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Abstract: This chapter utilizes the direct neural control (DNC) based on back 
propagation neural networks (BPN) with specialized learning architecture applied to the 
speed control of DC servo motor. The proposed neural controller can be treated as a speed 
regulator to keep the motor in constant speed, and be applied to DC servo motor speed 
control. The proposed neural control applied to position control for hydraulic servo 
system is also studied for some modern robotic applications.  
A tangent hyperbolic function is used as the activation function, and the back 
propagation error is approximated by a linear combination of error and error!s 
differential. The simulation and experiment results reveal that the proposed neural 
controller is available to DC servo control system and hydraulic servo system with high 
convergent speed, and enhances the adaptability of the control system.  
Keywords: Neural networks, DC servo motor, Speed regulator, Speed control, Hydraulic 
servo System 

 
1. Introduction 
 

The neural controls have been put into use in various fields owing to their 
capability of on line learning and adaptability. In recent years, many learning strategies for 
neural control have been proposed and applied to some specified nonlinear control systems 
to overcome the unknown model and parameters variation problems. In this chapter, a 
direct neural controller with specialized learning architecture is introduced and applied to 
the DC servo and hydraulic servo control systems.  

The general learning architecture and the specialized learning architecture are 
proposed and studied in early development of neural control [1]. The general learning 
architecture shown in Fig. 1, uses neural network to learn the inverse dynamic of plant, and 
the well-trained network is applied to be a feed forward controller. In this case, the general 
procedure may not be efficient since the network may have to learn the responses of the 
plant over a larger operational range than is actually necessary. One possible solution to this 
problem is to combine the general method with the specialized procedure, so that an 
indirect control strategy for general learning was proposed, which is shown in Fig. 2. For a 
general learning architecture with some specialized procedures, the off line learning of the 
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inverse dynamic of plant still have to learn the responses of the plant over a larger 
operational range.  

The specialized learning architecture shown in Fig. 3, trains the neural controller to 
operate properly in regions of specialization only. Training involves using the desired 
response as input to the network. The network is trained to find the plant input, which 
drives the system output to the desired command. This is accomplished by using the error 
between the desired and actual responses of the plant to adjust the weights of the network 
with a steepest descent procedure. The weights are adjusted to decrease the errors during 
iterations. This procedure requires knowledge of the Jacobian of the plant.  

There are two strategies to facilitate the specialized learning, one is direct control 
shown in Fig. 4 and the other is indirect control shown in Fig. 5 [2]. In the former, the plant 
can be viewed as an additional but no modifiable layer of the neural network, and the dash 
line of Fig. 4 means the weights update need the knowledge of plant. The latter, which has 
been used in many applications [3-5], is a two-step process including identification of 
dynamics of plant and control. 

In the indirect control strategy, a sub-network (called "emulator") is required to be 
trained before the control phase, and the quality of the trained emulator is crucial to the 
controlling performance. It is therefore very important that the dana sets for training the 
emulator must cover a sufficiently large range of input and output data pairs, but if some of 
these values are outside the input range that was used during the emulator´s training, the 
back propagation trough the emulator fails, causing poor or even unstable control 
performance. 

 

 
Fig. 1. The general learning architecture 

 

 
Fig. 2. The indirect control for general learning architecture 
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Fig. 3. The specialized learning architecture 

 

 
Fig. 4. The direct control for specialized learning architecture 

 

 
Fig. 5. The indirect control for specialized learning architecture 

 
The direct control strategy can avoid this problem if a priori qualitative knowledge or 
Jacobian (the partial differential of plant output to input) of the plant is available. But it is 
usually difficult to approximate the Jacobian of an unknown plant. This chapter utilizes the 
direct neural control (DNC) based on back propagation neural networks (BPN) with 
specialized learning architecture applied to the speed controls of DC servo motor. The 
approximation methods of Jacobian are introduced for direct neural control scheme. The 
direct control strategies with the approximation methods have been successfully applied to 
DC servo and hydraulic servo control systems. The proposed neural controller also can be 
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treated as a speed regulator to keep the motor in constant speed. The corresponding 
performances are investigated and discussed. 

 
2. The direct neural controller 
 

2.1 The structure of direct neural control 

A direct neural controller with three layers was shown in Fig. 6. A three layers neural 
network with one hidden layer is sufficient to compute arbitrary decision boundaries for the 
outputs [6]. Although a network with two hidden layers may give better approximation for 
some specific problems, but the networks with two hidden layers are more prone to fall into 
local minima [7], and more CPU time is needed. In the following section, a back propagation 
network (BPN) with single hidden layer is considered.  
Another consideration is the right number of units in a hidden layer. Lippmann [8] has 
provided comprehensive geometrical arguments and reasoning to justify why the maximum 
number of units in a single hidden layer should equal to M(N+1), where M is the number of 
output units and N is the number of input units. Zhang et al. [2] have tested different 
numbers units of the single hidden layer for a ship tracking control system. It was found 
that a network with three to five hidden units is often enough to give good results.  
The structure of direct neural control is shown in Fig. 7. The proposed neural network has 
three layers with two units in the input layer, one unit in the output layer and fine number 
of units in the hidden layer. The r = X , X and y = X denote as the command input, output of 
the reference model and the output of the plant respectively. The two inputs of the network 
are the error e and its differential é between X R and X P .  
The reference model can be designed according to a second order dynamic model; the 
damping ratio and natural frequency can bedetermined based on the specified performance 
index of control system. 
 

