha

Driving cycle Pth Pω Tc
WL-L 0.6 0.1 41
WL-M 0.5 0.5 39
WL-H 0.5 0.5 53
WL-E 1.1 1.1 102.5

Table 5.2: TTS optimal parameters for the model Beta

Driving cycle Pth Pω Tc
WL-L 4.8 10.8 101
WL-M 9.5 9.5 152
WL-H 5.8 14.4 153
WL-E 13 15 226

is introduced, in which the design parameter Pω is eliminated. The threshold equation is reduced from

Equation 5.1 to:

Pedmin(SOC) = Pth +Pth
SOC−SOCmin

SOCrange
(5.2)

The STTS modifies the threshold to be SOC-dependent only. The globally tuned optimal parameters

for the STTS are summarised in Table 5.3 for the model Alpha.

Table 5.3: STTS optimal parameters for the model Alpha

Driving cycle Pth Tc
WL-L 0.3 42
WL-M 0.3 38.5
WL-H 0.3 53
WL-E 0.5 102

5.3 Novel Real-time Heuristic Control Strategies

This section aims to develop real-time versions of the TTS and STTS to facilitate practical applica-

tions. The main idea is to make the TTS and STTS causal (i.e. not relying on apriori knowledge).

As discussed in section 5.1 and section 5.2, the three design parameters Pth, Pω , and Tc in the TTS

and Pth, and Tc in the STTS, need to be determined by an exhaustive search or global tuning for

each given drive cycle. In practice, the controller has limited memory resources and computational

capacity; therefore, relying on the prediction of future driving conditions and solving a deterministic
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optimal control online is not suitable [79]. As a result, more computational time can be spent on

modelling. From a control perspective, this corresponds to a levelling problem in which SOC shall

be kept as close as possible to SOCinit to prevent battery overcharge or depletion [123]. In the litera-

ture, few attempts have been made to implement pattern recognition algorithms [70,80]. This section

proposes real-time updating laws to determine the TTS and STTS parameters online based on a novel

Driving Pattern Recognition (DPR) approach and SOC-dependent feedback controllers to achieve CS

operation.

5.3.1 Real-time Torque-levelling Threshold-changing Strategy (RTTS)

Most driving cycles (standardised or experimental) comprise low, medium, high and extra high-speed

segments. Inspired by this remark, a novel DPR algorithm is proposed with four representative driving

patterns (i.e. WL-L, WL-M, WL-H and WL-E). Each driving pattern is associated with a set of TTS

optimal parameters presented in Table 5.1 and Table 5.2, along with real-time updating laws for the

control parameters.

The main idea is to refresh the power thresholds Pth, Pω , and the constant engine torque Tc, accord-

ing to the SOC and propulsion load PPL. To increase the robustness of the controllers, a feedback

control system is introduced to account for unexpected events such as driver behaviour and road con-

ditions. Each driving pattern is associated with a pre-defined maximum propulsion load Pi
PL, and a

pre-defined maximum vehicle speed vi, with i ∈ {L,M,H,E} representing the specific driving cycle.

The schematic diagram for the DPR algorithm is presented in Figure 5.4. By employing this algo-

rithm, the driving pattern at each time instant can be recognised; therefore, the instantaneous engine

torque Tc is computed, with T i
c being the TTS optimal constant engine torque value determined by

the DPR logic. The constant engine torque level for each driving cycle is the TTS optimal torque

identified for every drive cycle in Table 5.1 and Table 5.2. Furthermore, to ensure a CS operation of

the RTTS, a fine-tuned PI controller is incorporated along with the pattern recognition module. The

real-time engine torque is determined as follows:

Tc(t) = T i
c (t)+KT

P esoc(t)+KT
I

∫ t

0
esoc(t)dt (5.3)
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Figure 5.4: DPR block diagram.

where esoc(t)≜ SOCinit −SOC(t), KT
P , KT

I represent the proportional and integral gains of the torque-

feedback PI controller, and T i
c represents the optimal TTS constant engine torque value for each

driving cycle taken from Table 5.1 and Table 5.2 for the models Alpha and Beta, respectively. To

further improve efficiency, an appropriate minimum engine torque for every engine speed is also

incorporated:

Tc(t) = max{T i
c (t)+KT

P esoc(t)+KT
I

∫ t

0
esoc(τ)dτ,Temin(ωe)}, (5.4)

with Temin(ωe) being the minimum speed-dependent engine torque corresponding to an ICE efficiency

of 30%.

For each of the two threshold parameters Pth and Pω , a PI controller is designed to make RTTS

adaptive to real-time driving conditions:

Pth(t) = PL
th +Kth

P esoc(t)+Kth
I

∫ t

0
esoc(τ)dτ (5.5)

Pω(t) = PL
ω +Kω

P esoc(t)+Kω
I

∫ t

0
esoc(τ)dτ (5.6)

where PL
th and PL

ω are the optimal power threshold values for WL-L since a low speed characterises

most drive cycles at the very beginning; Kth
P and Kω

P are the power thresholds feedback loops’ pro-
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portional gain factors, and Kth
I and Kω

I are the power thresholds feedback loops’ integral gain factors.

5.3.2 Real-time Simplified Torque-levelling Threshold-changing Strategy

(RSTTS)

The RSTTS is similar to the RTTS in principle, with one less tunable power threshold parameter. The

main idea is to update the control parameters Pth and Tc at every time instant, incorporating the DPR

algorithm visualised in Figure 5.4. A PI controller is used to compute the value of the power threshold

Pth, which is presented in Equation 5.5.

A second PI controller is used to compute the value of Tc online as in Equation 5.4 with T i
c being the

optimal STTS engine torque value for every driving cycle taken from Table 5.3.
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5.4 Chapter Summary

This chapter has discussed insights gained from the ECMS presented in Chapter 4; these insights

served as design principles for developing novel heuristic control strategies.

The TTS and the STTS were developed using insights from [121] and implemented on the TTR

HEV model presented in Chapter 3. The TTS and STTS were benchmarked against the conven-

tional strategy ECMS, presented in Chapter 4. With simple rules and tunable parameters, TTS is

computationally-efficient and easy to implement on any parallel HEV. The two main design principles

of TTS are ’Torque-levelling’ and ’Threshold-changing’. The STTS uses one less tunable threshold

parameter but is similar in principle.

To show the effectiveness of TTS, a novel real-time controller, RTTS, was developed based on a

novel DPR algorithm. In practice, the vehicle controllers need more memory resources and compu-

tational capacity; therefore, relying on predicting future driving conditions and solving a real-time

deterministic optimal control problem is unrealistic.

The TTS predefined power thresholds Pth and Pω , and the constant torque level Tc, are updated in

real-time based on SOC and the propulsion load. To increase the robustness of the controllers, three

feedback control loops in the RTTS and two feedback control loops in the RSTTS were incorporated

to account for unexpected events such as driver behaviour and road load and to achieve CS operation.



Chapter 6

Simulation Results for the Energy

Management of HEVs

The ECMS presented in Chapter 4 and the heuristic control strategies (TTS, STTS, RTTS and RSTTS)

presented in Chapter 5 have been implemented on the TTR HEV model shown in Chapter 3 to eval-

uate the effectiveness of the proposed control strategies. In this study, simulations are conducted on

the four segments of the Worldwide Harmonised Light vehicle Test Procedure (WLTP) (WL-L (low

speed), WL-M (medium speed), WL-H (high speed) and WL-E (extra-high speed)) [124], illustrated

in Figure 6.1. In addition, an experimental drive cycle measured by a data acquisition device on a

rural road in London [125] is used. This drive cycle is referred to as the Experimental drive cycle and

is presented in Figure 6.11.

6.1 Implementation of the ECMS, TTS and STTS

In this section, the optimal control maps produced by the ECMS (as shown in Figure 4.2 and Fig-

ure 4.4) are implemented on the models Alpha and Beta. Moreover, the TTS is implemented on the

same models. The STTS is only implemented on the model Alpha. The corresponding power profiles

are visualised and analysed in subsection 6.1.1, SOC profiles in subsection 6.1.2 and fuel economy

results in subsection 6.1.3.

56
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Figure 6.1: Four components of the WLTP (WL-L, WL-M, WL-H and WL-E).

6.1.1 Power Profiles

ECMS Profiles

The Model Alpha ECMS power profiles, which show the power distribution across the primary and

secondary sources, are presented in Figure 6.2 for the WL-L, WL-M, WL-H, and WL-E segments of

the WLTP. These power profiles show that pure electric operating mode is utilised at low power loads,

which is unsurprising as the engine efficiency is relatively low in these regions. In the WL-L and the

WL-E, when the engine is active, it often delivers more power than the requested load and charges

the battery. During the WL-M and WL-H, the ICE works mainly with a load-following mode since

the engine efficiency is generally high at such loads (as seen in the engine efficiency map presented in

Figure 3.3b). In the WL-E, the ECMS often operates the powertrain with a hybrid mode as the average

propulsion load demand is high. In this case, the primary and the secondary power sources drive the

vehicle simultaneously, with the ICE being the primary power source. The power profiles of model

Beta, presented in Figure 6.3, exhibit a similar trend to those of model Alpha, with pure electric

operation at low loads and ICE activation at higher loads. In all driving cycles, the ICE generates

more power than the propulsion load demand, resulting in charging the battery. This is because the
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engine model Beta has a higher rated power than the engine model Alpha, as demonstrated by their

efficiency maps in Figure 3.3b and Figure 3.4b, respectively. Furthermore, the engine model Beta

is more efficient in the high-power region at the same speed, which eliminates the need for a hybrid

mode during the WL-E when the average propulsion load demand is high.

