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“I cannot live without brain-work. What else is there to live for?.”

The Sign of Four, Sherlock Holmes

Sir Arthur Conan Doyle



Abstract

By modelling the brains computation we can further our understanding

of its function and develop novel treatments for neurological disorders. The

brain is incredibly powerful and energy efficient, but its computation does

not fit well with the traditional computer architecture developed over the

previous 70 years. Therefore, there is growing research focus in developing

alternative computing technologies to enhance our neural modelling capabil-

ity, with the expectation that the technology in itself will also benefit from

increased awareness of neural computational paradigms.

This thesis focuses upon developing a methodology to study the design

of neural computing systems, with an emphasis on studying systems suitable

for biomedical experiments. The methodology allows for the design to be

optimized according to the application. For example, different case stud-

ies highlight how to reduce energy consumption, reduce silicon area, or to

increase network throughput.

High performance processing cores are presented for both Hodgkin-Huxley

and Izhikevich neurons incorporating novel design features. Further, a com-

plete energy/area model for a neural-network-on-chip is derived, which is

used in two exemplar case-studies: a cortical neural circuit to benchmark

typical system performance, illustrating how a 65,000 neuron network could

be processed in real-time within a 100mW power budget; and a scalable high-

performance processing platform for a cerebellar neural prosthesis. From

these case-studies, the contribution of network granularity towards optimal

neural-network-on-chip performance is explored.
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Chapter 1

Introduction

“For nothing clears up a case as much as stating it to another person.”

Silver Blaze, The Memoirs of Sherlock Holmes

Sir Arthur Conan Doyle

1.1 Motivation

The brain is one of the most complex and powerful systems in nature, and to unravel

it is one of the great challenges of the 21st century [1]. The brain is at the centre of all

functionality within the body, from control of limbs to sensory perception and higher

level cognitive thinking.

A popular investigating technique into the brain’s operation is to create and verify mod-

els replicating its function. Through the development of accurate models the brain’s

structure can be interpreted and its computation decoded. This furthers our under-

standing and allows for the development of novel treatments for neurological disorders.

Unfortunately, modelling the brain’s operation is a non-trivial task. A typical human

brain contains 1011 neurons with 1014 connections. This scale of computing far exceeds

typical computing performance, and even the world’s highest performing supercomputers

struggle. Henry Markram suggests that “computational power needs to increase about

1-million-fold before we will be able to simulate the whole human brain.” [2]

1
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An effective computational platform for neural modelling must correctly replicate the

brain’s operation, which is thought to be encoded within:

• the generation within neurons of action potentials (AP), otherwise known as

“spikes”

• and, the communication of these spikes between neurons.

However, neurons compute spikes using highly non-linear techniques and the connec-

tivity between neurons is extraordinarily complex; resulting in signifcant computation,

communication and memory overheads for an electronic platform.

Therefore, there is great interest in developing novel electronic architectures to enhance

neural modelling capabilities. These projects scale from transistor-level designs targeting

single neuron modelling [3] to alternative supercomputer architectures designed to mimic

large-scale network operation [4].

Through expanding our knowledge of brain operation by the development of neural

models many novel applications have been created, such as electronic neural prostheses

that directly interface with the brain. These devices aim to repair, restore or replace lost

neurological functionality, whether it be within sensory, motor or cognitive operation.

They have had tremendous success in treating a range of conditions from loss of hearing

[5] to Parkinson’s [6].

The next-generation of neural prostheses will involve closed-loop systems, whereby the

electronic platform will record, interpret and stimulate brain tissue in real-time. These

systems will rely upon efficient and portable, but high-performing computational plat-

forms, that can accurately model neural operation. These prosthetic devices could po-

tentially replace impaired neural circuits, damaged from conditions such as stroke [7] or

epilepsy [8].

However, electronic neural platforms have not typically been developed with the specific

constraints imposed by a neural prosthetic. As such, the intention of this thesis is

to extend the significant existing research into electronic neural modelling platforms

towards systems capable of integration with neural prosthetics.

The project’s original aims and objectives, outlined in November 2011, are defined below.
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Aim

To investigate the design of efficient, high-performance electronic systems that can

integrate with networks of biological neurons.

Objectives

Analysis of existing network structures to determine behavioural patterns.

Implementation of a network model in hardware to investigate performance and

areas for optimization.

Derivation of a methodology for design of networks for interfacing with biological

systems..

Application of methodology within a practical biological example.

1.2 Contributions

The key contributions of the thesis are outlined below:

• The highest performing specialised digital circuit to date to implement a Hodgkin-

Huxley neuron model is described. Using the design over 100,000 neurons can be

implemented upon a single modern FPGA.

• Similarly, a dedicated digital circuit for the Izhikevich neuron model is provided.

This design is compared upon an FPGA with the Hodgkin-Huxley implementa-

tion and estimations are obtained for ASIC performance, which show increased

performance over comparative options, including analogue neuromorphic design.

• A network-on-chip structure is shown to be the optimal design choice for imple-

menting large-scale neural processing platforms. An empirical model is developed

to evaluate the optimal design parameters of a network-on-chip depending upon

the target application and the desired neural system.

• A benchmark cortical neural system is evaluated using the empirical model. The

model highlights the importance of obtaining the correct network granularity in

order to reduce area and power overheads by a factor of between 3x and 5x.
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• Correct performance of the cortical neural system is verified using a software traffic

model. This system highlights that communication challenges can be overcome and

that memory overheads should be the primary concern within any implementation.

• Further, the empirical model is utilized in the design of a platform for a silicon

cerebellar model containing 100,000 neurons. This platform can be used in high-

performance accelerated mode, processing 1 second of real-time in 25ms, or in

real-time for use in closed-loop cerebellar experiments and neural prosthesis.

1.3 Contributions to Literature

The work described within this thesis has contributed to the list of publications outlined

below. Throughout the text where work has been published it is highlighted.

Journal Publications

• Junwen Luo∗, Graeme Coapes∗ Terrence Mak, Tadashi Yamazaki, Chung

Tin, Patrick Degenaar, “Real-time Simulation of Passage-of-Time En-

coding in Cerebellum Using a Scalable FPGA-based System”, IEEE

Trans. Biomed. Circuits Syst., Accepted with minor revisions, 2015

International Conferences

• Junwen Luo, Graeme Coapes, Patrick Degenaar, Terrence Mak, Tadashi

Yamazaki, Chung Tin, “A Real-time Silicon Cerebellum Spiking Neu-

ral Model based on FPGA,” in Proc. International Symposium on Inte-

grated Circuits, Singapore, 2014

• Junwen Luo∗, Graeme Coapes∗, Terrence Mak, Tadashi Yamazaki, Chung

Tin, Patrick Degenaar, “A Scalable FPGA-based Cerebellum for Passage-

of-Time Represenation ,” in Proc. 36th Annu. Int. Conf. IEEE Engi-

neering in Medicine and Biology Society, Chicago, 2014

• Junwen Luo, Patrick Degenaar, Graeme Coapes, Alex Yakovlev, Terrence

Mak, Peter Andras, “Towards reliable hybrid bio-silicon integration

∗Both authors contributed equally to this work
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using novel adaptive control system ,” in Proc. 2013 IEEE International

Symposium on Circuits and Systems, Beijing, 2013

• Graeme Coapes, Terrence Mak, Jun Wen Luo, Alex Yakovlev, Chi-Sang

Poon, “A Scalable FPGA-based Design for Field-Programmable Large-

Scale Ion Channel Simulations,” in Proc. 22nd Int. Conf. on Field

Programmable Logic and Applications, Oslo, 2012

Local Conferences

• Graeme Coapes, Terrence Mak, Alex Yakovlev, Patrick Degenaar, ‘’A

Neural-Network-on-Chip for Next-Generation Neural Prosthesis”,

Annual Research Conference, School of Electrical and Electronic Engineering,

Newcastle University, 2014

• Graeme Coapes, Terrence Mak, Alex Yakovlev, Patrick Degenaar, ‘’A

Spiking Neural Network-on-Chip Platform for Hybrid Bio-Electronic

Networks”, Annual Research Conference, School of Electrical and Electronic

Engineering, Newcastle University, 2013

• Graeme Coapes, Terrence Mak, Alex Yakovlev, ‘’Silicon Neural Node

Capable of Large-Scale Simulations of Bio-Physically Realistic Ion

Channels”, Royal Society’s Young Researchers Meeting on Neural Engineer-

ing, 2012

• Graeme Coapes, Terrence Mak, Junwen Luo, Alex Yakovlev, ‘’Trustworthiness

in Hybrid Bio-Silicon Systems for Next-Generation Neural Pros-

thetics”, Workshop on Trustworthy Cyber-Physical Systems, 2012

1.4 Organization

The rest of thesis is structured as described below. The structure is visualized in Fig-

ure 1.1.

Chapter 2 - Neural Prosthesis

This chapter provides an introduction to neural prosthesis to provide justification

for the development of a neural modelling processing platform for prosthetic ap-

plications. Initially a brief history of the progress of neural prosthetics is provided,
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which details how the trend has moved towards closed-loop implementations. Next,

a system-level specification is derived by evaluating the current technology, liter-

ature, and platforms available.

Chapter 3 - Silicon Neuron Systems

A thorough literature review is conducted to evaluate emerging and established

neural model platforms. Comparisons are made between alternative options, in-

cluding analogue VLSI (aVLSI), GPU and FPGAs. It is concluded that a dedicated

digital design is the most appropriate for the application.

Chapter 4 - Single Neuron Processing

Digital techniques are investigated for the design of a neuron processing core, for

both Izhikevich and Hodgkin-Huxley neuron models. The results of this section

are used within the network-on-chip model outlined in the following chapters.

Chapter 5 - Network Methodology

This chapter compares the available communication options. A network-on-chip

approach is deemed most suitable. Networks-on-chip design strategies are intro-

duced and compared theoretically. An empirical model is described to allow for

the network-on-chip design parameters to be analysed and optimized.

Chapter 6 - Neural Network-on-Chip Case Study 1

The previously described empirical model is utilized with a popular cortical bench-

mark to determine standard operating performance. Correct operation of the net-

work is verified using a traffic software model.

Chapter 7 - Neural Network-on-Chip Case Study 2

The empirical model is utilized again to determine the optimum design of cerebellar

model platform. This platform is fully implemented to allow for use in closed-loop

experiments. A hypothetical neuroprosthetic example is demonstrated.

Chapter 8 - Conclusions

The contributions of the thesis are summarized along with directions for future

work proposals.
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Figure 1.1: Structure of thesis. Chapter 2 provides background information on the
history of neural prosthesis, and from this a design goal is developed. The available
technologies are reviewed in Chapter 3. Chapter focuses on a sub-component of neural
network-on-chips. The chapter initially develops a method for designing neurons be-
fore two example neurons are studied using the design method. Chapter 5 develops a
methodology for studying the complete design of neural network-on-chips before this
methodology is demonstrated using two specific biological neural networks in Chapter

6 and Chapter 7.



Chapter 2

Neural Prosthesis

“There is nothing new under the sun. It has all been done before.”

A Study in Scarlet, Sherlock Holmes

Sir Arthur Conan Doyle

Neural modelling has led to an increased understanding of the operation of the brain.

However, as neural investigations grow in complexity more advanced electronic systems

are required. This combination of an increased understanding of neural function and

advancements in electronics has allowed for the development of neural prosthetics to

treat previously incurable diseases.

This chapter provides an introduction to neural prosthetics, first of all by detailing their

progress and highlighting likely areas of future growth. It is shown how neuroprosthe-

sis are developing from open-loop unidirectional systems to more complex closed-loop

systems which involve directly recording from and stimulating neural tissue in order to

restore or repair lost functionality. The second part of the chapter studies the chal-

lenges associated with implementing electronic neuroprosthesis, from which a technical

specification is developed.

8
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(a) (b) (c)

Figure 2.1: Progress of brain-machine interfaces. (A) 1D robotic arm controlled by
the neural activity of a rat [9]. (B) Direct control of arm muscles through a machine
connected to the brain of a monkey [10]. (C) Volitional control of a computer cursor

and a restored perception of touch [11]

2.1 Progress of Neural Prosthesis

2.1.1 Brain-Machine

There has been a long-term interest in the development of neural prosthesis to treat

medical conditions incurable through drugs alone, such as tetraplegia. The research

hypothesis is that a computer can be used to bypass the damaged nerves to allow the

brain to directly interact with the outside world. This system is known as a brain-

machine interface (BMI).

In 1969 E. Fetz at Washington University developed the first example of a simple cogni-

tive brain-machine interface [9]. A single electrode was inserted into the motor cortex of

a monkey and the rate of neural activity recorded. When the rate reached a certain acti-

vation level the monkey was fed banana flavoured pellets. The experiment showed that

the test subjects were capable of learning to specifically control defined brain regions for

augmented purposes. Although the study demonstrated a successful interface the limited

technology available at that time prohibited more complex and useful implementations.

However, by 1999 multi-neuron recording techniques allowed for Chapin and Nicolelis

et al. to create a machine capable of interpreting populations of neural signals in order

to control a simple robotic arm [12]. Arrays of microwires were inserted into the motor

cortex’s of 6 rats who were trained to use a control lever in order to rotate the position of

a 1D robotic arm in order to feed themselves water (Figure 2.1a). During the trials the

neural activity was recorded and various processing models developed, such as artificial
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neural networks, to produce an approximation of the robotic arm position. Interest-

ingly, after multiple trials the attempted use of the control lever by the rats diminished

suggesting the rats were aware of the volitional control.

A year later, Wessberg, Chapin and Nicolelis et al. extended this study to non-human

primates, specifically owl monkeys. Again by studying a wide range of neural populations

a processing model was developed to approximate the position of a robotic arm, this

time in both 1 and 3 dimensions [13].

Velliste et al. [14] in 2008 developed the first fully interactive volitionally controlled

robotic arm capable of movement in 3D space. During this experiment the arms of a

primate were restrained and replaced with a synthetic model controlled purely through

neural activity.

2.1.2 Brain-Machine-Body

Following this, Moritz et al. [10] have demonstrated a novel application involving the first

brain-machine-body interface. Within this study the primates own limbs were controlled

through electrical stimulation of the limb’s nerves (Figure 2.1b). The investigators

blocked the natural nervous system connections between the subject’s brain and its

arms in order to reproduce the conditions involved in patients suffering from tetraplegia.

These connections were then replaced with artificial systems allowing for the control

of the muscles to be regained by the animal. The study used neural data from only

single cells, whereas the more recent study by Ethier et al. used data from large neural

populations [15], perhaps allowing for multiple degrees of freedom to be regained in the

limb.

2.1.3 Practicality

The above systems have all suffered from size and portability issues - limiting their

practicality as research tools and their potential as neuroprosthesis. However, Borton et

al. [16] have recently developed a portable and wireless interface to allow for recording

of neural activity in moving primates. This will allow investigators to study neural data

from normal primate activities, as opposed to constrained laboratory experiments, and

also reduce the overheads involved in a long-term human neural prosthesis.
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2.1.4 Human Results

Early work has started in translating the animal-based experiments described above to

trials involving human patients. For example, Hochberg et al. created a successful BMI

for a human patient suffering from tetraplegia [17][18]. A multi-electrode array with 100

probes was surgically inserted into the brain and the neural activity was used to control

an on-screen cursor. This project was extended in 2012 to allow for the human patients

to be able to control a complete robotic arm [19].

Similar work has been completed by Wang et al. [20], who used an electrocorticor-

graphic interface, and Collinger et al. [21] who created a volitionally controlled 7 degree

of freedom prosthetic arm. All of these studies involve at most two human patients, sug-

gesting that the research is still in the very early stages of development. Complications

ranging from engineering challenges, to surgical and ethical overheads have limited the

development and progression of the technology so far.

2.1.5 Machine-Brain

Electrical signals can also be injected into the brain and this significantly extends the

range of neurological conditions that can be treated by prosthesis to include ailments

such as chronic pain [22], Parkinsons [23], obsessive compulsive disorder [24], Tourette’s

[25] and a multitude of sensory disorders, including loss of hearing or sight.

For instance, in 1968 Brindley et al. [26] demonstrated a BMI capable of restoring a

sense of sight to a blind patient. An array of electrodes was implanted into the visual

cortex of a 52-year old woman and when an electrode was stimulated she experienced

singular spots of white light in a fixed position depending upon the chosen electrode.

The authors proposed that this demonstrated the potential of visual neural prosthesis

in curing blindness.

The most successful neural prosthetic currently available is the cochlea implant. The

development of cochlea implants began in the 1960s [27], and they were fully approved

for medical use in the 1980s. By 2008 they had restored a sense of hearing to over 120,000

patients [5]. The system involves externally recording and processing sound waves before

wireless transmission to surgically implanted electrodes (Figure 2.2a) These electrodes
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(a) A standard cochlear
prosthetic design [28]

(b) The retinal prosthetic
design proposed by [29]

(c) Optogenetic retinal pros-
thetic

Figure 2.2: Designs of machine-brain interfaces for sensory neural prostheses. (A)
A standard cochlea prosthetic design [28]. (B) The retinal prosthetic design proposed
by [29]. (C) An optogenetic retinal prosthetic. External LEDs are used to stimulate

genetically modified light-sensitive nerve cells.

are able to stimulate the surrounding nerve cells, which the patient is able to interpret

as sound [5].

Recently, there has been great research interest in extending the work of Brindley et al.

[26] and using the knowledge gained in the development of cochlea disorders to treat

retinal diseases [29][30][31][32]. Commonly these devices have involved an external video

camera being used to record an image, which is passed to a processor that interprets

the signal and sends commands to an implant to stimulate the appropriate nerve cells.

Typical visual prosthetic devices are shown in Figure 2.2b and Figure 2.2c.

The region of the brain that is stimulated to overcome blindness depends upon the

cause of the condition. For instance, glaucoma causes damage to the optic nerve, so

stimulation must occur beyond the optic nerve in the visual cortex [33]. Alternatively,

retinitis pigmentosa is a degeneration of the light-sensitive cells within retina. As such,

by stimulating the remaining cells within the retina, either subretinally or epiretinally

a sense of sight can be restored [34].

Another successful neural prosthetic is the deep brain stimulation (DBS) system used in

the treatment of a wide-range of movement disorders. In DBS, electrodes are implanted

into a targeted brain region, such as the thalamus, through which electrical pulses are

injected. The device acts as a pacemaker and regulates the activity of the brain region,

which can be afflicted by the underlying neurological condition [6]. The amplitude

and duration of the electrical pulses is typically user controlled and refined through

experimentation.
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2.1.6 Brain-Machine-Brain - Closing the Loop

Extending upon the experiments that simply recorded neural activity described above, in

2011 O’Doherty and Nicolelis et al. [11] showed the first brain-machine-brain interface

that restored motor and sensory functionality. This was achieved by feeding various

electrical signals back into the brain of the animal depending upon the animal’s actions

(Figure 2.1c). Over time the animal learned to associate certain frequencies of signals

with a positive reward.

The majority of systems described above provide minimal external processing- most

of the learning is encapsulated within the existing intact neural matter of the patient.

However, intelligent closed loop systems, whereby a computer controls the interaction

with the neural tissue depending upon the signals received, have been demonstrated and

described recently.

In 2012, McLaughlin et al. [35] proposed extending a cochlea implant to include closed-

loop control. Traditional open-loop systems require a time-consuming configuration

session in order to effectively setup the implant. However, over time the patients’ audi-

tory system adapts to the implant, consequently, the configuration may need updating

to ensure optimal performance. McLaughlin et al. suggest that by monitoring the audi-

tory nerve response to the stimulation unit this configuration process can be automated

and performed online.

Further, recently efforts have been made to improve upon the efficacy of DBS by intro-

ducing closed-loop platforms. For instance, Little et al. [36] highlight an experimental

study whereby the local field potential (LFP) was recorded by the implanted electrodes

and used in the calculation of the stimulating pulses. They found that the performance

of the closed-loop DBS improved by over 25%. Also, the closed-loop system allowed for

a reduction in stimulation time, reducing the overall energy consumption and doubling

the lifetime of the battery.

Control of epileptic seizures in real-time using neural prosthesis has become the focus

of many research groups [8][37]. These projects aim to monitor the neural circuits for

onset of seizures and to adaptively stimulate the appropriate neural tissue to suppress

the symptoms.
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Similar closed-loop techniques have been proposed to treat cognitive disorders [38]. For

example, Berger et al. [39] have postulated that by mimicking the signals involved in

neural functionality of the hippocampus, an area susceptible to neural abnormalities

such as stroke, cognitive abilities could be restored.

Although Berger’s approach has had some success in mice experiments, it may suffer

from the technique that has been adopted. The challenge has been treated as purely

a digital signal processing problem, whereby the injected signals are generated from

the received inputs using a multi-input multi-output (MIMO) model. This will require

a separate model to be developed for each system, a new model developed each time

the system grows and reduces the capability of the system to learn and adapt, which

in silicon is usually accomplished through neural network implementations. Perhaps a

more influential approach could be to generate artificial networks of neurons to replace

the regions that have been damaged. The function and operation of these networks

could be designed to coincide with the natural biological operation of the circuits they

are replacing and they could allow for adaptation over time.

