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Abstract
In this work, we use a neural network as a substitute for the traditional analytic functions employed as an inversion set in 
feedback linearization control algorithms applied to hydraulic actuators. Although very effective and with strong stability 
guarantees, feedback linearization control depends on parameters that are difficult to determine, requiring large amounts of 
experimental effort to be identified accurately. On the other hands, neural networks require little effort regarding parameter 
identification, but pose significant hindrances to the development of solid stability analyses and/or to the processing capabili-
ties of the control hardware. Here, we combine these techniques to control the positioning of a hydraulic actuator, without 
requiring extensive identification procedures nor losing stability guarantees for the closed-loop system, at reasonable comput-
ing demands. The effectiveness of the proposed method is verified both theoretically and by means of experimental results.

Keywords Hydraulic actuator control · Neural network-based identification · Feedforward multilayer perceptron · Feedback 
linearization

1 Introduction

Due to their high force/size ratios, hydraulic actuators are 
widely used in tasks combining high forces with limited 
dimensions. On the other hands, their dynamics depend 
on strongly nonlinear phenomena such as valve saturation, 

behavior of the flow rates through the valve orifices and 
friction forces in the piston [1]. Moreover, their open-loop 
dynamics present low damping, and their mathematical 
modeling suffers from significant uncertainties in many 
key parameter values, such as leakages and dead zones in 
the control valves. These are challenging characteristics 
for their corresponding controllers to cope with, making 
it difficult to use such actuators in high-precision applica-
tions. Several control strategies have been proposed with 
the goal of enhancing the precision of hydraulic actuators, 
e.g., backstepping [2–6], feedback linearization [7–9] and 
sliding mode control [10–12]. Many other algorithms are 
based on combinations of these and other techniques, as 
illustrated in [13–15], for instance. An important feature of 
these model-based control approaches lies in the possibil-
ity of using Lyapunov methods for analyzing the controlled 
plants, providing stability guarantees even when nonlinear 
effects are explicitly taken into account. All of the afore-
mentioned papers include some strategy to overcome the 
parametric uncertainties and external disturbances present 
in hydraulic actuators. Many works include online learning 
methods, where parameters and disturbances are estimated 
in real time, such as adaptive control [6, 10, 13], extended 
state observer (ESO) [2, 6], extended disturbance observer 
(EDO) [4] and extended differentiator [3]. Even though they 
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yield reduced position errors compared to fixed-structure 
controllers, they also have important drawbacks for practical 
applications, such as the need for tuning large numbers of 
control parameters. Usually, such tuning process must take 
into account a compromise between the robustness of the 
controller, the computing capabilities of the available control 
hardware and the convergence speed of the estimation pro-
cedure, which is a rather difficult task. Furthermore, other 
factors like sensor noise tend also to affect the convergence 
performance. Thus, at least some of the aforementioned 
online estimation approaches may require highly sophisti-
cated and expensive sensors for attaining accurate results.

Intelligent strategies, such as fuzzy logic or neural net-
works, have been widely used in many different applications, 
mainly because of their ability of "learning by themselves" 
how to adapt to their working environment. In the control 
of hydraulic actuators, such methods form the core of many 
algorithms [16–22], and many of them rely on fully online 
learning procedures to compensate for the unknown distur-
bances and unmodeled dynamics. Some works are based 
on radial basis function (RBF) neural networks [20, 21], 
others use simplified feedforward multi-layer perceptron 
neural networks linearizated by means of Taylor’s series 
expansion [19, 23], an approach based on [24] and similar to 
that of several works in other areas, such as [25, 26]. These 
approaches are suitable for deriving Lyapunov-based stabil-
ity proofs, but they are also prone to the same problems dis-
cussed in the last paragraph: Since hydraulic actuators have 
several highly nonlinear effects and uncertain parameters, 
these algorithms are difficult to tune unless the available 
control hardware is very powerful. Furthermore, as pointed 
out in [27], a fully online training procedure for these sys-
tems may result in very slow convergence due to the local 
minimum problem, which in turn leads to unacceptably large 
trajectory-tracking errors for exceedingly long time periods.

An effective approach for controlling hydraulic systems 
is based on feedback linearization methods, which compen-
sate for nonlinear phenomena by estimating their effects and 
applying a control signal that opposes them. This technique 
depends on two critical aspects of the mathematical model 
of the system: (i) inversibility, i.e., finding a set of invert-
ible state functions to compose the model; (ii) accuracy, 
which determines how effectively such nonlinearities can 
be canceled. For hydraulic actuators, such model usually 
involves the piston position and velocity, the pressures in 
the piston’s chambers (or their equivalent hydraulic force) 
and the input voltage applied to the control valve. Although 
some examples of empirical models can be found [28], these 
relations are more commonly described as analytic functions 
depending on many parameters that are uncertain and/or 
difficult to measure, thus requiring several time-consuming 
experimental procedures to reliably identify the correspond-
ing values [7, 9, 13]. Moreover, even when different systems 

are assembled with components of the same model and man-
ufacturer, their dynamic responses may differ significantly if 
the identification procedure is not repeated for each specific 
set. Thus, even though the results from this approach are 
usually satisfactory in terms of accuracy, significant time 
and effort must be consumed in their implementation in 
hydraulic actuators, reducing their attractiveness for practi-
cal or commercial applications. A partial solution to this 
problem was given in [17, 22, 29], which employ multi-layer 
perceptron feedforward neural networks instead of a classi-
cal, invertible state equation set for controlling the hydraulic 
actuator. These networks undergo two training procedures: 
The first one is offline, bearing the brunt of the learning pro-
cess and bringing the network near to its best tuning condi-
tion; the second is performed online, for small weight adjust-
ments with minor computing efforts and fast convergence. 
This approach helps to avoid the extensive manual labor 
involved in traditional parameter identification procedures 
involved in model-based feedback linearization controllers, 
which is desirable. However, no formal stability proofs are 
given for the closed-loop system in these cases, which is a 
major drawback in terms of safe operation guarantees.