 
Fig. 6. A direct neural controller with three layers 
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Fig. 7. The structure of a direct neural control system 

 
2.2 The algorithms for direct neural controller 

The proposed neural network shown in Fig. 6 has three layers with two units in the input  
layer, one unit in the output layer and right number of units in the hidden layer. The X R , X 

and X P  denote the required command input, output of the reference model and the output of 
the controlled plant respectively. The two inputs of the network are the error and its 
differential between X R  and X P  . The reference model can be designed according to a second 
order transfer function; the damping ratio and natural frequency can be defined based on 
the specified performance index. The algorithms and weights update equations of the 
proposed direct neural controller are described by the following equations. The proposed 
direct neural controller has the hidden layer  (subscript "j"), output layer (subscript "k") and 
layer (subscript "i"). The input signal is multiplied by gains K1 , K2 at the input layer, in 
order to be normalized between +1 and -1. A tangent hyperbolic function is used as the 
activation function of the nodes in the hidden and output layers, the number of units in 

hidden layer equals to J , the number of units in input layer equals to I , and the number of 

units in output layer equals to K, the net input to node j in the hidden layer is: 
                                                                           

                                          (1) 

 
the output of node j is 
 

                                                                                                             (2) 

 
where ǃ > 0 , the net input to node k in the output layer is 
                                                                                     

                                                    (3)                             

 
the output of node k is 
 

                                                                                                                     (4) 
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The output O k   of node k in the output layer is treated as the control input u P  of the system for 
a single-input and single-output system. As expressed equations, W ji represent the 
connective weights between the input and hidden layers and W kj represent the connective 
weights between the hidden and output layers. ǉj  and ǉk  denote the bias of the hidden and 
output layers, respectively. 
For the Nth sampling time, the error function is defined as 
 

                                                                                                                                                                                                                                                      (5) 

   
where X N   and X PN denote the outputs of the reference model and the outputs of the controlled 
plant at the Nth sampling time, respectively. The weights matrix is then updated during the 
time interval from N to N+1. 
 

                                              (6) 

  
where ǈ is denoted as learning rate and ǂ is the momentum parameter. The gradient of En  

with respect to the weights Wkj is determined by 
 

                                         (7) 

 

and is defined as 
 

                   (8) 

 
where  is defined to be the Jacobian of plant. Assume the Jacobian of the plant 

can be evaluated. The  can besolved. 
Similarly, the gradient of En with respect to the weights, Wji  is determined by 
 

                                            (9) 
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                                  (10) 

 
The weight-change equations on the output layer and the hidden layer are, 
 

                   (11) 

 

                   (12) 

 
where   and  can be evaluated from Eqs.(24) and (21). The connective weights in the 
neural network are updated 
during the time interval from N to N+1 . 
 

                                                                                                                          (13) 

 

                                                                                                                            (14) 

 
A tangent hyperbolic function is used as the activation function, so that the neural network 
controller output Ok = up  evaluated from Eq. (4) is between A1 and +1, which is multiplied 
by the scaling factor Ko to be the input of plant. The weights and biases is initialized 
randomly in the interval between +0.5 and A0.5, and updated by Eqs. (13) and (14). 

 
2.3 The on line trained adaptive neural controller 

The Jacobian of plant needs to be available to Eq.(8) for back propagation algorithm. 

However, the exact  is difficult to determine because of the unknown plant 
dynamics. Two differential approximations are presented [1] by slightly changing each 
input to the plant at an operating point, and measuring the changes in the output. The 
jacobian is denoted by 
 

                                          (15) 

 
Alternatively, by comparing the changes of the differential related variables with values in 
the previous iteration, the differential can be approximated using the relationship 
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                                                    (16) 

 
It has been observed in earlier reported simulations [2] that the use of approximation (15) or 
(16) often causes ambiguity for network training when the controlled plant has large inertia 
or when disturbances are added. Ambiguity in training contrary to what would be expected 
from a clear understanding of the situation being investigated. A simple sign function 
proposed by Zhang et al. [2] is applied to approximate the Jacobian of plant, and called on-
line trained adaptive neural controller for industrial tracking control application. Therefore, 

the differential  is approximated by the ratio of the signs of the changes in X 

(N) P and u (N) P . The term   is replaced by its sign, so that Eq.8 takes the form 

 

                                   (17) 

 
The clear knowledge of how the control signal u (N) P influence the plant outputs X (N) P will 
provide the required sign information. Therefore X (N) u (N) P P ( ( <0 leads to 
 

                                                                                                                                                                                                                      (18) 

 

and                                            leads to 
 

                                                         (19) 

 
Using Eq.(17) with the given differential signs provide in Eq.(18) and (19), the neural 
controller will effectively output control signals with the correct direction according to the 
plant output error e(N) . 