TTS and STTS Profiles

With the globally tuned optimal parameters presented in Table 5.1 for the model Alpha, the TTS

power profiles are visualised in Figure 6.4. There is a pure electric operation at low loads. The engine

charges the battery in all driving cycles. Hybrid mode is observed in all drive cycles as opposed to

only during the WL-E in the model Alpha ECMS profiles. The ICE is operated more steadily and

with a lower average load power. Additionally, less SSS is associated with the TTS.

With the globally tuned optimal parameters presented in Table 5.2 for the model Beta, the TTS power

profiles are visualised in Figure 6.5. In these profiles, similarly to the model Beta ECMS profiles,

there is a pure electric operation at low loads and almost no hybrid operation. The ICE is operated

more steadily compared to the ECMS and with a lower average load power.

With the globally tuned optimal parameters shown in Table 5.3, the resulting STTS power profiles are

presented in Figure 6.6. The STTS power profiles follow the same trends as the TTS power profiles.

For this reason, the STTS has not been implemented on the model Beta.

Key Findings

Model Alpha power profiles:

• Both strategies exhibit pure electric operation at low loads.

• The engine charges the battery more frequently in the TTS during all drive cycles compared to

the ECMS, with only a few exceptions in the WL-H and the WL-E.

• Hybrid operation is observed often in the TTS during all drive cycles and only a few cases in

the ECMS during the WL-L and the WL-E.
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Figure 6.2: ECMS power time profiles for the engine power Ped , motor/generator power Pmd , and load
power PPL for the first iteration of driving cycles WL-L, WL-M, WL-H, and WL-E, top to bottom.
These plots are for the model Alpha.
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Figure 6.3: ECMS power time profiles for the engine power Ped , motor/generator power Pmd , and load
power PPL for the first iteration of driving cycles WL-L, WL-M, WL-H, and WL-E, top to bottom.
These plots are for the model Beta.
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Figure 6.4: TTS power time profiles for the engine power Ped , motor/generator power Pmd , and load
power PPL for the first iteration of driving cycles WL-L, WL-M, WL-H, and WL-E, top to bottom.
These plots are for the model Alpha.
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Figure 6.5: TTS power time profiles for the engine power Ped , motor/generator power Pmd , and load
power PPL for the first iteration of driving cycles WL-L, WL-M, WL-H, and WL-E, top to bottom.
These plots are for the model Beta.
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Figure 6.6: STTS power time profiles for the engine power Ped , motor/generator power Pmd , and load
power PPL for the first iteration of driving cycles WL-L, WL-M, WL-H, and WL-E, top to bottom.
These plots are for the model Alpha.
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• Less SSS is observed in the TTS compared to the ECMS.

• The engine is operated more steadily with a lower average load power in the TTS.

Model Beta power profiles:

• There is a pure electric operation at low loads in both strategies.

• The engine charges the battery during all drive cycles in both strategies.

• The average engine load power is higher in the ECMS compared to the TTS, especially in the

first three drive cycles.

• Less SSS is observed in the TTS compared to the ECMS.

• Hybrid operation is rarely observed in either strategy.

• The engine is operated more steadily with a lower average load power in the TTS.

The power profiles of the RTTS are compared against the ECMS in section 6.2.

6.1.2 SOC Profiles

The SOC profiles of the ECMS, TTS, and STTS for the model Alpha in the four standard driving

cycles are presented in Figure 6.7. It is evident that the CS operation is achieved for both the ECMS

and the TTS in all drive cycles. The TTS SOC profiles are generally smoother due to the engine

charging the battery more steadily. When comparing the TTS to the ECMS profiles, the maximum

deviation of the SOC from SOCinit is lower in the WL-L, fairly similar in the WL-M and the WL-H,

and higher in the WL-E.

In terms of the STTS, it has comparable SOC profiles to the TTS in the WL-H and WL-E drive cycles.

However, it is less CS than the TTS and the ECMS for the WL-L and WL-M.

The SOC profiles for the model Beta are shown in Figure 6.8 for the ECMS, TTS, and RTTS strategies

for the four standard driving cycles. It is observed that both the ECMS and TTS achieve CS operation
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in all drive cycles, with the RTTS demonstrating excellent CS performance as well, which is discussed

in more detail in section 6.2.

In all cases, the final SOC is approximately equal to the initial SOC, and the SOC trajectory is steady

and well within the boundaries, resulting in improved fuel economy and battery life. The TTS is

capable of achieving CS operation without relying heavily on regenerative braking.

In the WL-H and WL-E drive cycles, the SOC deviation is smaller in the ECMS profiles than in the

TTS profiles. However, all strategies achieve CS status.
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Figure 6.7: SOC time profiles of the ECMS, TTS and STTS for the first iteration of driving cycles
WL-L (a), WL-M (b), WL-H (c), and WL-E (d). These plots are for the model Alpha.
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(a) WL-L (b) WL-M

(c) WL-H (d) WL-E

Figure 6.8: SOC time profiles of the ECMS, TTS and STTS for the first iteration of driving cycles
WL-L (a), WL-M (b), WL-H (c), and WL-E (d). These plots are for the model Beta.
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6.1.3 Fuel Economy

The Model Alpha fuel economy results for the ECMS, TTS and STTS are summarised in Table 6.1,

Table 6.3, and Table 6.5, respectively. The model Beta economy results for the ECMS and the TTS

are presented in Table 6.2 and Table 6.4, respectively.

The TTS fuel economy results are compared against the benchmark (i.e. ECMS) and visualised in

Figure 6.9 and Figure 6.10.

Table 6.1: Fuel economy of the ECMS for the model Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WL-L 64.99 0.2073 0.2074 0
WL-M 64.99 0.2406 0.2407 0
WL-H 65.04 0.3234 0.3234 0
WL-E 65.13 0.4473 0.4460 0
WLTP 65.07 1.2176 1.2176 0

Table 6.2: Fuel economy of the ECMS for the model Beta

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WL-L 64.76 0.1118 0.1158 0
WL-M 65.37 0.1641 0.1591 0
WL-H 67.20 0.3088 0.2794 0
WL-E 63.97 0.4399 0.4529 0
WLTP 65.47 1.0136 1.0078 0

Table 6.3: Fuel economy of the TTS for the model Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WL-L 65.22 0.1971 0.1959 -5.55
WL-M 65.07 0.1619 0.1610 -8.48
WL-H 65.03 0.3060 0.3057 -4.67
WL-E 64.99 0.4455 0.4457 -0.07
WLTP 65.12 1.1788 1.1779 -3.26

Table 6.4: Fuel economy of the TTS for the model Beta

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WL-L 66.99 0.1152 0.1076 -7.08
WL-M 65.48 0.2231 0.2159 +3.57
WL-H 64.93 0.2771 0.2780 -0.47
WL-E 64.90 0.4431 0.4439 -1.99
WLTP 64.88 0.9976 0.9996 -3.71
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Table 6.5: Fuel economy of the STTS for the model Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WL-L 64.93 0.1999 0.2007 -3.23
WL-M 65.04 0.2223 0.2220 -7.77
WL-H 65.00 0.3083 0.3083 -4.66
WL-E 65.05 0.4465 0.4461 +0.22
WLTP 65.08 1.1790 1.1784 -2.92

Figure 6.9: Comparison of the fuel economy of the TTS relative to the performance of the ECMS for
the WL-L, WL-M, WL-H and WL-E drive cycles for the model Alpha.

Figure 6.10: Comparison of the fuel economy of the TTS relative to the performance of the ECMS
for the WL-L, WL-M, WL-H and WL-E drive cycles for the model Beta.
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The results are encouraging as the design rules of the TTS are straightforward, and the tuning time

is approximately 1.5 times faster than the ECMS. The TTS outperforms the ECMS by 0.07-8.48% in

terms of the equivalent fuel consumption (me f c) for the model Alpha and 0.47-3.71% for the model

Beta. When considering the four drive cycles together (WLTP), the TTS achieves a 4.12% and 3.71%

improvement over the ECMS for the model Alpha and model Beta, respectively.

6.2 Implementation of the RTTS and RSTTS

To demonstrate the effectiveness of the proposed RTTS, this method is implemented on the TTR

HEV model Alpha and Beta over the WLTP (WL-L, WL-M, WL-H and WL-E) as well as over a

drive cycle measured experimentally by a data acquisition device [125], representing a real-driving

cycle in a rural road in London presented in Figure 6.11. The RTTS is implemented on the Alpha

and Beta models and then benchmarked against the ECMS. The RSTTS is only implemented on the

model Alpha as it was realised in subsection 6.1.3 that the TTS achieved a better fuel economy as well

as 1.5 times less tuning and implementation time compared to the ECMS; Therefore, the trade-off of

tuning-time and fuel economy was in favour of the TTS over the ECMS.
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Figure 6.11: The Experimental drive cycle collected in London.
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6.2.1 Power Profiles

The resulting power profiles of the ECMS and the RTTS for both models over the WLTP and the

Experimental drive cycle are presented in Figure 6.12 and Figure 6.13. Only the power profiles of

the ICE and the propulsion load are visualised since the power in the motor branch is determined by

the given ICE power. The power profiles of the ECMS and the RSTTS for model alpha are shown

in Figure 6.14, which exhibits very similar performance to RTTS. The operation of the RTTS and

RSTTS are generally similar to the TTS. The only difference in the real-time versions is the slightly

higher average engine power over the WL-H and WL-E drive cycles. The engine activation pattern is

fairly similar in both cases.

Figure 6.12: Power profiles of the engine and the propulsion load of the ECMS and the RTTS over
the WLTP (top) and the Experimental drive cycle (bottom) for the model Alpha.
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Figure 6.13: Power profiles of the engine and the propulsion load of the ECMS and the RTTS over
the WLTP (top) and the Experimental drive cycle (bottom) for the model Beta.

