287,359 research outputs found

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    Experiments with Subversion Over OpenNetInf and CCNx

    Get PDF
    We describe experiences and insights from adapting the Subversion version control system to use the network service of two information-centric networking (ICN) prototypes: OpenNetInf and CCNx. The evaluation is done using a local collaboration scenario, common in our own project work where a group of people meet and share documents through a Subversion repository. The measurements show a performance benefit already with two clients in some of the studied scenarios, despite being done on un-optimised research prototypes. The conclusion is that ICN clearly is beneficial also for non mass-distribution applications

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Real valued negative selection for anomaly detection in wireless ad hoc networks

    Get PDF
    Wireless ad hoc network is one of the network technologies that have gained lots of attention from computer scientists for the future telecommunication applications. However it has inherits the major vulnerabilities from its ancestor (i.e., the fixed wired networks) but cannot inherit all the conventional intrusion detection capabilities due to its features and characteristics. Wireless ad hoc network has the potential to become the de facto standard for future wireless networking because of its open medium and dynamic features. Non-infrastructure network such as wireless ad hoc networks are expected to become an important part of 4G architecture in the future. In this paper, we study the use of an Artificial Immune System (AIS) as anomaly detector in a wireless ad hoc network. The main goal of our research is to build a system that can learn and detect new and unknown attacks. To achieve our goal, we studied how the real-valued negative selection algorithm can be applied in wireless ad hoc network network and finally we proposed the enhancements to real-valued negative selection algorithm for anomaly detection in wireless ad hoc network

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Next-Generation SDN and Fog Computing: A New Paradigm for SDN-Based Edge Computing

    Get PDF
    In the last few years, we have been able to see how terms like Mobile Edge Computing, Cloudlets, and Fog computing have arisen as concepts that reach a level of popularity to express computing towards network Edge. Shifting some processing tasks from the Cloud to the Edge brings challenges to the table that might have been non-considered before in next-generation Software-Defined Networking (SDN). Efficient routing mechanisms, Edge Computing, and SDN applications are challenging to deploy as controllers are expected to have different distributions. In particular, with the advances of SDN and the P4 language, there are new opportunities and challenges that next-generation SDN has for Fog computing. The development of new pipelines along with the progress regarding control-to-data plane programming protocols can also promote data and control plane function offloading. We propose a new mechanism of deploying SDN control planes both locally and remotely to attend different challenges. We encourage researchers to develop new ways to functionally deploying Fog and Cloud control planes that let cross-layer planes interact by deploying specific control and data plane applications. With our proposal, the control and data plane distribution can provide a lower response time for locally deployed applications (local control plane). Besides, it can still be beneficial for a centralized and remotely placed control plane, for applications such as path computation within the same network and between separated networks (remote control plane)
    • …
    corecore