In this work, we propose a hybrid control scheme applied 
to a hydraulic positioning system. It employs two control 
loops, based on the main phenomena involved in the system: 
The outer loop is concerned with its mechanical variables, 
whereas the inner loop is a feedback linearization algorithm, 
which aims at compensating for the nonlinearities due to 
the hydraulic dynamics. In the inner loop, we substitute just 
one part of the traditional analytic model with neural net-
works, namely the computing of the actual control signal 
to be applied to the control valve, which is performed by 
an offline, extensively trained feedforward multi-layer per-
ceptron neural network. Since most of the critical uncertain 
parameters of the system are necessary in this specific step 
of the control loop, we still retain the basic advantages of 
feedback linearization control, such as direct cancelation of 
undesirable nonlinear effects and rigorous stability guaran-
tees, while avoiding large amounts of experimental effort 
to find suitable parameters for the inverse set, a significant 
advantage when compared with the traditional offline meth-
ods. Furthermore, the offline training procedure breaks the 
application of the proposed controller into two stages, train-
ing and trajectory tracking, which reduces significantly the 
computing efforts involved in each one, thus making the pro-
posed method amenable to control hardwares more modest 
than these required for fully online-trained controllers. The 
effectiveness of the proposed strategy is demonstrated both 
analytically, with a rigorous stability proof using Lyapunov’s 
second method, and in practice, with comprehensive experi-
mental results. This approach was introduced in [16], being 
expanded here by including its main theoretical aspects: the 



Journal of the Brazilian Society of Mechanical Sciences and Engineering (2021) 43:248 

1 3

Page 3 of 19 248

Lyapunov stability proofs and an enhanced discussion on the 
development of the neural network.

The remainder of this paper is structured as follows. In 
Sect. 2, the hydraulic actuator model and the experimental 
setup are discussed. In Sect. 3, we present the overall con-
trol strategy, whereas Sect. 4 is dedicated to the develop-
ment of the proposed neural network-based inversion set. 
In Sect. 5, the stability proof is detailed, while in Sect. 6, 
the proposed method is evaluated by means of experimental 
results. Finally, the main conclusions are outlined in Sect. 7.

2  System description

Figure 1 illustrates a hydraulic actuator, which comprises a 
differential cylinder attached to a load and controlled by a 
symmetrical four-way servo valve, as depicted in Fig. 1b: By 
regulating the volumetric flow rates  Q1 and  Q2 into and out 
of chambers 1 and 2, the servo valve causes a hydraulic force 
 FH to be applied to the piston, thus controlling its motion. 
The most important variables and parameters are also high-
lighted:  p1 and  p2 are the chamber pressures,  ps is the supply 
pressure,  p0 is the reference pressure, M is the total mass, 
 FA is the friction force,  A1 is the piston cross-section area, 

Fig. 1  Graphical description of 
the hydraulic actuator: a basic 
elements, b schematic circuit
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 A2 is the difference between the areas of the piston and the 
rod,  v1 and  v2 are the total volumes in lines 1 and 2, and u 
is the electrical control signal applied to the valve. The cor-
responding experimental rig is shown in Fig. 2. The actua-
tor is a Bosch Rexroth CDT3ME5 double action hydraulic 
cylinder with 200 mm utile stroke, controlled by means of 
a 4-way Bosch Rexroth 4WRPEH6 directional servo valve. 
All hydraulic connections have diameter hoses of 1/4-inch 
(6.285 mm) diameter. Piston position is measured by means 
of a Novotechnic TLH300 linear resistive position transducer 
(S1), the pressure transducers are Rexroth HM-18–210 bar 
(S2) for chamber 1, and Huba Tp-491–400 bar (S3) for 
chamber 2. The piston velocity is estimated by numeric dif-
ferentiation of the position signal. The oil temperature is 
measured by a Novus 8,803,829,780 temperature transmit-
ter (S4) attached to a pt100 sensor installed inside the tank 
of the hydraulic power unit. All measured signals and the 
control algorithm are processed in a PC-hosted DSpace 1104 
real-time control board, programmed through a MATLAB-
Simulink software package. Processing sample time for the 
control loop is 0.5 ms, and the corresponding control signal 
is applied to valve input E1.

In the remainder of this section, we describe the develop-
ing of a dynamic model for this system and the difficulties 
involved in determining its parameters.

2.1  Dynamic modeling of a hydraulic actuator

The system traditional dynamic model is obtained by using 
Newton’s second law and flow-continuity considerations, 
as described in detail in [1]. Usually, these models assume 
that the proportional valve is ideal, i.e., its opening area is 
directly proportional to the electric control signal u. Under 
such assumption, the equations representing the system 
dynamics are:

where y,ẏ and ÿ are the position, velocity and acceleration 
of the piston-load assembly, respectively, FH = p1A1 − p2A2 
is the hydraulic force applied to the piston, and � is the bulk 
modulus. FD represents a generic disturbance force such as 
dry friction or, according to how the piston is mounted, grav-
ity. The viscosity coefficient B determines the friction force 
FA, expressed by:

(1)Mÿ + FA = FH − FD

(2)ṗ1 =
𝛽

v1 + A1y

(
Q1 − A1ẏ

)

(3)ṗ2 = −
𝛽

v2 − A2y

(
Q2 − A2ẏ

)

(4)FA = Bẏ

Fig. 2  Actual experimental 
setup: a actuator and sensors, b 
hydraulic power unit, c acquisi-
tion board console
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The volumetric flow rates through the valve orifices are 
functions of the pressures in the chambers and the input 
signal applied to the valve, expressed by:

where Kv1 and Kv2 are the flow rate gains that character-
ize each orifice of the valve, whereas l1.. l4 are the pressure 
losses caused by the hydraulic line couplers, which are sig-
nificant and must be taken into account when high-precision 
tasks are considered.

