457 research outputs found

    Recursive partitioning multicast: a bandwidth-efficient routing for networks-on-chip

    Get PDF
    Chip Multi-processor (CMP) architectures have become mainstream for designing processors. With a large number of cores, Networks-on-Chip (NOCs) provide a scalable communication method for CMP architectures. NOCs must be carefully designed to meet constraints of power consumption and area, and provide ultra low latencies. Existing NOCs mostly use Dimension Order Routing (DOR) to determine the route taken by a packet in unicast traffic. However, with the development of diverse applications in CMPs, one-to-many (multicast) and one-to-all (broadcast) traffic are becoming more common. Current unicast routing cannot support multicast and broadcast traffic efficiently. In this paper, we propose Recursive Partitioning Multicast (RPM) routing and a detailed multicast wormhole router design for NOCs. RPM allows routers to select intermediate replication nodes based on the global distribution of destination nodes. This provides more path diversities, thus achieves more bandwidth-efficiency and finally improves the performance of the whole network. Our simulation results using a detailed cycle-accurate simulator show that compared with the most recent multicast scheme, RPM saves 25 % of crossbar and link power, and 33 % of link utilization with 50 % network performance improvement. Also RPM is more scalable to large networks than the recently proposed VCTM. 1

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    O-Band silicon photonic transmitters for datacom and computercom interconnects

    Get PDF
    Today, the datacenter ecosystems are fueling the demand for novel transmitter (TX) technologies complying with the off-board, on-board, and chip-to-chip computing needs. This has set a new class of requirements for the TX infrastructure that should now offer multiple credentials, namely: high-speed, O-band operation for avoiding dispersion compensation in long distances, wavelength-division multiplexing (WDM) capabilities for higher throughput and multicasting/broadcasting support, and tight copackaging with low-power electronics. Silicon (Si) photonic TXs have been extensively studied toward high-speed and WDM TX engines targeting mainly C-band. Only a limited number of Si-Pho O-band TXs have been reported, however with <= 32 Gb/s/channel line-rate capabilities and with a WDM portfolio that has not been fully explored yet. In this paper, we introduce a novel silicon photonic high-speed O-band TX hardware platform that can meet the current datacom and computercom interconnect requirements. We demonstrate a ring modulator (RM) based four-channelWDMTX at 4 x 40 Gb/s non-return-to-zero (NRZ) operation that supports wavelength parallelism in unicast operation but can also pave the way toward WDM TX engines for the post-100 GbE TX era. Moreover, we present a broadband Si Mach-Zehnder modulator employed in a WDM modulation scheme of 2 x 25 Gb/s NRZ signals and demonstrate multicasting when combined with a 8x8 passive arrayed waveguide grating router (AWGR) wavelength router, addressing the broadcasting needs of traffic usually encountered in cache-coherent multisocket settings. Finally, we further demonstrate the tight synergy of O-band Si-RM modulators with high-speed CMOS electronics, presenting an RM-based TX assembly prototype employing a fully depleted silicon-on-insulator CMOS driver, delivering 50-Gb/s NRZ operation

    Hard Real-Time Networking on Firewire

    Get PDF
    This paper investigates the possibility of using standard, low-cost, widely used FireWire as a new generation fieldbus medium for real-time distributed control applications. A real-time software subsystem, RT-FireWire was designed that can, in combination with Linux-based real-time operating system, provide hard real-time communication over FireWire. In addition, a high-level module that can emulate Ethernet over RT-FireWire was implemented. This additional module enables existing IP-based real-time communication frameworks to work on top of FireWire. The real-time behavior of RT-FireWire was demonstrated with a simple control setup. Furthermore, an outlook of the future development on RT-FireWire is given

    MorphIC: A 65-nm 738k-Synapse/mm2^2 Quad-Core Binary-Weight Digital Neuromorphic Processor with Stochastic Spike-Driven Online Learning