 
2.4 The approximation of Jacobian 

An accurate tracking response needs to increase the speed of convergence. However, for a 
single-input and single-output control system, the sensitivity of E N  with respect to the 
network output O k can be approximated by a linear combination of the error and its 
differential according to the & adaptation law [8] shown as below 
 

                                                        (20) 
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where K 3  and K 4 are positive constants, so that Eq.8 takes the form 
 

                (21) 

 
Example 1. 
A direct neural controller applied to DC servo speed control system is shown in Fig. 8. 
Assume the voltage gain of servo amplifier is unity. The gain of speed sensor is 0.001V rpm , 
the first order dynamic model of DC servo motor is 
 

 
 

According to Eq. 23, the direct neural controller using & adaptation law with three layers 
and five hidden neurons shown in Fig. 9. is used to control and regulate the motor speed. 
 

                                                    (23) 

 
According to Fig. 8, the neural control system without reference model is a self-tuning type 
adaptive control, so that K 1= K 3  and K 2= K 4  conditions can be applied. The K 1 = 0.6 and K 2 = 

0.05 can be determined for input signals normalization. The learning rate ǈ = 0.1 , sampling 
time=0.0001s, K 1= K 3  = 0.6, K 2= K 4  = 0.05 and the step command of 1V(1000rpm) assigned for 
simulation phase, and the simulation results are shown in Fig. 10, Fig. 11, and Fig. 12. The 
simulation results show that the connective weights will be convergent. The time response 
for P u shows that the network will keep an appropriate output voltage signal to overcome 
the speed (motional) voltage, which is generated by the rotating armature. Similarly, the 
neural controller can provide output to overcome the torque load and friction. This is 
similar to a PI controller, but the neural controller can enhance the adaptability and improve 
performance of control system. 
 

 
Fig. 8. The speed control system with direct neural controller 
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Fig. 9. The direct neural controller 

 

 
Fig. 10. Speed response for DC servo motor 
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Fig. 11. The time response for control input 

 

 
Fig. 12. All connective weights are convergent before 0.4s 
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The on-line trained neural controller using sign function approximation of Jacobian is also 
applied to this speed control system. The simulation results shown in Fig. 13, Fig. 14, and 
Fig. 15, which reveal that the on-line trained method takes more time for convergence. 
 

 
Fig. 13. Speed response for DC servo motor 

 

 
Fig. 14. The time response for control input 
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Fig. 15. All connective weights are convergent before 0.6s 

 
The direct neural controllers using & adaptation law can provide better performance than 
using on-line trained method. The & adaptation law uses the error differential to increase 
the damping of the error convergent process, and improve the stability and convergent 
speed for weight update algorithm. 

 
3. THE direct neural control applied to speed regulation for DC servo motor 
 

The modern precise DC servo systems need to overcome the unknown nonlinear friction, 
parameters variations and torque load variations. It is reasonable to apply adaptive control 
to the DC servo system for speed control. But the conventional adaptive control techniques 
are usually based on the system model parameters. The unavailability of the accurate model 
parameters leads to a cumbersome design approach. The real-time implementation is 
difficult and sometimes not feasible because of using a large number of system parameters 
in these adaptive schemes. The proposed direct neural controllers can precisely regulate the 
speed for a DC servo motor, but don:t have to the knowledge of system model parameters. 
 

3.1 Description of the speed regulation system 

The application of the direct neural controller for DC servo motor speed regulation is shown 

in Fig. 14, where 'r is the speed command and ' is the actual output speed. The proposed 

neural network is treated as a speed regulator, which can keep the motor in constant speed 
against the disturbance. 
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Fig. 14. The block diagram of speed control system 

 
There are 5 hidden neurons in the proposed neural regulator. The proposed DNC is shown 
in Fig. 15 with a three layers neural network. 
 