Equations (1)-(5) form an open-loop model of the system. 
The values of its parameters are given in Table 1, and the 
difficulties involved in their determination are discussed in 
Sect. 3.2.

3  Control strategy

Feedback linearization is one of most popular nonlinear control 
strategies [7, 30, 31]. Its basic idea is to use a nonlinear function 
of the states of the system in the feedback loop to cancel non-
linear effects, converting the plant into a linear one. From this 
point, an external loop based on classical linear strategies, such 
as pole placement by state feedback, for example, could be used 
to control the system. Without loss of generality, this approach 
is readily understood when the system model can be written in 
the so-called control/input affine form, i.e.,

(5)
Q1 = Kv1ug1, g1 =

�√
ps − (p1 + l1), u ≥ 0√

p1 − l3, u < 0

Q2 = Kv2ug2, g2 =

� √
p2 − l4, u ≥ 0√

ps − (p2 + l2), u < 0

where u is a scalar control input, x is the scalar output of 
interest, x =

[
x, ẋ, .., x(n−1)

]
 is the state vector, and f (x) and 

b(x) ≠ 0 are nonlinear state functions. If f (x) and b(x) are 
known, defining v(x) as a linear term matching the desired 
dynamics for the closed-loop system, it is straightforward 
that the input

leads the controlled nonlinear system to perform as a linear 
one that presents the desired dynamic behavior, i.e.,

Considering the discrepancies between the model and the 
actual system, the closed-loop dynamics can be expressed as

where � is the residue from imperfect cancelations due to the 
intrinsic differences between the real system and its related 
model. In the next section, we discuss how this control 
approach is integrated into the proposed algorithm.

3.1  The proposed controller

Hydraulic actuators present two main dynamic phenomena: 
the pressure variations in the chambers due to opening the 
control valve, and the motion of the piston due to the forces 
applied to it. The controller employed here is based on inter-
preting the actuator as two interconnected subsystems: one 
hydraulic and one mechanical. In this framework, the force 
FH generated in the hydraulic subsystem is regarded as an 
intermediate input applied to the mechanical one, result-
ing in a cascade structure. This interpretation allows one to 
develop the system controller in two steps:

(i) In the mechanical subsystem (outer loop), compute a 
first control law, representing an “ideal” hydraulic force that 
leads the piston to track its desired trajectory;

(ii) In the hydraulic subsystem (inner loop), develop a 
second control law, implemented as a valve opening that 
causes the generated hydraulic force to track its desired 
value as closely as possible.

The main advantage of this interpretation lies in the inde-
pendent choice of control laws for each subsystem, so that 
their most important problems can be tackled separately. 
This strategy is used in several control algorithms applied 
to fluid-driven actuators, such as [13] and [32].

The control law applied to the mechanical subsystem is 
a variation of the classic computed torque control used, by 
instance, in [33] for controlling an electric robot arm. Its 

(6)x(n) = f (x) + b(x)u

(7)u = b−1(x)
[
v(x) − f (x)

]

(8)x(n) = v(x)

(9)x(n) = v(x) + �

Table 1  System parameters

Parameter Value Estimation method

V10 1.2446 ×  10−4  m3 Direct measurement
V20 9.9060 ×  10−5  m3 Direct measurement
y0 0.1 m (center) Direct measurement
Kv1; Kv2,

√
2 ⋅ 15.11 × 10−9m3

�
(s ×

√
Pa) Manufacturer catalog

l1 5.68 × 10
10Q1 Pa Interactive simulation

l2 4.35 × 10
10Q2 Pa Interactive simulation

l3 3.59 × 10
10Q1 Pa Interactive simulation

l4 3.59 × 10
10Q2 Pa Interactive simulation

M 14.54 kg Direct measurement
A1 4.91 ×  10−4  m2 Direct measurement
A2 2.37 ×  10−4m2 Direct measurement
� 1.0 ×  109 N/m2 Typical value
Os 50 ×  105 Pa Input choice
B 3600 Ns/m Experimental measure-

ment
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definition relies on a reference acceleration ÿr and an auxil-
iary error measure z, defined as follows:

where yd is the desired piston position, 
∼
y= y − yd is the posi-

tion tracking error, and � is a positive constant. All terms 
marked with one or two dots are the first or second time 
derivatives of the corresponding variables, respectively.

The desired force in the mechanical subsystem is calcu-
lated as

In the hydraulic subsystem, we use feedback lineariza-
tion control. When all the terms are written in the form of 
Eq. (6), one proceeds as follows. First, define x = [y, ẏ,FH]

T 
and the auxiliary terms f1 and f2 as:

and replacing Q1, Q2, f1, and f2 in (2) and (3) by their cor-
responding terms given in (5) and (12):

From (1) and (13), the dynamics for this subsystem are 
given by:

since the objective is to cancel its nonlinear effects and gen-
erate the desired force FHd , the proposed control law is

w h e r e  b = A1f1Kv1g1 + A2f2Kv2g2  ,  𝜈 = ḞHd − KpF̃H  , 
f = (A1

2f1 + A2
2f2)ẏ , ḞHd is the time derivative of the desired 

hydraulic force, F̃H = FH − FHd , and  Kp is a positive feed-
back gain. As it will be proven in Sect. 5, if all parameters of 
the system are known, substitution of this control input into 
Eq. (14) causes the suppression of all undesired nonlinear 
effects of the system, leading the closed-loop tracking errors 
to converge asymptotically to zero.