S

Figure 6.14: Power profiles of the engine and the propulsion load of the ECMS and the RSTTS over
the WLTP (top) and the Experimental drive cycle (bottom) for the model Alpha.
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6.2.2 Torque Profiles

The RTTS engine torque over the WLTP and the Experimental driving cycle can be seen in Figure 6.15

and Figure 6.16 for models Alpha and Beta, respectively. For both models, it is observed that the

engine torque value does not deviate more than approximately 5 Nm from the corresponding T pr
c in

Equation 5.3.1, and the various torque levels are visible. The Experimental driving cycle is treated as

a combination of the WL-M and WL-H drive cycles, which was expected since the average velocity

in the Experimental drive cycle is between the average velocities of the WL-M and WL-H. The

ICE activation frequency exceeds the ECMS case over the Experimental driving cycle. However,

the average engine power is lower, and the ICE is operated more continuously. The engine torque

variation is very smooth and includes relatively constant torque levels, which seem more effective

than frequent spikes of high magnitude. The RSTTS engine torque variation over the WLTP and the

Experimental driving cycle for model Alpha is visualised in Figure 6.17, which exhibits reasonably

similar operation to the RTTS.

Figure 6.15: RTTS engine torque Te, over the WLTP (top) and the Experimental drive cycle (bottom)
for the model Alpha.
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Figure 6.16: RTTS engine torque Te, over the WLTP (top) and the Experimental drive cycle (bottom)
for the model Beta.

6.2.3 SOC Profiles

The SOC profiles of the ECMS, RTTS, and RSTTS for model Alpha are shown in Figure 6.18, while

the SOC profiles of the ECMS and RTTS for model Beta are displayed in Figure 6.19. When driving

the WLTP with both models, it can be seen that during the first half of the drive cycle, the SOC

profiles’ variations for the ECMS and the RTTS are quite similar. However, during the second half of

the drive cycles, the RTTS SOC variation is greater than that of the ECMS because the RTTS average

engine power is lower, and a hybrid mode operation is often adopted. Nonetheless, since the RTTS

ICE activation frequency is higher than the ECMS, the CS operation is still achieved by the RTTS.

The SOC profile of the RSTTS exhibits a similar trend to the ECMS for the WLTP drive cycle.

However, the RSTTS SOC profile for the Experimental drive cycle demonstrates a more significant

SOC deviation compared to the RTTS. Overall, the RTTS achieved a better CS operation than the

RSTTS.
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Figure 6.17: RSTTS engine torque Te, over the WLTP (top) and the Experimental drive cycle (bottom)
for the model Alpha.

6.2.4 Fuel Economy

The fuel economy and final SOC results of the ECMS and the RTTS for both the model Alpha and

the model Beta over the WLTP and the Experimental drive cycle are summarised in Tables 6.6-

6.10. In the model Alpha, the RTTS outperforms the ECMS by 2.80% and 5.82% in terms of the

equivalent fuel consumption (me f c) over the WLTP and the Experimental drive cycle, respectively.

For the model Beta, the RTTS outperforms the ECMS by 2.68% and 2.26% during the WLTP and the

Experimental drive cycle, respectively. These results demonstrate the effectiveness of the proposed

RTTS in achieving improved fuel economy while maintaining the final SOC of the battery. The fuel

economy and final SOC results of the ECMS and the RSTTS for the model Alpha over the WLTP and

the Experimental drive cycle are summarised in Table 6.8, which demonstrates a 2.57% and 6.47%

improvement over the ECMS during the WLTP and the Experimental drive cycle, respectively.
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Figure 6.18: SOC profiles of the ECMS, RTTS and the RSTTS over the WLTP (top) and the Experi-
mental drive cycle (bottom) for the model Alpha.

Figure 6.19: SOC profiles of the ECMS and the RTTS over the WLTP (top) and the Experimental
drive cycle (bottom) for the model Beta.
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Figure 6.20: Comparison of the fuel economy of the RTTS relative to the performance of the ECMS
over the WLTP and the Experimental driving cycles for the model Alpha.
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Figure 6.21: Comparison of the fuel economy of the RTTS relative to the performance of the ECMS
over the WLTP and the Experimental driving cycles for the model Beta.
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Figure 6.22: Comparison of the fuel economy of the RSTTS relative to the performance of the ECMS
over the WLTP and the Experimental driving cycles for the model Alpha.
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Table 6.6: Fuel economy of the ECMS over the WLTP and the Experimental drive cycle for the model
Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WLTP 65.07 1.2176 1.2176 0

Experimental drive cycle 66.41 0.8972 0.8894 0

Table 6.7: Fuel economy of the RTTS over the WLTP and the Experimental drive cycles for the model
Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WLTP 65.58 1.1790 1.1835 -2.80

Experimental drive cycle 65.94 0.8376 0.8324 -5.82

Table 6.8: Fuel economy of the RSTTS over the WLTP and the Experimental drive cycles for the
model Alpha

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WLTP 65.61 1.1910 1.1863 -2.57

Experimental drive cycle 65.61 0.8359 0.8319 -5.47

Table 6.9: Fuel economy of the ECMS over the WLTP and the Experimental drive cycles for the
model Beta

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WLTP 65.47 1.0136 1.0077 0

Experimental drive cycle 67.06 0.4156 03809 0

Table 6.10: Fuel economy of the RTTS over the WLTP and the Experimental drive cycles for the
model Beta

Driving cycle SOC f inal(%) m f (kg) me f c (kg) ∆ECMS(%)
WLTP 65.58 1.1790 1.1835 -2.68

Experimental drive cycle 65.922 0.3752 0.3723 -2.26
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6.3 Chapter Summary

In this chapter, the conventional optimisation-based method ECMS was implemented on both TTR

models (Alpha and Beta). The ECMS fuel economy was then used as a benchmark to evaluate the

performance of the heuristic method TTS. It was realised that the TTS outperformed the ECMS over

all four segments of the WLTP (i.e. WL-L, WL-M, WL-H, and WL-E) in the model Alpha’s simu-

lations, ranging from 0.07% to 8.48%, and over the WLTP by 3.26%. The model Beta’s simulations

showed that the TTS outperformed the ECMS in three out of the four components of the WLTP and

outperformed the ECMS over the WLTP by 3.71%. The SOC profiles in Figure 6.8 demonstrated that

the TTS achieved a more consistent CS operation and a better fuel economy than the ECMS.

Since the performance of the TTS was found to be more reliable and robust compared to the STTS,

the STTS was not implemented on the model Beta. The STTS outperformed the ECMS for all drive

cycles in the model Alpha simulations apart from the WL-E; the STTS outperformed the ECMS over

the WLTP by 2.92%.

To demonstrate the effectiveness of the proposed RTTS, this strategy was implemented on the TTR

HEV models Alpha and Beta when driving the WLTP and a drive cycle measured experimentally in

London.

The RTTS outperformed the ECMS by 2.80% over the WLTP and by 5.82% over the Experimental

drive cycle for the model Alpha. The RTTS outperformed the ECMS by 2.68% over the WLTP and

by 2.26% over the Experimental drive cycle for the model Beta.

Additionally, it was deduced from the ECMS and the RTTS power profiles over the WLTP and the

Experimental drive cycle that the operation of the RTTS was generally similar to the TTS. The only

difference in the RTTS was the slightly higher average engine power in the WL-H and WL-E drive

cycles.

The RSTTS exhibited similar operation to RTTS with relatively similar fuel economy and CS opera-

tion. However, the RTTS outperformed RSTTS, showing more robustness while having only slightly

longer tuning time compared to the RTTS, especially over the Experimental driving cycle.
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Chapter 7

Electric Vehicle Model

This chapter describes the development of a low-fidelity dual-motor EV, later used in the DP frame-

work in Chapter 8. The thermal dynamics of the PMSMs are also modelled and described in this

chapter. The Baseline and Thermal models are presented in section 7.1 and section 7.2, respectively.

The Thermal model includes the thermal dynamics of the PMSMs, which is not present in the Base-

line model.

In the subsequent parts of this work, the subscript F refers to the front axle (e.g. front motor) and the

subscript R refers to the rear axle (e.g. rear motor).

The overall architecture of the dual-motor EV is depicted in Figure 7.1.
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Figure 7.1: Overall architecture of the dual-motor EV.
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7.1 Baseline EV Model

The Baseline battery model is presented in this section according to [120,126]. A novel feature of this

EV model is the utilisation of two electric motors with different power ratings in the powertrain in-

stead of one. The energy consumption of this dual-motor EV can be well-captured using a quasi-static

discrete-time model. Specifically, the PMSMs are modelled using electric-power maps derived from

detailed simulations and dyno tests conducted by the industrial partner. The battery is modelled as a

voltage source with a resistance in series, and the vehicle model includes air drag, rolling friction, and

inertial forces. Additionally, the transmission system is a two-speed gearbox model with a constant

efficiency of 95%, which does not account for gear change transient response.

7.1.1 Battery Model

An equivalent circuit model has been used for the battery. The battery voltage is:

Vb = Eb −RbIb (7.1)

with Ib being the average current drawn from the battery, Rb being the internal resistance and Eb being

the open circuit voltage.

The battery power is defined as:

Pb =VbIb, (7.2)

By replacing Equation 7.1 in Equation 7.2:

(Eb −RbIb)Ib = Pb, (7.3)

where the open circuit voltage Eb is a tabulated function of the SOC. By solving Ib with respect to Eb,

Rb, and Pb we have:

Ib =
Eb −

√
E2

b −4PbRb

2Rb
(7.4)
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Figure 7.2: Internal battery resistance as a function of SOC.

The battery’s internal power is defined as:

Pb,in = EbIb (7.5)

The battery SOC represents the only state in the DP method used in section 8.2 and one of the three

states in subsection 8.3.1, governed by:

d
dt
(SOC) =− Ib(SOC,Pb)

Qmax
. (7.6)

The battery parameters are summarised in Table 7.1.