 
Fig. 15. The structure of proposed neural controller 
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The difference between command speed 'r and the actual output speed ' is defined as error e. 
The error e and its differential e are normalized between A1 and +1 in the input neurons 
before feeding to the hidden layer. In this study, the back propagation error term is 
approximated by the linear combination of error and error:s differential. A tangent 
hyperbolic function is designed as the activation function of the nodes in the output and 
hidden layers. So that the net output in the output layer is bounded between A 1 and +1, 
and converted into a bipolar analogous voltage signal through a D/A converter, then 
amplified by a servo-amplifier for enough current to drive the DC motor. A step speed 
command is assigned to be the reference command input in order to simulate the step speed 
response of a DC servo motor. The proposed three layers neural network, including the 
hidden layer ( j ), output layer ( k ) and input layer ( i ) as illustrated in Fig. 15. The input 
signals e and its differential e are multiplied by the coefficients K 1  and K 2 , respectively, as the 
normalized signals O i to hidden neuron. A tangent hyperbolic function is used as the 
activation function of the nodes in the hidden and output layers. The algorithms for weight 
update are described in previous section. 

 
3.2 Dynamic Simulations 

The block diagram of the DC servo motor speed control system with the proposed neural 
regulator is shown in Fig. 14, which consists of a 15W DC servo motor, an tachometer with a 
unit of 1/150.8 V/rad/s, an 12 bits bipolar D/A converter with an output voltage range of 
A5V to +5V and a servo amplifier with voltage gain of 2.3. The parameters of DC servo 
motor are listed in Table 1. 

 

 
Table 1. The parameters of motor 

 
In the designed direct neural controller, the number of neurons is set to be 2, 5 and 1 for the 
input, hidden and output layers, respectively (see Fig.2). There is only one neuron in the 
output layer. The output signal of the direct neural controller will be between -1 and +1, 
which is converted into a bipolar analogous voltage signal by the D/A converter. The 
output of the D/A converter is between +5V and -5V corresponding to the output signal 
between +1 and -1 of the neural controller. It means the output of neural controller 
multiplied by a conversion gain of 5V. Then, the voltage signal is amplified by the servo 
amplifier to provide high current for driving the DC servo motor. The parameters K 1 and K 2 

Kmust be adjusted in order to normalize the input signals for the neural controller.  
In this simulation, the parameters K 3  and K 4  can be determined, and K 3  = K 1  and K 4  = K 2  are 
assigned. In this simulations, a step signal of 1V corresponding to 150.8 rad/s is denoted as 
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the speed command, the sampling time is set to be 0.0001s , the learning rate !"of the neural 
network is set to be 0.1 and the coefficient ǃ=0.5 is assigned. Since the maximum error-
voltage signal is 1V, the parameters K 1  and K 2  are assigned to be 0.6 and 0.01, respectively, in 
order to obtain an appropriate normalized input signals to the neural network. The 
parameters K 3  = K 1  =0.6 and K 4  = K 2 =0.01 are assigned for better convergent speed of the 
neural network. And a conventional PI controller with well tuning parameters applied to 
this speed regulate system is also simulated. Assumes a disturbance torque load of 0.015 
Nm applies to this control system at t=0.5s. The simulation results are shown in Fig. 16 and 
Fig. 17 4, where Fig. 16 (a) represents the speed response of the DC motor with PI controller, 
Fig. 16 (b) represents the output signal of the PI controller; Fig. 17 (a) represents the speed 
response of the DC motor with neural controller. Fig. 17 (b) represents the output signal of 
the neural controller. It exhibits a steady state error in the speed response is eliminated by 
the proposed neural regulator, which keeps appropriate voltage output as the inputs near 0. 
Fig. 17 (c) shows the convergent time of the connective weights is smaller than 100ms, and 
the speed response of the DC motor is stable. Consequently, the proposed neural speed 
regulator enhances the adaptability in speed control system. In addition, an extra attention 
should be taken on the disturbing torque load. The conventional PI controller does not have 
fast performance of speed regulation as the proposed neural speed regulator. The output of 
PI controller will saturate, if its performances are increased to near the neural regulator. 
Fig.3 (b) shows the maximum output of PI controller is close to 3V. Fig.4 (b) shows the 
maximum output of neural regulator is only 2.41V, and the speed regulation performance of 
neural regulator is better than that of the PI controller. The simulation results exhibit the 
neural regulator is available for the high-precision speed control systems. If the speed 
command is increased and over 1.66V , the parameters K 1  and K 2  need to be adjusted, the 
parameters K 3  and K 4  also need to be adjusted to appropriate values. Basically increasing the 
values of K 2  and K 4  will increase the damping effect of control system. 
 