If parametric uncertainties are present, their effect can be 
modeled as a residual term �(x) , and the actual control signal 
applied to the valve is calculated by means of:

where u∗(x) is the ideal control signal that leads to the per-
fect cancelation of all undesirable nonlinear effects in the 
system.

(10)ẏr = ẏd − 𝜆ỹ, z = ̇̃y + 𝜆ỹ

(11)FH d
= Mÿr − Kdz + Bẏ

(12)f1 =
�

v1+A1y
, f2 =

�

v2−A2y

(13)
b(x) = A1f1Kv1g1 + A2f2Kv2g2

f (x) = −(A2

1
f1 + A2

2
f2)ẏ

(14)ḞH = −(A2

1
f1 + A2

2
f2)ẏ +

(
A1f1Kv1g1 + A2f2Kv2g2

)
u

(15)

u∗ = (A1f1Kv1g1 + A2f2Kv2g2)
−1
[
ḞHd − KpF̃H + (A2

1
f1 + A2

2
f2)ẏ

]
= b−1

[
𝜈 + f

]
,

(16)u = u∗(x) + �(x)

3.2  Implementation difficulties

The residue �(x) expressed in Eqs. (9) and (16) affects the 
performance of the controlled system in tracking its desired 
dynamic behavior, making it possible, for instance, to com-
promise its transient and steady-state behavior and even its 
stability properties. Therefore, obtaining an accurate and 
comprehensive model is a critical step in developing an 
effective feedback linearization controller. In the case of a 
hydraulic actuator, this step involves physical and geomet-
ric parameters whose values are difficult to determine. The 
terms  A1,  A2,  v1 and  v2 can usually be determined with good 
precision from catalog data or regular measurement proce-
dures [32]. In order to identify the other parameters, based 
both on previous work [1, 34, 35] and our own experience, 
we can state that such task is seriously hindered by the fol-
lowing issues:

a. In standard models, the valve gains Kv1 and Kv2 are 
widely regarded as constants. In fact, however, they 
depend on the pressure losses in the valve orifices, 
which reflect the energy dissipated due to turbulent 
flow [1]. As this effect is highly nonlinear and depends 
on fluid particles’ velocity, these coefficients change 
significantly with flow rate variations. Moreover, due 
to geometric and electromechanical factors involved in 
its construction, the relation between the voltage input 
applied to the valve and its corresponding orifice areas 
can be rather specific for each given valve. Finally, the 
valve is subject to intrinsic discrepancies between the 
dimensions of its orifices and those of the spool land-
ings that control the opening area. Commonly, these 
landings are slightly wider than the orifices, causing the 
appearance of a dead zone in the near-zero operation 
region. Combined, all these effects imply that the values 
of the valve gains (as functions of the control signal u) 
can be highly variable, especially for smaller inputs, as 
demonstrated experimentally by [34] and illustrated in 
Fig. 3. Thus, to achieve a reliable representation of this 
behavior, such functions must be obtained by means of 
direct measurements, which must be repeated for each 
new valve to be employed;

b. The pressure drops l1 to l4 depend on the volumetric flow 
rates in the system lines. Their calculation is based on 
experiments that require pressure sensors to be installed 
in difficult-access spots. Moreover, the sensors them-
selves cause additional pressure losses which interfere 
with the measured values. This problem can be avoided 
by estimating these losses by means of interactive simu-
lation procedures, but only at significant costs in terms 
of time and effort.

c. Most models disregard internal leakages in the valve, 
which are significant in common-quality equipment. 
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This also affects the values of the valve gains, and its 
compensation usually involves the use of more complex 
models and additional experimental efforts.

d. Variations in the hydraulic fluid temperature affect 
strongly all the parameters listed in Table I [35].

Due to the above reasons, developing an accurate inverti-
ble model of a hydraulic actuator by fully analytical means is 
a difficult task, which jeopardizes the effectiveness of feed-
back linearization-based control algorithms, which justifies 
the search for alternative modeling approaches.

3.3  Neural network‑based inversion method

Seeking to ensure that �(x) is small even if all necessary 
parameters are difficult to determine accurately, we calculate 
u by replacing the term b−1(x) in Eq. (15) by the output Ω(x) 
of a neural network. In the specific case of the hydraulic 
actuator, considering which variables can be more easily 
measured, such neural network is Ω(y, ẏ, p1, p2, T) , yielding:

where T is the hydraulic fluid temperature measured inside 
the tank of the hydraulic power unit.

The employed neural network is a feedforward multi-
layer perceptron, which will be discussed with more detail 

(17)u = Ω(y, ẏ, p1, p2, T)
[
𝜈 + f

]
+ 𝜀,

in Sect. 4. The control strategy is described schematically 
in Fig. 4.

4  Feedforward multi‑layer perceptron 
neural network

The feedforward multi-layer perceptron (MLP) neural net-
work, presented in Fig. 5, is usually applied to static map-
pings and defined as

where  Wn is the weighting matrix of the n-th layer,  bn 
is the bias vector associated with each layer node, and 
Г(x) = [γ1(x), γ2(x), …, γn(x)] is a nonlinear operator where 
each γn(.) is a monotonic and continuously differentiable 
activation function. In the present work, the sigmoidal logis-
tic function described in Eq. (19) was used. In Appendix, 
the equations applied in normalization of the neural network 
inputs for values between 0 and 1 are presented.

The main advantage in employing the feedforward MLP 
neural network in this specific context lies in the existence 
of guaranteed bounds to the estimation errors of its output 
[29, 36, 37]. In traditional feedback linearization control 

(18)o = Γ
[
WnΓ

[
Wn−1...Γ

[
W1u + b1

]
+ ... + bn−1

]
+ bn

]

(19)�(x) =
1

1 + e−x
.