Table 7.1: Li-on battery parameters

Parameter Symbol Value
Rated capacity Qmax 60 Ah

Nominal voltage Vnom 375 V
Initial state of charge SOCinit 80%

Battery constant voltage E0 320 V
Nominal Internal resistance Rb,nom 0.356 Ω

Battery maximum power Pb,max 56 kW
Battery minimum power Pb,min -41 kW

The battery internal resistance Rb, and the open-circuit voltage Eb, are not constant; both vary as a

function of SOC. These data are provided by the industrial partner and are depicted in Figure 7.2 and

Figure 7.3, respectively.
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Figure 7.3: Battery open circuit voltage as a function of SOC.

7.1.2 DC-DC Converter

The bidirectional DC-DC converter used in the model connects the battery to the common DC link

between the two PMSMs and increases the battery voltage to a higher level. This backward-facing

modelling approach does not address the high-frequency dynamics of the DC-DC converter. The

power flow in the DC-DC converter is as follows:

Pdc = ∑
j∈[F,R]

η
sign(Pdc, j)

dc Pb (7.7)

where Pdc, j is the axle-specific input power, which flows into the DC link and ηdc=0.96 is the constant

discharging efficiency for the front and the rear axles.

7.1.3 DC Link

The front and the rear PMSMs are both connected to a common 370V DC link, each through a bi-

directional inverter:

Pdc = Pdc,F +Pdc,R (7.8)

7.1.4 Inverter

For simplification purposes, the inverter efficiency across various load powers is assumed to be a

constant efficiency of ηi=0.96 for both motors.
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Pi, j = η
sign(Pdc, j)
i Pdc, j, (7.9)

where Pi, j is the output power of the respective inverter (i.e. front or rear).

7.1.5 Permanent Magnet Synchronous Motor (PMSM)

In the present work, the maximum speed of both PMSMs is 8700 rpm, and the maximum output

torque of the front and the rear PMSMs are 200 Nm and 350 Nm, respectively.

The PMSM model is a 3-phase star-connected motor. The detailed dynamics described by the stan-

dard 2-phase d-q rotating reference frame, [6], are as follows:

did, j
dt

= (vd, j −Rm, j id, j + pm, jωm, j Lq, jiq, j)/Ld, j (7.10)

diq, j
dt

= (vq, j −Rm, j iq, j + pm, jωm, j (Ld, jid, j +λm, j))/Lq, j (7.11)

where ωm, j is the axle-specific rotor speed, vd, j and vq, j are the direct and quadrature components of

the stator voltage, id, j and iq, j are the direct and quadrature components of the stator current, Ld, j and

Lq, j are the direct and quadrature components of the stator inductance, Rm, j is the stator resistance,

and pm, j is the number of pole pairs. The inertia torque is described by:

Jm, j
dωm, j

dt
= Tem, j +Tm, j +Tdm, j (7.12)

where Jm is the rotor inertia, Tdm, j is the dissipation torque, Tem, j is the electromagnetic torque, and

Tm, j is the load torque [110]. The electromagnetic torque is given by:

Tem, j =
3
2

pm, j(λm, jiq, j +(Ld, j −Lq, j)id, jiq, j) (7.13)

and the dissipation torque Tdm is described as:

Tdm, j =−1−2×10−5
ωm, j

2 (7.14)
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The electrical power Pi, j and the mechanical power Pm, j are:

Pi, j =
3(Vq, jiq, j + vd, jid, j)

2
(7.15)

Pm, j = Tm, jωm, j (7.16)

Since the inertia torque Jm, j
dωm, j

dt is relatively small compared to the load torque Tm, j, and the currents

have fast dynamics, Equations 7.10, 7.11 and 7.12 are only considered in steady-state. It is assumed

that Ld, j = Lq, j and id, j = 0. Therefore, the electrical power can be expressed as:

Pi, j =−ωm, j(Tm, j +Tdm, j)+
2
3

Rm, j
(Tm, j +Tdm, j)

2

p2
m, jλ

2
j

(7.17)

which equates the motor efficiency to:

ηm, j(Tm, jωm, j) = (
Pm, j

Pi, j
)

sign(Pi, j)

(7.18)

where the motor efficiency depends on Tm, j and ωm, j. These parameters are visualised for the front

and rear motors in Figure 7.4. The front and rear max continuous motor powers are 39 kW and 88

kW, with a maximum torque of 200 Nm and 350 Nm, respectively. The maximum speed is 8700 rpm

for both motors. The front and rear PMSM parameters are presented in Table 7.2.

Table 7.2: Front and Rear PMSM parameters

Parameter Axle Symbol Value
Maximum torque Front Tmmax,F 200 Nm
Maximum power Front Pmmax,F 39 kW
Maximum Speed Front ωmmax,F 8700 rpm
Moment of Inertia Front Jm,F 0.037 kgm2

Stator resistance Front Rm,F 0.029 Ω

Number of pole pairs Front pm,F 6
Rotor magnetic flux Front λm,F 0.125 Wb

Maximum torque Rear Tmmax,R 350 Nm
Maximum power Rear Pmmax,R 88 kW
Stator resistance Rear Rm,R 0.029 Ω

Maximum Speed Rear ωmmax,R 8700 rpm
Moment of Inertia Rear Jm,R 0.14 kgm2

Number of pole pairs Rear pm,R 6
Rotor magnetic flux Rear λm,R 0.125 Wb
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Figure 7.4: PMSM steady-state power efficiency maps for the variations in the front PMSM load
torque Tm,F , and the front rotor speed ωm,F (left); the rear PMSM load torque Tm,R, and the rear rotor
speed ωm,R (right). As only the forward vehicle motion is considered in this work, the rotor speed is
always non-negative, and the PMSM has two modes of operation: 1) positive torque (motoring) and
2) negative torque (regenerating). The contours correspond to constant efficiencies.

Motor Transmission

The rear and front PMSMs are mechanically connected to the rear and front axles via a two-speed

transmission. The transmission systems at the front and rear axles are identical. The motor’s angular

speed (ωm) is determined by the vehicle wheel speed (ωwheel) according to the following formula:

Tmt, j =
Tm, j

gm
(7.19)

ωm, j = gmωwheel (7.20)

with j ∈ [F,R] denoting the front and rear axles, respectively, gm=[12.49 9.58] with the shifting speed

threshold being 50 km/h. The gear changes through the drive cycle used in this work are visualised

in Figure 8.1. The gear ratios and the fixed gearbox efficiency are identical for both front and rear

transmissions. In this EV model, the transmission efficiency is assumed to be ηt=0.96 for both axles.

The following equation describes the power transmission:

Pmt, j = Pm, jη
sign(Pm, j)
t (7.21)

where Pm, j = ωm, jTm, j is the mechanical motor power, and Pmt, j is the electrical driving power of the

specific axle.



7.2. Thermal EV Model 87

7.2 Thermal EV Model

This section describes the model incorporating the thermal dynamics of the PMSMs, used in subsec-

tion 8.3.1 for executing the Thermal DP. The battery, DC-DC converter, DC link, Inverter, and motor

transmission models are identical between the Baseline and Thermal models. The main difference

between these two models is the added thermal dynamics of the PMSMs in the EV model.

7.2.1 Thermal Dynamic Modelling of the PMSMs

The internal temperature rise strongly influences the performance of the PMSMs. This is mainly

because the resistance of the stator windings and the magnet remanence depend on the temperature.

In cases where the temperature rise is significant, it can lead to irreversible demagnetisation of the

permanent magnet. Therefore, it is essential to monitor/estimate the temperature of the different nodes

of electric motors to ensure safety and reasonable efficiency [127]. The efficiency maps provided by

the industrial partner at six different temperatures are visualised in Figure 7.5 and Figure 7.6, for the

front and rear PMSMs, respectively. It can be seen that the efficiency maps at various temperatures are

different; exploiting this characteristic, the temperature is considered as a state in the optimal control

formulation in Chapter 8.

According to [12], the battery loss is negligible compared to the losses in the electric motors. The en-

ergy demand from the SOC does not change significantly at different temperatures. For this reason, a

fixed non-temperature-dependent efficiency has been chosen for the battery model in subsection 3.3.1;

however, since SOC is dependent on the front and rear motor powers, it is indirectly affected by tem-

perature. The total power losses for both PMSMs have been computed according to [12]:

PL, j = PCu, j +PFe, j (7.22)

where PCu, j, is the axle-specific copper loss and PFe, j denotes the axle-specific rotor iron loss.

PCu, j = 3Rph, jI2
rms, j with Rph, j = ρCu, j

lw, j
Sw, j

(7.23)
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where Irms, j is the axle-specific motor RMS current, θ0 is the ambient temperature, and Rph, j is the

winding resistance, which is proportional to the temperature-dependent copper resistivity [12]:

ρCu, j = ρCu, j,θ0(1+αCu, j(θCu, j −θ0)) (7.24)

where θCu, j is the axle-specific stator windings’ temperature, lw, j is the wire length, and Sw, j is the

wire cross section. The rotor iron loss has been estimated by:

PFe, j = Phy, j +Pcl, j +Pex, j (7.25)

where Phy, j denotes the axle-specific hysteresis loss, PCl, j denotes the classical losses, and Pex, j denotes

the excess losses. All these losses are dependent on the flux density B, and the frequency f :

PFe, j = a f B j
α +b f 2B j

2 + c f B(
√

(1+ e f B j)−1) (7.26)

where B j is the flux density of either motor (Front or Rear). The coefficients a, b, c, and e are

estimated according to [128], where b = σd2

12 , with d being the lamination thickness and σ being

the steel conductivity. Since the front and rear PMSMs have the same material and geometry, these

coefficients are the same for both PMSMs. The magnet, bearings and additional stator losses are

neglected in this work as they form an insignificant fraction of the overall losses and do not vary

significantly with temperature. Copper losses for the front and rear motors for both Baseline and

Thermal scenarios are visualised in Figure 8.14 and Figure 8.15. For the front and rear motors, the

total PMSM losses are visualised in Figure 8.18 and Figure 8.19, respectively. The copper and rotor

energy losses are defined in Equation 7.27 and Equation 7.28, respectively.