 
(a) Speed response 
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(b) Output of PI controller 
Fig. 16. Simulation results for speed regulation of DC servo motor with PI controller 

 

 
(a) Speed response 

 

 
(b) Output of neural regulator 
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(c) The time responses for connective weights 
Fig. 17. Simulation results for speed regulator of DC servo motor with neural regulator 

 
3.3 Experimental Results 

The experimental apparatus consist of a 15W DC servo motor whose parameters shown in 
Table 1 are the same as that of simulation, an encoder with a unit of 0.01256 rad/pulse, an 
12bits bipolar D/A converter with a voltage range of A5.13V to +5.13V and a servo amplifier 
with voltage gain of 2.3. In the designed direct neural controller, the number of neurons is 
set to be 2, 5 and 1 for the input, hidden and output layers, respectively. There is only one 
neuron in the output layer. The output signal of the direct neural controller will be between 
A1 and +1, which is converted into a bipolar analogous voltage signal by the D/A converter. 
The output of the D/A converter is between +4.847V and -4.847V corresponding to the 
output signal between +1 and -1 of the neural controller. Then, the voltage signal is 
amplified by the servo-amplifier to provide high current for driving the DC servo motor. 
Furthermore, the parameters K 1  and K 2  must be adjusted in order to normalize the input 
signals of the neural regulator. In this experiment, the parameters K 3  and K 4  depend on K 1 

and K 2 , and K 3 = K 1  and K 4  = K 2  is assigned. A step signal of 120 pulses/0.01s (12000 
pulses/s) corresponding to 150.8 rad/s is denoted as the speed command. The learning rate 
ǈ=0.3, the coefficient ǃ=0.5 and the sampling time of 0.01s are assigned. The parameter K 

1=0.003 and  K2 =0.00003 are defined to normalize the input signals of the neural controller. 
The relations K 1  = K 3  and K 2  = K 4  are applied in our experiments. The results are shown in 
Fig. 18. It shows that the speed response of a DC motor is stable and accurate but with 
overshoot. The experiment result with K 2 4  = K =  0.00004 and ǈ=0.5 is shown in Fig. 19. It 
shows that parameters K 2  and K 4  exhibit a damping effect evidenced by an overshoot in the 
speed response of a DC servo motor as K 2   = K4 = 0.0003  , and the overshoot decreased as K 2 = K4  

= 0.00004 . The settling time is decreased as K 2  = K4  = 0.0004. 
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(a) Speed response of DC servo motor 

 

 
(b) The output of neural controller 
Fig. 18. Experiment results (Sampling time=0.01s, ǈ=0.3, K1 = K3 = 0.003, K2 = K4 = 0.00003) 
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(a) Speed response of DC servo motor 

 
(b) The output of neural controller 

Fig. 19. Experiment results (Sampling time=0.01s, K1 = K3  = 0.003,ǈ = 0.5,K2   K4 = 0.00003 : ----, 
K2 = K4 = 0 00004  : ----) 

 
It is a better way for neural controller that the sampling time is as small as possible, then 

choosing a correspondent small learning rate. It means the connective weights can have 
more update times within the same time interval. The smaller sampling interval leads to 
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more weight updates per second. It is helpful for convergence of on line learning. So that, a 
smaller sampling interval of 0.001s and the speed command of 30 pulses/ms (30,000 
pulses/s) corresponding to 377rad/s are applied to this experiment, it means the connective 
weights can be updated 1000 times per second. The parameters K1 = K3  = 0.003 and K2   K4 = 

0.00003  are assigned for this experiment. Both of the learning rate of 0.3 and 0.5 are assigned, 
and the corresponding experiment results are shown in Fig. 20 and Fig. 21 respectively. 
 

 
(a) Speed response of DC servo motor 

 
(b) The output of neural controller 

Fig. 20. Experiment results (Sampling time=0.001s, ǈ=0.3, K1 = K3 = 0.03, K2 = K4 = 

0.00003) 
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(a) Speed response of DC servo motor 

 
(b) The output of neural controller 
Fig. 21. Experiment results (Sampling time=0.001s, ǈ=0.5, K1 = K3 = 0.03, K2 = K4 = 0.00003) 

 
Fig. 20 and Fig. 21 show the smaller sampling interval make the pulse number of one 
sampling interval become smaller, so that the speed error to speed command ratio will 
become larger. The speed error is between -1 and +1 pulse per sampling interval.  

In Fig. 21, the speed response is still stable with ǈ = 0.5 , but more overshoot can be 

investigated; owing to the fact that more learning rate induces more neural controller output 
and get more overshoot. It can be investigated that the sampling time needs to be smaller, 
then choosing a correspondent small learning rate. It is proven that the speed response of a 
DC servo motor with the proposed direct neural controller is stable and accurate. The 
simulation and experimental results show the speed error comes from speed sensor 
characteristics, the measurement error is between -1 and +1 pulse per sampling interval. If 
the resolution of encoder is improved, the accuracy of the control system will be increased. 
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The speed error is in the interval of 1 pulses/0.01s as the sampling time of 0.01s, but it is in 
the interval of 1 pulses/0.001s as the sampling time of 0.001s. The step speed command is 
assigned as 120 pulses/0.01s (150.72rad/s) with the sampling interval of 0.01s, and the step 
speed command needs to be increased to 30pulses/ms (377rad/s) to keep the accuracy of 
the speed measurement. Furthermore, we have to notice the normalization of the input 
signals. From the experimental results, the input signals need to be normalized between +1 
and A1. The learning rate should be determined properly depends on the sampling interval, 
the smaller sampling interval can match the smaller learn rate, and increase the stability of 
servo control system. 