Fig. 3  Flow rate gain charac-
teristics for a typical hydraulic 
valve. u stands for the control 
signal applied to the valve, 
whereas Kv is the flow rate gain

Fig. 4  Application scheme for 
the proposed controller
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approaches, the key argument in the corresponding stability 
proofs is the existence of a known limit to the amplitude 
of the cancelation residue � [32]. Therefore, as shown in 
Sect. 5, such proofs can be readily extended to the case when 
the output of the network replaces the formal inversion of the 
theoretical model, which is a critical feature of the proposed 
control approach.

4.1  Neural network design

To carry out a satisfactory inversion using the neural net-
work applied in Eq. (17), we used a hybrid approach to gen-
erate the training sets and Eq. (20) is used to compute the 
desired output signal Ω(x) of the neural network:

highlighting that the function f (Eq. (17)) is an analytical 
function with known parameters.

The measures ḞH and ẏ are the force and position deriva-
tives obtained by the application of a set of signals u in the 
plant and are numerically computed. When these values are 
close to zero, the output of the function grows to infinity. 

(20)Ω(y, ẏ, p1, p2, T) =
u

ḞH + (A2

1
f1 + A2

2
f2)ẏ

To avoid this effect, the outputs correspondent to very low 
velocities applied in Eq. (20) are not considered in the train-
ing process. According to [32], the feedforward neural net-
works are able to generalize outputs from inputs that were 
not considered in the training process.

The neural network training is performed offline and 
Fig. 6 illustrates the process that uses the Quickprop algo-
rithm [38] to minimize ed. The inputs of the neural network 
are the oil temperature, the pressions in the piston chambers, 
piston position and piston velocity.

A very important issue in this case is a suitable choice 
of the set of signals u, which is based on the trajectories 
that the system will perform during its regular operation. 
In the current case, the design of controllers based on the 
control strategy defined in the previous section requires a 
smooth tracking position trajectory [32]. Therefore, for test-
ing purposes, the typical position trajectory performed by 
the hydraulic piston in the present paper is the 7th-order 
polynomial reference position trajectory depicted in Fig. 7.

Training and testing of the neural network were carried 
out using the widely employed cross-validation approach 
[27]. This method consists in the use of three distinct experi-
mental sets: a training set, where the domain of the function 
to be learned must be represented; a validation set, where the 

Fig. 5  Feedforward multi-layer 
perceptron neural network

Fig. 6  Training process of the 
neural network
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training is validated to prevent the overfitting and a testing 
set, which is used to verify whether the training was suc-
cessful in generalizing the network response for a minimal 
desired error.

The training strategy applied in current work is based on 
[18] and comprises basically the choice of a set of sinusoidal 
desired position trajectories that are applied to the plant for 
generating the set of signals u calculated through a propor-
tional controller. This profile corresponds to use sinusoidal 
functions with different frequencies while maintaining the 
piston position excursion constant for all trajectories. The 
highest velocities of the sinusoidal trajectories were defined 
according to the highest velocity of the testing polynomial 
trajectory. Table 2 outlines the position trajectories applied 
to compound the training set. These experiments were 
repeated for oil temperatures at 20 °C, 25 °C, 30 °C, 35 °C, 
40 °C and 45 °C, totalizing 12,000 samples for the training 
set. The validation set trajectories are outlined in Table 3 

and comprise samples generations for an oil temperature at 
30 °C. Table 4 lists the test set, where the 7th-order polyno-
mial position trajectory, presented in Fig. 7, was applied for 
oil temperatures at 20 °C, 30 °C and 40 °C. The positions 
where the piston remains stationary were discarded in the 
test set.

The complete procedure applied to find a suitable setup 
for the feedforward neural network used in current work is 
described in [18]. Table 5 outlines the layers, epochs and 
training error for such neural network. The complete sets of 
weights for the neural network are presented in Appendix.

The performance criterion applied to compare the dif-
ferent inversion sets is based on the root-mean-square error 
presented in Eq. (21):

where yt and yp are the target and predicted values, respec-
tively, and P is the number of testing samples.

(21)RMSE =

√√√√ 1

P

P∑
n=1

(
yt − yp

)2

Fig. 7  Reference trajectory used 
for testing the trained network
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Table 2  Training set per temperature value

Position trajectory 
(m)

Time(s) Total time (s) Sam-
ples

Total samples

0.08sen(t) 6.28 65.358 400 2000
0.08sen(0.875t) 7.17 400
0.08sen(0.625t) 10.04 400
0.08sen(0.375t) 16.74 400
0.08sen(0.25t) 25.12 400

Table 3  Validation set (T = 30 °C)

Position trajectory 
(m)

Time (s) Total time (s) Sam-
ples

Total samples

0.08sen(0.93t) 6.75 14.5 600 1200
0.08sen(0.81t) 7.75 600
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Figures 8, 9, 10show the output of the inversion set 
obtained with three different hydraulic fluid temperatures: 
20, 30 and 40 °C ± 1.7 °C. For each one of these tempera-
tures, three outputs were compared: the one obtained with 
the analytic version of the inversion set, and the outputs of Ω 
with and without including temperature information during 
the training. Table 6 outlines the results of Eq. (21) taking 

into account the test set and the outputs from the three kinds 
of inversion set. The results are summarized in Table 6.

Excepting the 30 °C case, the inversion set that uses neu-
ral network considering temperature provided lower devia-
tion in respect to the experimental data.