Even in many common signal processing algorithms neural networks are often chosen

to complete the function. For instance, pattern recognition is often completed using

artificial neural networks [40]. For pattern recognition learning is often completed offline.

The concept and an example of using replicas of neural networks for cognitive repair

is discussed in [41], where it is proposed that small real-time silicon networks, initially

running upon FPGAs, can integrate with biological tissue in vitro.

Recently devices have been demonstrated that influence the cognitive behaviour of mice

[42][43][44]. Within this experiment a mouse was taught to fear a particular scenario.

When this scenario occurred the mouse instinctively froze and became aware of danger.

Liu et al. showed how by stimulating the same neurons in the hippocampus that were

involved in the initial memory formation the mouse once again froze and became wary

of danger. This proved how targeted stimulation of a select group of neurons is able to

influence cognitive behaviour. Similar experiments were completed by Pais-Vieira et al.

[45] who managed to transmit cognitive behaviour and response between two separate

mice.
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Figure 2.3: History of neural prosthetic development

2.1.7 Summary

The trend in neural prosthetic technology is moving towards closed-loop systems that

both record and stimulate from neural tissue, as summarized by Figure 2.3. Closed-loop

systems have been shown to increase the capability of the devices, whilst also improving

their performance, such as the reduced energy consumption demonstrated by a closed-

loop DBS device [36].

There is growing research interest in the development of cognitive prosthetics to treat

neurological conditions. Berger et al. proposed a closed-loop MIMO processing platform

to augment the damaged neural circuits to repair functionality. But, with the growing

research into mimicking neural circuits in silicon perhaps the damaged circuits can be

replaced directly. To ensure a successful prosthetic consideration must be made to reduce

the size and energy consumption of any processing platform in order to make the system

as portable as possible, reducing the impact upon any patient.

Further, accurate real-time electronic models of neural circuits will allow for prediction

of a response to any neural stimulation, thereby reducing the risk and maximizing the

effectiveness of many neural prosthetic devices.
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Progress of Brain-Machine Interfaces: Key Points

• Brain-machine interfaces (BMI) involve computers directly interfacing with
neural circuits.

• BMI can be used to treat previously incurable neurological conditions. These
systems are known as neuroprosthesis

• There is a growing trend towards closed-loop BMI, whereby the response from
the machine is dependent upon the state of the neural circuits.

• Certain neurological conditions involve faulty neural circuits. Can these faulty
circuits be replaced with machine equivalents?
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2.2 A Systems Perspective

As for most electronic systems, closed-loop neuroprostheses require real-time acquisition

of input signals, on-board processing and computation, and finally an output operation.

For a neuroprosthesis to be an effective medical treatment these components need to

be combined into a portable and integrated solution. A proposition for an integrated

solution, perhaps using state-of-the-art 3D-IC technology is shown in Figure 2.4. Alter-

natively, either a traditional 2D-IC, such as that illustrated in [37], or even multiple ICs

distributed across a PCB could be used depending upon the overall system objective

and limitations.

Interface electrodes are placed close to the neural tissue to record local field potentials

arising from surrounding neural cells. These electrodes require supporting analogue

circuitry to amplify and filter the received signals before passing to an analog-to-digital

converter. Once the signals are digitized they may undergo a spike sorting process

whereby neural events are attributed to specific cells to aid in decoding the function of

the neural network.

Once the biological network state has been decoded as much as possible, processing

may be completed to translate the received signal into a meaningful action. As with

most systems, this processing may require the use of on-board memory. In addition, an

external communication channel would allow the state of the system to be interrogated;

particularly important during early stage research and trials.

The result of the computation may be returned to the neural tissue through integrated

microelectrodes, thereby closing-the-loop.

Finally, all system components will require energy supplied either from internal or exter-

nal sources. For effective neural prosthesis this power source will be required to operate

reliably and independently for a number of years.

In the following sections of the thesis, these individual components are described in more

detail with a focus upon the latest published research.
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Figure 2.4: Example BMI system. (A) 3D Chip containing all the necessary compo-
nents of the system. (B) Flow-chart illustrating how the components interact.

2.2.1 System Platform

For closed-loop neural prostheses electronics are needed to record, process and stimulate

the brain. Recording and stimulating electronics have to be placed close to the neural

circuits, but often, especially in clinical research environments, processing is performed

on desktop/PC systems. For instance, Simeral et al. used commercial software running

on general purpose computers for their study investigating a human controlling a com-

puter cursor volitionally [46]. However, for prostheses the processing must be portable

to allow for the patient to experience as normal a life as possible.

The processing could be performed externally, such as upon the ASIC1 within the head-

mounted unit in a cochlear prosthetic, as seen in Figure 2.2a. Alternatively, Al-Atabany

et al. [47] investigate performing their required computation upon a generic mobile

phone processing platform which offers low power benefits.

However, experience with cochlea implant patients has shown that external compo-

nents are undesirable and there is a trend towards developing fully implantable systems

[48][49]. Implantable systems will alleviate cosmetic, portability, reliability and security

concerns whilst imposing strict constraints upon energy and area consumption [50].

1Application-specific integrated circuit.
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A complete device may be fully implanted within the neural region that is being targeted.

However, this introduces energy consumption issues, as discussed in section 2.2.2 and size

limitations. Therefore, the electronic systems are typically either placed subcutaneously,

as in [16], or within the chest cavity underneath the clavicle bone, as in all DBS systems.

A typical DBS stimulator device occupies a volume of 22 cm3 [51].

2.2.2 Energy Delivery

The capability of a successful neuroprosthetic device is determined by how much energy

it has available and how efficiently it utilizes that energy. Non-invasive BMI systems,

such as the EEG-controlled device illustrated in [52], can be powered directly through

battery systems if desired. But, within invasive systems it is best to avoid transcutaneous

wired connections to reduce the risk of infection and failure [53] and as such, the energy

must be available locally. This allows for either energy harvesting, battery systems to

be implanted alongside the actual device, or wireless power transfer techniques to be

used.

There is significant energy available for harvesting in the human body in the forms of

heat, chemical and kinetic. The challenge lies in the conversion of these sources into

usable electrical energy, which is fairly easy in a regular environment, but to do so inside

the body a device is severely constrained by size, heat dissipation and bio-compatibility

[54].

Examples of devices have been demonstrated converting glucose into electrical energy

and producing meaningful amounts of electricity, up to 280µWcm−2 [55]. A recent study

demonstrated the first ever in-vivo example of such a bio-fuel cell generating meaningful

power from a snail [56]. Also, in 2013 Zebda et al. [57] demonstrated a glucose biofuel

harvester generating 38.7µW from a rat. However, these biofuel cells have a number

of limitations, including a short-term life span measured in hours [58] and the size

to power ratio of current implementations would not allow for inclusion into a neural

implant capable of performing any reasonable operation. Similar issues of power density

restrict implementations of thermal and piezoelectric harvesting techniques [59].
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Traditionally, deep-brain stimulation devices have used non-rechargeable batteries to

provide energy to the neurostimulator. Medtronic, a leading manufacturer of such de-

vices, state that non-rechargeable batteries typically last between 3-5 years depending

upon the rate and amplitude of stimulus that is applied [60] - typically in the range

of 0-25.5mA [61]. Unfortunately replacing a DBS battery requires further surgery and

therefore there is a desire to improve battery lifetime.

Medtronic have recently developed rechargeable variants of their DBS systems. Un-

fortunately the energy capacity of rechargeable variants is much smaller than non-

rechargeable variants and therefore these devices typically require recharging every 10-30

days depending upon the stimulus program applied [62]. They are recharged via wireless

inductive techniques. Also, rechargeable batteries still have a limited lifetime which is

dependent upon the number of recharge cycles and as such they still require replacing,

typically every 9 years [62].

Cochlea implants were the first commercial prosthetic device to have wireless charging

[63]. Typically an external battery along with a transmitting RF coil is attached to the

side of the head. Power at a rate of 20-40mW [5] is transferred to the implanted unit.

The external batteries require recharging every 1-5 days [5]. Cochlea implants have the

luxury of being a non-life-critical device, meaning they can be disabled to allow for the

batteries to be swapped and no internal batteries are required. Perhaps for a motor or

cognitive prosthetic this will not be acceptable. For instance, a patient suffering from a

motor disability may struggle to swap batteries whilst the prosthetic is switched off.

Wireless power mechanisms have also been demonstrated for systems recording neural

activity from cortical areas. Harrison et al. [53] were one of the first groups who

demonstrated a device capable of recording and transmitting data from 100 electrodes.

Their device used only 13.5mW. More recently Borton and Yin et al. highlighted the first

portable neural activity monitor to be tested long-term within primates [16][64]. They

implanted a 200mAh battery subcutaneously that allowed for their neural recording

device to operate for up to 7 hours, consuming 30mA at 3V [64]. Ideally such devices

should last for 24 hours between recharging - to allow for a human recipient of a neural

prosthetic to only require recharging once per day. The interval between recharging can

be extended by either reducing the energy requirement of the device or by increasing

the charge capacity of the battery.
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Interestingly, the amount of energy consumed by a neuroprosthetic is not just constrained

by the amount of energy that can be delivered, but also the effect any heating of the

device will have upon the surrounding tissue. An investigation described in [65] defined

a rise of 1◦C in the electronics as enough to damage surrounding brain tissue. Using

a standard electrode array design they found the limit of power consumption within a

5x6mm2 area is 35mW.

Brain temperature is known to rise to combat fever [66], but the 1◦C and 35mW figures

have become a common baseline for engineering specifications [37][67][68] in order to

reduce the impact of any implant upon the neural tissue. However, it has been stated

that progress with neural implants in clinical use may be delayed until further research

into acceptable temperature implications is conducted and international safety standards

are adopted [69].

To limit the impact of this constraint only the minimum amount of electronics required

should be placed close to the neural tissue; other components should be placed between

the skin and the skull, or as in a DBS unit within the chest cavity. Only systems

associated with either recording or stimulating the neural tissue should be placed near

the brain. The recording electrodes typically require approximately 20µW/channel [70]

for analogue front end processing, analogue-to-digital conversion and spike sorting. For

stimulating electrodes the energy consumption is dependent upon the rate and amplitude

of stimulation, as stated previously. Typically this has a value of between 100µW and

400 µW [71].

In a closed-loop neural prosthesis the online processing capability is likely to be a con-

siderable consumer of energy. Unfortunately, most current implementations are not yet

at a stage to consider power efficiency. For instance, the brain-machine-brain prosthetic

illustrated by O’Doherty et al. [11] makes no mention of the processing platform, let

alone its power efficiency. Also, Berger et al. who are developing closed-loop cognitive

prostheses using a VLSI2 implementation admitted in a paper in 2001 that they are yet

to consider power efficiency of their design [72] and there has been no reference to power

in any of their papers since [73][39][38][7]. Also, Bamford et al. [74] have introduced a

VLSI design for closed-loop neural prosthesis and although power is discussed, no serious

efforts have yet been considered to reduce it.

2Very-large-scale integration
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Figure 2.5: Recent progress in battery technology

As such, instead of comparing power efficiency of any proposed design with previous

implementations, we need to consider the target application and develop a system-level

estimated energy budget suitable to meet the long-term objectives.

To define this specification some assumptions need to be made:

• Due to the size of the commercial market we can assume that the state-of-the-

art in battery technology is prevalent within smartphones. Current technology is

approximately at 0.04mAh/mm3 and is expected to grow to 0.10mAh/mm3 by

2030 (see Figure 2.5).

• The implantable battery volume will remain constant at the same level as current

DBS implantable batteries, at 22cm3 [51].

• The electronics associated with stimulating and recording from the neural tissue

is significant, but must be limited to 30mW, or 10mA, due to heating issues as the

stimulation and recording must be located close to the neural tissue. The remain-

ing energy available from battery source can be made available to the processing

platform, which can be located away from the neural tissue.

• Only 90% of the battery’s energy should be utilized in order to ensure safe opera-

tion.

• The processing platform is to be placed internally.
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• The batteries should last a minimum of 24 hours between recharges.

Using these estimations currently the battery size is limited to 840mAh and is expected

to rise to 2200mAh by 2030. As such, there is 21.5mA available to the processing

platform currently, rising to 74mA by 2030. Due to this limitation in available energy,

which Furber and Temple predict will be become the true cost of computing as opposed

to processing capability [75], a system-level design perspective needs to be considered

and to ensure that the scalability of a proposed design remains within the scalability of

the energy supply.

2.2.3 Computation

Within closed-loop systems computation is required to interpret the input received from

the neural systems and to calculate a response. As noted previously, most current BMI

systems utilize desktop/PC systems upon which implement mathematically heavy algo-

rithms, such as Kalman Filters [76]. Recently however, Dethier et al. [50] used a spiking

neural network in order to decode signals for a BMI, claiming that a neuromorphic

implementation would be able to save multiple orders of magnitude in energy.

Further, cognitive prosthetics must compute a response based upon the decoded input.

This response must mimic the correct response of the damaged neural circuits in order

to replace or restore the lost functionality. For instance, if a neurological disability is

caused by a faulty pacemaker circuit, we may wish to utilize a model of the correct

pacemaker circuit in the derivation of the feedback to be injected to the brain.

There have been many spiking neural network models developed that recreate neural

circuits. For instance, the model by Yamazaki and Tanaka [77] replicates the operation

of the cerebellum, Traub et al. [78] have developed a thalamocortical model and Kopell

et al. [79] a hippocampus model. Many more examples are available at the ModelDB

website3.

Interestingly, when creating artificially intelligent or learning-based systems designers

typically look to implement neural network models [80][81][82]. Therefore, in develop-

ing cognitive prosthetics that may involve learning we may naturally consider neural

3https://senselab.med.yale.edu/ModelDB/
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networks. Implementation of a biological network model could automatically include

any learning which is required. In fact, Bamford et al. [74] and the ReNaChip project

have demonstrated a biomimetic/neuromorphic chip for closed-loop prosthesis including

learning of a new motor response.

To ensure complicity with the interacting neural circuits any implementation of the

model should run in the same time-domain.

Although, the brain may consist of up to 100 billion individual neurons a closed-loop

prosthetic will interact with only small defined regions. As such, a neural network model

implemented for a prosthesis application is not required to scale all the way to a full

brain. Instead the emphasis should be upon the efficient implementation of a defined

network size. This is counter to the aims and objectives of many large neural platform

projects, such as BlueBrain [2] and SpiNNaker [4]. A system containing between 10,000

and 100,000 neurons can be expected to produce meaningful results as is explored later

in section 6.1 and section 7.1.

2.2.4 Neural Interface

Neural activity is recorded by inserting an electrode close to the desired neurons. When

these neurons produce action potentials they change the local field potential, which is

detected by the electrode.

A singular electrode is able to discriminate between multiple local neurons through

a process known as spike sorting [83]. Each neuron has a distinctive pattern that is

produced for each action potential. The spike sorting algorithms are able to distinguish

between different patterns to allocate events to particular neurons. Spike sorting is a

very active area of research, with most studies focusing upon improving the accuracy

whilst reducing the power consumption [84][85][86].

Multiple electrode arrays (MEA) allow for observing a greater number of neurons. Re-

cent neural prostheses [16][53] have tended to use the 100-electrode Utah array which

is commercially available. This allows for between 300-400 individual neurons to be ob-

served. Ideally this value will be much larger to allow for observation of the distributed

processing of a biological neural network. For instance, Berger states in [7] that they can

observe from only 16 different neural sites, in a region containing up to 450,000 neurons.
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Recent publications have illustrated much larger arrays. However, the amount of data

that these arrays generate introduce a great processing and energy burden. The 11011-

electrode array illustrated by Frey et al [87] can in fact only record from 126 sites

simultaneously. This may offer greater flexibility in choice of location but it does not

yet produce much more information than the common Utah MEA.

The machine-brain interface may also utilize electrical signals. For instance, both the

cochlear implant and DBS systems involve neurostimulators injecting current into de-

fined brain regions. However, this process is limited in that specific neurons are unable

to be targeted and neurons can only be excited.

A new approach known as optogenetics [88] offers great potential. This optical stimu-

lation technique relies upon the genetic adaptation of a neuron’s structure to include a

light sensitive ion channel, known as channelrdhodspin-2 (ChR2). When a bright light

source is targeted at a neuron expressing this ion channel the neuron may produce an

action potential. This allows for a population of specific neurons to be targeted, allows

for inhibition as well as excitation, and vastly improves the resolution offered. This

approach has been used previously by Liu et al. [42] within a cognitive brain-machine

interface.

High density optoelectrode arrays are being developed [89] for neural prosthesis, but

mainly for external issue, such as within retinal prosthetics [47]. When implanting

devices, the optoelectrode arrays are limited in size by their energy consumption and

temperature dissipation. Therefore, typically we may expect a closed-loop prosthesis to

be limited to only 10-100 electrical/optical input and output channels.

2.2.5 Data Transfer

To monitor the neural activity and the health of the implanted device a communication

interface is required. Wireless techniques are often preferred to avoid transcutaenous

connections.

Harrison et al. [53] combined the wireless data transmission with the power protocol and

achieved a data rate of 330kb/s. Alternatively, Borton et al. [16] used a dedicated RF

channel and obtained an increased data rate at a greater cost in power. They utilized

their increased channel bandwidth to transmit the full resolution of the recorded signal
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from all 100 electrodes. With each electrode sampled at 12 bits at a rate of 20,000

samples / second this equates to a bandwidth of 24Mb/s. To reduce energy consumption

in the data transfer protocol spike sorting can be used to decrease the required data rate.

For instance, Karkare et al. [70] achieved a data compression of 240x at a cost of only

5uW/channel.

The utilisation of this high bandwidth could perhaps be put to more effective use by

reducing the ADC sample resolution from 12 bits as this infers an exceptional noise floor.

Rizk et al. [90] suggest that only 8-bits are needed if an adaptive scheme is introduced

to match the dynamic range of the input signal; this may provide up to a 33% increase

in performance over Borton et al. [16].

To transmit the status of a complete neural network model of between 10,000 and 100,000

neurons a data rate of between 4.9Mb/s and 43Mb/s is required. This is within the data

rate achievable by current technology. However, in order to reduce energy consumption

transmitting the status of the neural network should only be required during early

initialisation and testing stages.

2.2.6 Reliability

Stable operation over a number of years is required for any implanted prosthetic device.

For instance, pacemakers are expected to last for 5-10 years [91]. Studies have previously

demonstrated how electrode arrays are able to function for extended periods of time.

Within [92] no discernible degradation, either qualitative or quantitative, was found

in the signals received from an electrode array implanted within the motor cortex of

macaque monkeys for up to 1.5 years. Also, [46] validated the reliable performance of a

100 probe electrode array after 1000 days implanted within a tetraplegia patient. The

patient was able to successfully use the prosthetic device with a 91% accuracy 1000 days

after surgery.

Although both these studies showed that sustained operation is possible they both high-

lighted how reliability could be affected in the long term. Over extended periods of time

recordings may become unstable due to cell death surrounding the implant [93] or actual

physical displacement of the implant [83]. To overcome this BMI algorithms must be
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flexible so as to be able to adapt to changes in signal characteristics and requirements

over time.

2.2.7 Summary

The review provided by this section has developed a system-level specification for a

closed-loop cognitive neuroprosthesis, as described in Table 2.1. The specification con-

siders the key and unique constraints detailed in this section whilst requesting a mini-

mum level of performance for an effective medical device.

2.3 Chapter Summary

Neuroprosthetics provide the opportunity to treat a wide-range of conditions, many

of which have previously been thought of as incurable or untreatable. To increase the

functionality, reduce the risk and improve the efficiency of neuroprosthetics there is trend

towards developing closed-loop systems involving recording, interpreting and stimulating

in real-time. These closed-loop systems will come to rely upon accurate, effective and

portable electronic neural modelling platforms.
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Table 2.1: System specification for a closed-loop cognitive prosthetic.

Component Specification

Size 30mm3 (brain), 2500mm3 (chest)

Power 10-100mW, Battery, Rechargeable every 24h

Processing Spiking Neural Network, 10-100k neurons

Time Real biological time, 10-100 events/second/neuron

Interface 10-100 electrodes/optrodes

Data Rate 5-50Mb/s

Platform Implanted and Portable

Lifetime 10 years
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Silicon Neuron Modelling

“Eliminate all other factors, and the one which remains must be the truth.”

The Sign of Four, Sherlock Holmes

Sir Arthur Conan Doyle

Modelling of neural systems in silicon is a growing area of research. This is primarily

motivated by two features:

• the desire of neuroscientists to simulate brain functionality to increase their un-

derstanding.

• the requirement of engineers to design high-performance electronic systems.

The computational performance of a brain far exceeds that of even the most advanced

computer systems in many disciplines [94], most impressively in the area of power effi-

ciency, a popular topic in embedded systems research. For instance, simulation of a full

human brain with current technologies would require hundreds of MWs of power [95], as

opposed to the brains consumption of 20-30W [96]. As such, it is hoped that large-scale

study of brain function could provide insights into how to reduce power consumption

and improve other features including robustness and artificial intelligence.

29
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Figure 3.1: Different platform options for electronic neural modelling. Some well
known projects are provided as examples.