WCu, j =
∫ t f

t=0
PCu, j (7.27)

WFe, j =
∫ t f

t=0
PFe, j (7.28)

where t f is the duration of the drive cycle in seconds. A second-order LPTN thermal model was

introduced in [129] to monitor long-duration transients and steady-state temperatures in an electric
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motor. This model looks at the motor’s dominant heat paths, making it computationally efficient and

suitable for the DP framework. The thermal equivalent circuit is depicted in Figure 7.7.

The corresponding state-space system is as follows:

CCu, j 0

0 CFe, j


dθCu, j

dt
dθFe, j

dt

=

− 1
RCu, j

− 1
RFe, j

1
RFe, j

1
RFe, j

−1
RFe, j


θCu, j

θFe, j

+

 1
RCu, j

1 0

0 0 1




θ0

PCu, j

PFe, j

 (7.29)

where θCu, j is the axle-specific stator temperature, θFe, j is the rotor temperature, θ0 is the ambient

temperature, RCu, j and RFe, j are the axle-specific thermal resistances, CCu, j and CFe, j are the thermal

capacitance, and PCu, j, PFe, j are the heat sources. To facilitate the acquisition of the rotor temperature

θFe, j, a PT100 temperature sensor is situated on the windings [130], with the data visualised in Fig-

ure 8.7. The industrial partner uses this sensor to measure the rotor temperature. They have conducted

various tests to develop an accurate fit screening model for θFe, j, used in this work. The method is as

follows:

1. Soak motor until the stator temperature is stabilised within 2 ◦C of the inlet cooling temperature

2. Run test point at steady state for ten minutes

3. Record the rotor temperature at the end of the ten minutes

4. Operate the machine in both clockwise and anti-clockwise quadrants

The most significant factors were found to be the inlet temperature, the motor speed and the RMS

current. The model correlation is quite accurate, with an R-square value of 99.6%:

θFe, j =−6.03θinlet, j +0.005913ωm, j +0.01696Irms, j (7.30)

where θinlet, j is the axle-specific inlet coolant temperature. As coolant flows, it absorbs thermal energy

and rises in temperature with a flow rate of 1.5 L/min, leading to a linear rise of inlet temperature over

time [131]. As θFe, j is known through the PT100 sensor, the non-coupled state-space system in

Equation 7.29 is reduced to the following first-order system:
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CCu, j
dθCu, j

dt
=−(

1
RCu, j

+
1

RFe, j
)θCu, j +

1
RFe, j

θFe, j +
θ0

RCu, j
+PCu, j +PFe, j (7.31)

A Motor-CAD model is developed by the R&D department of the industrial partner, in which a hairpin

motor model in Simulink is implemented, based directly on the Motor-CAD exports. This process

allows new motor concepts and updates, to be quickly pushed to the vehicle/thermal models, using

the Motor-CAD model as a source of truth. Following the same method in [132], [133] and [134],

an NN model is developed by the industrial partner to accurately estimate the temperature of the

multiple nodes of the PMSMs used in this work. An NN model is a computational model inspired

by biological processes within brains, comprising interconnected processing elements (also known

as neurons) that combine to establish a response as a function of one or more inputs [135]. Training

data is required to build the NN model to predict motor losses (Iron, Copper and Magnet) and the

phasor component of armature current (Iq and Id), along with their associated fluxes BD and BQ. The

training data is directly obtained as steady operating maps of the motor (acquired directly from the

Motor-CAD model) as a function of the following variables:

1. DC Bus Voltage (varied between 250, 290, 330, 370, 410 V)

2. Magnet Temperature (varied between -30, 0, 30, 60, 90, 120, 150 ◦C )

3. Winding Temperature (varied between -30, 0, 30, 60, 90, 120, 150 ◦C)

4. Speed (rpm)

5. Torque (Nm)

For all the combinations of the first three variables, speed-torque maps are generated for the losses,

armature current components and associated fluxes. The neural network is trained on this data set

and the trained NN blocks for each output are embedded within the loss model. The NN blocks are

a combination of mathematical operations and a set of weights and biases that allow the creation of

a transfer function between the inputs and the outputs without apriori knowledge of the inputs and

outputs. For this work, the industrial partner has developed a two-layer feed-forward NN (with ten

neurons in each layer) and trained over the steady-state training data. A dedicated NN is generated

for each of the outputs, namely:
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1. Magnet Loss (W)

2. Copper Loss (W)

3. Iron Loss (W)

4. Iq Peak (A)

5. Id Peak (A)

6. BD (mVs)

7. BQ (mVs)

The model is developed in MATLAB and Simulink with the following advantages:

• Reliance on look-up maps, which helps simplify the inverter control

• Dynamic loss modelling for the thermal motor model

• Mimicking the results of the Motor-CAD model with the minimum computational expense

• Very accurate correlation between the trained dataset for all the modelled responses

The collaboration with the industrial partner led to accurate temperature estimation of the different

nodes and heat paths in the PMSMs. The sensor measurement points were also available and used to

validate the identified thermal parameters in Equation 7.29.

The second-order PMSM thermal dynamics parameters are identified using the curve fitting method

based on the acquired experimental data for the front and rear PMSMs. The temperature data are

visualised in Figure 7.8, Figure 7.9, for the front and rear motors, respectively. The validation test case

assumes a constant ambient temperature of 40 ◦C and a single load point of 3000 rpm speed and 200

Nm torque. The identified parameters are visualised in Table 7.3. The temperature node of interest

in this work is the stator windings’ temperature θCu, which is used as a state in the optimal control

problem formulation, outlined in Equation 8.9. The motor efficiency maps visualised in Figure 8.12

and Figure 8.13 are dependent on the stator windings’ temperature (θCu).



92 Chapter 7. Electric Vehicle Model

0

0.2

0.4

0.6

0.8

(a)

0

0.2

0.4

0.6

0.8

(b)

0

0.2

0.4

0.6

0.8

(c)

0

0.2

0.4

0.6

0.8

(d)

0

0.2

0.4

0.6

0.8

(e)

0

0.2

0.4

0.6

0.8

(f)

Figure 7.5: The front PMSM steady-state power efficiency maps for variations in the load torque Tm,F ,
and the front rotor speed ωm,F , for six different motor stator windings’ temperatures. As only forward
vehicle motion is considered in this work, the rotor speed is always non-negative, and the PMSM
has two modes of operation: 1) positive Tm,F (motoring) and 2) negative Tm,F (regenerating). The
contours correspond to constant efficiencies. The depicted efficiencies correspond to temperatures of
-40 ◦C (a), 0 ◦C (b), 40 ◦C (c), 80 ◦C (d), 120 ◦C (e) and 165 ◦C (f).
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Figure 7.6: The rear PMSM steady-state power efficiency maps for variations in the load torque Tm,R,
and the rear rotor speed ωm,R, for six different motor stator windings’ temperatures. As only forward
vehicle motion is considered in this work, the rotor speed is always non-negative, and the PMSM
has two modes of operation: 1) positive Tm,R (motoring) and 2) negative Tm,R (regenerating). The
contours correspond to constant efficiencies. The depicted efficiencies correspond to temperatures of
-40 ◦C (a), 0 ◦C (b), 40 ◦C (c), 80 ◦C (d), 120 ◦C (e) and 165 ◦C (f).
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Figure 7.7: Thermal equivalent circuit of the PMSM.
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Figure 7.8: The testing (test) and simulation (sim) temperatures of the front PMSM stator windings
θCu,F , and the front PMSM rotor temperature θFe,F .
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Figure 7.9: The testing (test) and simulation (sim) temperatures of the rear PMSM stator windings
θCu,R, and the rear PMSM rotor temperature θFe,R.
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Table 7.3: Front and Rear PMSM second-order thermal dynamics parameters

Parameter Axle Symbol Value
Copper thermal resistance Front RCu,F 0.1086 ◦C/W

Copper thermal capacitance Front CCu,F 2196.823 J/◦C
Copper thermal resistance Rear RCu,R 0.538 ◦C/W

Copper thermal capacitance Rear CCu,R 3982.056 J/◦C
Iron thermal resistance Front RFe,F 0.5069 ◦C/W

Iron thermal capacitance Front CFe,F 3847.074 J/◦C
Iron thermal resistance Rear RFe,R 0.1022 ◦C/W

Iron thermal capacitance Rear CFe,R 7547.038 J/◦C

7.3 System Integration

A backward vehicle model based on the vehicle’s longitudinal dynamics is established to perform DP.