    Full text link
    Recent trends in the field of neural network accelerators investigate weight quantization as a means to increase the resource- and power-efficiency of hardware devices. As full on-chip weight storage is necessary to avoid the high energy cost of off-chip memory accesses, memory reduction requirements for weight storage pushed toward the use of binary weights, which were demonstrated to have a limited accuracy reduction on many applications when quantization-aware training techniques are used. In parallel, spiking neural network (SNN) architectures are explored to further reduce power when processing sparse event-based data streams, while on-chip spike-based online learning appears as a key feature for applications constrained in power and resources during the training phase. However, designing power- and area-efficient spiking neural networks still requires the development of specific techniques in order to leverage on-chip online learning on binary weights without compromising the synapse density. In this work, we demonstrate MorphIC, a quad-core binary-weight digital neuromorphic processor embedding a stochastic version of the spike-driven synaptic plasticity (S-SDSP) learning rule and a hierarchical routing fabric for large-scale chip interconnection. The MorphIC SNN processor embeds a total of 2k leaky integrate-and-fire (LIF) neurons and more than two million plastic synapses for an active silicon area of 2.86mm2^2 in 65nm CMOS, achieving a high density of 738k synapses/mm2^2. MorphIC demonstrates an order-of-magnitude improvement in the area-accuracy tradeoff on the MNIST classification task compared to previously-proposed SNNs, while having no penalty in the energy-accuracy tradeoff.Comment: This document is the paper as accepted for publication in the IEEE Transactions on Biomedical Circuits and Systems journal (2019), the fully-edited paper is available at https://ieeexplore.ieee.org/document/876400

    Neural networks-on-chip for hybrid bio-electronic systems

    Get PDF
    PhD ThesisBy modelling the brains computation we can further our understanding of its function and develop novel treatments for neurological disorders. The brain is incredibly powerful and energy e cient, but its computation does not t well with the traditional computer architecture developed over the previous 70 years. Therefore, there is growing research focus in developing alternative computing technologies to enhance our neural modelling capability, with the expectation that the technology in itself will also bene t from increased awareness of neural computational paradigms. This thesis focuses upon developing a methodology to study the design of neural computing systems, with an emphasis on studying systems suitable for biomedical experiments. The methodology allows for the design to be optimized according to the application. For example, di erent case studies highlight how to reduce energy consumption, reduce silicon area, or to increase network throughput. High performance processing cores are presented for both Hodgkin-Huxley and Izhikevich neurons incorporating novel design features. Further, a complete energy/area model for a neural-network-on-chip is derived, which is used in two exemplar case-studies: a cortical neural circuit to benchmark typical system performance, illustrating how a 65,000 neuron network could be processed in real-time within a 100mW power budget; and a scalable highperformance processing platform for a cerebellar neural prosthesis. From these case-studies, the contribution of network granularity towards optimal neural-network-on-chip performance is explored

    Path-Based partitioning methods for 3D Networks-on-Chip with minimal adaptive routing

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Combining the benefits of 3D ICs and Networks-on-Chip (NoCs) schemes provides a significant performance gain in Chip Multiprocessors (CMPs) architectures. As multicast communication is commonly used in cache coherence protocols for CMPs and in various parallel applications, the performance of these systems can be significantly improved if multicast operations are supported at the hardware level. In this paper, we present several partitioning methods for the path-based multicast approach in 3D mesh-based NoCs, each with different levels of efficiency. In addition, we develop novel analytical models for unicast and multicast traffic to explore the efficiency of each approach. In order to distribute the unicast and multicast traffic more efficiently over the network, we propose the Minimal and Adaptive Routing (MAR) algorithm for the presented partitioning methods. The analytical and experimental results show that an advantageous method named Recursive Partitioning (RP) outperforms the other approaches. RP recursively partitions the network until all partitions contain a comparable number of switches and thus the multicast traffic is equally distributed among several subsets and the network latency is considerably decreased. The simulation results reveal that the RP method can achieve performance improvement across all workloads while performance can be further improved by utilizing the MAR algorithm. Nineteen percent average and 42 percent maximum latency reduction are obtained on SPLASH-2 and PARSEC benchmarks running on a 64-core CMP.Ebrahimi, M.; Daneshtalab, M.; Liljeberg, P.; Plosila, J.; Flich Cardo, J.; Tenhunen, H. (2014). Path-Based partitioning methods for 3D Networks-on-Chip with minimal adaptive routing. IEEE Transactions on Computers. 63(3):718-733. doi:10.1109/TC.2012.255S71873363
    corecore