Table 4  Test set

Position trajectory (m) Time(s) Total time (s) Samples Oil Temp. 
(°C)

Total samples

7th order polynomial (Fig. 7) 8 24 1200 20 3600
8 1200 30
8 1200 40

Table 5  Neural network setup Neural network Condition Layers setup Training epoch Training error (RMSE)

Ω(y, ẏ,P1,P2,T) ẏ ≥ 0 5–10-10–1 2000 7.5  10−7 V/(N/s)
ẏ < 0 5–10-1 3500 12.2  10−7 V/(N/s)

Fig. 8  Inversion sets perfor-
mance comparison for hydraulic 
fluid at 20 °C ± 1.7 °C
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Fig. 9  Inversion sets perfor-
mance comparison for hydraulic 
fluid at 30 °C ± 1.7 °C
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5  Stability analysis

Consider the open-loop model of the system, given by 
Eqs. (1) and (14), and the proposed control structure repre-
sented by Eqs. (11) and (17). Due to the continuity condi-
tions implied by using the Lyapunov method for analyzing 
stability properties, we assume that the desired piston posi-
tion  yd(t) and its time derivatives up to  3rd order are continu-
ous bounded functions. All parameters regarding the model 
of the mechanical subsystem are assumed to be known, but 
the hydraulic subsystem is subject to parameter uncertain-
ties. The trajectory-tracking errors of the system are defined 
in terms of the auxiliary vector � =

[
ỹ ̇̃y FH

]T . In order to 
simplify the analysis of the closed-loop system considering 
the effects of the cancelation residue � , it is convenient to 
rewrite it in terms of a percentage error term � , where, based 
on [36], we assume that −1 < 𝛿 ≤ 𝛿 . Whether the neural 
network reproduces exactly the function b−1, then � =0.

In addition, by substituting each proposed control law 
into the dynamics of its corresponding subsystem (Eq. (11) 
into Eq. (1), Eq. (17) into Eq. (14)), the behavior of the 
closed-loop system can be described in terms of the follow-
ing auxiliary functions:

With the aid of these expressions, the stability properties 
of the closed-loop system are proven as follows.

Main result – Consider the closed-loop system whose 
dynamics is described by expressions (23) and (24), subject 
to an unmodeled disturbance force F̄D , upper-bounded by 
F̄D . When the model of the system is subject to uncertainties 
whose combined effect can be represented as a percentage 
factor � with an upper bound 𝛿 , given an arbitrary initial con-
dition, the controller gains can be chosen so as to ensure that 
the trajectory-tracking error vector � converges to a limited 
residual set R as t → ∞ . The amplitude of such set depends 
on F̄D , 𝛿 and the controller’s gains. Moreover, if FD = 0 and 
the output of the neural network used in the hydraulic sub-
system control law cancels uncertainty effects, then ‖�‖ → 0 
as t → ∞.

Proof: Consider the Lyapunov candidate function.

(22)
u = Ω(y, ẏ, p1, p2, T)

[
𝜈 + f

]
+ 𝜀 = b−1

[
ḞHd − KpF̃H + f

]
(1 + 𝛿)

(23)Mż = −Kdz + F̃H + FD

(24)̇̃FH = −KpF̃ + 𝛿
[
ḞHd − KpF̃H + f

]

(25)V =
1

2

�
HMz2 + Pỹ2 + F̃2

H

�
=

1

2

�
ỹ ̇̃y F̃H

�⎡⎢⎢⎣

HM𝜆2 + P 𝜆HM 0

𝜆HM HM 0

0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

ỹ
̇̃y

F̃H

⎤⎥⎥⎦

Fig. 10  Inversion sets perfor-
mance comparison for hydraulic 
fluid at 40 °C ± 1.7 °C
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Table 6  RMSE for the inversion sets

Temperature Analytical Neural Neural 
temp

20 °C 1.25 ×  10−6 1.20 ×  10−6 8.04 ×  10−7

30 °C 7.17 ×  10−7 2.70 ×  10−7 4.31 ×  10−7

40 °C 7.55 ×  10−7 7.18 ×  10−7 2.19 ×  10−7
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where P and H are positive constants. By taking the time 
derivative of Eq.  (25), substituting into it the auxiliary 
expressions (23) and (24) and defining P = 2�KdH one 
obtains:

where �1, �2, �3 and Ψd are the following bounded auxiliary 
terms, computed considering the following expressions:

Note that, as v1 and v2 are greater than zero, from 
Eq. (12), f1 and f2 are bounded functions. From Eq. (26), if 
FD = � = 0 , it can be readily verified by applying the Syl-
vester criterion that KdKp >

1

2
H is a sufficient condition to 

ensure that V̇(t) is negative definite. Therefore, ‖�‖ → 0 as 
t → ∞ . On the other hands, if � ≠ 0 and/or FD ≠ 0 , by the 
same criterion,N2 can be made symmetric and positive defi-
nite if

which is satisfied by choosing Kp as an appropriate value. 
With the feedback gains and parameter values presented 
in Sect. 6, and using H = 9 ×  105, the criterion defined in 
Eq. (28) holds for 𝛿 = 0.25 , which means that the stabil-
ity condition holds for estimation errors up to ±25% in 
the output given by the neural network. Within the region, 

(26)V̇= −

⎛
⎜⎜⎜⎝

�
ỹ ̇̃y F̃H

�⎡⎢⎢⎢⎣

𝜆2HKd 0 −
1

2
H𝜆 −

𝛿𝛼1

2

0 HKd −
1

2
H −

𝛿𝛼2

2

−
1

2
H𝜆 −

𝛿𝛼1

2
−

1

2
H −

𝛿𝛼2

2
Kp − 𝛿𝛼3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ỹ
̇̃y

F̃H

⎤
⎥⎥⎦
+
�
ỹ ̇̃y F̃H

�⎡⎢⎢⎣

𝜆HFD

HFD

Ψd𝛿

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎠

= −
�
�T

�
�2

�
� + ���

�

�1 =

((
M� + Kd

)�Kd

M
−

BKd

M
�

)

�
2
=

((
M� + K

d

)(
� +

K
d

M

)
− �K

d

−
B

M
(K

d
+ �M) + (A2

1
f
1
+ A

2

2
f
2
)
)

(27)�3 =
((

B − Kd

) 1

M
− (� + Kp)

)

ḞHd =
(
−Kd −M𝜆 + B

)
̈̃y − Kd𝜆 ̇̃y + Bÿd +My⃛d

̈̃y = −𝜆 ̇̃y −M−1Kd

(
̇̃y + 𝜆ỹ

)
+M−1F̃H −M−1FD.

