1,808 research outputs found

    Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Get PDF
    AbstractA fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties

    The Artificial Neural Networks Applied to Servo Control Systems

    Get PDF
    This chapter utilizes the direct neural control (DNC) based on back propagation neural networks (BPN) with specialized learning architecture applied to the speed control of DC servo motor. The proposed neural controller can be treated as a speed regulator to keep the motor in constant speed, and be applied to DC servo motor speed control. The proposed neural control applied to position control for hydraulic servo system is also studied for some modern robotic applications. A tangent hyperbolic function is used as the activation function, and the back propagation error is approximated by a linear combination of error and error!s differential. The simulation and experiment results reveal that the proposed neural controller is available to DC servo control system and hydraulic servo system with high convergent speed, and enhances the adaptability of the control system

    Machine learning of electro-hydraulic motor dynamics

    Get PDF

    DESIGN OF ADAPTIVE BACKSTEPPING WITH GRAVITATIONAL SEARCH ALGORITHM FOR NONLINEAR SYSTEM

    Get PDF
    Adaptive backstepping controller is designed for tracking purpose of nonlinear system with unknown parameter is injected to it. Gravitational search algorithm (GSA) is integrated with the designed controller in order to automatically tune its control parameters and adaptation gain since the tracking performance of the controller relies on these parameters. Performance evaluation is observed based on the tracking output and the tracking error between reference input and the system’s output. The effectiveness of the adaptive backstepping controller is verified by looking at the lowest amount value of Sum of Squared Error (SSE) attained from the simulation process. The results show that the system’s output follow the reference input given with remarkably small tracking error

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    A neural network-based inversion method of a feedback linearization controller applied to a hydraulic actuator

    Get PDF
    In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in feedback linearization control algorithms applied to hydraulic actuators. Although very efective and with strong stability guarantees, feedback linearization control depends on parameters that are difcult to determine, requiring large amounts of experimental efort to be identifed accurately. On the other hands, neural networks require little efort regarding parameter identifcation, but pose signifcant hindrances to the development of solid stability analyses and/or to the processing capabilities of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without requiring extensive identifcation procedures nor losing stability guarantees for the closed-loop system, at reasonable computing demands. The efectiveness of the proposed method is verifed both theoretically and by means of experimental results

    Modeling and control of a modular iron bird

    Get PDF
    This paper describes the control architecture and the control laws of a new concept of Modular Iron Bird aimed at reproducing flight loads to test mobile aerodynamic control surface actuators for small and medium size aircraft and Unmanned Aerial Vehicles. The iron bird control system must guarantee the actuation of counteracting forces. On one side, a hydraulic actuator simulates the hinge moments acting on the mobile surface due to aerodynamic and inertial effects during flight; on the other side, the actuator to be tested applies an active hinge moment to control the angular position of the same surface. Reference aerodynamic and inertial loads are generated by a flight simulation module to reproduce more realistic conditions arising during operations. The design of the control action is based on a dynamic model of the hydraulic plant used to generate loads. This system is controlled using a Proportional Integral Derivative control algorithm tuned with an optimization algorithm taking into account the closed loop dynamics of the actuator under testing, uncertainties and disturbances in the controlled plant. Numerical simulations are presented to show the effectiveness of the proposed architecture and control laws
    • …
    corecore