3.1 Platform Options

Due to the benefits provided by neural modelling, many research groups have focused

upon developing efficient implementation platforms. However, there is a wide choice of

platform options depending upon the focus and requirements of the application. These

choices range from software on a standard desktop PC to complete dedicated hardware

design at a transistor-level. The range and relationship of these options are illustrated in

Figure 3.1. In this section each of these options are evaluated in terms of their suitability

with regards to the specification outlined in Table 2.1.

3.1.1 General Purpose Platforms

By far the most popular implementation route for neural modelling is to use general

purpose platforms. This is because of the general availability of machines such as per-

sonal computers (PC)s and graphics processing units (GPU)s and their relative ease in

programmability. However, as will be described, the performance of these options is not

always satisfactory, particularly for a neural prosthetic.

PC Traditionally, there has been great emphasis on software-based approaches to neu-

ral modelling, such as the NEURON [97] and GENESIS [98] packages. Both of these

options offer powerful capabilities, with a wide range of freely available libraries, which
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include highly accurate bio-physical neuron models and network topologies. The ease

of programming and their flexibility also encourage users, particularly from the neuro-

science community.

However, the software-based approach is inherently limited by the computational bot-

tlenecks of the underlying platform, which in most cases is a standard desktop PC. The

sequential Von-Neumann architecture of the desktop PCs limits the scalability of the

neural models and execution time increases exponentially with increasing neural model

size. In fact, the software model described in Chapter 7 no longer executes beyond a

certain network size due to the excessive memory overhead filling the available resources

(cache, RAM, virtual memory).

When considering a closed-loop platform, software approaches also suffer from timing

issues caused by their non-deterministic operation [99]. Ideally feedback to the neu-

ral circuits will occur at a guaranteed time interval. But, software approaches share

hardware resources with other processes, introducing the opportunity for delays and

variation of the time interval between updates. Real-time operating systems are avail-

able to overcome this burden [100] but they introduce additional complexity, negating

the main benefit of a software approach.

GPU Software-based designs can be extended to run upon GPUs. GPU processors

operating with hundreds of processing cores have been shown to complete spiking neu-

ral network simulations 20-100x quicker than the equivalent centrail processing unit

(CPU) implementation [101][102][103] and they scale linearly with increasing number

of neurons within the network. The computing of neurons can be efficiently shared be-

tween processing elements within a GPU, but they are inherently limited by memory

and communication bandwidth constraints, which are the main tasks in a spiking neu-

ral network. Although a GPU offers an extremely high raw memory bandwidth this is

difficult to achieve in practice and requires adhering to strict memory access patterns

[101].

Similarly to software approaches, GPU designs will suffer from timing-related issues.

Also, the only way to scale a GPU is to include more processors within the core, which

still doesn’t overcome the memory and communication bottlenecks. GPUs are undoubt-

edly high-performance components, but they are commercially driven with a particular
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application focus, as such, their architecture is unlikely to be altered to become more

suitable for the non-profitable market of neural modelling.

Supercomputer The Blue Brain [2] and SyNAPSE [104] projects are both examples

of systems looking to exploit the computing resources available to some of the world’s

quickest supercomputers, specifically the IBM Blue Gene computer, which has hundreds

of thousands of processors and hundreds of terabytes of available memory.

The SyNAPSE project has previously demonstrated simulation of over 1 billion neurons

with over a trillion synapses running on Blue Gene [104], although much slower than

biological real-time. They expect to be able to simulate the whole human brain by 2018

[105].

The investigators behind the Blue Brain project, led by Henry Markram, believe that

a greater level of detail is required than the simple leaky integrate and fire model used

by others. Once again they aim to simulate the whole human brain, but aim to include

the complex morphology of the complete neuron structure [2]. Hence, they still believe

a considerable jump in computing resources is required for full brain simulation.

The performance potential of supercomputers is undoubted. However, they come at a

great cost, in terms of size, energy, financial and complexity. It could also be argued

that the architecture itself is not the most efficient for neural modelling due to limi-

tations in the communication protocol. For example, the one-second simulation of the

thalamocortical system by Izhikevich and Edelman[106], which involved 1 million multi-

compartmental neurons and 500 million synapses, required 11 minutes to run. And, the

SyNAPSE project reported their simulation in time in relation to the average firing fre-

quency (643x slower than real biological time per spike event) [104]. It is likely that by

using the supercomputer approach this time will grow exponentially due to bottlenecks

in the communication architecture.

3.1.2 Dedicated Hardware

General purpose platforms are not designed for use with neural applications. Therefore,

they are not always the suitable for the application. Recently, there has been significant

interest in developing specific electronic platforms to cater for the demands of neural
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systems. These platforms include both dedicated analogue designs, where the individual

specifications of transistors are manipulated, and digital designs, where standard dig-

ital design techniques are used to design an efficient communication and computation

infrastructure.

Although dedicated hardware may provide increased levels of performance, the complex-

ity of design has some negative affects, including:

• increased cost in materials and development time.

• inflexibility in operation.

• requires specialist knowledge and experience.

Within the following paragraphs the potential performance improvements of different

dedicated hardware approaches are described and the impact of the negative affects

listed above are considered.

SpiNNaker Due to the bottlenecks of general purpose supercomputers, there is great

interest behind the potential of an alternative system, known as SpiNNaker [4]. Ulti-

mately, this system may resemble a supercomputer in its appearance, but it has been

developed from the ground up with the objective of neural modelling in mind. As such,

the network architecture is optimized for the transmission of neural packets, the memory

system is honed for efficient use, and the central ARM processors offer reduced energy

consumption [107]. The SpiNNaker system will be able to transmit packets across its 1

million nodes in under 1ms, taking advantage of the silicon/biology time inequality.

An overview of the SpiNNaker platform is illustrated in Figure 3.2. Each SpiNNaker

processor contains 18 ARM cores, each capable of modelling between 100-1000 neurons,

depending upon the number of synaptic connections and the neural model used [4][108].

They estimate that each processor requires between 1W [4] and 2W [109]. To model a

single Izhikevich neuron, without regard for synaptic connectivity, requires 100uW [109]

and approximately 1000µm2.

Primarily, the SpiNNaker objective is to run in real-time with reduced energy con-

sumption. Using the analysis provided by [109] we can estimate that a simulation of
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Figure 3.2: An overview of the SpiNNaker machine [4].

1 biological second of 10 billion neurons firing at 2Hz will require 3.72MJ, as opposed

to the SyNAPSE project running upon a commercial supercomputer requiring 8.4GJ

(whilst running 1000x slower than real-time) .

Although the SpiNNaker project is an improvement upon software-, GPU-, and supercomputer-

based approaches a single chip is unable to meet the required specification defined in

Table 2.1 in terms of network size or power performance.

VLSI Analogue design approaches are typically used when designers are interested

in developing neural-like computation with reduced power consumption and low area

overheads. Frequently designers choose to exploit the similarities between transistor and

neuron characteristics, something first proposed by Carver Mead [110] and demonstrated

by Mahowald and Douglas [111] in 1991.

A more recent, and perhaps more elegant, design was offered by Farquhar et al. in

2005 [3]. This design exploited the sub-threshold properties of CMOS1 transistors to

recreate Hodgkin-Huxley neurons using only 6 transistors. This design is illustrated in

Figure 3.3. Unfortunately, they neglect to give any detailed design results in terms of

area or power performance of their design.

Similar approaches have been illustrated by multiple groups, including Wijekoon and

Dudek [112], Vogelstein et al [113], Hynda and Boahen [114] and Indiveri et al. [115].

A complete review and a description of the differing technologies is presented in [116].

1Complementary metal-oxide semiconductor
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Figure 3.3: Neuromorphic silicon neuron [3].

Unfortunately, despite the perceived benefits of utilizing neuromorphic technology the

realities of such systems are not as generous.

Firstly, a silicon neuron may only require 9pJ of energy per spike [112]. But, this neglects

the communication of spikes between different neurons. This communication is imprac-

tical in analogue techniques so a mixed-signal approach is required. Spikes produced by

the analogue neuron are packeted and transmitted over a digital communication infras-

tructure, commonly using the address-event representation protocol [113]. Vogelstein et

al [113] estimate that each synaptic event equates to 0.6nJ, a number which is likely

to rise with increasing network dimensions (43nJ in the SpiNNaker system analysed in

[109]).

Secondly, the design of an individual neuron requires only 10s of transistors, but, when

the supporting circuitry is included the area efficiency is not as beneficial. The most com-

plete silicon neuron circuit demonstrated to date [112] requires approximately 2800µm2

per neuron, as opposed to the estimated SpiNNaker neuron size of 1000µm2.

The area of analogue neurons is unlikely to reduce in size with decreasing technology

fabrication node sizes due to transistor mismatch and variation. To overcome these non-

deterministic parasitics transistor sizes are much larger than their digital equivalents.

Some neuromorphic designers claim that this variation can be utilized to represent noise

and errors within the biological circuits [113][116] but, this is yet to be demonstrated
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in practice. Neuroscience modellers would also request an element of control over the

noise and variation within their spiking neural network simulations which would be

unachievable using analogue methods.

Analogue neuron circuits require extensive experience to design and once manufactured

provide very little reconfigurability. If reconfigurability is included it will introduce area

and energy overheads, further negating the supposed benefits. Lack of reconfigurability

will limit the potential pool of neural systems that can be mimicked.

Further, neuromorphic systems are limited to the time-domain that is targeted at design-

time. For instance, the silicon neuron proposed by Wijekoon and Dudek [112] operates

1000 times quicker than biology. Similarly, the FACETS project [117][118] have de-

veloped a mixed-signal approach designed to also operate at 1000x. By operating at

faster than biological time they are able to reduce the capacitance sizes in their designs,

significantly improving the silicon area utilisation [117].

Alternatively, digital neurons have also been demonstrated [119][120][121], although per-

haps due to cost issues most are only implemented upon FPGAs [122][123][124][125].

Emery et al. described an optimized leaky integrate and fire design that uses only

700µm2 per neuron in 90nm, comparable to analogue design sizes. Whereas Seo et al

[120] used 2500µm2 in 45nm. Imam et al. [121] developed an Izhikevich digital model

in 65nm which consumed 30000µm2.

Digital neurons have a number of advantages over analogue versions, including:

• Digital neurons are highly flexible and configurable. Parameters to the neuron

can be efficiently stored in memory, which can be accessed and updated by a user.

Analogue neurons are either fixed at build-time or require complex configuration

circuitry [94]

• They can be operated in multiple time-domains. A single implementation could

be operated in accelerated mode or in real biological time [121].

• They show deterministic behaviour. The state of a digital neuron is predictable

and unlikely to be affected by anomalous variations within the physical circuit

[126].
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• Digital design is much quicker, easier and requires less experience in specific design

and manufacture processes [94].

Reconfigurable Digital Due to the rapid developments in reconfigurable digital cir-

cuit technology, such as field-programmable gate arrays (FPGA), and the fundamental

parallelism and flexibility they offer, reconfigurable circuits can provide the performance

to satisfy the increasing requirements of many neural models. Large networks of Izhike-

vich neural models have been illustrated by Thomas and Luk [123], Moore and Fox [125]

and Cassidy et al. [127] amongst others. Whereas, Mak et al. [124] and Weinstein et

al. [128] chose to implement small networks of biophysically accurate models for hybrid

bio-electronic applications.

The size and complexity of FPGA-based neural models have been limited by available

memory upon the FPGA [129][123]. Moore and Fox [125] utilize large off-chip memories,

but these require the design of dedicated architectures so that the available memory

bandwidth is fairly and efficiently allocated between processing nodes. Cassidy et al.

[127] also utilize external SRAM.

FPGAs offer a rapid prototyping environment, but their inherent reconfigurability limits

their performance in terms of area and energy. Most parties agree that without the

issue of financial cost a digital VLSI platform would be preferred to reduce both of these

factors [130][127].

Due to the agreed high energy consumption of FPGAs this factor is rarely reported in

FPGA-based neural model papers.

3.2 Design Considerations

In this section, some key design principles are extracted from the options highlighted

above and the impact of those principles are evaluated. All of the systems above are

capable of the fundamental processing of individual neurons, but when the scale and

complexity of the brain is considered memory and communication bottlenecks begin to

become a problem.
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3.2.1 Memory Requirements

Memory limitations are prevalent in all of the design options listed in section 3.1.1. A

typical simplified neuron, such as an Izhikevich neuron, requires 7 parameters, each at

a minimum 16-bit resolution [108] 2 in order to maintain system stability and accuracy.

This equates to 11.2Mb for 100,000 neurons. Assuming that each neuron is connected

to on average 1000 other neurons, each with a 32-bit identifier then a further 3.2Gb is

required to store the synaptic connectivity. Further, assuming that a mean neuron firing

rate is 10Hz and that each neuron model is updated every 1ms, using a simple estimation

the system will require a memory bandwidth of 43Gb/s. These memory requirements

impose significant strain on both area and energy resources.

3.2.2 Communication Requirements

Similar estimations can be made for the communication requirements. With 100,000

neurons firing at 10Hz, there will be 1M events per second and 1000M synaptic updates

required.

Most systems simplify the transmission of spike along an axon to a binary event. Nearly

all of the projects listed above use a variation of a scheme known as address-event

representation (AER). This allows for multiple virtual axons to be multiplexed across a

single silicon connection, taking advantage of the biology/silicon time inequality.

Within AER, when a neuron produces a spike, a packet is generated containing the neu-

ron’s identifier. This packet is transmitted to all required post-synaptic neurons using a

variety of interconnection protocols. For instance, SpiNNaker [4] connects multiple pro-

cessing cores in a torus topology and uses a multicasting packet-switching methodology

to route packets to the correct location. The EMBRACE [131] project uses a hierarchi-

cal arrangement of routers to take advantage of clustering of communication. Emery et

al. [119] utilize a hybrid approach, whereby a subset of connections are transmitted in a

unicast fashion over a mesh topology; the remaining connections are directly connected

in configurable blocks. Alternatively, the Neurocore chip [120] disregards a packet-based

approach and uses a crossbar matrix and a circuit switching methodology.

216-bit resolution was chosen as it was shown to provide a similar level of accuracy and stability as
a floating-point implementation. Reducing the resolution further may impact upon the result of the
calculations significantly.
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(a) 3 processors each implementing 6 neu-
rons

(b) 6 processors each implementing 3 neu-
rons

Figure 3.4: Illustration of varying granularity of a neural network platform. Each
variation computes 18 neurons.

Further information about interconnection protocols is provided in section 5.2.1.

3.2.3 Granularity

The communication of events between neurons requires multiple communication con-

trollers. Each communication controller is responsible for packetizing information from

a subset of neurons and transferring this information to other controllers throughout the

system.

Across all the projects listed previously the size of this subset of neurons allocated to each

controller varies significantly. For instance, within EMBRACE [132] a single controller

is used for 10 neurons. Whereas, for the Bluehive [130] project it is 16000 neurons.

This parameter can be defined as the granularity of a system, and is illustrated within

Figure 3.4. If a neural network has s neurons implemented upon m processing cores

then each processing core has a granularity of s/m = n.

Vainbrand and Ginosar [133] studied silicon implementation of neural networks from a

theoretical perspective, but left a study of granularity as future research. The issue of

granularity has only previously been analyzed by Cassidy et al. [127]. They developed

an analytical model to determine the optimal granularity of a neuron processor for two

different criteria, delay and area. They found that to optimize both speed and area each

processor should contain approximately 8000 neurons. Unfortunately, within their model
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Table 3.1: Summary of silicon neural model design approaches. For cost, size and
power, numerical rankings are provided, with 1 being the best and 7 being the worst.

Option Cost Size Power Real-time Neuron Number Implantable

PC 1 5 5 Limited 103 If using microprocessor 3

GPU 2 4 4 Limited 106 If using mobile GPU 4

Supercomputer 7 7 7 No 109 No

SpiNNaker 6 6 6 Yes 109 No

aVLSI 5 1 1 Yes 103 Yes

dVLSI 4 2 2 Yes 106 Yes

FPGA 3 3 3 Yes 106 Yes

they haven’t included consideration for the energy consumption, the communication

overheads, and the synaptic connections.

It is hypothesized that all three of these factors will have a more significant impact upon

the optimal design of a neural network platform. The issue of granularity is considered at

each stage of the design process within this thesis. For instance, Figure 4.23 shows how

the area and power change for a neuron processing core depends upon the granularity

and similarly Figure 6.11c shows the area and power variation for a complete neural-NoC

for a typical cortical column.

3.3 Summary

The different design options are outlined in Table 3.1. Software and GPU-based ap-

proaches are flexible and easy to implement but are not powerful enough to perform

the required operations in real-time. Supercomputer based approaches are obviously

not suited for closed-loop systems due to their size, energy inefficiency and timing con-

straints. Single chip VLSI and FPGA options can meet the performance requirements,

but they are costly and time-consuming to implement.

Analogue VLSI neuromorphic implementations are popular, but still require significant

digital circuitry to operate. FPGA options are flexible and cheap and easy to imple-

ment, but they are not as energy efficient as dVLSI and do not offer the same level

of performance. As such, a dVLSI approach should be preferred for closed-loop neural

network prosthesis. Although this area has been studied in detail previously there has

3Limits performance capability.
4See previous footnote.
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been very little research focusing upon single-chip implementations which are suitable

for long-term implantation for a neural prosthesis.



Chapter 4

Single Neuron Processing

“It has long been an axiom of mine that the little things are infinitely the most

important.”

A Case of Identity, Sherlock Holmes

Sir Arthur Conan Doyle

Neurons form the fundamental building block of the brain and they are often considered

equivalent to a logic gate within a digital circuit [75] as they receive inputs from multiple

sources and produce a single output. However, unlike logic gates the function to translate

the input to the output is often highly complex, not a simple binary operation.

A generic neural system is outlined within Figure 4.1. A neuron may receive multiple

inputs from other neurons within the network. These inputs are summated over time,

typically with a non-linear function and a time-decaying parameter. When the sum-

mated value crosses a threshold the neuron will produce an output signal of its own.

This signal will then be propagated to all other connected neurons within the network.

This network of neurons is capable of computing a certain neural function, in the same

way that a series of logic gates may be connected to calculate addition or multiplication.

For instance, within a pattern recongition function, the connections and individual com-

putation of neurons will be tuned such that depending upon a certain criteria of inputs

a set output pattern is produced.

42
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Figure 4.1: Generic neural system showing interaction between single neurons and
the complete network. (a) represents the synaptic inputs coming from a list of other
neurons. (b) represents the summation of these synaptic inputs over time; this is
typically a non-linear summation with a time-decaying parameter. (c) represents the
threshold that must be crossed for the neuron to produce an output “spike”. (d) shows

how multiple neurons may be interconnected to form a network.

In the same way that large circuits rely upon the logic gate, any large-scale implemen-

tation of a silicon neural network must begin with an efficient and effective design for

a single neuron. This design process is illustrated within this chapter. In the following

section the detailed structure of a neuron is described, including how action potentials

are generated biologically and how these can be replicated electronically. Simplified neu-

ron models that are commonly used are then described before the design methodology

is presented. This is followed by two case studies, where the efficient designs of neuron

models are illustrated.

4.1 Neuron Structures

The output of a neuron, which is generated within the soma (see Figure 4.2a), is known

as an action potential (AP) or a spike. This spike is propagated along the neuron’s axon

towards other neurons within its local network. It is this communication of spikes that

is thought to be the foundation of computation and the basis for all functionality within

developed brains.

The activation of a neuron is highly dependent upon the stimuli received from its in-

puts. Neurons receive inputs from branches known as dendrites, which are connected to

another neuron’s axon through a synapse. The morphology of these dendrites is often

complex and can sometimes involve 1000 connections [75]. This number of connections

is far greater than typical electronic circuits implement with point-to-point techniques.
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(a) (b) (c)

Figure 4.2: The structures of a neuron. (A) View of complete neuron structure,
including soma, dendrites and axon. [134] (B) Structure of a typical soma. (C) Repre-

sentation of a soma as a simple electronic circuit.

The spike itself is generated through a complex electro-chemical process, which was first

discovered and documented by Hodgkin and Huxley [135]. Their model has become the

foundation of many later cell models due to its highly accurate bio-physical detail.

The structure of the central part of the neuron is shown in Figure 4.2b. Alternatively,

you can represent this as a very simple electronic circuit as seen in Figure 4.2c. As

shown by Figure 4.2b, the central part of the neuron is enclosed by a semi-permeable

membrane. This membrane creates two separate concentrations of chemical ions, an

intracellular concentration and an extracellular concentration. Since the membrane is

an insulator which is surrounded by two conductors it can be thought of as a capacitor,

such as that shown in Figure 4.2c.

The chemical ions are able to diffuse through the membrane due to the presence of ion

channels consisting of many chemical gates. The diffusion of ions causes an electrical

current to be generated, as represented by the current source in Figure 4.2c. These gates

are able to open or close to control the conductance of the ion channel and therefore

control the amount of current. Hence, these gates are illustrated in Figure 4.2c as

resistors. When the system is in dynamic equilibrium, meaning the flow of currents

sums to zero, the system is at a resting voltage, as defined by the presence of the

batteries within Figure 4.2c.