(28)

Kp >
1(

𝜆2KdH
)
(1 + 𝛿)

((
1

2
H𝜆 +

𝛿𝛼
1

2

)2

+

(
1

2
H +

𝛿𝛼
2

2

)2

𝜆2

+𝜆2KdH𝛿(B − Kd − 𝜆M)
1

M

)

where this condition is met, application of the Rayleigh–Ritz 
theorem combined with the Cauchy–Schwartz inequality to 
Eq. (26) yields:

where �2min is the minimum eigenvalue of N2 . Under the 
assumption that both FD and � are upper-bounded, and since 
Ψ

d
 has also an upper limit Ω̄d because it is derived from the 

desired trajectory, we have that ‖Δ‖ is upper-bounded by 
Δ̄ =

√
𝜆2H2F̄2

D
+ H2F̄2

D
+ 𝛿2Ψ̄2

D
 . Therefore, the condition 

V̇(t) < 0 is attained if

From Eq.  (30), it is clear that any system trajectory 
with initial condition �(0) lying outside a ball with radius 
Δ̄∕(𝜆2min) must converge and remain confined to such ball as 
t → ∞ , thus ensuring that ‖�(t)‖ is a limited quantity. Moreo-
ver, if there are no disturbances and the action of the neural 
network can overcome parametric uncertainties, we have 
FD = � = 0 and the closed-loop tracking errors converge 
asymptotically to zero. This completes the proof.

6  Experimental evaluation

Experimental evaluation was carried out by means of two 
tests. First, the actuator piston was led to track the poly-
nomial trajectory depicted in Fig. 7. In the second test, a 
sinusoid with amplitude 0.08 m and period 8.3 s was tracked.

We employed two inversion methods for obtaining the 
control input applied to the actuator valve: the analytical 
function with nominal parameters and the output of the neu-
ral network Ω taking temperature into account. The feedback 
gains used in the proposed controller were kept fixed with 
the values of Kd = 5000  s−1, λ = 150  s−1 and Kp = 200  s−1.

For comparison purposes, we also performed experi-
ments using a classical PID controller, which was applied 
both with and without a feedforward term considering the 
desired velocity trajectory. Such controller is described by 
Eqs   (31) and   (32).

(29)V̇ ≤ −𝜆2T‖𝜌‖‖Δ‖min

(30)‖𝜌‖ >
Δ

𝜆2min

(31)u(t) = Kpe(t) + Ki

t

∫
0

e(t)dt + Kd

de(t)

dt
+ ẏdFf
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where e(t) = yd − y.

(32)Ff =

{
Kfp, ẏd ≥ 0

Kfn, ẏd < 0

The feedback gains values are Kp = 420, Ki = 2018, 
Kd = 0.9,  Kfp = 14 and  Kfn = 40. All gains values were 
obtained according the methodology used in [19]. Experi-
mental results are shown in Figs. 11, 12, 13 for both the pol-
ynomial and sinusoidal trajectories. Tables 7 and 8 present 

Fig. 11  Position trajectory-
tracking errors for hydraulic 
fluid at 20 °C ± 1.7 °C
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Fig. 12  Position trajectory-
tracking errors for hydraulic 
fluid at 30 °C ± 1.7 °C
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the RMSE results and the highest values of the position 
error.

Results show lower RMSE and peak errors for the pro-
posed controller using neural network-based inversion 

method. The main objective of the proposed approach is to 
facilitate its practical application. Therefore, the improve-
ment of the trajectory-tracking performance of a feedback 
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linearization-based controller can be considered an addi-
tional advantage of the proposed control algorithm.

7  Conclusions

In the present work, we propose the use of a feedforward 
multi-layer neural network to replace an analytical func-
tion in the model of a hydraulic actuator, usually applied 
to model-based synthesis of controllers for such systems. 

Fig. 13  Position trajectory-
tracking errors for hydraulic 
fluid at 40 °C ± 1.7 °C
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This strategy aims at to facilitate the application of feedback 
linearization-based control schemes to such systems. When 
compared with traditional procedures, this strategy allows 
avoidance of the extensive experimental work and the high 
levels of uncertainty involved in developing the models for 
such control schemes in high- precision applications. A 
rigorous Lyapunov-based theoretical stability analysis was 

presented and corresponding experimental results obtained 
clearly indicate that besides requiring less experimental effort 
to implement, the proposed inversion scheme yields smaller 
trajectory-tracking errors than these obtained by the tradi-
tional methods. For these reasons, the proposed inversion 
method can be considered as an effective way for experimen-
tal implementation of model-based strategies in the control 
of hydraulic drives, also comprising industrial-scale applica-
tion. Future work will focus the expansion of the proposed 
method to encompass other nonlinear phenomena involved in 
the operation of hydraulic actuators that were not addressed 
in the present work, such as dry friction effects analysis and 
the effects of unknown external load disturbances.

Appendix

(1) Normalization Equations.