The system integration is the same for the Baseline and Thermal models. The required driving force

is as follows:

Fv = mv
dv
dt

+Fr +Fd (7.32)

where the non-negative vehicle speed v, is an exogenous input to the vehicle model derived from

the given drive cycle. mv is the vehicle mass, Fr is the rolling resistance force, and Fd = ρv2 is the

aerodynamic drag force, in which ρ is the drag resistance coefficient. In this work mv=3600 kg,

ρ=0.32 kg/m, and Fr = 144 N. The wheel speed is derived from the vehicle speed:

ωwheel = v/Rwheel, (7.33)

where Rwheel = 325 mm is the wheel radius. The total required driving power PPL is computed as

follows:

PPL = Fvv, (7.34)

which equates to the total transmission power (Pmt,F +Pmt,R ≥ 0), and the total braking power (Pmt,F +

Pmt,R +PBr < 0):

PPL = Pmt,F +Pmt,R +PBr. (7.35)
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TTot = Tm,F +Tm,R +TBr +TF0 +TR0. (7.36)

where Tm,F is the front motor driving torque, Tm,R is the rear motor driving torque, TBr is the mechan-

ical brake torque, TF0 = Jm,F
dω

dt and TR0 = Jm,R
dω

dt are the torques due to the front and rear motors’

inertia, respectively; with Jm,F being the front PMSM rotor inertia and Jm,R being the rear PMSM

rotor inertia. The values for these parameters are summarised in Table 7.2. The brake force distribu-

tion method in this work incorporates the strategy in [136], which is an approximation of the optimal

brake force distribution described below:

PBr =


0, PPL ≥ 0

min(λPPL,PPL − (Pmtmin,F +Pmtmin,R), PPL < 0
(7.37)

where Pmtmin < 0 is the minimum charging power of the secondary source and λ=1/3. Regenerative

braking generates approximately 70% of the braking force, while the remaining 30% is provided by

the friction brake. This is subject to the availability of the regenerative torque at every operating point,

and if there is insufficient regenerative torque, the friction brake meets the rest of the braking torque

demand. In this work, mechanical and regenerative braking can be performed on both axles. The

braking force can be regenerated up to the maximum battery charging power.
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7.4 Chapter Summary

Two EV models were presented in this chapter: Baseline and Thermal, comprising the following
components:

• Battery

• DC-DC Converter

• DC Link and Inverter

• PMSM

• Motor Transmission

• Thermal Dynamics of the PMSM

The Thermal model was similar to the Baseline model except for the added thermal dynamics of the

PMSMs. The industrial partner provided both model parameters. The optimal solution gained from

the Baseline DP in section 8.2 is based on the Baseline model outline in section 7.1. The optimal

solution gained from the Thermal DP in subsection 8.3.1 is based on the Thermal model described

in section 7.2. The EV models presented in this chapter were backward-facing models, unlike the

forward-facing HEV model in the first part of the thesis. These EV models are used in Chapter 8

to implement the DP energy management strategy. As DP is an optimal control strategy, a forward-

facing model would be unsuitable due to the high computational load.



Chapter 8

Optimal Control Problem & Results for the

Energy Management of EVs

8.1 Optimal Control Problem Formulation

The main objective of the Supervisory Control System (SCS) in this work is to determine the optimal

power split between the front and rear motors of a dual-motor Electric Vehicle (EV) for a prede-

termined driving cycle. This is done to minimise the cost function defined for the control problem.

Knowing the optimal solution can be beneficial when developing sub-optimal controllers, as optimal

solutions are often used as benchmarks and guidelines to extract rules for heuristic methods [137].

Dynamic Programming (DP) is a conventional optimisation-based control strategy for EVs and HEVs

that can provide optimal global solutions for backward-facing vehicle models, which are simplified

representations of vehicle dynamics. Such models are helpful because they allow for efficient com-

putation of control solutions [138]. This section describes the problem formulation and the imple-

mentation of two optimal control problems. In section 8.2, DP is implemented and solved for the

Baseline EV model described in section 7.1. In subsection 8.3.1, DP is implemented and solved for

the Thermal EV model in section 7.2, wherein the temperature of the front and rear motors varies

over time as opposed to remaining constant as in the Baseline model.

98
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Once the optimal torque split (i.e. between the front and rear motors) is acquired, this solution is fed as

input into the DP framework, in which the Permanent Magnet Synchronous Motor (PMSM) thermal

dynamics presented in subsection 7.2.1 are included. This scenario is referred to as the Baseline DP

case study, while the optimisation performed on the Thermal model with the thermal dynamics is

referred to as the Thermal DP case study.

8.2 Baseline DP

In this section, DP is implemented on the low-fidelity vehicle model introduced in section 7.1. The

power flow of this EV model is outlined in subsection 8.2.1, and the optimal control problem is

formulated in subsection 8.2.2.

8.2.1 Baseline Model System Integration

The integrated powertrain of the Baseline EV model under investigation has two independent power

sources (without any thermal dynamics included): Pmt,F and Pmt,R, where Pmt,F is the front motor

driving power, and Pmt,R is the rear motor driving power. The vehicle power flow can be summarised

by combining Equations 7.7, 7.9, 7.21, and 7.5 as follows:


PPL = ∑ j∈{F,R}Pmt, j +PBr,

Pb = ∑ j∈{F,R}(ηdcηiηm, j(Tm, j,ωm, j)ηt)
sign(−Pmt, j)Pmt, j

Pb,in = Eb ×
Eb−

√
E2

b−4PbRb
2Rb

(8.1)

where j ∈F,R stands for the front and rear axles, respectively. Pmt, j is the respective motor’s operating

power, and Pmtmin, j and Pmtmax, j are the minimum and maximum operating powers for the motors. PBr

is the power used to brake the vehicle, and PPL is the total power loss. Pb is the battery power, and

Pb,in is the power entering the battery. ηdc, ηi, ηm, j, ηt , Tm, j, and ωm, j are efficiency factors, motor

torque and speed, respectively.
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The power flow is subject to the following constraints:


Pmtmin, j ≤ Pmt, j ≤ Pmtmax, j

Ibmin ≤ Ib ≤ Ibmax

(8.2)

Ibmin and Ibmax are the battery current limits. To prevent damage to the battery, the charging current is

limited to 125 A, and the discharging current is constrained to 100 A.

The rate of change of State of Charge (SOC) of the battery can be expressed as:

d
dt
(SOC) =−

Ib(SOC,Pmt,F ,Pmt,R,v)
Qmax

(8.3)

where Ib is the battery current, and Qmax is the maximum battery charge. The optimal control problem

is solved in the discrete-time framework in DP, so SOC dynamics are discretized using Euler’s method

with a sampling period of 1s [137].

8.2.2 Baseline Optimal Control Problem Formulation

According to [137], the EV model equations described in section 7.1 can be summarised in the dis-

cretized format as:

xk+1 = f (xk,uk,vk,ak, ik)+ xk (8.4)

Here, xk ∈ Xk is the state variable vector, which, in this optimal control problem, is xk = SOC; uk ∈Uk

is the control variable vector, which is defined as u =
Tm,F
TTot

, where Tm,F is the front driving torque, and

TTot is the total driving torque demand demonstrated in Equation 7.36. The model assumptions are as

follows:

• The PMSMs, as well as other components, stay at a constant pre-defined temperature

• The PMSM efficiency maps are captured at a temperature of 10 ◦C
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• There are no energy losses during gear shifting

Since the drive cycle is known apriori, vk, ak and ik at instant k are included in the model function to

form the time-variant model:

xk+1 = f (xk,uk)+ xk, k = 0,1, ...,N −1 (8.5)

The cost function J is defined as:

J =
N−1

∑
k=0

Pb,in(uk,k).Ts (8.6)

The optimisation problem of minimising the total electrical energy consumed for the Baseline dual-

motor EV model over the Japanese 10-15 drive cycle (JN1015) can be formulated as the following

discrete-time optimal control problem:

min
uk∈Uk

N−1

∑
k=0

Pb,in(uk,k) (8.7a)

subject to : xk+1 = f (xk,uk)+ xk (8.7b)

x0 = 0.8 (8.7c)

xk ∈ [0.1,0.9] (8.7d)

N =
660
Ts

+1 (8.7e)

where Ts = 1 s is the time step, x0 is the initial state, and N=661 is the number of time steps in the

problem. DP is used to solve the optimal control in Equation 8.7b, in which 61 grid points have

been allocated to the SOC and 21 for the input. The two-point DP boundary method is implemented

according to [22]. The DP algorithm solves a discrete-time optimal control backwards from the final

state to the initial state in MATLAB with the dpm function as described in [137]; this is performed

by decomposing the problem into a sequence of simpler discrete sub-problems [5].
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8.3 Thermal DP

In this section, DP is implemented on the vehicle model introduced in section 7.2. In section 8.2,

the temperature of the PMSMs was assumed to stay constant. In this section, the thermal dynamics

of the PMSMs are taken into account. The goal is to compare the Thermal DP energy management

optimal solution with that of the Baseline DP. The power flow of the Thermal EV model is described

in subsection 8.3.1, with the optimal discrete-time control problem formulated in subsection 8.3.2.

8.3.1 Thermal Model System Integration

The integrated powertrain of the EV model under investigation has two independent temperature-

dependent power sources: Pmt,F and Pmt,R, where Pmt,F is the front motor driving power and Pmt,R is

the rear motor driving power. Combining Equations 7.7, 7.9, 7.21, and 7.5, the vehicle power flow is

summarised as follows:
PPL = ∑ j∈{F,R}Pmt, j +PBr,

Pb = ∑ j∈{F,R}(ηdcηiηm, j(Tm, j,ωm, j,θCu, j))ηt)
sign(−Pmt, j)Pmt, j

Pb,in = Eb ×
Eb−

√
E2

b−4PbRb
2Rb

(8.8)

where j ∈ [F,R], stands for front and rear axles, respectively. The PMSMs’ power and battery lim-

its are defined in Equation 8.2. θCu,F and θCu,R denote the front and rear motor stator windings’

temperatures, respectively.

The SOC dynamics, as well as the front and rear PMSM stator windings’ temperatures, are defined

as:

d
dt


SOC

θCu,F

θCu,R

=


− Ib(SOC,Pmt,F ,Pmt,R,v)

Qmax

−( 1
RCu,FCCu,F

+ 1
RFe,FCCu,F

)θCu,F + 1
RFe,FCCu,F

θFe,F + θ0
RCu,FCCu,F

+
PCu,F
CCu,F

+
PFe,F
PCu,F

−( 1
RCu,RCCu,R

+ 1
RFe,RCCu,R

)θCu,R +
1

RFe,RCCu,R
θFe,R +

θ0
RCu,RCCu,R

+
PCu,R
CCu,R

+
PFe,R
PCu,R

 (8.9)

with the detailed explanation of the temperature dynamics presented in section 7.2 of Chapter 7. The
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optimal control problem is formulated to implement the Thermal DP in the following section.