The gates which allow for the chemical ions to flow are activated depending upon the

voltage across the cell membrane, in a similar way in which the conductance of a channel

in a transistor is controlled by the voltage on its gate. When an input causes the

voltage across the membrane to increase, the gates will either activate or deactivate,

causing a succession of currents to flow and further voltage changes, which produces
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Figure 4.3: The characteristic values of a Hodgkin-Huxley neuron.

the spike. This process is illustrated by Figure 4.3. In Figure 4.3(a) an input current is

generated, the voltage membrane is illustrated by Figure 4.3(b), the ion channel currents

by Figure 4.3(c), and the gate parameter values by Figure 4.3(d).

Hodgkin and Huxley defined this process mathematically in [135]. The required equa-

tions to model a complete neuron from a squid are illustrated in Table 4.1. By tuning

the parameters involved in these equations most neuron responses or behaviours can be

represented.

As can be seen the model is mathematically heavy and therefore computationally expen-

sive, typically requiring 1.2MFlops1 per neuron [136]. Therefore, often simpler neuron

models are used to increase performance. A comparison of the complexity of these neu-

ron models is provided in Figure 4.4. Two of the most popular simplified neuron models

are the leaky integrate and fire model (LI&F) and the Izhikevich model.

The leaky integrate and fire model requires only 5kFlops per neuron [136]. Within this

model all input currents are summed over time and when a threshold is reached a spike

is generated. The summation of currents contains a leakage element to remove long-term

memory from the system. Although the model is very simple to implement it is unable

to display all types of neural behaviour.

1Floating-point operations per second
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Table 4.1: The complete set of equations required to model a single Hodgkin-Huxley
neuron. To update the h, m and n the parameter update equations are used. All of the
parameters and variables are included in the neuron update equation, which updates

the overall voltage of the membrane of the neuron.

Hodgkin-Huxley Parameter Values:

Ion Gate Parameter, p α(V ) β(V )

Sodium m 2.5−0.1∗Vm
e2.5−0.1∗Vm−1

4e
−Vm
18

Sodium h 0.07e
−Vm
20

1
e3−0.1∗Vm+1

Potassium n 0.1−0.01∗Vm
e1−0.1∗Vm−1

0.125e
−Vm
80

Parameter Update Equations:

p∞ =
αp(Vm)

αp(Vm)+βp(Vm) τp = 1
αp(Vm)+βp(Vm)

dp
dt = 1

τp
(p∞ − p)

Neuron Update Equation:

C dVm
dt = I(t)− (gnam

3h(V − Ena) + gkn
4(V − Ek) + gl(V − El))

Figure 4.4: Comparison of neuron models illustrating their performance versus im-
plementation cost relationship [136].

In 2003, Izhikevich [137] developed a simple model of a neuron using bifurcation theory

that is able to reproduce all neural behaviours yet requires only 13kFlops [136]. The

model and its design is illustrated by Figure 4.5. It has been used within large-scale

network simulations [106] and is becoming increasingly popular due to its excellent

performance versus cost relationship.

In section 4.3 and later, the electronic designs of both a HH and an Izhikevich neuron are
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Figure 4.5: Izhikevich neuron model design. Electronic version of the figure and
reproduction permissions are freely available at www.izhikevich.com.

described and their performance/cost ratio compared against the predictions provided

by Figure 4.4.

4.2 Neural Encoding

As shown in the previous section, single neurons produce action potentials with a pattern

as defined by their morphology or type. But, the full computation of a neural network is

encoded within the communication of these patterns of spikes between neurons. As each

neuron type may produce spikes at different times or diferent rates depending upon its

input stimuli, it is important to model both the single neuron model and the complete

network.

There is significant debate about how the encoding operates.

Historically rate-based coding has been the most popular technique. This coding scheme

relates the number of spikes in a certain time interval to the result of the computation.

However, rate-based coding involves counting events over a period of time, which in a

lot of scenarios is not feasible. For example, in reflex motions the body needs to react

to sensory stimulus in the scale of milliseconds. Therefore, temporal-based coding has
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Figure 4.6: Differenece in neural encoding techniques.

become popular. This scheme proposes that the precise timing of spikes as well as the

number of spikes may encode information.

For instance, the time to first spike hypothesis suggests that information may be encoded

in the latency of a spike after the onset of a stimulus. Similarly, in correlation encoding

the information may be represented as the time different between two spikes.

Figure 4.6 briefly illustrates the differences between rate- and temporal- based encoding.

The choice of encoding will impact the parameter selection for a neuron model.

4.3 Methodology

Digital silicon neurons rely upon implementing a set of defined differential equations

using arithmetic hardware. These equations may be implemented using software and a

microprocessor, such as within SpiNNaker [108], but this introduces area, energy and

performance overheads. By using a specific architecture and defined datapath the mathe-

matical operations can be streamlined to reduce these overheads. This approach has been

adopted by multiple groups, utilizing both FPGA and ASIC devices [122][138][130][119].

The high-speed operation of silicon circuits in comparison to biology allow for multiple

virtual neurons to be multiplexed across a single processing core datapath. Each neuron

is then allocated a specific time frame for its operation through the datapath. A neuron’s

parameters are stored in memory whilst other virtual neurons are being updated. This

design concept is illustrated in Figure 4.7(a).

The number of virtual neurons allocated to a single processing core will impact the area,

energy, latency and throughput of the system [127]. This parameter has been defined

as the system granularity previously in section 3.2.3 and will be referred to as n.
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Figure 4.7: Digital neuron design. (a) Processing core may implement n virtual
neurons through a time-multiplexing approach. (b) Maximum resource design. As
many functional units as possible are utilized to reduce latency and provide maximum
throughput. (c) Minimum resource design. Virtual neurons are updated sequentially,
increasing system latency and reducing throughput, but utilizing less area resources.

The datapath structure consists of a combination of arithmetic logic units and memory

elements. Each neural equation may be implemented using a variety of structures de-

pending upon the design specification. For instance, if a high throughput is required

with little concern for area and energy consumption then a maximum resource approach,

such as illustrated by Figure 4.7(b), should be used [124]. Alternatively, to reduce area

and energy consumption the datapath could be constrained to use a minimum number

of resources (see Figure 4.7(c)). Next, the impact of the datapath structure and the

granularity upon the system requirements is considered.

4.3.1 Implementation Parameters

Area As defined by Cassidy et al. [127] the area consumption of a neuron processing

core is dependent upon the area of the datapath and the area of the parameter memory

(4.1).

Areatotal = Areadatapath +Areamemory (4.1)

With increasing granularity n the area of the datapath will remain fixed, whilst the area

of the memory will increase linearly. Therefore, the area per neuron will asymptotically
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reduce to the memory area consumed by an individual virtual neuron’s parameters. As

such, to reduce the area overhead a large granularity should be utilized.

Further, the analysis of Cassidy et al. [127] can be extended to include an optimization

function for the datapath structure. By utilizing a maximum resource approach the

datapath can be fully pipelined, increasing the throughput and the amount of virtual

neurons per processing core. Whereas, a minimum resource approach may reduce dat-

apath size, but limit the number of virtual neurons, thereby, requiring more processing

cores to be implemented for a given network size. This leads to the following relationship

(4.2)

TotalArea = ProcessingCoreArea ∗ NetworkSize
n

(4.2)

Equation (4.2) states that the total area consumed is the size of a processing core

multiplied by the number of processing cores that are required to compute the function.

Area of the datapath may be estimated by calculating the total number of arithmetic

units required. Area of the memory units may be estimated by calculating the number

of bits required to represent a neuron’s parameters.

Energy Energy dissipation is a combination of static and dynamic power [139].

Static power relates to parasitic leakage currents within transistors. Its impact can

therefore be reduced by reducing the overall number of transistors in a circuit. Alterna-

tively, power gate techniques can be used to fully disable transistors when they are not

required.

Dynamic power is the power required to switch the gates in a circuit between voltage

levels at a set frequency. Its relationship is shown in (4.3), where P is the dynamic

power, C is the gate capacitance, V is the voltage of the transistor and f is the average

switching frequency.

P = CV 2fα (4.3)
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Reducing the frequency of operation of the circuit will lead to power reduction. Also, a

lower frequency allows for a lower voltage, which has a quadratic effect upon the dynamic

power consumption.

Lowering the operating frequency will limit the number of virtual neurons per processing

core. Therefore to reach a certain network size more processing cores will be required.

This will increase the static power consumption.

A maximum resource datapath may utilize a slower operating frequency due to its higher

throughput, reducing the dynamic power consumption. However, the increased number

of transistors required will contribute towards increased static power consumption.

Finding the optimal energy performance will rely upon locating a sweet-spot in the

relationship between static and dynamic power per neuron. This is illustrated later in

the thesis by Figure 4.22, where the static and dynamic power performance of a neuron

processing core are shown as the granularity of that processing core is varied.

Latency Latency is the time required to update a single virtual neuron. A maximum

resource approach will provide a theoretical lower bound upon the latency.

To ensure working in real biological time the number of virtual neurons per neuron pro-

cessing core should be constrained such that the total time to update all virtual neurons

does not exceed the differential equation time step period. Equally, the simulation can

be accelerated by reducing the latency.

Throughput Throughput is the rate at which virtual neurons are updated. A max-

imum resource approach will offer an upper bound on throughput of 1 virtual neuron

updated per clock cycle if all operations can be pipelined. Reducing available resources

will reduce throughput significantly, especially if the datapath is no longer pipelined.

The global throughput can be increased by including more neuron processing cores.

In the following sections the optimization of two different neural models is considered:

a Hodgkin-Huxley model with a focus upon closed-loop in vitro experiments, and an

Izhikevich model suitable for large-scale network simulations.
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4.4 Case Study 1. Hodgkin-Huxley for Dynamic Clamp

The application of dynamic clamping involves the connection of virtual neuron models

to biological cells in vitro [140], forming a hybrid bio-electronic network. This allows for

the functionality and behaviour of neurons to be investigated, controlled and analysed.

This application is therefore of great interest to those studying the brain and significant

effort is expended on the development of the electronic systems involved.

The software solutions demonstrated by Kispersky et al. [141] and Nowotny et al. [142]

are flexible and easy to use, however, as has been previously highlighted section 3.1.1,

software modelling neurons is not the most efficient, powerful or optimal solution.

Previously, FPGA-based designs have been utilized for dynamic clamping. For instance,

in 2004 a Georgia Institute of Technology team described the simulation of conductance

based models using a Xilinx Virtex 2 FPGA [143]. This work was extended in 2006 [128]

and 2007 [144], whereby a methodology was illustrated that would allow for FPGAs to be

used by the wider neuroscience dynamic clamping community. In an attempt to compete

with the popular software-based solutions this design was then commercialized.

For complex and large-scale experiments neuroscientists may wish to model the spe-

cific and detailed morphology of multiple neurons and multiple neuronal compartments.

From this perspective the designs offered by Lee et al. at Georgia have suffered due to

their poor scalability, which limits their potential for simulating complex neural models.

The results of the non-linear functions involved in the Hodgkin-Huxley model, described

in Table 4.1, where stored in pre-determined lookup-tables (LUT). Although this al-

lowed for quick and efficient access, it means that when the neural model involves a

varied selection of neuron structures the design size grows rapidly.

An alternative approach was implemented by Mak et al. in 2006 [124]. This involved

implementing the non-linear functions programmatically, allowing for the wide range of

neuron structures that is often required in large-scale simulations. However, since this

design utilized an iterative approach to the calculation, the throughput, and therefore

number of neurons that could be implemented was reduced.
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The same problem inhibits the performance of the approach offered by Zhang et al. [145].

Within this design a CORDIC [146] function is used for the non-linear functions, result-

ing in a latency of 170 cycles. Interestingly, Zhang et al. have utilized a floating-point

architecture, whereas all other implementations have chosen to use fixed-pint arithmetic.

Luo and Mak et al. [138] demonstrated a complete bio-FPGA system, involving a Xilinx

Virtex 5 FPGA connected to dissected nerve cells from the stomach of a crab. This

model used a simplified version of the HH neuron, the Hindmarsh-Rose model [147].

The following sections provide details of an implementation designed to extend upon

this work by integrating bio-physically realistic Hodgkin-Huxley neurons into the bio-

FPGA system. In order to allow for this, it is imperative that an efficient and scalable

FPGA-based design, which allows for programmable neuronal simulations, is used. This

requires a system with the latency offered by [144] but with the flexibility of [124]. The

conceptual analysis leading to the determination of the optimal design parameters is

illustrated, followed by the design of the complete neuronal simulation IP block that

can be incorporated into a wider system.

4.4.1 Parameter Investigation

The implementation of a Hodgkin-Huxley neuron requires equation (4.4) to be imple-

mented, along with parameters and equations from Table 4.1.

C
dV

dt
= I(t)− (gnam

3h(V − Ena) + gkn
4(V − Ek) + gl(V − El)) (4.4)

For dynamic clamping the objective is in maximizing the number of neurons that can

be implemented in real biological time using a single FPGA device. As mentioned in

the previous section this is dependent upon the area occupied by each neuron and the

throughput of each datapath. By selecting the correct datapath design the area overhead

can be minimized and a suitable throughput of data provided.

To determine the correct datapath design an area-delay model was developed for each

arithmetic component, based around a Xilinx FPGA implementation. Multiplication,
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Table 4.2: Area and Delay costs for different arithmetic components implemented
upon a Xilinx FPGA. Number of operations required of each type for a single Hodgkin-

Huxley Neuron.

Arithmetic Unit Delay Cost Area Cost Operations Required

Multiplication 3 1 23

Addition 1 1 13

Subtraction 1 1 17

Division 8 8 15

Exponential 8 8 6

addition and subtraction can all be implemented upon the pre-configured DSP compo-

nents of a Xilinx FPGA. As such, this is used as a base component for area consumption.

A state-of-the art Xilinx Virtex-7 FPGA contains 3600 DSP components [148].

Addition and subtraction typically require a single clock cycle to compute, whereas a

multiplication requires 3 cycles.

Unfortunately, exponential and division operations require extra circuitry. It is esti-

mated that each exponential and division block will require the equivalent of 8 DSP

components and have a latency of 8 cycles (see section 4.4.2.1 for derivation).

This information is summarized in Table 4.2, along with the operation count of a typical

HH neuron. This information can be used to determine the area/delay cost for three

different implementations, and from this figure create a relative estimate of the number

of neurons that can be implemented upon a single FPGA. This information is supplied

in Table 4.3.

Approach A: Maximum Resource An individual arithmetic unit is instantiated

for each operation. Requiring a total of 221 DSP units. The critical path is 36 clock

cycles with a throughput of 1 neuron per clock cycle. Assuming a clock frequency of

100MHz this equates to a latency of 360ns, and in a biological time-step of 100us, 10,000

virtual neurons can be updated per processing core. Each FPGA may contain 16 neuron

processing cores for a total of 160,000 computational neurons.
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Table 4.3: Comparison of three different datapath structures for implementing a
Hodgkin-Huxley neuron model.

Approach Area (Units) Latency (Cycles) Throughput
(Neurons /
Cycle)

n, Virtual
Neurons /
Processing
Core

No. Pro-
cessing
Cores

Total Neu-
rons

A 221 36 1 10,000 16 160,000

B 19 120 0.01 83 189 15,000

C 43 38 0.33 3,333 84 280,000

Approach B: Minimum Resource In the minimum resource approach it is assumed

that only one of each arithmetic component is instantiated. The critical path can be

estimated by the longest delay through a single arithmetic unit. In this case, 15 division

operations are required with a latency of 8 clock cycles, giving a total latency of 120

cycles. Since only one neuron may be updated within each frame the throughput is 1/120

neurons per cycle and therefore only 83 virtual neurons can be implemented. The total

area consumption is 19 DSP units, allowing for 189 neuron processing cores per FPGA.

With 83 virtual neurons per core this equates to approximately 15,000 computational

neurons in total.

Approach C: Compressed The calculation of the Hodgkin-Huxley neuron can be

compressed into the three identical sub-calculations (see section 4.4.2 for further details).

As such, this sub-calculation can be implemented in a maximum resource approach

and then three consecutive updates can be combined into a single neuron response.

Using this technique the resources are significantly reduced to only 43 DSP units, whilst

maintaining a relatively high throughput of 0.33 neurons per cycle. As such, 280,000

neurons can be implemented per FPGA.

4.4.2 Design

Clearly, the most efficient implementation option is approach C and a detailed descrip-

tion of this design is provided here. The design was implemented using Xilinx System

Generator, commonly used by many FPGA-based neural models [124][128][138]. This
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design tool is an extension to the Simulink platform and allows for rapid prototyping

and an efficient design structure.

The primary Hodgkin-Huxley equation (4.4) can be simplified to Equation 4.5.

C
dV

dt
= I(t)− (INa + Ik + Il) (4.5)

where I(t), INa, Ik, Il are the injected, sodium channel, potassium channel and leakage

currents respectively. The ion channel currents can in turn be calculated using (4.6).

Although this appears simple, the pn(Vm) components are non-linear time varying rate

functions as illustrated in Table 4.1. It is the calculation of pn(Vm) that is the most

computationally expensive, and that has previously been enumerated into LUTs [144].

However, as mentioned LUTs do not scale effectively in terms of neural model complexity

or in terms of precision. As such, it is beneficial to calculate these values on-the-fly.

Ic(t) = gc ∗ pn1(Vm)k1 ∗ pn2(Vm)k2 ∗ (Vm − Ec) (4.6)

At each time step the values of pn(Vm) should be updated according to (4.7), which is

a simplified version of that listed in Table 4.1. The α and β functions depend upon the

gate type that is implemented and takes the form of either a sigmoid function or bell

curve, as illustrated in equations (4.8) and (4.9). Different gate types, such as sodium

or potassium, require different constants, p1-p7.

dp

dt
= αp(Vm)(1− p)− βp(Vm)p (4.7)

αx(V ) =
p1 − p2 ∗ V
ep3−p4∗V − p5

(4.8)

βx(V ) = p6e
p7∗Vm (4.9)

The architecture for computing pn(Vm) forms the main datapath and is illustrated in

Figure 4.8a. This gate updater datapath is integrated within the complete system as
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(a)

(b)

Figure 4.8: Hodgkin-Huxley FPGA-based implementation overview. (a) Gate up-
dater arithmetic datapath. (b) Complete system.

illustrated in Figure 4.8b. The constants p1-p7 are delivered to the gate updater from the

gate types ROM. For each gate within the complete system a separate list of variables

is held within the Gate Parameters RAM. On each clock cycle a different set of gate

variables, along with its associated gate type constants, is fed into the gate updater

datapath.

The parameter p8 in Figure 4.8a controls a switch between an activating or inactivating

ion gate. These two opposing gate types are illustrated within the sodium ion channel

equations in Table 4.1.

Following the updating of the gate values, multiple gates are combined in the Channel

Updater datapath, and then multiple ion channels are combined in the Neuron Updater

datapath. A typical HH neuron contains three gate types, m, n, h, and two ion channels,

Sodium and Potassium. As such, each complete neuron is updated every three clock

cycles.

The dx
dt operations are performed using a simple Euler integration technique with a

timestep of 25µs. This timestep value was found to reduce the error in the calculations
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by Bettencourt et al. [99].

By defining a list of gates and their associated neuron connections, it is possible to

programmatically produce neuron models to be simulated using this dedicated hard-

ware architecture. For large-scale simulations there may be a requirement to develop

a compiler that is capable of mapping defined neural topologies to the correct memory

locations.

4.4.2.1 Arithmetic Units

The exponential and division operations are a key component of a Hodgkin-Huxley-style

neuron. There currently exists no fixed-point exponential or division function blocks

within the System Generator library and previously it was thought the implementation

of such a block would be too costly in terms of area and speed [143]. However, with the

increase in resource availability on modern FPGAs and with the development of new

algorithms this is no longer the case [149].

For the purposes of this application only an approximation of both the exponential and

division operations are required. This is due to the approximation already introduced

by fixed-point architecture.

It is imperative that the calculations of both complex functions are able to be fully

pipelined and have a low latency to conform with the chosen design methodology. For

these reasons a system of lookup tables (LUTs) was chosen to be the most suitable imple-

mentation. These LUTs were able to be reduced in size through the use of interpolation

and judicious selection of input range, output precision and memory arrangement.

For example, the exponential function uses a system of three LUTs. The first LUT stores

the result of the exponential function at regular intervals and a second LUT stores the

gradients between these intervals. The result can then be computed using interpolation

by combining the output of the two LUTs. However, this method has a tendency to

overestimate the result because of the linearisation of gradients between intervals. It was

observed that this error can be compensated for by adjusting the gradient by a ratio

which depends upon the distance of the point to be calculated from the index value

in the first LUT. Since the ratio values are constant throughout all the intervals it is

possible to store these ratios within a third LUT.
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Figure 4.9: f

Illustration of the gradient error fix technique for implementing fixed-point exponential
function. The values of f , j and g are pre-stored in LUTs.

This approach is expressed in (4.10), where the values fn, jn, and gm are those that

are stored within LUTs, n and m are indices to the LUTs, in is the value stored within

the LUT that is nearest to the original input value, that is represented as x, y is the

calculated result. This design is illustrated by Figure 4.9.

y = fn + jngm(x− in) (4.10)

Table 4.4 shows a comparison between this technique, a pure LUT-based option and the

optimized design presented by [149].