Table 7  RMSE for the 
polynomial position trajectory 
error

Tem-
perature 
(°C)

PID PID + FF Analytical Neural Temp

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

20 11.0 47.6 3.61 16.7 2.47 10.0 1.37 8.6
30 7.05 25.6 2.53 7.8 1.45 5.6 1.17 4.6
40 5.77 17.4 2.81 8.6 1.30 4.46 1.1 4.0

Table 8  RMSE for the 
sinusoidal position trajectory 
error

Tem-
perature 
(°C)

PID PID + FF Analytical Neural Temp

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

(RMSE) 
 (10−4 m)

High-
est error 
 (10−4 m)

20 4.20 9.4 1.83 4.2 2.67 6.7 1.5 4.3
30 3.12 5.4 1.76 4.5 1.63 5.4 1.26 2.8
40 2.88 5.1 1.83 4.5 1.8 4.5 1.08 2.4

Table 9  Neural network normalization

Neural Network input Maximal value Minimal value

y 0,1 m −0,1 m
ẏ 0,15 m/s −0,1 m/s
p1 2,5 MPa 0,01 MPa
p2 5,0 MPa 0,01 MPa

T 70 °C 10 °C
Out(V/(N/s)) 4,0  10−5 0

Table 10  Weights Layer 1 to Layer 2

Layer 2 Layer 1

Input 1 Input 2 Input 3 Input 4 Input 5 Thersholds

N1 −6.36597341310150 16.5077714974687 −3.13779679024344 −18.1313423228545 19.1678700752719 −0.562026919937644
N2 −8.69429863342924 5.06033243223119 −0.615825836638685 −6.13822845938630 2.80387447130696 0.00488997425278474
N3 −7.66496868816365 16.5239629829962 −5.11711223652556 −15.0572384944819 19.0518216575182 −0.0679496314731981
N4 −6.41247416253936 17.2924893198281 −3.36056571552519 −19.4346657132758 19.6012638862174 −0.281950537943531
N5 −5.79233491418532 4.41568405731381 −0.420033366932498 −7.21026446844022 1.07152165510392 0.196430969159193
N6 −0.930281391513413 28.0409574736910 −0.388212865023555 −34.0339838237914 −4.84403394446628 −0.110381597293962
N7 1.78930671633738 21.0034364853193 −4.64830365969991 −34.4160538913726 −4.20112842679759 −0.00738739915449935
N8 −6.62337953930139 16.6612381565198 −5.06788445087522 −16.8754755605125 19.5519620634922 −0.241323765403628
N9 −10.8475174854601 5.89194790864145 −0.184718373359893 −7.01898496394809 1.28152168925314 0.00951768135588512
N10 −11.1830702693174 16.0102049670144 −11.9250317919372 −14.5481595661690 18.8026442348017 −0.943139460065714
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  Input normalization function: Table 9

  Output normalization function:

(2) Weights for neural network when   Tables 10, 11, 12, 
13ẏ ≥ 0.

(3) Weights for neural network when  Tables 14, 15ẏ < 0. 

(33)N(x) =
0, 9 − 0, 1

Xmax − Xmin

(
x − Xmin

)
+ 0, 1

(34)D(y) =
y − 0, 1

0, 9 − 0, 1

(
Xmax − Xmin

)
+ Xmin

Table 11  Weights Layer 2 to Layer 3 (neuron 1–6)

Layer 
3

Layer 2

N1 N2 N3 N4 N5 N6

N1 0.126459525225218 0.491210577717582 0.129063869159268 0.125353706236741 −0.748042080670698 0.935113469523096
N2 0.126458998206672 0.491210866192207 0.129063742388102 0.125353195040675 −0.747898913992743 0.935110878706768
N3 0.107957110349282 0.575557626698085 0.111998455699491 0.107516586202091 0.495684426003983 0.571118617040776
N4 0.107956918435619 0.575560530041035 0.111998280748945 0.107516309769334 0.495686738439458 0.571128405157357
N5 0.107957041934123 0.575558667350142 0.111998393292618 0.107516487482378 0.495685254334811 0.571122106810099
N6 0.126462765975914 0.491208807843965 0.129064642281605 0.125356849711821 −0.748922234967505 0.935129400805221
N7 0.107956943476562 0.575560150390586 0.111998303772925 0.107516345982491 0.495686435128470 0.571127112479047
N8 0.126479950526594 0.491199451158912 0.129068721598002 0.125373521969876 −0.753589571052748 0.935213683815015
N9 0.126457478855718 0.491211694556218 0.129063379566586 0.125351720453222 −0.747486208600631 0.935103404585167
N10 0.126463217351332 0.491208560154631 0.129064749949050 0.125357287380284 −0.749044776971014 0.935131617300847

Table 12  Weights Layer 2 to Layer 3 (neuron 7–10)

Layer 3 Layer 2

N7 N8 N9 N10 Thersholds

N1 .373295396644175 0.131877348347851 1.17181119280113 0.151884569649175 −0.250622440695391
N2 0.373295394294990 0.131876920101171 1.17181254419206 0.151884477647797 −0.250622442381323
N3 −1.15370297821913 0.109561783132085 1.73642578734396 0.257335742637122 −0.206963275665140
N4 −1.15375165443010 0.109561618687375 1.73644313287530 0.257326739232410 −0.206963287846359
N5 −1.15372034574972 0.109561724507814 1.73643198794539 0.257332543418107 −0.206963279208723
N6 0.373295407927704 0.131879980051229 1.17180285651655 0.151885136526690 −0.250622443187820
N7 −1.15374524114792 0.109561640031112 1.73644085841113 0.257327933558995 −0.206963285074935
N8 0.373295469311495 0.131893917657162 1.17175879879176 0.151888134015839 −0.250622437585197
N9 0.373295388669728 0.131875685776040 1.17181646015918 0.151884212121376 −0.250622443278652
N10 0.373295409477423 0.131880346427270 1.17180169772232 0.151885215143812 −0.250622442413081

Table 13  Weights Layer 3 to Layer 4

Layer 4

Layer 3 N1
N1 −0.172473808663452
N2 −0.172473801742085
N3 −0.171374979647380
N3 −0.171373895519672
N5 −0.171374591608419
N6 −0.172473852776407
N7 −0.171374037480287
N8 −0.172474084268685
N9 −0.172473781053205
N10 −0.172473858679202
Threshold −0.125522864338090
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