8.3.2 Thermal Optimal Control Problem Formulation

The optimisation problem of minimising the total electrical energy consumed for the thermal dual-

motor EV model over the Japanese 10-15 drive cycle (JN1015) can be formulated as the following

discrete-time optimal control problem:

min
uk∈Uk

N−1

∑
k=0

Pb,in(uk,k) (8.10a)

subject to : xk+1 = f (xk,uk)+ xk (8.10b)

x1,0 = 0.8 (8.10c)

x2,0 = 10 (8.10d)

x3,0 = 10 (8.10e)

x1,k ∈ [0.1,0.9] (8.10f)

x2,k ∈ [−100,300] (8.10g)

x3,k ∈ [−100,300] (8.10h)

N =
660
Ts

+1 (8.10i)

Here, xk ∈Xk is the state variable vector, which, in this optimal control problem, is xk = {SOC,θCu,F ,θCu,R},

as opposed to one state (i.e. SOC) in the Baseline DP problem (outlined in Equation 8.9); uk ∈ Uk

is the control variable vector, which, in this problem, is u =
Tm,F
TTot

, with Tm,F being the front driving

torque, and TTot the total driving torque demand, defined in Equation 7.36. x1,0,x2,0 and x3,0 denote

the initial state values. Similarly to the Baseline DP, 61 grid points have been used for the SOC, 31

for each temperature state and 21 for the input.
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8.4 Dynamic Programming Solutions and Simulation Results

The drive cycle used in the simulations in this chapter is the Japanese 10-15 (JN1015), which is

visualised in Figure 8.1. The JN1015 drive cycle has a distance of 4.16 km, an average speed of 22.7

km/h, and a duration of 660 s [139]. This is a suitable drive cycle for the vehicle of interest in this

work, as it is a delivery van. Furthermore, the efficiencies of the PMSMs are calculated at different

temperature points by interpolating the six efficiency maps described in section 7.2 for the front and

rear PMSMs.

(m/s) 

(m/s2) 

Figure 8.1: Velocity and acceleration profiles of the JN1015 drive cycle (right), Gear number used
over the JN1015 drive cycle (left).

8.4.1 Torque and Power Split Profiles

The efficiency of the PMSM becomes poor with the increase of the internal motor temperature due

to the rise of motor losses. This temperature effect is more significant in full-load cases. In the

torque split and power split profiles shown in Figures 8.2, 8.3, 8.4, and 8.5, it can be observed that

the Thermal DP (drive profile) uses both motors evenly and frequently in hybrid mode during the

motoring phase, compared to the Baseline DP. This strategy is implemented to avoid full-load cases

that could cause unfavourable temperature effects.

Moreover, since regenerative braking also affects the temperature rise in the PMSMs, the Thermal

DP aims to limit the regenerative braking performed by the front motor, as it has smaller thermal
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capacitance than the rear motor, which would have a higher impact on its temperature rise.

T
m,F

 (Nm) T
m,R

 (Nm) T
Br
 (Nm)

Figure 8.2: The Baseline DP optimal torque split between the front and rear motors over the JN1015
drive cycle. Tm,F and Tm,R denote the front and rear motor driving torques and TBr denotes the me-
chanical braking torque.
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m,R

 (Nm) T
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Figure 8.3: The Thermal DP optimal torque split between the front and rear motors over the JN1015
drive cycle. Tm,F and Tm,R denote the front and rear motor driving torques and TBr denotes the me-
chanical braking torque.
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Figure 8.4: The Baseline DP optimal power split between the front and rear motors over the JN1015
drive cycle. Pm,F and Pm,R denote the front and rear motor driving torques and PBr denotes the me-
chanical braking torque.
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Figure 8.5: The Thermal DP optimal power split between the front and rear motors over the JN1015
drive cycle. Pm,F and Pm,R denote the front and rear motor driving torques and PBr denotes the me-
chanical braking torque.

8.4.2 Temperature Profiles
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Figure 8.6: Time histories of the front and rear motors’ stator windings’ temperatures for the Baseline
and Thermal DP case studies over the JN1015 drive cycle.

 °
 
C
 

Fe,F
 Baseline

Fe,F
 Thermal

Fe,R
 Baseline

Fe,R
 Thermal

Figure 8.7: Time histories of the front and rear motors’ rotor temperatures for the Baseline and
Thermal DP case studies over the JN1015 drive cycle.
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In Figure 8.6, the stator windings’ temperature profiles for the front and rear motors show that the

Thermal DP case study attempts to maintain similar temperatures for both motors, preventing one

from overheating more than the other. The lower gap between the front and rear temperature profiles

in the Thermal DP case study compared to the Baseline DP case study indicates this.

Further insights into the thermal operation of the motors can be gained from Figure 8.7. The sum

of the final front and rear rotor temperatures, as well as the final stator windings’ temperatures in

Figure 8.6, is lower in the Thermal DP case study than in the Baseline DP case study. It is important

to note that the estimated temperature may be higher in reality because the thermal dynamics of

other powertrain components, such as the inverter and DC-DC converter, as well as environmental

conditions, were not considered. This suggests that the advantages of the Thermal DP are likely more

significant in practice.

8.4.3 Torque, Speed and Temperature Operating Points

The torque/speed operating points of the Baseline and Thermal DP case studies are visualised in

Figure 8.8 and Figure 8.9 for the front and rear PMSMs, respectively. It can be observed that the

optimal operating points of the Baseline and Thermal case studies are different.

Figure 8.8: Torque versus angular speed of the front motor for the Baseline and Thermal DP case
studies, over the JN1015 drive cycle.

The torque and speed operating points are superimposed over the efficiency contours of the front and

rear PMSMs for the Baseline DP in Figure 8.10 and Figure 8.11, for the front and rear PMSMs, re-

spectively. The optimal torque split between the two motors for every speed depends on the operating
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Figure 8.9: Torque versus angular speed of the rear motor for the Baseline and Thermal DP case
studies, over the JN1015 drive cycle.
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0.8

Figure 8.10: Torque versus angular speed Baseline DP operating points of the front motor over the
JN1015 drive cycle, superimposed on the front motor efficiency map at a constant temperature of 10
◦C.

PMSM efficiency. In the Baseline DP, the motor’s efficiency depends on the torque and angular speed

but not the motor temperature. This is because the stator windings’ temperatures of both PMSMs

have been assumed constant throughout the drive cycle. However, in the Thermal DP case study, the

thermal dynamics of the PMSMs are modelled, and hence, temperature estimates of the front and

rear PMSMs’ stator windings’ over the drive cycle are available. Consequently, the efficiency of both

motors in the Thermal DP depends on the motor torque, angular speed, and temperature.

For visualisation purposes, the temperature range has been divided into four intervals. The inter-

polated efficiencies of each interval at the average interval temperature of the respective torque and

speed operating points are displayed in Figure 8.12 and Figure 8.13 for the front and rear PMSMs,
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Figure 8.11: Torque versus angular speed Baseline DP operating points of the rear motor over the
JN1015 drive cycle, superimposed on the rear motor efficiency map at a constant temperature of 10
◦C.

respectively.

8.4.4 Powertrain Efficiency and Losses

This vehicle is a delivery van mainly used in low-speed, low-torque regions. In this region, copper

losses are dominant, which means with rising temperatures, the losses increase and the efficiency

drops. In the high-speed, low-torque area, the opposite trend is seen as iron loss is dominant. The

conductivity of the laminates decreases with temperature rise [12]. This contrary behaviour of the loss

and temperature correlations leads to the existence of the energy-optimal motor temperature at which

the losses are minimal, and hence the efficiency is maximal. Additionally, by having two traction

motors, the knowledge of each motor’s temperature helps operate each motor in an efficient region.

Including motor temperature in designing EVs’ energy management control strategy can significantly

improve overall efficiency.

The copper losses for the front and rear motors for the Baseline and Thermal DP case studies are vi-

sualised in Figure 8.14 and Figure 8.15, respectively. The iron losses for the front and rear motors for

the Baseline and Thermal DP case studies are displayed in Figure 8.16 and Figure 8.17, respectively.

The total PMSM losses are depicted in Figure 8.18 and Figure 8.19 for the front and rear PMSMs,

respectively. It can be seen that the total PMSM losses are lower in the Thermal DP case compared
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Figure 8.12: The stator windings’ temperature of the front motor shown for the temperature intervals
of 10 to 25 ◦C (top left), 25 to 40 ◦C (top right), 40 to 55 ◦C (bottom left) and 55 to 70 ◦C (bottom
right). The efficiency visualised in every interval is the average of the respective temperature interval.

Table 8.1: Front and Rear PMSM energy losses for the Baseline and Thermal DP case studies, over
the JN1015 drive cycle

Parameter Axle Case study Symbol Value
Copper energy loss Front Baseline WCu,F 81.4216 KJ
Copper energy loss Front Thermal WCu,F 58.1820 KJ
Copper energy loss Rear Baseline WCu,R 37.9299 KJ
Copper energy loss Rear Thermal WCu,R 27.1510 KJ

Iron energy loss Front Baseline WFe,F 3.8946 KJ
Iron energy loss Front Thermal WFe,F 4.3368 KJ
Iron energy loss Rear Baseline WFe,R 11.9761 KJ
Iron energy loss Rear Thermal WFe,R 11.8458 KJ

Total PMSM energy loss Front Baseline WL,F 85.31621 KJ
Total PMSM energy loss Front Thermal WL,F 62.5188 KJ
Total PMSM energy loss Rear Baseline WL,R 49.9060 KJ
Total PMSM energy loss Rear Thermal WL,R 38.9968 KJ
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Figure 8.13: Stator windings’ temperature of the rear motor shown for the temperature intervals of 10
to 25 ◦C (top left), 25 to 40 ◦C (top right), 40 to 55 ◦C (bottom left) and 55 to 70 ◦C (bottom right).
The efficiency visualised in every interval is the average of the respective temperature interval.
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Figure 8.14: Front PMSM Copper loss PCu,F , for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.

to the Baseline DP case study.