The GEF approach using LUTs was used in this design because:

• it uses a comparable number of resources as [149]

• it offers the reduced latency of the implementation, offering a higher throughput

of neurons

• it conforms to the fixed-point design, whereas [149] uses floating-point

• the error introduced is negligible

• it conforms to the design tool approach used, that being Xilinx System Generator

4.4.3 Results

Initial simulations suggested a 28-bit signed fixed-point system with a 14-bit fraction

provided a sufficient level of resolution and range for most operations, although, the
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Table 4.4: Comparison of methods for implementing exponential function.

Our Design LUT [150]

Format 28-bit Fixed Point 32-bit Floating Point

Arithmetic 2 Mult, 2 Add 0 1 Mult, 3 Add

Memory 16kbits 15Mbits 18kbits

Latency 8 Clocks 1 Clock 15 Clocks

design requires minimal rework to alter the number system used. Previously, Graas et

al. have used a 32-bit fixed point value [143]. Within a dynamic clamping application

the resolution of the input/output is constrained to between 12-16 bits depending upon

the ADC/DAC used [138][151][152].

4.4.3.1 Synthesis Results

The design was synthesized for a Xilinx Virtex7 FPGA using the System Generator [153]

and Design Suite [154] software tools provided by Xilinx. The key synthesis results are

provided within Table 4.5. It can be seen that despite the addition of what was previ-

ously thought of as complex functionality, namely fixed-point exponential and division

operations, the design uses minimal resources. After placing and routing the maximum

clock frequency of the system was determined to be 240MHz.

Table 4.5 also provides estimated synthesis results for a LUT-based design, in the style of

[144], with the same capabilities of the programmable design described in section 4.4.2.

It can be seen that in order to simulate an equal number of neuron types the memory

usage is significantly larger than the programmable approach. If a neural model was to

include such a wide range of channel types the LUT-based approach would be severely

limited in its capabilities, in fact the resources of even a modern FPGA may become

exhausted.

Also shown in Table 4.5 are results from [124] where a similar design was implemented.

The iterative nature of this design breaks the pipeline and has a significant affect upon

the latency of the calculation, thus reducing the overall throughput that would be achiev-

able on a modern FPGA.



Chapter 4. Neural Processing 61

Table 4.5: Resource usage comparison for different design approaches. The figures
for the LUT-based approach are extrapolated from smaller models.

Resource Prog. LUT [124]

Device Virtex7 Virtex7 Virtex2

Slices 836 1200 2800

BRAM 11 2000 1

DSP48E1s 66 24 -

Clock Speed 240MHz 240MHz 68MHz

Latency (Clock Cycles) 40 10 73

Pipelined Yes Yes No
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Figure 4.10: FPGA-based neuronal dynamics. (a) Simulated ion channel results (top)
and gate variables (Bottom). (b) Action potential produced by FPGA-design.

4.4.3.2 FPGA-based Neuronal Dynamics

Figure 4.10 illustrates the intermediate values of the Hodgkin-Huxley equations along

with the final output voltage of the neuron from a simulation of the completed design. A

simulated voltage from a spiking neuron was fed into the ion channel simulator and the

gating values and their associated currents were calculated. The ion channel currents

are then combined to produce the membrane voltage response of the neuron.

Figure 4.11 shows the results from an experiment to investigate the impact of translating

the Hodgkin-Huxley equations from a high-precision software-based platform to a fixed-

point hardware implementation using low accuracy Euler integration techniques. In this

figure, the x-axis shows the injected current into the simulated neuron, for each value of

injected current the spike frequency, commonly thought to be a key measure of neural

activity was recorded; this is plotted on the y-axis. It can be seen that the hardware and
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Figure 4.11: Spike frequency against current injection.
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Figure 4.12: Comparison of error against the total size of LUTs used by three different
methods to calculate the exponential function.

software variations broadly coincide, indicating an acceptable level of accuracy within

the system. This analysis approach has previously been utilized within [108][155][156].

4.4.3.3 Exponential Unit Optimization

The improvement in the accuracy of the exponential function by using the GEF method

is highlighted by Figure 4.12. It can be seen that by using GEF the error can be reduced

to the same order of magnitude as the 28-bit quantisation error by using just 1024 words

of memory.

4.4.4 Dynamic Clamp

The work illustrated in section 4.4.4 was completed by Jun Wen Luo, it is

included here to illustrate the concept of an FPGA-based dynamic clamp
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(a) (b)

Figure 4.13: Example FPGA-based dynamic clamp (a) experimental configuration
as shown in [138], (b) experimental results taken by project colleague Junwen Luo

and the associated results which were obtained.

As mentioned at the start of this section, a dynamic clamp involves the connection of

virtual neuron models to biological cells in vitro, forming a hybrid bio-electronic network

with the intention of studying neuron behaviour at a cell and circuit level [157].

This virtual neuron can be implemented upon an FPGA, as highlighted in [138] and

shown in Figure 4.13. In this experiment cells taken from a crab are connected to

an FPGA using a single electrode. This electrode is used to monitor the voltage of the

neuron, the voltage is then input into the real-time neuronal model, such as the Hodgkin-

Huxley model described here. The model calculates an output current which is fed

back to the neuron using the electrode. A sample response showing the synchronisation

between the real biological cell and the model cell on the FPGA is shown in Figure 4.13b

4.4.5 Discussion

The introduction of this design into a dynamic clamp application allows for greater

scalability and for more complex models to be connected to the in-vitro neurons than

current options allow and without the added inherent architectural flaws of software-

based approaches such as high latency and jitter.

The importance of scalability when designing neuromorphic hardware is rapidly increas-

ing due to the recent advancements in neural model complexity. The programmable

approach described in this thesis can be compared in terms of scalability against the

previously popular LUT-based method utilized by the Georgia Tech group as mentioned

on page 52.
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Figure 4.14: FPGA-based Hodgkin-Huxley model design scalability. (a) Scalability
of memory usage for increasing model complexity. (b) Scalability of resource usage with

increasing model accuracy.

As shown by Figure 4.14a using a programmable approach offers significant rewards when

the model complexity grows, due to the quadratic rises in memory requirements of the

LUTs in an approach similar to [128]. For each new type of gating variable introduced

into the neural model the LUT-based approach requires a new block of memory to store

the gating variable values. This increases the size of the channels simulator and therefore

reduces the amount of times the simulator can be replicated across the whole FPGA,

dramatically impacting upon the number of neuron model types that can be simulated.

However, a programmable approach is capable of calculating the values dynamically and

hence there is no growth in resource usages as the number of gating variables or neuron

model types grows.

Although the number system selected for this design gave adequate precision, it is easily

configurable to add extra resolution if required. For example, due to the large number

of ion channels that can be simulated the design could be utilized for simulations of de-

tailed models of multi-compartmental neurons [143], for which extra resolution could be

beneficial. Figure 4.14b shows how the resource usage of the two contrasting approaches

to neuron simulation scale with increasing resolution. In this figure all memory and

DSP elements have been translated into slices. Using a pure LUT-based approach to

reduce the error in the model by half the size of the LUTs must be doubled and this has

a dramatic effect upon the overall number of slices. Whereas to reduce the error in a

programmable approach the wordlength of the arithmetic calculations can be increased.

Increasing the wordlength has less impact upon area as opposed to doubling the size of
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the LUTs.

The design offered by [124] would scale in terms of area similarly to the approach offered

here. However, the design in [124] used an iterative approach to calculate the result of

the exponential function. This iterative approach requires an extra clock cycle for every

additional bit of precision which is required. Therefore, increasing the resolution to

achieve greater precision would have a detrimental impact upon the overall latency of

the system.

4.5 Case Study 2. Izhikevich

Due to the complexity of the Hodgkin-Huxley equations some large-scale simulation

projects have chosen to simplify the neural model, with the Izhikevich model the most

popular variant [137]. This model has been implemented upon the SpiNNaker system

[108], the BlueHive platform [130] and the 1 million neuron model illustrated in [106].

4.5.1 Previous Work

Jin et al. [108] described the process of translating the Izhikevich model from floating-

point to fixed-point arithmetic. The fixed-point model was then implemented upon a

low-power ARM processor. They looked to take advantage of this architecture by utiliz-

ing the available arithmetic operations, specifically a multiple and accumulate operation

that could complete in a single cycle. They also introduced a common simplification

that assumed that the time update period was 1ms, simplifying the integration of the

equations. Specifically it removes a multiplication from the Euler integration.

Jin et al. [108] translated the equations in Figure 4.5 into the form of (4.11) and (4.12).

v = v(0.04v + 6) + 140 + I − u (4.11)

u = −au+ u+ abv (4.12)
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If the membrane voltage v exceeds a threshold a spike is produced and the values v and

u are reset according to (4.13) and (4.14).

v = c (4.13)

u = u+ d (4.14)

The developed fixed-point model was extended by Fox et al. [130] onto an FPGA

and a similar design was utilized by Imam et al. [121] in their asynchronous CMOS

implementation.

Fox et al. [130] suggested using a large granularity with the processor operating in real

biological time. The neuron parameters were stored in off-chip memory [130].

Imam et al. [121] suggested that storing parameters off-chip introduced significant mem-

ory bandwidth limitations, and as such, used local memory. They however, considered

using a granularity of only 1 and only operating the design in quicker than real-time

mode. They therefore did not consider the impact of storing additional neuron param-

eters.

Cassidy et al. [122] did consider storing of neuron parameters on-chip, but their devel-

opment of an optimal granularity considers mainly FPGA-based design and considers

only area consumption.

4.5.2 Design

The Cassidy model is extended here to include consideration of energy consumption,

in order to provide a detailed comparison of a dedicated digital Izhikevich model, with

equivalent microprocessor and analogue implementations.

For the optimal implementation two further simplifications are added to the equations

developed by Jin et al. [108]. Firstly, the area overhead can be limited by reducing

the number of arithmetic operation types. For instance, by calculating the value of

negative u in (4.12) the subtraction operation can be removed from (4.11). This forms

the following alternate equations:
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v = v(0.04v + 6) + 140 + I + (−u) (4.15)

(−u) = (−u)(−a+ 1) + (−ab)v (4.16)

The values of −a and −ab are neuron parameters and can be stored in memory and

(−u) is always used in its negative form, this negates the need for a subtraction unit.

Secondly, previous implementations have stored all of the required parameters as 16-bit

values within the parameter memory [130]. The parameters a, b, c, and d (defined in

Figure 4.5) alter the function of the neuron model, for instance, from a regular spiking

neuron to a thalamo-cortical neuron. Therefore, for the 4 parameters and the 2 variables

a total of 96-bits of memory is required per neuron. In fact, Ambroise et al. [158]

store 9 parameters each at 18-bit resolution. However, as illustrated in Figure 4.5 each

parameter may take up to 4 possible values. Despite this limit all known spiking types

can be illustrated.

Therefore, only a 2-bit pointer is required to define which value each should take. This 2-

bit pointer can then be used to index a small LUT containing the 4 correct 16-bit values

for each parameter. This method reduces the required memory per neuron from 96-bits

to only 40-bits. This is illustrated by Figure 4.15 whereby the total memory required

for 8 neurons is reduced from 768-bits to 576-bits. This improvement will increase with

a greater number of neurons.

Similarly to the previous case study, for large-scale system modelling minimizing the

area consumed by the arithmetic datapath required to complete the neuronal equations

is a primary objective. Also, as mentioned previously, there are two primary options for

implementing the datapath, minimum and maximum resources.

Interestingly two recent approaches to designing digital Izhikevich neuronal datapaths

have chosen different approaches. Cassidy et al. [122] utilized a maximum resource

system whereas Imam et al. [121] used only single arithmetic units.

A design estimation comparing the two approaches is illustrated in Table 4.6. For this

case study a VLSI system is targeted and as such the area delay costs are updated from

what was previously shown in Table 4.2. The base unit for comparison now becomes a
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Figure 4.15: Simplification of Izhikevich neuron memory structure. On the left,
the traditional method involving 96-bits per neuron. On the right, the simplification

suggested here involving only 40-bits per neuron.

Table 4.6: Area/Throughput estimation comparison between maximum resource and
minimum resource approach for Izhikevich neuron arithmetic datapath.

Maximum Resource Minimum Resource

Design Unit Cost per Unit Number Total Cost Number Total Cost

16-bit Reg. 1 17 17 8 8

32-bit Reg. 2 14 28 4 8

Mult (16-bit) 18 4 72 1 18

Addition (16-bit) 4 6 24 1 4

Total Cost 141 38

Throughput (Relative) 1.00 0.10

Equivalent Throughput (Relative) 1.00 0.37

Latency (Clock cycles) 5 10

16-bit data register. Using the Synopsys Design Vision synthesis tools it is estimated

that a 16-bit multiplication unit is 18 times larger than a 16-bit data register, and a

32-bit addition unit is 4 times larger.

As Table 4.6 shows, the maximum resource approach is approximately 3.7x larger than

the minimum resource approach. However, its throughput is 10x greater. If both designs

are normalized to utilize the same area resources, a maximum resource approach has an

equivalent throughput 2.7x greater.

For efficient large-scale simulation or low-power neuroprosthetic implementation another

primary objective is minimizing the energy consumption for the design. To implement

the same number of neurons the minimum resource approach requires approximately
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2.7x more transistors than the maximum resource approach. Therefore, its static and

dynamic power will be approximately 2.7x larger2. Alternatively, the minimum resource

approach could be clocked 10x faster to achieve the same throughput as the maximum

resource approach. This will have the effect of increasing the dynamic power by 10 but

reducing the static power consumption by 3.7. To verify the area model and provide

comparative analysis of the energy consumption for each approach the design of both

options is detailed in the following section.

Both of the following designs were implemented using VHDL and the Xilinx ISE software

package. All variables are stored using 16-bits. The multiplication units received 16-bit

inputs and produced a 32-bit result, whilst the addition units used 32-bit inputs and

gave a 32-bit result.

4.5.2.1 Maximum Resource Approach

In a maximum resource approach as many arithmetic units are used as required. The

objective is to minimize the critical path in order to reduce the latency of the computa-

tions. The design of a maximum resource Izhikevich neuron is illustrated in Figure 4.16.

Each arithmetic operation has a latency of 1 clock cycle, therefore the critical path is

4 clock cycles. Added to this is a single clock cycle at the end of the critical path

to determine whether the membrane voltage requires resetting after a spike has been

produced.

As well as making significant use of arithmetic units the maximum resource approach

requires a significant number of data registers. This is due to the requirement to stall

input data until it is required by the datapath. For instance, two sequential single cycle

16-bit registers are required to stall the value of parameter d before it can be used in a

calculation.

The operations are scheduled to reduce the overall number of registers used. For exam-

ple, the addition of I and −u is perfomed as soon as possible to remove the requirement

to store these variables in internal registers.

Due to the pipeline nature of the maximum resource approach a low clock frequency

can be utilized. For example, for a granularity of 8, 5 cycles are required to calculate

2Assuming that the switching loads remains similar in both designs.
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Figure 4.16: Maximum resource based approach of Izhikevich neuron model.

the first neuron, and then on each successive cycle another neuron is updated. So only

12 cycles are required in total.

The datapath may be combined with a dual-port memory to allow for continuous opera-

tion. In this mode a neuron’s parameters are read at the same time as a previous neuron’s

parameters that have just been updated are wrote into the memory. Alternatively, a

single-port memory can be used with an interleaving of read and write operations. This

may reduce the throughput of the datapath by 2.

4.5.2.2 Minimum Resource Approach

For the minimum resource approach a single addition and multiplication unit is used.

Each neuron is allocated a set time frame for its computation. The total latency of the

design is a multiple of this time frame. For example, if the time frame is 10 cycles long

and there are 10 neurons then a total of 100 cycles are required. Therefore, to reduce

the latency and provide the highest throughput possible the time frame duration must

be minimized. To achieve this it is important to allocate and schedule the operations

upon the arithmetic units in the optimal manner.

For this optimization a list scheduling algorithm was used with a data dependency

based priority scheme. A left-edge algorithm was used to reduce the number of required
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Figure 4.17: Data flow graph and functional unit allocation for the Izhikevich neuron
model. The indices in the data flow graph relate to the value in the functional unit

allocation.

registers. The allocation of operations to functional units is illustrated by Figure 4.17.

Within this implementation each arithmetic operation requires a single cycle to complete.

4.5.2.3 Datapath Controller

Each of the datapaths, both maximum- and minimum- resource approaches described

above, require an interface unit to provide the required data at the appropriate time.

This interface is known as the datapath controller. The operation of this unit is similar

for both approaches.

The datapath controller is responsible for feeding the data into the datapath and retriev-

ing the result. It must interface with the memory which stores the neuron’s parameters.

The interface connections are illustrated in Figure 4.18.

The datapath controller has an internal clock and 2 counters incremented on each clock

cycle. These counters are used as pointers to locations within the memory. At each

memory location the associated parameters of a single neuron are stored. These param-

eters are retrieved in the correct clock period, before they are passed to the datapath.

Once the datapath has completed the calculation upon these parameters the updated

values are placed back into memory at the original location.
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Figure 4.18: Interface connections between modules. The datapath controller fetches
instructions and parameters from memory and feeds the datapath at the correct time.

The memory contains all the parameters for all the neuron that are implemented upon

the processing core; i.e. each processing core has its own local memory and no global

memory accesses are required. Within each 1ms time period the value of each neuron

is updated by the datapath. Any neurons that have produced an output greater than a

set threshold will produce an action potential.

4.5.3 Results

Both designs were fully implemented and tested on a Xilinx Virtex-7 VC707 Evaluation

Board containing a Virtex-7 xc7vc485t FPGA. To illustrate the neuronal dynamics the

FPGA was connected to a digital-to-analogue (D/A) converter, which in turn was con-

nected to an Agilent Oscilloscope. The D/A converter received an 8-bit digital value

from the FPGA through a parallel bus connection. The D/A converted this to a scaled

approximation of the membrane voltage of a neuron. The spiking patterns from two

different neuron types are illustrated in Figure 4.19.

To verify the performance of a fixed-point design a floating-point implementation of the

same model is compared. A varying level of stimulus current was injected into a regular

spiking neuron and the number of spikes over 1sec was recorded. As can be seen in Ta-

ble 4.7, the spike count remains the same with a Matlab double-precision floating-point

implementation and a 16-bit fixed-point model. This demonstrates that a fixed-point

model can demonstrate a similar level of accuracy to a floating-point implementation at

a functional level, despite the differences in actual calculated values of the membrane

voltage.
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(a) (b)

Figure 4.19: Membrane voltages from an Izhikevich neuron model implemented upon
an FPGA. (a) Regular spiking. (b) Chattering

Table 4.7: Comparison of number of spikes in 1 second with a varying input current
for a floating-point and a fixed-point implementation

Input Current (mA) Floating-Point 16-bit Fixed Point

5 12 12

10 26 26

15 39 39

20 52 52

25 65 65

Table 4.8: FPGA Resource Utilization for the two different design approaches. Im-
plemented upon an Xilinx Virtex-7 Device.

Maximum Resource Minimum Resource

Slices 29 217

DSP48E1s 5 2

Clock 506MHz 306 MHz

4.5.3.1 FPGA Implementation

Although the primary objective is in an Izhikevich model for ASIC integration an FPGA

implementation can be used to compare with previous designs. In Table 4.8 the resource

usage of the two different datapath designs are compared. As expected, the minimum

resource design utilizes fewer DSP components. However, significantly more configurable

logic blocks 3 are used. This increase is caused by the multiplexing required when using

a limited number of arithmetic units.

3Each configurable logic block contains 2 slices, each of which contains 4 LUTs and 8 flip-flops [160]
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Table 4.9: Comparison between FPGA implementations of Izhikevich neuron model.

Approach FPGA Virtual
Neuron-
s/Pro-
cessing
Core, n

Slices DSP RAM (kb) Clock
Freq.
(MHz)

Design details

Max Resource Virtex-7 128 61 5 5.1 506 Fixed-point

Cassidy et al. [122] Spartan-3 8 500 1 5.6 80 Fixed-point

Thomas et al. [159] Virtex-5 1024 2859 16 - 307 Floating-point

Ambroise et al. [158] Virtex-4 117 473 1 - 84 Fixed-point

In fact, Xilinx state that pipelined designs are the most efficient option because of the

considerable number of flip-flops available per device [160]. These flip-flops can be easily

connected into data registers suitable for a pipelined datapath. Multiplexing resources

and thereby breaking the pipeline is less efficient for an FPGA-based design.

In Table 4.9 the complete FPGA neural model is compared with previous projects.

The design presented here compares favourably with previous implementations although

consideration has to be made for the advancements in FPGA-technology between each

implementation. There is also a trade-off to be made between using configurable logic

or arithmetic resources. Cassidy et al. [122] were limited in their device to only 32

arithmetic units, so some arithmetic operations would have to have been completed

using the configurable logic resources, and hence their slice utilization is higher. Whereas

modern FPGAs provide thousands of arithmetic units, primarily to cater for the digital

signal processing market.

Thomas et al. [159] have been the only group that have argued for floating-point im-

plementation of the Izhikevich model upon FPGAs. Clearly their choice has had a

significant effect upon the resource utilization.