 
4. The Direct Neural Control Applied to Hydraulic Servo Control Systems 
 

The electro-hydraulic servo systems are used in aircraft, industrial and robotic mechanisms. 
They are always used for servomechanism to transmit large specific powers with low 
control current and high precision. The electro-hydraulic servo system (EHSS) consists of 
hydraulic supply units, actuators and an electro-hydraulic servo valve (EHSV) with its servo 
driver. The EHSS is inherently nonlinear, time variant and usually operated with load 
disturbance. It is difficult to determine the parameters of dynamic model for an EHSS. 
Furthermore, the parameters are varied with temperature, external load and properties of 
oil etc. The modern precise hydraulic servo systems need to overcome the unknown 
nonlinear friction, parameters variations and load variations. It is reasonable for the EHSS to 
use a neural network based adaptive control to enhance the adaptability and achieve the 
specified performance. 
 

4.1 Description of the electro-hydraulic servo control system 

The EHSS is shown in Fig. 22 consists of hydraulic supply units, actuators and an electro-
hydraulic servo valve (EHSV) with its servo driver. The EHSV is a two-stage electro 
hydraulic servo valve with force feedback. The actuators are hydraulic cylinders with 
double rods. 
 

 
Fig. 22. The hydraulic circuit of EHSS 
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The application of the direct neural controller for EHSS is shown in Fig. 23, where y r is the 

position command and p y is the actual position response. 

 

 
Fig. 23. The block diagram of EHSS control system 

 
A. The simplified servo valve model 
The EHSV is a two-stage electro hydraulic servo valve with force feedback. The dynamic of 
EHSV consists of inductance dynamic, torque motor dynamic and spool dynamic. The 
inductance and torque motor dynamics are much faster than spool dynamic, it means the 
major dynamic of EHSV determined by spool dynamic, so that the dynamic model of servo 
valve can be expressed as: 
 

                                                   (24) 

 
 : The displacement of spool 

 : The input voltage 
 
B. The dynamic model of hydraulic cylinder 
The EHSV is 4 ports with critical center, and used to drive the double rods hydraulic 
cylinder. The leakages of oil seals are omitted and the valve control cylinder dynamic model 
can be expressed as [8]: 
 

                                   (25) 

 
x v: The displacement of spool 
F L : The load force 
X P :The piston displacement 
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C. Direct Neural Control System 
There are 5 hidden neurons in the proposed neural controller. The proposed DNC is shown 
in Fig. 24 with a three layers neural network. 
 

 
Fig. 24. The structure of proposed neural controller 

 
The difference between command y r  and the actual output position response y p  is defined 

as error e. The error e and its differential ė are normalized between A1 and +1 in the input 
neurons before feeding to the hidden layer. In this study, the back propagation error term is 
approximated by the linear combination of error and error:s differential. A tangent 
hyperbolic function is designed as the activation function of the nodes in the output and 
hidden layers. So that the net output in the output layer is bounded between A 1 and +1, 
and converted into a bipolar analogous voltage signal through a D/A converter, then 
amplified by a servo-amplifier for enough current to drive the EHSV. A square command is 
assigned as the reference command in order to simulate the position response of the EHSS. 
The proposed three layers neural network, including the hidden layer ( j ), output layer ( k ) 
and input layer ( i ) as illustrated in Fig. 24. The input signals e and ė are normalized 
between A 1 and +1, and defined as signals O i   feed to hidden neurons. A tangent hyperbolic 
function is used as the activation function of the nodes in the hidden and output layers. The 
net input to node j in the hidden layer is 
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                                  (26) 

 
the output of node j is 
 

                                                   (27) 

 
where ǃ> 0 , the net input to node k in the output layer is 
 

                               (28) 

 
the output of node k is 
 

                                               (29) 

 
The output Ok of node k in the output layer is treated as the control input uP of the system 
for a single-input and single-output system. As expressed equations, Wji represent the 
connective weights between the input and hidden layers and Wkj represent the connective 
weights between the hidden and output layers ǉj and ǉk denote the bias of the hidden and 
output layers, respectively. The error energy function at the Nth sampling time is defined as 
 

                                                 (30) 

 
where yr N , yPN and eN denote the the reference command, the output of the plant and the 
error term at the Nth sampling time, respectively. The weights matrix is then updated 
during the time interval from N to N+1. 
 