The front and rear motor efficiency time profiles are shown in Figure 8.20 and Figure 8.21, respec-
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Figure 8.15: Rear PMSM copper loss PCu,R, for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.
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Figure 8.16: Front PMSM Iron loss PFe,F , for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.
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Figure 8.17: Rear PMSM Iron loss PFe,R, for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.

tively. It is evident that during motor operation (i.e. non-zero efficiency), the Thermal DP case study

demonstrates equal or higher efficiencies compared to the Baseline DP case study.
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Figure 8.18: Total front PMSM loss PL,F , for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.
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Figure 8.19: Total rear PMSM loss PL,R, for the Baseline and Thermal DP case studies over the
JN1015 drive cycle.

Table 8.2: Energy losses over the JN1015 drive cycle in other powertrain components: Inverter,
Battery and Gearbox

Parameter Case study Symbol Value
Battery energy loss Baseline WB 52.1535 KJ
Battery energy loss Thermal WB 41.1774 KJ
Inverter energy loss Baseline Wi 18.4782 KJ
Inverter energy loss Thermal Wi 14.1774 KJ
Gearbox energy loss Baseline Wg 60.64 KJ
Gearbox energy loss Thermal Wg 60.64 KJ

The total powertrain losses are depicted in Figure 8.22. It can be seen there is an 18.38% decrease in

the total energy loss in the Thermal DP case study compared to the Baseline DP case study.
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e F

Figure 8.20: Time profile of the front PMSM efficiency eF , for the Baseline and Thermal DP case
studies over the JN1015 drive cycle.

e R

Figure 8.21: Time profile of the rear PMSM efficiency eR, for the Baseline and Thermal DP case
studies over the JN1015 drive cycle.

Figure 8.22: Comparison of the drivetrain losses between the Baseline and Thermal DP case studies
over the JN1015 drive cycle.
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8.4.5 SOC Profiles

The SOC profiles are visualised in Figure 8.23 with results summarised in Table 8.3. It can be seen

that there is a 9.48% reduction in battery energy usage in the Thermal DP case study compared to the

Baseline DP case study.

Figure 8.23: SOC time profiles of the Baseline and Thermal DP case studies over the JN1015 drive
cycle.

Table 8.3: Final SOC for the Baseline and Thermal DP case studies

Parameter Case study Symbol Value
Final state of charge Baseline SOC f inal 0.6310
Final state of charge Thermal SOC f inal 0.6476
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8.5 Chapter Summary

The chapter presented an in-depth analysis of two different Dynamic Programming (DP) energy man-

agement strategies implemented on dual-motor EV models. The first standard DP had one state

(SOC), and the second DP considered the temperature variation of the traction motors, having three

states (SOC, front PMSM stator windings’ temperature and rear PMSM stator windings’ tempera-

ture). The thermal dynamics of the traction motors were modelled using the LPTN method, and

the corresponding thermal parameters were identified and validated using experimental data from the

industrial partner.

The chapter compared the Baseline and Thermal DP case study solutions and provided insights into

the optimal energy management of dual-motor EV powertrains. The powertrain loss values showed

that considering the thermal dynamics of the PMSMs reduces the total energy loss by 18.38% in the

Thermal DP case study compared to the Baseline DP case study. Moreover, the SOC usage of the

Thermal DP case study improved by 9.48% compared to the Baseline DP case study.

The Thermal DP achieved higher efficiency than the Baseline DP in the majority of the JN1015 drive

cycle. The chapter analysed the front and rear PMSMs’ stator windings’ temperature profiles, indi-

cating that the Thermal DP avoids letting one motor overheat and keeps both the front and rear motor

temperatures in the same region. Overusing one motor was observed in the rear motor temperature

profiles in the Baseline DP case study, leading to an overall less efficient energy management strategy

compared to the Thermal DP case study.

In summary, the chapter provided a detailed study of the optimal energy management of dual-motor

EV powertrains using DP and thermal modelling. The findings suggested that considering the thermal

dynamics of the PMSMs results in a more efficient energy management strategy.
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Chapter 9

Conclusion

9.1 Summary of Achievements

The Part Energy Management of HEVs presented the modelling of a TTR HEV and implemented

the ECMS and the global heuristic control strategies and their corresponding real-time versions:

Torque levelling Threshold changing Strategy (TTS) and the Real-time TTS (RTTS). The simplified

versions of these controllers were also introduced by eliminating one control parameter: Simplified-

TTS (STTS) and Real-time STTS (RSTTS).

These strategies were developed based on the insights from XOS [122] and OPSS [6], which were

designed for series HEVs. The TTS used the ’Threshold-changing’ and ’Load-levelling’ mechanisms,

which outperformed the conventional ECMS for the WLTP driving cycles for two engine models, as

summarised in Tables 6.3 and 6.4.

However, globally tuned controllers are not suitable for real-time applications. Hence, a real-time

version of the TTS was developed using feedback control based on the SOC to compute the instanta-

neous threshold values and the engine torque. It also used a novel algorithm to recognise the specific

driving type, such as urban or highway, to output the appropriate initial engine torque. The RTTS

achieved similar performance to the TTS over the WLTP drive cycle. The real-time strategy was also

tested on an experimental UK driving cycle, demonstrating its effectiveness in achieving CS operation

118
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and improving fuel economy compared to the non-causal ECMS, which uses apriori knowledge of

the driving cycle.

The heuristic methods were easily implementable in Simulink using logic gates, and these methods

also benefited from shorter tuning time compared to optimisation-based approaches. These attributes

make them realistic and favourable for general automotive applications.

In ’Part Energy Management of EVs’, two dual-motor EV models (Baseline and Thermal models),

and two Dynamic Programming (DP) energy management strategies were developed (Baseline and

Thermal DPs). The Thermal DP considered the thermal dynamics of the PMSMs by modelling and

including them in the problem formulation. The optimal power split obtained from the Baseline

DP case study was then fed into the Thermal DP environment, where it was discovered that the

Thermal DP outperformed the Baseline DP. By considering the temperature-dependent efficiency

of the PMSMs, a more optimal and realistic energy management strategy was achieved, resulting in

greater minimisation of the PMSM losses. Additionally, it was observed that by using the motors more

evenly and avoiding overloading a single motor in the Thermal DP case study, the overall efficiency

was increased, resulting in a higher final SOC. The Thermal DP was able to maintain the temperature

of the motors at similar levels and prevented either motor from overheating.



120 Chapter 9. Conclusion

9.2 Future Work

Some potential future work based on the knowledge gained from this thesis is summarised in this

section.

Chapter 3: Hybrid Electric Vehicle Model

1. Some components in the high-fidelity TTR vehicle model, such as the engine, battery and trans-

mission system, could be further refined (e.g. the modelling of emissions and the degradation

of the battery and other power electronics).

2. The thermal dynamics of some components, such as the PMSM and the battery, can be modelled

to get a more realistic expression of the efficiency as opposed to steady-state maps.

3. The gearbox can be modelled so that the transient response is taken into account, which could

affect the overall energy management solution.

4. The gearbox ratios and shifting strategy could be co-optimised to optimally control the gearshift

commands, as well as the continuous power split between the primary and secondary sources.

5. The driver model could be further developed to take realistic reaction times into account in

order to be more representative of a human driver.

Chapter 4: Conventional Control Strategies for the Energy Management of

HEVs

1. A real-time ECMS could be implemented to act as a benchmark for the real-time novel heuristic

methods developed in this work.

2. Other suitable conventional strategies could be implemented to achieve a more accurate bench-

mark.
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Chapter 5: Heuristic Control Strategies for the Energy Management of HEVs

1. For further validation of the novel heuristic methods developed, these methods could be tested

in a Hardware-In-the-Loop (HIL) environment and on vehicles.

2. The novel Driving Pattern Recognition (DPR) Algorithm could be tested over more drive cycles

for further refinement.

Chapter 6: Simulation results for the Energy Management of HEVs

1. The performance results of the TTS and STTS differed for two different engine models; there-

fore, more engine types with various power ratings could be studied.

2. The impact of the sizing of the rest of the powertrain components could be analysed.

Chapter 7: Electric Vehicle Model

1. The thermal dynamics of other powertrain components, such as the battery, inverter, gearbox,

and DC link, could be modelled and analysed. By modelling the thermal dynamics of these

components, a more realistic estimation of the powertrain efficiency can be obtained. As model

complexity increases, optimal control tools might no longer be suitable. Therefore, an appro-

priate optimisation method shall be selected.

2. More accurate gear change responses (e.g. transient response) can be implemented. Modelling

the transient response of the gear changes could affect the losses and the optimal energy man-

agement solution.

3. A research could be conducted to optimise the brake-force-distribution strategy. This work

uses a fixed split ratio of 30-70% between the friction and the regenerative braking (as long as

enough regenerative braking is available). However, a more complex brake force distribution

can be implemented, which takes other factors, such as slip, into account.

4. To implement heuristic strategies based on the optimal solutions obtained in this work, a high-

fidelity vehicle model could be developed for this dual-motor EV. This model would incorporate
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the insights gained from the optimal solutions and allow for the implementation of these strate-

gies. With this approach, the vehicle could achieve a more efficient operation and provide a

better understanding of the impact of various factors on its performance.

Chapter 8: Optimal Control Problem & Results for the Energy Management of

EVs

1. Analysing the theoretical aspects makes it possible to understand the fundamental principles

behind the optimal solutions, which can be used to refine the existing strategies or develop new

heuristic strategies.

2. Real-time heuristic strategies inspired by DP could be developed and tested in a HIL environ-

ment and on vehicles.

3. Further validation of the energy management strategies could be obtained if more drive cycles

are tested.
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