Unlike the previous case study, an Izhikevich model is not limited by the DSP resources

available. If the neural model was run in real-time mode each processing core could

conceivably implement 500,000 virtual neurons whilst running at clock frequency of

500MHz. However, these neurons would require 20Mb of memory. Therefore, it is

only possible to implement 3 processing cores per FPGA before the maximum on-chip

memory available is exceeded. These 3 processing cores would require only 15 of the

available 3600 DSP units. This is also of course neglecting any consideration for the

resources required by the neural interconnectivity. The granularity investigation by
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Cassidy et al. proposed 8,000 virtual neurons per processing core, however they consider

delay as a performance parameter, whereas for a neuroprosthesis real biological time is

essential.

In terms of granularity of processing cores, when implemented upon an FPGA it is

desirable to consider making the most appropriate use of the resources available. Modern

FPGAs are supplied with a large amount of dedicated resources as well as configurable

logic blocks. These dedicated resources are more efficient in terms of area, and thereby

provide a greater density of memory capacity. When implementing a processing core the

design should target the dedicated block RAM available. These RAMs are defined as

36kb on a Xilinx Virtex-7, allowing for 900 virtual neurons per neuron processing core.

4.5.3.2 VLSI Implementation

Both designs have been synthesized using the Synopsys Design Vision software suite

to compare area and the affect of a differing granularity. Also, an estimate of power

consumption is provided by combining the synthesized design with a behavioural level

simulation using Synopsys PrimeTime. Similar to Imam et al. [121] a 65nm CMOS

technology operating at 1V is targeted. Although the design hasn’t been translated to

a full layout the synthesis results do provide sufficient levels of accuracy to compare

implementations.

Each design is analysed at a varying level of granularity, from 4 virtual neurons per

processing core up to 256 processing cores. Real-time operation is targeted, requiring

each neuron to be updated once per ms. This leads to operating frequencies in the region

between 13kHz and 3.3MHz depending upon the design option and the granularity.

In Figure 4.20, a comparison of the area and power consumption of the two design

options is illustrated. The minimum resource approach is shown to be between 1.1x

and 3.5x more energy intensive. In the design section on page 69 the minimum resource

approach was predicted to be 2.7x more energy intensive.

As expected the area of both approaches increases linearly with increasing granularity.

This is due to the requirement to store extra neuron parameters in memory. The offset in

the area is caused by the area consumed by the datapath itself. With a high granularity

the area of the system is clearly dominated by the memory. This is a fact neglected by
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(a) Minimum resource (b) Maximum resource

Figure 4.20: Area and power usage with a varying granularity for digital Izhikevich
neuron models synthesized using 65nm CMOS.

(a) Minimum resource (b) Maximum resource

Figure 4.21: Area and power usage per neuron.

Imam et al. [121] who give area results when considering only a single virtual neuron.

In Figure 4.21 the area per neuron for each approach is shown. Imam et al. state

that their area per neuron is equivalent to 30,000 cells [121], whereas by multiplexing

multiple virtual neurons upon a single processing core the area per neuron can be reduced

to between 500 and 1000 cells.

Figure 4.21 also shows that a minimum resource approach does offer a better area

per neuron ratio than a maximum resource approach as predicted. However, its energy

consumption per neuron is far greater at coarse granularities. This is caused by the much

greater operating frequency required by a minimum resource approach. For example, a

processing core with 256 virtual neurons will require an operating frequency of 3.3MHz

for the minimum approach, as opposed to only 260kHz for the maximum approach.

For both approaches there is an optimal granularity to reduce the energy consumption

per neuron. This is between 16 and 32 virtual neurons per neuron processing core.

This minimal point is caused by the static power per neuron reducing with increasing
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(a) Minimum resource (b) Maximum resource

Figure 4.22: Components of power consumption.

Figure 4.23: Power versus area consumption for a differing neural granularity.

granularity, whilst the dynamic power increases with increasing granularity, as illustrated

by Figure 4.22.

In Figure 4.23 the area energy product of the two different design approaches is shown.

For both designs there is a clear optimal granularity for a processing core. At a finer

granularity the datapath area resources are not efficiently shared between the virtual

neurons. Whereas at a coarse granularity the energy consumption increases without

any benefit in terms of area gains. This is because increasing the number of virtual

neurons per processing core requires an increase in operating frequency, but the area per

neuron can only reduce asymptotically to the area consumed by a neuron’s parameters.

A coarser granularity has a greater detrimental impact upon the minimum resource

approach due to the higher increases in operating frequency required.
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4.5.4 Discussion

Extracting from Figure 4.23 it is reasonable to predict that the digital silicon Izhikevich

neuron should consume approximately 100nW per neuron and occupy approximately

600 cells, which is equivalent to 600µm2.

When the area consumed by the memory components is removed the maximum resource

approach datapath consumed approximately 11000 µm2, whereas the minimum resource

approach consumed only 4900µm2, a 2.25x difference. In Table 4.6 a difference of 3.7x

was predicted. The difference between the estimation and the implementation is likely

to be caused by the estimated value neglecting to consider the area of the multiplexors

required for the arithmetic units.

The datapath illustrated by [121] consumed 30,000µm2. However, they have neglected

to compress the equations as suggested by [108] and [122] and they use an asynchronous

design. Their energy per neuron update is similar to what is estimated here.

The energy per neuron of 100nW compares favourably with the 100µW calculated by

Sharp et al. [109] for implementing a neural model upon the ARM-core based SpiNNaker

system. The equivalent area per neuron for SpiNNaker is 1000µm2, although this does

not consider the area consumed by storing the neuron parameters and they choose to

use a coarse granularity of over 1000 neurons per core to improve this area per neuron

ratio.

The ARM-core utilized occupies an area of approximately 1mm2, which is much larger

than the processing core described here. As such, their static power consumption will

be greater; this perhaps can be offset by the coarse granularity they have used. They

also want to implement as many neurons as possible on one processor to reduce the

overall size of the implemented super computer - thereby reducing the associated energy

overheads.

In comparison an analogue neuromorphic style neuron occupies approximately 4000µm2

per neuron [112] and consumes only 10nW of power [126]. Although this energy con-

sumption is a factor of 10 smaller than what is achieved here it is dependent upon the

number of spikes produced by the neuron. Also, to reduce circuit size analogue neurons

tend to run in accelerated time. A real-time neuromorphic neuron is likely to be much
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Figure 4.24: Comparison of design approaches to single neuron processing.

larger (due to the increase in the size of capacitors required [117]) and consume more

energy [161].

A comparison of the different design approaches is available in Figure 4.24.

Currently, the design utilizes D-type flip-flop (DFF) style memory. Alternatively, static

random access memory (SRAM) could be used. SRAM offers a higher density of memory

and may offer a reduced power consumption in comparison with DFF. It may be of

benefit beyond the granularity that what is currently considered - up to 256 virtual

neurons per processing core. However, it has been shown that as the number of virtual

neurons increases the dynamic power increases linearly due to the higher operating

frequency required. It is unlikely that this increase will be overcome through the use of

SRAM.

At the optimal granularity illustrated in Figure 4.22 the dynamic and static power

consumption is approximately equal. Due to the low-operating frequency of the datapath

at this granularity power-gating could be considered [162]. This will involve switching

the circuits at a higher frequency, then when the operations are completed disabling the

power supply. Using this technique, the dynamic energy will stay approximately the

same but the static power will be reduced. However, at the optimal granularity 75%

of the transistors of the neuron processing core are utilized for the neuron parameter

memory - this memory cannot be disabled as the memory state is volatile. As such, the

static power could be reduced by only up to 25% and the overall power consumption by

12.5%.

Operating circuits at lower voltages allows for reduced energy consumption, but increases

the time it takes to charge gates and therefore the delay of the circuit. Since the neuron
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processing core design is a low throughput application with a low operating frequency

delay is non-critical and therefore it is a suitable candidate for either dynamic-voltage

scaling (DVS) or sub-threshold implementation. By operating the processing core at

a half of the usual supply voltage of 1V the dynamic power consumption will decrease

by 4x due to the quadratic relationship between dynamic power and voltage. Also, the

popular static power model generated by Butts et al. [163] suggests that static power

reduces linearly with voltage supply. Therefore, by operating the processing core at

0.5V the energy per neuron can be reduced to only 37.5nJ, only 3-4x greater than an

analogue neuromorphic implementation.

As previously mentioned, with an optimal granularity each neuron will consume approx-

imately 700µm2. When scaling this up to meet the specification defined in Table 2.1 of

10k-100k neurons the equivalent silicon area consumed equals between 7-70mm2. Also,

when consuming 100nJ per neuron the chip power consumption will be between 1mW

and 10mW. If the potential energy savings from power-gating and dynamic-voltage scal-

ing are both considered this power consumption could be reduced to between 0.3mW

and 3mW.

4.6 Chapter Discussion

The implementation of neuron models using digital techniques has been shown to be

feasible, area and power efficient, scalable with technological advancement and compa-

rable with alternative options, particularly the popular analogue neuromorphic design

methodologies.

Further, previous digital design implementations have primarily considered leaky inte-

grate and fire systems due to their simplicity in terms of hardware resources. The neuron

model designs illustrated here, of both Hodgkin-Huxley and Izhikevich variants, are able

to produce more biologically realistic spiking patterns, providing a greater degree of ac-

curacy in any large-scale network simulations. It has been shown in this chapter that

both Hodgkin-Huxley and Izhikevich neurons can be implemented efficiently if judicious

design choices are made, therefore, they should be preferable over the traditionally leaky

integrate and fire design.
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With the increasing number of transistors available upon single devices a large number

of neuron models may be implemented. For instance, on a state-of-the-art FPGA it

has been shown how 100,000 individual Hodgkin-Huxley neurons may be implemented.

Izhikevich [136] described how a simplified model illustrating the same behaviour can

be 100x more computationally efficient than a Hodgkin-Huxley. However, in this work

it has been found that due to memory constraints only a 15x performance improvement

can be made, with 1.5 million Izhikevich neurons per FPGA.

Choosing the correct granularity of a neuron processing core has been shown to have a

significant effect upon the design response, in terms of area, energy and performance,

both for an FPGA and for ASIC devices. Selecting the wrong granularity may render

a design proposal infeasible in the early stages of development if energy and area is

constrained.

The SpiNNaker [4] project does utilize a differing granularity to what has been proposed

within section 4.5.3.2, but their design objectives differ. For instance, they wish to model

large-scale brain regions using a supercomputer approach, as opposed to the single chip

implementation considered for a neuroprosthesis. Also, due to the scale of the project in

terms of costs and resources they desire the system to be applicable to multiple domains

beyond simulating brain regions, such as robotics [164]. For this they require a flexible

design platform, which a dedicated Izhikevich or Hodgkin-Huxley datapath would not

provide.

In this section, a design for an Izhikevich neuron model with the same performance as

similar analogue implementations and with similar area and energy requirements has

been described and demonstrated. Energy efficiency has long been the justification

behind the development of analogue designs but, the comparative energy performance

that has been illustrated alongside factors including: extended design-time, lack of pro-

grammability, the requirement for digital communication and model variability; negate

this justification.

As well as demonstrating the optimal design of a digital silicon neuron this section

has provided a model to determine the optimal granularity of processing element for

spiking neural networks. This model is used in the following chapters whereby the

neural-network-on-chip is considered, as described in section 5.6.



Chapter 5

Network Methodology

“You know my method. It is founded upon the observation of trifles”

The Bascombe Valley Mystery, Sherlock Holmes

Sir Arthur Conan Doyle

The previous chapter has introduced optimal designs for silicon neuron models. The

computation within the brain is encoded within both the generation of spikes and the

transmission of spikes between these neurons. Therefore, an efficient silicon communi-

cation infrastructure must be developed in order to correctly replicate the transmission

of spikes.

This design concept is illustrated by Figure 5.1. Multiple processing cores, each capable

of modelling multiple neurons are implemented, but a common communication infras-

tructure must be provided to allow for information about spike events to be passed

between the cores. The focus of this chapter is to study this communication.

The requirements for the communication platform are first of all described, before com-

parisons between the most common design approaches are provided. Next, a detailed

introduction to a neural-network-on-chip system is given for which a methodology is

developed to study the energy and area design parameters for any neural network topol-

ogy. In the following chapters, this methodology is used to detail two different designs

for neuroprosthetic systems.

82



Chapter 5. Network Methodology 83

Figure 5.1: Communication concept requirement. Multiple processing cores, each
capable of modelling multiple neurons are implemented. A communication infrastruc-
ture must be provided to allow for information to be transmitted between each of these

processing cores.

5.1 Requirements

The silicon network is responsible for communicating all spikes from source neurons to

the destination neurons. To provide a system with maximum flexibility any neuron

should be able to be connected to any other neuron and the connectivity should be

flexible, both at initialization and at run-time, to allow for learning and plasticity.

Typically, for biological networks there may be over 1000 destination neurons [75]. It is

infeasible to directly connect all of these neurons using point-to-point wiring. A typical

logic gate would only have 4 output connections before extra buffering is required [75].

Also, even if the technology allowed point-to-point connectivity reconfigurability of the

network would be a challenge.

However, silicon systems operate at much higher speeds than their biological equivalents.

This allows for multiple biological axons to be multiplexed onto a subset of silicon wires.

A controlling system is required to manage the multiplexing operation. The controlling

system must allow for:

• Fair arbitration - equal access to the shared resources must be provided. Unequal

access could result in the system having parasitic effects upon the communication

of spikes, which in turn will alter the result of the computation of the neural

network.
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• Efficient routing - spike events must be efficiently directed along the silicon wires

to the correct destinations.

To simplify the communication process we can assume that the spike produced by a

neuron is an all or nothing digital pulse. The source neuron in effect broadcasts this pulse

along its axon through which the destination neurons are listening through synapses and

their dendritic tree. The source neuron knows nothing of the state of the pulse once it

has been broadcast. The destination neurons must be aware of the source of the pulse

in order to update synaptic connectivity as required.

The typical delay of a spike from source to destination, known as the axonal delay is in

the order of milliseconds [165]. The controlling system must transmit the pulses within

this timeframe and not introduce variation within the delay of transmission so as to not

affect the computation as it would be in biology. In effect, the silicon systems should

provide a transparent platform for the spiking neural network.

5.2 Design Options

5.2.1 Previous Work

Communication between neurons is the bottleneck in most neural network simulations

implemented in software, on GPUs or upon supercomputers. To overcome this many

research groups have investigated developing specialist platforms to optimize the process.

For example, the previously mentioned SpiNNaker project [4] uses a packet switching

network. Each spike pulse is represented as a packet containing the identifier of the

source neuron. This packet is routed between processing cores using a multicast tech-

nique. The 18 cores upon each chip are connected using a NoC and each chip is connected

with the 6 nearest neighbours in a torus topology.

In contrast to SpiNNaker’s multicast approach, EMBRACE [132] use an alternative

unicast packet routing methodology. For each source-destination connection pair a sep-

arate packet is generated. Unfortunately, they don’t appear to consider the high level of

connectivity between neurons and the effect of this upon the traffic bandwidth require-

ments. Unicasting is feasible if each neuron is only connected to several other neurons,
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but with 1000 post-synaptic connections the traffic will increase significantly. However,

they do propose a packet compression technique to reduce the traffic, although this is

only available when a group of neurons all target the same destination neuron [132].

Similarly, the Bluehive project [125][130] passes messages containing source and desti-

nation information between multiple FPGAs in their FPGA-board level platform.

Alternatively, the Neurogrid project [166] uses a broadcast routing strategy, whereby all

events are passed along a 1-D chain of processing chips. These broadcast packets can

be filtered as desired. They suggest that when connections are dense that broadcasting

is more effective than sending multiple copies of packets.

Emery et al. [119] combined the packet switched approaches of other groups with a

circuit switching design. They suggest that many neuron-to-neuron connections are

local and only a few connections travel long-distances. As such, in their system local

connections are connected using a circuit switching approach whereby an individual

wire is configured to connect a “source” neuron with a “sink”’ neuron. Long-range

connections are implemented using a packet switching based-approach. Emery et al.

consider using only a granularity of 1 virtual neuron per neuron processing core, which

has been shown in Chapter 4 to be non-optimal. Adding more virtual neurons will

require the local circuit switching protocols to become increasingly more complex and

non-tractable.

Similar to the circuit switching of Emery et al. the Neurocore chip described in [120] uses

a crossbar circuit switching technology. Within this design a matrix of connections is

generated using SRAM cells, whereby a 0 output from the cell represents no connectivity,

and a 1 represents a connection. For full-connectivity this requries a quadratic number

of cells and as such they are only able to demonstrate a 256 neuron array upon a single

chip. The HiCANN project [117] uses a similar matrix array for synaptic connections

but with a packet-switched approach between multiple matrix arrays.

Ambroise et al. [158] propose a design with a similar objective to ours, brain-machine

interfaces. They use an SRAM model for neuron-to-neuron connectivity. Each row in

the SRAM contains a list of destination for a particular source neuron. As such, their

design is memory bound and they are limited to fewer than 117 neurons per FPGA with

only limited network connectivity.
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(a) Mesh NoC (b) Bus (c) Matrix

Figure 5.2: Different neuron-to-neuron connectivity options.

In nearly all the systems mentioned above, timing within the neural network is modelled

relative to the system time. For example, a spike produced by a neuron is judged to

have arrived at its destination neuron when the message has transmitted through the

silicon system. This creates an asynchronous platform similar to biology and negates

the need for timing to be tracked.

A summary of previous work is provided in Table 5.1.

5.2.2 Comparison of Options

To compare the interconnect methodologies previously studied the most popular tech-

niques, which are illustrated in Figure 5.2, are evaluated assuming the neural network

model consists of m processors each implementing n neurons, giving a total neural net-

work size of s. Following [169] we can estimate the scalability of the area and power

consumption for the three different methodologies.

Network-on-Chip A simple NoC system comprises m processors each connected to a

routing element to form m modules. The modules are arranged in a
√

(m)∗
√

(m) mesh2

whereby each module is connected to its four nearest neighbours, see Figure 5.2a. When

a spike is produced a packet originates at the source module and is directed through

the mesh to the correct destinations by the routing elements. The links between each

module are of a constant size. To add more capacity to the system extra modules are

attached to the mesh.

2Other arrangements are available
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Bus Within the bus methodology, each processor is attached to the same interconnect,

see Figure 5.2b. When a spike is produced the processor requests control of the bus and

transmits the message to all other processors. The other processors are required to listen

to the incoming message and filter out irrelevant messages as required. The bus may

be arranged in a different topology to reduce area and energy overheads, such as within

[133]. Alternatively, as in [169] the bus may be segmented. In this scenario messages are

broadcast along a single segment, before transmission to the next segment in the chain.

A segmented bus is in effect a 1-dimensional NoC.

Matrix Finally, in the matrix architecture, when a spike is produced by a processor,

a corresponding row within the matrix is selected, see Figure 5.2c. This row contains

details of the connectivity. Each connected processor then receives a synaptic update.

This is the methodology utilized by [120] and [158]. The matrix architecture can also

be considered to be a cross-bar switch.

Circuit switching techniques are not considered as these are deemed to be infeasible

for the scale of biological neural networks that are of interest. The introduction of

concentrators/expanders and intelligent circuit switches requires the use of defined look-

up routing tables which are shown to be hugely dominant in the consumption of resources

within a neural network system. Therefore, such an approach is likely to provide very

similar results as that shown for a NoC.

Area Estimations The area of processing within each methodology will be constant,

however the area associated with the communication methodology will vary. The area

of each methodology can be estimated as the area required by the interconnect topology.

For a NoC, as the number of modules grows the number of links between modules grows

at the same rate. Similarly, for the bus technique doubling the number of processors

requires doubling the length of the bus. However, for a matrix style approach the area

grows quadratically as for each new processor a new row and a new column is required.

Power Estimations The power can be estimated by assuming that it is a product of

the area of the interconnect and the operating frequency of the interconnect [169]. For

the NoC, the operating frequency of each link will remain constant as the link size is

constant. Therefore the power will only grow with the area increase. For the bus, the
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Table 5.2: Cost functions for three different neuron-to-neuron connectivity options.

Area Power

NoC O(s) O(s)

Bus O(s) O(s2)

Matrix O(s2) O(s3)

operating frequency will be required to increase to overcome increased traffic pressure

upon the bus. This will result in quadratic increases in power consumption. Similarly, for

the matrix approach the operating frequency will have to increase adding to the power

consumption. These costs associated with the different methodologies are summarized

in Table 5.2.

Summary A network-on-chip based approach is the most suitable to implement the

neuron-to-neuron connectivity due to its highly parallel and concurrent nature. In fact,

all previous implementations have utilized a network with packet-switching techniques

at some-level. Only in small-scale systems have alternative approaches been deemed to

be viable [120][158].

In this study the primary interest is in the mesh and torus NoC topologies. Previously,

hierarchical topologies, such as binary tree, have been shown to be more inefficient [133]

when traffic patterns are not suited. With the reconfigurable nature of neural networks,

both at initialization and at run-time, it is difficult to guarantee optimal traffic patterns

to enable efficient use of hierarchical structures.

5.3 Network-on-Chip

A NoC consists of multiple processing cores and a communication infrastructure to

support passing of information between these cores. In a neural-NoC this information

mainly consists of the spikes produced by the neurons modelled within the processors.