                                         (31) 

 
where ǈ is denoted as learning rate and ǂ is the momentum parameter. The gradient of EN 

with respect to the weights Wkj  is determined by 
 

                                           (32) 

 

and  is defined as 
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                                         (33) 

 
where  is difficult to be evaluated. The EHSS is a single-input and single-output 

control system (i.e., n =1), in this study, the sensitivity of EN with respect to the network 

output Ok  is approximated by a linear combination of the error and its differential shown as: 
 

                                                              (34) 

 
where K 3  and K 4 are positive constants. Similarly, the gradient of EN with respect to the 
weights, W ji is determined by 
 

                                                    (35) 

 
where 
 

                                     (36) 

 
The weight-change equations on the output layer and the hidden layer are 
 

                                        (37) 

 

                                    (38) 
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where ǈ is denoted as learning rate and ǂ is the momentum parameter  and  can be 
evaluated from Eq.(34) and (31),  The weights matrix are updated during the time interval 
from N to N+1 : 
 

                                               (39) 

 

                                                                                                                       (40) 
 

4.2 Numerical Simulation 

An EHSS shown as Fig.1 with a hydraulic double rod cylinder controlled by an EHSV is 
simulated. A LVDT of 1 V/m measured the position response of EHSS. The numerical 
simulations assume the supplied pressure Ps =  70Kgf / cm2 , the servo amplifier voltage gain of 
5, the maximum output voltage of 5V, servo valve coil resistance of 250 ohms, the current to 
voltage gain of servo valve coil of 4 mA V (250 ohms load resistance), servo valve settling 
time ≈ 20ms, the serve valve provides maximum output flow rate = 19.25 l /min under coil 
current of 20mA and ΔP of 70Kgf / cm2  condition. The spool displacement can be expressed by 
percentage (%), and then the model of servo valve can be built as 
 

                                                                                                                                                                    (41) 

 
or 
 

                                         (42) 

 
The cylinder diameter =40mm, rod diameter=20mm, stroke=200mm, and the parameters of 
the EHSS listed as following: 
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According to Eq(25), the no load transfer function is shown as 
 

                                    (43) 

 
The direct neural controller is applied to control the EHSS shown as Fig. 24, and the time 
responses for piston position are simulated. A tangent hyperbolic function is used as the 
activation function, so that the neural network controller output is between -1 . This is 

converted to be analog voltage between -) Volt by a D/A converter and amplified in current 

by a servo amplifier to drive the EHSV. The constants K 3 and K 4 are defined to be the 
parameters for the linear combination of error and its differential, which is used to 
approximate the BPE for weights update. A conventional PD controller with well-tuned 
parameters is also applied to the simulation stage as a comparison performance. The square 

signal with a period of 5 sec and amplitude of 0.1m is used as the command input. The 

simulation results for PD control is shown in Fig. 25 and for DNC is shown in Fig. 26. Fig. 26 
reveals that the EHSS with DNC track the square command with sufficient convergent 
speed, and the tracking performance will become better and better by on-line trained. Fig. 27 
shows the time response of piston displacement with 1200N force disturbance. Fig. 27 (a) 
shows the EHSS with PD controller is induced obvious overshoot by the external force 
disturbance, and Fig. 27 (b) shows the EHSS with the DNC can against the force disturbance 
with few overshoot. From the simulation results, we can conclude that the proposed DNC is 
available for position control of EHSS, and has favorable tracking characteristics by on-line 
trained with sufficient convergent speed. 
 

 
(a) Time response for piston displacement  
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(b) Controller output 
Fig. 25. The simulation results for EHSS with PD controller (Kp=7, Kd=1, Amplitude=0.1m 
and period=5 sec) 

 

 
(a) Time response for piston displacement  
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(b) Controller output 

Fig. 26. The simulation results for EHSS with DNC (Amplitude=0.1m and period=5 sec ) 

 

 
(a) EHSS with PD controller 
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(b) EHSS with DNC 
Fig. 27. Simulation results of position response with 1200N force disturbance 

 
4.3. Experiment 

The EHSS shown in Fig. 22 is established for our experiment. A hydraulic cylinder with 
200mm stroke, 20mm rod diameter and a 40mm cylinder diameter is used as the system 
actuator. The Atchley JET-PIPE-206 servo valve is applied to control the piston position of 
hydraulic cylinder. The output range of the neural controller is between -1 , and converted 
to be the analog voltage between -5 Volt by a 12 bits bipolar DA /AD servo control interface, 
It is amplified in current by a servo amplifier to drive the EHSV. A crystal oscillation 
interrupt control interface provides an accurate 0.001 sec sample rate for real time control. A 
square signal with amplitude of 10mm and period of 4 sec is used as reference input. Fig. 28 
shows the EHSS disturbed by external load force, which is induced by load actuator with 
operation pressure of 9 kg /cm2 . Fig. 28 (a) shows the EHSS with PD controller is induced 
obvious overshoot by the external force disturbance, and Fig. 28 (b) shows the EHSS with 
the DNC can against the force disturbance with few overshoot. The experiment results show 
the proposed DNC is available for position control of EHSS. 
 