Within each processor core multiple neurons are modelled. When a neuron’s voltage

membrane exceeds a threshold a circuit is activated. This circuit then produces a packet

representing the spike which is to be passed along the virtual axon to all of the required

destinations. This virtual axon consists of a series of interconnected routing elements.
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Figure 5.3: Neural-Network-on-Chip Structure. A neural network, containing s neu-
rons is simulated upon a network-on-chip containing m processors arranged in a k by k
2-dimensional grid. On each processing core n neurons are implemented. These neurons
may communicate with their connected neurons upon other processing cores through

the network-on-chip infrastructure and transmission of packets.

When a router receives a packet it must decide whether to transmit the packet to its

own processor, and/or forward the packet to its neighbouring routing elements.

In the topology investigated within this thesis, most routers are connected to four neigh-

bouring routers. Routers located at the edge of the mesh are only connected to routers

within the mesh, i.e. there is no wraparound connections to make the system a torus.

This topology is shown within Figure 5.3.

There are many different strategies to determine how to route the packets through the

network and the choice of routing strategy has a significant affect upon the performance

of the system as well as the area and energy overheads. In the following sections the

three most popular techniques and their system requirements are described.

To provide an initial prediction of the performance of each routing strategy an estimate

of the latency, throughput, power and area requirements can be defined by extending
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the analysis techniques of Bolotin et al [169]. In this thesis, these analysis techniques

are extended by fully considering different routing strategies and also by assessing the

affect of a varying granularity.

To accomplish this analysis some assumptions/definitions are required:

• A neural network model contains s neurons implemented across m processing cores

arranged in a 2-dimensional square mesh,with each processing core containing n

neurons. There are k rows/columns within a mesh of m cores

• The neurons are randomly allocated to the neuron processor cores. Although,

this is not strictly true in many situations it does create an upper bound in the

performance estimations. It also gives rise to the relationship listed in (5.1), which

is a measure of the mean Manhattan3 distance between two neurons in a mesh

[133], where m is the number of processing cores.

c =
2

3

√
m =

2

3
k (5.1)

• Secondly, that on average each source neuron has N̄d destination neurons.

• Each neuron produces a spike at a rate of δ̄n spikes per second.

• A mesh contains L links

L = 2k(k − 1) (5.2)

• Finally, the area of each processing core is directly proportional to the number of

virtual neurons. See (5.3), where Acore is the area of a processing core and a is

the mean area per neuron. This area per core can be used to determine the mean

length of NoC physical wires, or links, between routers, as in (5.4)

Acore = an =
as

m
=
as

k2
(5.3)

l̄ =
√
an =

√
as

k2
(5.4)

3The Manhattan distance, or the taxicab distance, is the distance between two points assuming you
can only travel in a straight line along either the x or y dimension [170]
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These assumptions allow an estimate of the power, area, throughput and latency to be

determined:

• A contributing factor towards power in a NoC is within the switching of the links

between routers in order to transmit packets. This power can be estimated using

(5.5), whereby fn is the mean frequency of the link and Uarch is the mean utilization

of each link as defined by (5.6). The utilization of each link is determined by the

chosen routing strategy, as such, in the following sections an estimate is derived

for each strategy. However, it is shown in section 5.5 and section 6.2 how this

commonly used derivation of power in a NoC neglects some key components of a

neural-NoC.

P = CV 2fnUarch (5.5)

Uarch =
TotalBandwidth

No.ofLinks
=
BW

L
(5.6)

• To determine the power consumption a relationship must be formed for the overall

capacitance of the NoC. Capacitance is related to the capacitance per unit length,

C0, and the total length of all the links in the network, lmesh. Equation (5.7),

which shows the total length of all the links, is derived by multiplying the number

of links by the width (w̄) and length of each link. This gives rise to the total

capacitance of mesh neural-NoC (5.8).

lmesh = 2k(k − 1)w̄

√
as

k2
= 2
√
asw̄(k − 1) (5.7)

Cmesh = C0lmesh = C02
√
asw̄(k − 1) (5.8)

• Area cost of the NoC is defined as the pitch of each wire, Wp, which is constant

for each technology node, multiplied by the total length of all links. The area of

the NoC interconnect is not dependent upon the chosen routing strategy. It is

fully described in (5.9). As can be seen the area grows linearly with the size of the

mesh and with the square root of the number of neurons in the network. Again, in
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section 5.5 and section 6.2 it is shown how this popular estimation for area within

a NoC is not a good representation for a neural-NoC.

Amesh = 2Wpw̄
√
a(k − 1)

√
s (5.9)

• The delay of each link is also constant and not dependent upon the routing strat-

egy. The link delay is the time it takes for a signal to propagate across the link.

This is determined by (5.10) where R� and CO are technology dependent. The

corresponding link delay for a neural-NoC with mesh topology is given in (5.11).

The link delay increases linearly with the number of neurons but has an inverse

relationship with the number of processors.

Tcycle = R�CO l̄
2 (5.10)

Tmesh =
R�COas

k2
=
R�COas

m
(5.11)

• The total latency of a topology is the link delay multiplied by the zero-load hops

[171]. The zero-load hops is the total Manhatten distance travelled by each packet

to reach its destination assuming no contention within any of the routers along

the packet’s path. The zero-load hops is represented by H0 and the latency by T0.

The zero-load hops is dependent upon the chosen routing strategy.

• The throughput, represented by fsmax , is determined as the bandwidth that will

saturate the bottleneck channel within the NoC [171]. As the bandwidth is related

to the chosen routing strategy the maximum throughput that can be achieved also

changes with routing strategy.

5.3.1 Unicast

Unicast routing involves the direct transmission of an individual packet from the source

neuron to each destination neuron. The packet can contain both the source identifier

and the destination identifier. The routers are able to use the destination identifier to

determine how to direct the packet through the network - if the identifiers are repre-

sentative of a neuron’s location. This concept is illustrated in Figure 5.4, whereby a

source neuron is connected to three other neurons. Therefore three unique packets are
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Figure 5.4: Unicast routing strategy. The neuron pn11, vn3 is connected to three
other neurons, as defined in the memory block of pn11. When it produces a spike an
individual unique packet is produced for each source-destination pair. These packets

are routed through the mesh to the correct destinations.

transmitted and routed to the correct processing core. When the packets arrive at the

core they are added to the target virtual neuron’s synaptic input.

As shown in Figure 5.4, the connectivity of the neural network is stored at the source

processing core. Each neuron must store a pointer to a location in memory containing

a list of connected destination neurons. This pointer could be stored alongside the

neuron’s parameters4 allowing for efficient access. Each processing core is required to

store a list of lists for all of its virtual neurons. The length of this list is dependent upon

the granularity of the neuron processing core and the mean number of connections, N̄d.

However, the total length of all the lists in the network should remain constant regardless

of the granularity.

As the routing information is contained within the packets themselves the routers can be

implemented fairly easily and efficiently. Therefore, unicast is beneficial for its simplicity

in many scenarios, but large-scale neural networks can become inefficient because of the

significant number of packets generated due for each spike event. For example, if N̄d is

equal to 1000, then 1000 packets unique packets are generated for each spike. This leads

to a high bandwidth and bursty traffic.

4For example, the v, u, a, b, c and d parameters of an Izhikevich neuron as discussed in section 4.5
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5.3.1.1 Theory

To determine the estimated power consumption for a unicast mesh neural-NoC equa-

tions (5.5) and (5.8) can be used alongside (5.14), which describes the utilization of

the interconnect links using a unicast routing mechanism. The utilization is the total

number of packets generated, Tp, multiplied by the average distance each packet travels,

Dave, divided by the number of links in the system.

Tp,uni = sδ̄nN̄d (5.12)

Dave = c =
2

3
k (5.13)

Uuni =
Tp,uniDave

L
=
sδ̄nN̄d

2
3k

2k(k − 1)
=

sδ̄nN̄d

3(k − 1)
(5.14)

The power consumption is shown in (5.15). It can be seen that theoretically the power

consumption does not depend upon the size of mesh that is used, as the factor k is

removed. However, this is assuming the worst case scenario of random placement of

neurons. It is shown in section 6.2.1 how optimal placement of neurons may reduce the

power consumption and how the optimal placement is dependent upon the size of the

mesh.

Puni = CV 2fnUuni = C02
√
asw̄(k − 1)V 2fn

sfsN̄d

3(k − 1)
= C0

2

3

√
aw̄V 2fns

√
sfsN̄d (5.15)

The maximum achievable throughput is the bandwidth that will saturate the bottleneck

channel. With unicast routing this is equivalent to the bisection bandwidth [171]. This

bandwidth is the amount of packets generated that cross from one half of the network

to the other half of the network. By assuming that the neurons are randomly allocated

then 50% of packets will cross the bisection and the bisection consists of (k−1) possible

routes. This leads to the following relationship:
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BWbisection,uni =
Tp,uni

2

1

k − 1
=

sδ̄nN̄d

2(k − 1)
(5.16)

To avoid saturating the bottleneck channel this relationship must not exceed one packet

per clock cycle, leading to:

1 ≥
BWbisection,uni

fn
(5.17)

From which, in turn it is possible to derive the maximum theoretical firing frequency for

a unicast neural-NoC strategy (5.18). As shown the maximum rate of firing is inversely

proportional to the number of neurons and the degree of connectivity, but proportional

to the size of the mesh.

fsmax,uni =
2fn(k − 1)

sN̄d
(5.18)

The latency of the routing strategy is dependent upon the zero-load hops and the link

delay as defined previously. The zero-load hops is the number of cycles it takes to

transmit all of the packets produced by a single spike. If it is assumed that packets

are transmitted sequentially from the source neuron at one packet per cycle then it is

N̄d cycles before the final packet can begin transmission. With randomized placement

it will then take 2
3k cycles to transmit this packet to its destination. This leads to a

zero-load hop of (5.19) and a latency of (5.20).

H0,uni = N̄d +
2

3
k (5.19)

T0,uni = H0,uniTmesh = (N̄d +
2

3
k)R�CO

as

k2
= R�COasN̄d(

1

k2
+

2

3k
) (5.20)

5.3.1.2 Empirical Model

An empirical model has been developed to investigate the efficiency of unicast routing

with a pre-defined neural network connectivity. The model determines:
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• the bandwidth requirement - the number of packets that need to be transmit-

ted and the distance of each packet assuming a defined mapping of neurons to

processing cores. The mapping process is described in section 5.4.

• the memory overhead - an estimation of the total number of entries required in

the memory of each processing element as illustrated in Figure 5.4.

This information is then combined with the area and energy models described in sec-

tion 5.5 using the process flow outlined in Figure 5.16. From this an accurate estimate of

the efficiency and constraints of a unicast approach for different network connectivities

can be determined.

5.3.2 Multicast

To reduce bandwidth overheads, which is the main constraint in unicast, multicast

routines have become more popular. With multicast a single packet originates at the

source and is duplicated and directed as required by the routing elements within the

network.

The packet therefore only contains the identifier of the source neuron. The routing

elements are required to have some intelligence to decide in what direction to route each

packet. Typically this intelligence is based around LUTs. The LUTs contain a list of

identifiers. When a router receives a packet it checks its LUTs for the received packets

identifier to determine what operation to complete. For each identifier the LUT stores

a list of the operations required for that identifier alongside the identifier.

To reduce the number of identifiers in each list only a select few are stored. If no match

is found in the list then the packet should pass through the router using a pre-defined

default channel. [172]. Only if the packet should be passed to a non-default channel on

its way to its destination should an identifier be present within the list. This process is

illustrated in Figure 5.5.

The proposed multicast routing strategy has the following features:

• deterministic - the route of each packet through the network is known in advance

as each router contains a pre-defined lookup table. A copy of a packet will travel
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Figure 5.5: Multicast routing strategy. The neuron pn11, vn3 is connected to three
other neurons. When it produces a spike a packet is passed to West to pn10. The
memory of pn10 specifies that any packets received from pn11, vn3 should be passed to

two of its own virtual neurons as well as along its North link towards pn00.

along an identical path. Deterministic routing in a 2-D mesh is known to be

deadlock free.

• dimension-ordered - packets traverse through the mesh using pre-defined default

channels. Only when a router contains an entry in its lookup table will the packet

switch to a non-default channel. Again, dimension-order routing within a 2-D

mesh guarantees that communication will be deadlock free [171]

• distributed - decisions are apportioned to each router. As the structure of the

network is homogeneous each router is able to use the same routing algorithm.

The number of routing entries in memory can be reduced further by using the compres-

sion techniques proposed by Wu et al. [172] . Using this technique the packets are routed

purely based upon their source processing core. This may take advantage of multiple

virtual neurons upon the same processing core having similar connectivity and therefore

a similar communication pattern.

5.3.2.1 Theoretical

Multicasting works most efficiently when traffic is clustered. For example, if a source

neuron is connected to a group of other neurons all implemented upon a single neuron
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processing core only a single packet is required to be sent. However, for the theoretical

estimation we are assuming worst-case conditions, were no locality exists and therefore

there is no traffic clustering. Also, in most large-scale neural networks N̄d is likely to

be much greater than the number of cores m = k2. Therefore, with random placement

it is likely that a single source neuron is connected to destination neurons upon every

core within the network. In effect, with these assumptions multicasting degrades into a

broadcasting strategy. As such, the worst-case theoretical performance of multicasting

is described in section 5.3.3.1.

5.3.2.2 Empirical Model

By optimizing the placement of neurons upon processing cores the power and area re-

quirements can be reduced. The optimization techniques are described in section 5.4.

To evaluate the improvement of optimizing the placement of neurons an empirical model

was developed. The model determined the bandwidth and memory requirements for a

multicasting routing strategy given a defined neural network connectivity and a place-

ment of the neurons upon the processing cores. The number of processing cores is

also variable to investigate the effect of granularity. The model incorporated options

to include the core compression techniques described above and the logical compression

described in section 5.3.5.

The model returns a memory table for each router within the network along with the

total distance travelled by all the packets for a given firing rate. For the example provided

in Figure 5.5 the empirical model would return that the average memory table was 0.75

words deep and that the total distance travelled by all packets was 20 if fs = 10Hz.

5.3.3 Broadcast

In broadcasting a single packet originates from the source neuron. The packet contains

purely the source identifier. The packet is transmitted to all the processing cores within

the system. These cores are required to filter through received packets and only pass on

the correct packets to their virtual neurons.

Broadcasting is very simple to implement but in some situations may result in an excess

amount of traffic as packets are transmitted to locations where they are not required.
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Figure 5.6: Broadcast routing strategy. The neuron pn11, vn3 is connected to three
other neurons. When it produces a spike a packet is passed to all other processing

elements. Each processing element must filter received packets.

The choice to use broadcasting is a trade-off between this excess traffic and the gains

made by using a simple routing protocol. As shown in Figure 5.6, the routers now only

contain the local connectivity, and packets are blindly passed through the network.

Broadcasting in a 2-d mesh uses dimension-ordered routing, where packets are delivered

along one dimension or axis first, such as the X-Axis, before they are switched along the

perpendicular dimension, such as the Y-Axis, [171][173] in order to reach all destinations

within the network. If all the packets originating from a processing core are delivered

first of all along the same dimension then this will result within a bottleneck at a low

packet injection frequency. This can be avoided by sending 50% of the packets first of

all along the X-Axis and the remaining 50% of packets first of all along the Y-Axis. This

effectively doubles the theoretical maximum throughput as the load upon the bottleneck

channel within the network is halved. This process is illustrated in Figure 5.7.

As well as the reduced size of the routing tables broadcasting offers other benefits. For

example, if the connectivity of the neural network is updated fewer routing tables need

updating as there are significantly less routing entries. Whereas, in multicasting new

paths will need to be determined and all the routing tables updated accordingly.

Updating of routing tables is challenging as it involves inserting additional traffic into

the NoC in order to configure tables at specific routers. For broadcasting, fewer routing
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(a) (b)

Figure 5.7: Alternative broadcasting routing options to increase maximum through-
put. Packets are routed using a dimension-ordered scheme, where they first of all travel
along one axis, before switching to the next axis. To increase throughput by reducing
the load upon the bottleneck channel packets can be routed either X-Axis first (a) or

Y-Axis first (b).

tables will need updating so this problem is reduced by a proportionate amount. The

issue of updating or configuring routing tables is explored section 7.3.10

Also, broadcasting packets allows for all processing cores to listen to the state of the sys-

tem. A module could be attached to listen to network traffic and pass on the information

outside of the NoC. An example of this scenario is provided in section 7.3.9.

5.3.3.1 Theoretical

As defined previously the power consumption of the network is related to the link uti-

lization. For broadcasting this is defined in (5.23). The mean link utilization is the

amount of packets generated, Tp, multiplied by the distance that each packet is required

to travel, Dave, divided by the total number of links within the network.

Tp,broad = sδ̄n (5.21)

Dave,broad = k2 − 1 (5.22)
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Ubroad =
Tp,broadDave,broad

L
=
sδ̄n(k2 − 1)

2k(k − 1)
=
sδ̄n(k + 1)

2k
(5.23)

This can be combined with the (5.5) and (5.8) to determine the estimated power con-

sumption with broadcasting:

Pbroad = V 2fn(CO2
√
asw̄(k − 1))(

sδ̄n(k + 1)

2k
) = V 2fnCO

√
aw̄fss

√
s

(k + 1)(k − 1)

k
(5.24)

The maximum throughput is the bandwidth required to saturate the bottleneck chan-

nel. Since all packets are transmitted to each processing element this bandwidth is not

equal to the bisection bandwidth. Instead, the throughput is limited by the bandwidth

required to saturate the channels towards the edges of the mesh. This is caused by each

processing element receiving all packets, but the elements within the corner of the mesh

having only 2 channels upon which these packets can be received, as opposed to 4. In

the following chapter of this thesis this concept is graphically illustrated and verified in

Figure 6.17.

The bandwidth through the bottleneck channel with broadcasting is equal to the traf-

fic generated by each processing element in each direction mechanism, Tm (Figure 5.7)

(5.25) multiplied by the number of processing elements sending traffic through the bot-

tleneck channel (5.26). From this it is possible to determine the maximum achievable

firing rate for a broadcast mesh neural-NoC (5.27). As shown by this equation the

maximum throughput will decrease asymptotically as the size of the NoC increases.

Equation 5.26 is best derived graphically, as in Figure 5.8.

Tm =
sδ̄n
2k2

(5.25)

(k2 − k) + (k − 1) => k2 − 1 (5.26)

fsmax,broad
=

2fn
s

k

k + 1

k

k − 1
(5.27)
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Figure 5.8: Graphical derivation of Equation 5.26. Each processing element produces
Tm packets in each direction when broadcasting. The bottleneck channel will receive

k2 − k + k − 1 multiplied by Tm packets.

To calculate the latency of a broadcast mesh topology combine (5.11) with (5.28), which

is the zero-delay hops. This value is the mean number of hops for each packet to arrive

at all destinations within the network. The latency is shown in (5.29).

H0,broad =
3

2
k − 1 (5.28)

T0,broad = R�COa
3s

2k
(1− 1

k
) (5.29)

5.3.3.2 Empirical Model

A similar model to that described in section 5.3.2.2 was developed. The model received as

an input a neural network connectivity list, a mean firing rate and the network topology

parameters. It returned the estimated energy and area requirements for a broadcast

strategy. The model contained an option to consider the logical compression techniques

described in section 5.3.5.

5.3.4 Comparison

As noted previously, with the assumptions required to make theoretical predictions mul-

ticast routing degrades to the same performance level as broadcasting. Using the em-

pirical models the legitimacy of these assumptions are investigated in section 6.2 and
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Table 5.3: Theoretical comparisons of different routing strategies and topologies for
a neural-NoC. s is the number of neurons, k is the number of rows/columns within
the NoC 2-dimensional mesh, and N̄d the mean degree of connections for each neuron.

Common factors such as operating voltage and frequency have been removed.

Unicast Broadcast Mesh Broadcast Torus

Power s
√
sN̄d s

√
s (k+1)(k−1)

k 2s
√
s (k+1)(k−1)

k

Area
√
s(k − 1)

√
s(k − 1)

√
s2k

Throughput k−1
sN̄d

1
s

k
k+1

k
k−1

2
s

k
k+1

Latency sN̄d
k ( 1

k + 2
3) 3

2
s
k (1− 1

k ) 4s
k

section 7.2. However, it is possible to compare the theoretical scalability of broadcasting

and unicasting. This is accomplished in Table 5.3. As can be seen, broadcasting is not

influenced by the degree of neuron connectivity unlike unicasting. Therefore, for typical

large-scale biologically-inspired networks with a large Nd broadcasting is expected to

perform better. However, with a small Nd unicasting should be the preferred option.

Also, in Table 5.3 broadcasting within a mesh and a torus topology is compared. In

a torus topology the interconnection links are on average twice the length as mesh

interconnects [171]. Therefore, although a torus topology does offer twice the maximum

throughput tham mesh, its area, power and latency are negatively affected.

5.3.5 Logical Compression

The routing tables used in broadcasting and multicasting include an index and a value.

When a packet arrives its ID is matched with the list of indices stored in the routing

tables. If a match is found then the value for that index is retrieved in order to complete

the operation on the packet. As suggested by Khan et al. [174] logical compression

techniques can be used to reduce the number of indices required within the routing

tables. This process is illustrated in Figure 5.9 where x represents a “don’t care” value.