 
(a) EHSS with PD controller  
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(b) EHSS with DNC 
Fig. 28. Experiment results of position response with the load actuator pressure of 9 kg /cm2 

 
The proposed DNC is applied to control the piston position of a hydraulic cylinder in an 
EHSS., and the comparison of time responses for the PD control system is analyzed by 
simulation and experiment. The results show that the proposed DNC has favorable 
characteristic, even under external force load condition. 

 
5. Conclusion 
 

The conventional direct neural controller with simple structure can be implemented easily 
and save more CPU time. But the Jacobian of plant is always not easily available. The DNC 
using sign function for approximation of Jacobian is not sufficient to apply to servo control 
system. The & adaptation law can increase the convergent speed effetely, but the 
appropriate parameters always depend on try and error. It is not easy to evaluated the 
appropriate parameters. The proposed self tuning type adaptive control can easily 
determined the appropriate parameters. The DNC with the well-trained parameters will 
enhance adaptability and improve the performance of the nonlinear control system. 
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Appendex: The simulation program 
The simulation program for Example X.1 is listed as following= 
1. Simulink block diagram 
 

 
Fig. 1. The simulink program with S-function ctrnn3x 

 
2. The content of S-function ctrnn3x(t, x, u, flag) 
function [sys,x0,str,ts] = ctrnn3x(t,x,u,flag) 

switch flag, 

case 0, 

[sys,x0,str,ts]=mdlInitializeSizes; 

case 2, 

sys=mdlUpdate(t,x,u); 

case 3, 
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sys=mdlOutputs(t,x,u); 

case {1,4,9} 

sys=[]; 

otherwise 

error(['Unhandled flag = ',num2str(flag)]); 

end 

function [sys,x0,str,ts]=mdlInitializeSizes 

sizes = simsizes; 

sizes.NumContStates = 0; 

sizes.NumDiscStates = 21; 

sizes.NumOutputs = 21; 

sizes.NumInputs = 5; 

sizes.DirFeedthrough = 1; 

sizes.NumSampleTimes = 1; 

sys = simsizes(sizes); 

x0 = [rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5; 

rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5; 

rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5; 

rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;rand(1)-0.5;0.2]; 

%%%set the initial values for weights and states 

%%%the initial values of weights randomly between -0.5 and +0.5 

%%%the initial values of NN output assigned to be 0.2 

str = []; 

ts = [0 0]; 

function sys=mdlUpdate(t,x,u); 

nv=0; 

for j=1:5 

for i=1:3 

nv=nv+1; 

w1(j,i)=x(nv); 

end 

end 

k=1; 

for j=1:5 

nv=nv+1; 

w2(k,j)=x(nv); 

end 

for j=1:5 

jv(j)=w1(j,:)*[u(1);u(2);u(3)]; %u(1)=K1*e ,u(2)=K2*de/dt 

%u(3)=1 is bias unity 

ipj(j)=tanh(0.5*jv(j)); %outputs of hidden layer 

end 

kv(1)=w2(1,:)*ipj'; 

opk(1)=tanh(0.5*kv(1)); %output of output layer 

for j=1:5 

dk=(u(4)+u(5))*0.5*(1-opk(1)*opk(1)); 

%%%delta adaptation law, dk means delta K,u(4)=K3*e ,u(5)=K4*de/dt 

dw2(1,j)=0.1*dk*ipj(j); %dw2 is weight update quantity for W2 

end 

for j=1:5 

sm=0; 

sm=sm+dk*w2(1,j); 

sm=sm*0.5*(1-ipj(j)*ipj(j)); 

dj(j)=sm; %back propogation, dj means delta J 

end 

for j=1:5 

for i=1:3 
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dw1(j,i)=0.1*dj(j)*u(i); %dw1 is weight update quantity for W1 

end 

end 

for j=1:5 

w2(1,j)=w2(1,j)+dw2(1,j); %weight update 

for i=1:3 

w1(j,i)=w1(j,i)+dw1(j,i); %weight update 

end 

end 

nv=0; 

for j=1:5 

for i=1:3 

nv=nv+1; 

x(nv)=w1(j,i); %assign w1(1)-w1(15) to x(1)-x(15) 

end 

end 

k=1; 

for j=1:5 

nv=nv+1; 

x(nv)=w2(k,j); %assign w2(1)-w2(5) to x(16)-x(20) 

end 

x(21)=opk(1); %assign output of neural network to x(21) 

sys=x; %Assign state variable x to sys 

function sys=mdlOutputs(t,x,u) 

for i=1:21 

sys(i)=x(i); 

end 
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