Within the empirical models the optimized Espresso software package [175] is used to

compute the logical minimization.
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Figure 5.9: Comparison between non-compressed and logically compressed routing
tables.

5.4 Partitioning

As mentioned previously, unicast and multicasting rely heavily upon the optimized place-

ment of neurons upon cores. This can reduce bandwidth and routing overheads as pack-

ets are required to travel shorter distances and hence the overall energy consumption is

reduced [176]. For multicasting it will also require fewer packets to be generated and

fewer routing tables. This is illustrated by Figure 5.10, whereby in the left figure a total

of 6 packets are transmitted and 6 routing entries are required, as opposed to the figure

on the right, where the destination neurons are clustered around the source neuron and

only 3 packets and 3 routing entries are required.

To optimize the placement of neurons upon cores the neural network must first be parti-

tioned into sub networks. Each of these sub networks may be allocated to an individual

processing element. Many algorithms exist to partition networks. Often these algo-

rithms aim to reduce the number of edges from within a sub-network to other external

sub-networks, such as the Kernighan-Lin algorithm [177]. For the developed empiri-

cal model the popular open-source software METIS [178] was utilized. The developers
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Figure 5.10: Comparison of simulated annealing energies. By improving the place-
ment of neurons upon cores, the energy of the state has decreased for both unicasting

and multicasting.

claim that this software provides high quality partitioning in much quicker time than

comparative software [179].

Once the network has been partitioned the sub-networks must be located upon the

optimal processing elements to reduce the NoC overheads. Although METIS can provide

an initial estimation of these locations, the process is extended by including a simulated

annealing algorithm.

Simulated annealing is a common heuristic algorithm used to find the optimum solution

to a particular problem, such as the placement of components within a circuit or the

well known travelling salesman[180].

An initial state, sn of the system is defined to have a set energy, En. The objective of

the algorithm is to find the state with the lowest energy. A random change to the initial

state produces a new energy value, En+1. If this energy is lower then the new state is

accepted as an improved state and is used in further iterations. Alternatively, using a

stochastic process the new state may also be accepted if it has a higher energy.
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The likelihood of accepting a transition to a state with a higher energy is dependent upon

a parameter known as the temperature, Tt. Initially the temperature is set high and

therefore unfavourable transitions are more likely to be accepted. Further, transitions

with a greater increase in energy are less likely to be accepted. This relationship is

shown below, where R(0, 1) is a random number between 0 and 1:

P (En, En+1, Tt) > R(0, 1) (5.30)

As the algorithm progresses the temperature “cools”. The lower temperature reduces

the probability of a negative transition being accepted.

This stochastic process prevents the state of the system becoming stuck within local

optimum points. This process continues until the algorithm is halted, usually dependent

upon when an acceptable solution has been found or after a defined simulation time.

In the developed simulated annealing algorithm the state is represented as the location

of sub-networks of neurons which are allocated to individual processing cores. The

energy of the state is associated with the cost of routing packets between processing

cores for all of the connected neurons. As the cost of routing packets differs for each

routing algorithm, a different energy calculation is used, as described below. Within

broadcasting all packets travel to all destinations so there is no benefit in optimizing the

placement of neurons, therefore it is not considered for simulated annealing.

Unicasting - Energy Calculation Within unicasting the objective is to minimize

the distance that packets between neurons are required to travel. Therefore, the energy

of a neuron, Es, is defined as the summation of the weighted edges, ei, originating from

the processing core to all other processing cores where the neuron has a connection. The

weight corresponds to the Manhattan distance upon the 2-dimensional mesh between

the two processing cores multiplied by the number of connections. The energy of a

processing core, Ep, is then defined as the summation of all energies of neurons upon

that core. The total energy of the state is the total of all the energies of all the processing

cores. This is illustrated by Figure 5.11.
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Figure 5.11: Calculation of the energy associated with a particular state for the
unicast routing strategy.

Multicasting - Energy Calculation Within multicasting the objective is to mini-

mize the number of routing entries that are required. Therefore, the total energy of the

state is defined as the summation of all the routing entries that are needed within the

network-on-chip.

Figure 5.10 illustrates an example of the energy associated with a unicasting and a mul-

ticasting routing scheme, along with how this energy is reduced by improved placement

of neurons upon processing cores.

During each step within the simulated annealing algorithm the state is changed, this

is accomplished by randomly swapping the location of two individual processing cores

within the 2-dimensional mesh. Randomly swapping allows for exploration of the avail-

able problem space and is used by Kirkpatrick et al. [180] when they first illustrated

the use of simulated annealing for improving the layout of digital circuits

In addition, at each step the temperature is cooled at a linear rate. After some time

the temperature reaches a point whereby swaps which increase the energy are no longer

accepted. Once this point is reached the algorithm continues until the local minima is

found. The length that the algorithm runs for is dependent upon the size of the problem

to be solved. For example, a 2x2 rectangular mesh with 4 processing cores has only 24

different states to explore, whereas a 4x4 rectangular mesh with 16 processing cores has
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(a) (b)

Figure 5.12: The unit cell of a homogeneous neural-NoC. Each cell consists of a
processor, memory for the connectivity, and a router to direct traffic between the cells.

(a) For broadcast or multicasting. (b) For unicasting.

16! = 2e13 states to explore. The simulated annealing algorithm attempts to the find

an optimum state by exploring only a subset of the total number of potential states.

The results of partitioning and the simulated annealing algorithm are demonstrated in

section 6.2.1. This section uses the algorithms to map a typical neural cortical column

onto a defined 2-dimensional mesh network-on-chip.

5.5 Unit Cell

A neural-NoC is a homogeneous system of many interconnected unit cells. To fully

understand and evaluate the NoC this unit cell and its components must be fully studied.

Unit cells, as shown in Figure 5.12, consist of the following main elements:

• Processing - responsible for calculating synaptic and neuron updates. A sample

dVLSI neuron was described in the previous chapter. The developed empirical

network model utilizes the sample dVLSI neuron as a baseline component. As

such, no further details are provided in this chapter for the processing.

• Communication - transmitting packets from the source processing core to the tar-

get core requires a network infrastructure. This primarily consists of routing ele-

ments arranged in a mesh with interconnect wires between the routers. A router

may have a local memory block available to assist in routing decisions.
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• Memory - in a neural-NoC the routers are heavily dependent upon the memory

required for the routing tables. These tables store a list of the neural network

connectivity and for multicasting the routing information. For unicast routing the

memory purely consists of RAM, whereas multicasting and broadcasting rely upon

a combination of RAM and content-addressable memory (CAM). CAM memory

provides a single cycle lookup function. When a packet arrives the CAM is searched

for the identifier, and if a match is found then an index/address is passed to the

RAM which returns the value. This process is described further in section 5.5.3.

For each of the components of the unit cell, a model representing the energy and area

of that component under differnt parametric conditions is described below.

5.5.1 Router

The routers are responsible for managing packetization of spike events from the pro-

cessor, transmitting of the packets to the correct destinations, and depacketization of

received packets back into spike events for inclusion in the neural models. When required

buffers within the routers may temporarily hold packets until they are able to progress.

The routers within a broadcast scheme are simple and efficient - any packets arriving on

a channel will be forwarded to other applicable channels unconditionally. For multicast,

the packet contents will be checked against a lookup table for an instruction, if none

is found then the packet will be passed along a default route. For unicast, a router

will inspect the contents of the packet and determine which way to route the packet

correspondingly.

[181] states that the power consumed by a NoC’s communication is primarily through

the energy dissipated in the switching of the interconnect wires, indeed [169] use this

metric alone to compare power in different communication topologies. Therefore, in

this thesis only the area and energy of the interconnects are considered in terms of

the communication infrastructure. The size and power consumption of the routers is

believed to be negligible in comparison to other components, such as the interconnects.
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(a) (b)

Figure 5.13: SRAM Architecture. (a) A 6 transistor memory cell [182]. (b) Memory
array layout. Adapted from [139].

5.5.2 RAM

The RAM is used to store the values held within the routing tables. SRAM/DRAM

is preferred over standard flip-flop memory cells because they are smaller in size. An

SRAM cell requires only 6 transistors, as illustrated in Figure 5.13a, and a DRAM cell

requires only a single transistor and capacitor. This reduction in memory cell size can

result in higher density of memory and a reduced power consumption [139].

Although DRAM provides a higher density of memory SRAM is faster and easier to

access. DRAM also requires regular refreshing to prevent the memory state from being

lost. Within the empirical models both DRAM and SRAM are compared to determine

the most suitable choice for the application.

The RAM cells are arranged in a matrix topology with row and column circuitry to

read and write to specific cells as in Figure 5.13b. When the cell value is written the

complementary bit lines (BL) are set as required and the write line (WL) is asserted.

This sets the state of the cross-coupled inverter. To read the value the bit lines are left
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Figure 5.14: Area and power relationships for a varying memory size, assuming a
65nm technology node and 100,000 memory accesses per second.

floating whilst the write line is selected [139]. The values of the cell can then be detected

by the sense circuits in the column circuitry

Rough estimation of the area of a RAM memory block can be achieved by simply deter-

mining the number of cells required [139]. However, energy in a RAM is consumed in

many different components and therefore energy modelling is not a simple task [183][184].

In fact it is a topic for a PhD thesis in itself [185]. Energy can be consumed in the mem-

ory cells, within the decoding circuitry and within the bit and write lines. To complicate

matters further the energy consumed in each of these components is dependent upon

the size, structure and layout of the whole memory system [184].

CACTI [186][187][188] is a memory modelling tool provided by HP Labs. It allows for a

user to accurately estimate the area, energy and delay of different memory models. Al-

though primarily focused upon modelling caches for high speed microprocessors a RAM

interface is also provided for estimating SRAM and DRAM parameters. In Figure 5.14

the area and power parameters for SRAM and DRAM are explored. As shown a 1kB

RAM will occupy twice as much area in SRAM technology but consume 50% of the

power of DRAM. As the memory size grows DRAM performs better. Presumably this
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gain is caused by the shorter interconnect (and therefore lower dynamic power) as each

memory cell is smaller.

The CACTI platform provides a baseline for performance. Increased performance can

and has been achieved through the use of techniques including sub-threshold operation

[189] and reduced memory cell transistor count [190].

The empirical model described in this chapter, and used in Chapter 6 and Chapter 7,

determines the depth and width required for the routing tables. This information is then

fed into the CACTI tool to determine the optimal memory arrangement and to provide

area and energy information. For example, if the empirical model suggests that each

routing table is required to be 1024 words deep with a 32-bit word width and with 100k

read accesses per second then the CACTI tool suggests that approximately 500nW of

power and 0.02mm2 of area is required. This suggests that each SRAM memory cell is

0.6µm2, which is in the region previously demonstrated for 65nm technology by multiple

groups [191][192].

5.5.3 CAM

A CAM is very similar to an SRAM but it can also perform single-cycle search operations.

If an input key is provided to the CAM then any row which matches the key will respond

with a match signal. An address encoder may then take this signal to provide an index

into a dedicated RAM cell, such as is shown in Figure 5.15. Alternatively, the match

signal could be used directly as the wordline in the RAM cell, if the CAM/RAM blocks

were closely integrated. There is a design trade-off to be considered between choosing

an address encoding or the direct wordline access, which is dependent upon the size of

the CAM/RAM.

CAMs are used within the NoC infrastructure to provide a quick search functionality.

When a router receives a packet, the contents of the packet may be checked against

the contents of the CAM in a single clock cycle. The CAM may then return a result

indicating what action the router should apply to the packet.

A ternary-CAM (TCAM) extends the standard CAM by accepting “don’t-care” values,

whereby multiple rows may match the input key if a subset of the input key matches.
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Figure 5.15: Arrangement between content-addressable memory (CAM) and random
access memory (RAM). The CAM receives an input key, if a match is found it produces

an ouput. This output can be used to index a RAM to then provide a result.

Table 5.4: Summary of the state-of-the-art in CAM developments.

Authors Institution Year Size (kbits) Width (bits) Search Speed (ns) Fab Size (nm) Voltage (V) Cell Area µm2 Energy (fJ/bit/search)

Pagiamtzis, Sheikholeslami Toronto, Ca 2004 37 144 7 180 1.8 - 2.89

Cho, Sohn Yoo KAIST, Kor 2005 144 144 2.2 100 1.2 22.4 0.7

Noda et al. Renesas, Ja 2005 4500 144 7 130 1.5 3.59 -

Yang et al. Chungbuk, Kor 2011 18 144 2.5 180 1 - 2.82

Huang and Hwang ] Taiwan 2011 37 144 2.5 65 1 7 0.165

Hayashi, Noda et al. Renesas, Ja 2013 4500 72 4 65 1 1.69 1.98

Arsovski et al. IBM 2013 1300 640 1 32 0.95 - 0.58

A typical CAM cell extends the standard SRAM cell by adding 4 extra transistors, a

match-line and a search-line [139]. Figure 5.15 illustrates how these lines connect to the

CAM cells. Initially, the match-lines are all pulled high, then the input key is placed

onto the search-lines. If there is a mismatch between a CAM cell and the input key then

the match-line is pulled low. If all the cells within a word are equal to the input key

then the match line remains high.

CAMs typically consume a large-amount of power. This is due to each cell being searched

when an input key is being received. Most of the energy is consumed in the match-lines

[193]. Every match-line attached to each row in the CAM is pulled high and if no match

is found then it is pulled low again. This results in a very high activity rate.

CAMs are often used in routing internet traffic. Hence, there is great commercial and

research interest in developing low-power systems. A summary of the latest develop-

ments in CAM technology is provided in Table 5.4. As can be seen the state-of-the-art

technology in terms of low-power is consuming under 1fJ/bit/search.
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Agrawal et al. [193] provide an extension to the CACTI tool for modelling power and

delay for ternary-CAMs which the empirical model described in this chapter utilizes.

Similarly to the RAM system, the empirical model calculates the size of each routing

table and how often it is searched. Both of these parameters are dependent upon the

routing strategy. From these parameters it is possible to determine the overall energy

consumption using the model provided by Agrawal et al and the optimized statistics

from Table 5.4. For the area estimation of the CAM cells the original CACTI tool with

a modification to take into account the enlarged cell area used by CAMs can be utilized.

For example, for a CAM cell involving 1024 words of 32-bits each, with 100k search

accesses per second and a search cost of 1fJ/bit/search the CAM will consume an esti-

mated 3.28µW of power. With a CAM cell approximately twice the size of an SRAM

cell this CAM arrangement will occupy 0.04mm2.

5.5.4 Interconnect

Spike events are translated into packets that are required to be transmitted around

the network. Transmitting of these packets involves significant energy consumption

[133][194]. Equation (5.31) illustrates how to calculate this dynamic power:

P = CV 2fU (5.31)

To determine the energy consumed in a neural-NoC interconnect the empirical model

must calculate the total capacitance, C, be provided with the mean voltage swing, V ,

and calculate the switching rate of each interconnect link, fU .

The capacitance of a global interconnect is well studied since it has a significant affect

upon the power and delay of a digital circuit. The problem is exacerbated with current

and future technologies as global wires start to dominate a digital circuit’s performance

more than the gate design [194][195][196]. This is due to global wires increasing in length

and the capacitance per unit length of an interconnect only reducing slowly with each

fabrication node [197].

A typical interconnect wire has a capacitance per unit length of between 0.1-0.2pF/mm

[139][198][171][199][200][197]. Therefore, the energy consumed to transmit a single bit
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over an interconnect with a typical 1V swing is between 0.1-0.2pJ/bit/mm. This value

can be reduced by using low-swing techniques [198][199] or intelligent encoding tech-

niques to reduce the number of transitions required [194][201]. However, as a baseline,

the empirical model assumes a value of 0.1pJ/bit/mm.

The mean interconnect link length can be determined by taking the square root of the

total area of the unit cell. The area of the unit cell can be calculated by summing

the area consumed by the processing core and the memory elements described in the

previous two sections. The empirical model combines this mean interconnect length with

the calculated bandwidth and the interconnect energy rate to determine the estimated

power consumption.

For example, if we assume that the unit cell consists of a processor with a size of

0.04mm2, a RAM with a size of 0.02mm2 and a CAM of 0.04mm2 then the total unit cell

is 0.1mm2. Therefore each interconnect link is 0.32mm long. If 100,000 packets/sec of 32-

bits each traverse across this link with 0.1pJ/bit/mm then the total power consumption

is approximately 100nW.

5.5.5 Unit Cell Summary

In this section the model of each sub-component of the unit-cell has been described with

a focus upon the energy and area consumption. The total energy and area consumed

can be estimated by summing all of the sub-components. The resource utilization of

each sub-component varies with the granularity of the unit cell. As such, to deter-

mine the optimal unit cell parameters the neural-NoC must be considered with different

granularities. This has not previously been investigated fully.

5.6 Process Flow

The information provided within this chapter forms the basis of a methodology to de-

termine optimum design parameters for a neural network-on-chip, with a focus on a

2-dimensional rectangular mesh topology.
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A neural network containing s neurons could be implemented upon a network-on-chip

using m = k2 processing cores. But, the number of processing cores has a signifi-

cant impact upon the maximum achievable performance of the design, upon the energy

consumed, and upon the silicon area required. This is shown in Table 5.3, where the

theoretical constraints of power, area, throughput and latency of a network-on-chip are

described.

A neural-network-on-chip relies upon the communication of packets between neurons on

different processing cores, which represent the transmission of action potentials. The

theoretical constraints shown in Table 5.3 also illustrate that the methodology for routing

of packets between processing cores has a significant effect upon the end design.

Within section 5.3.1.2, section 5.3.2.2 and section 5.3.3.2 the empirical models for uni-

casting, multicasting and broadcasting routing schemes are defined. These empirical

models, which are implemented in Matlab, take two primary parameters- 1) the connec-

tivity of the neural network to be considered, 2) the size of the network-on-chip in terms

of processing cores. From these parameters the empirical models calculate the size of

the routing tables which are needed by the network-on-chip, as well as the number of

transmitted packets that would be expected to transverse the network, otherwise known

as the bandwidth. The models also rely upon the external tools, Espresso, Metis and

the simulated annealing algorithm, to determine the optimum results.

The system model is used to calculate the amount of energy and the silicon area which is

to be used by the proposed design. This system model requires three sets of parameters,

1) the size of routing tables, 2) the network bandwidth, and 3) the single neuron hardware

design described in Chapter 4. The system model calculates the energy and area results

using the information provided in section 5.5.

By varying the initial parameters: neural network connectivity, network-on-chip size,

routing strategy; the complete model allows for the optimum parameters to be deter-

mined in order to reduce energy and/or area. This model is illustrated in Figure 5.16

and is used in the succeeding chapters.

For instance, in the next chapter a typical neural cortical column involving up to 65,000

neurons is investigated. Figure 6.11c shows the forecast area/energy consumption for

the cortical neural network, which is dependent upon the routing strategy and the size
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of the network-on-chip. It is shown that for this specific cortical network, energy/area

can be reduced by up to 5x with judicious selection of network-on-chip size. Similarly,

Figure 7.3 shows the energy/area relationship for an alternative neural network.

Further, the traffic simulation described in the next chapter can be used to verify cor-

rect operation of the proposed network-on-chip when considering the design parameters

produced by the empirical model.

5.7 Summary

In this chapter different network protocols previously described in the literature have

been introduced and compared. From this study a network-on-chip approach was deemed

to be the most suitable for implementation to meet the defined specification. For the

NoC approach, the available design options have been theoretically explored and a model

developed to determine the expected energy and area requirements of a completed im-

plementation. In the following chapters this empirical model is used to propose two

different NoC designs for two alternative neural network challenges.

This model provides an analysis only for a 2-dimensional rectangular mesh NoC as it

is the most common and the simplest to implement within a single silicon chip. The

model allows for the investigation into various trade-offs within the design, primarily the

granularity of the processing core. These trade-offs have an impact in terms of power,

area and performance, as shown within the following two sections. The model could be

extended to study alternative trade-offs, including investigating alternative topologies,

such as torus, or potentially multi-dimensional systems- perhaps including 3D integrated

circuits.



Chapter 6

Neural Network Case Study 1 -

Cortical Column on a Chip

“There is nothing like first-hand evidence”

A Study in Scarlet, Sherlock Holmes

Sir Arthur Conan Doyle

In this chapter the previously described methodology is used to study the optimal design

implementation of a standard biological neural network. The focus of the design is a

single chip NoC implementing a typical neural cortical column.

In the first section, the cortical column neural network under consideration is introduced,

before the results of putting this network through the NoC empirical model are shown in

order to determine the optimal design parameters, such as granularity and routing strat-

egy. The capabilities of the proposed neural-NoC design are tested by a software traffic

simulator that studies characteristics including maximum bandwidth. The achievable

maximum bandwidth is shown to closely correlate with the theoretical predictions from

Table 5.3. The final section discusses the implications of the results alongside providing

potential improvements, both to the design and to the empirical model.

120
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(a) (b)

Figure 6.1: Connectivity statistics for a typical neural cortical column as described
by Binzegger et al. [205]. This neural network has become a benchmark for the per-
formance of modelling systems and has been used by groups including SpiNNaker [109]
and SyNAPSE [104]. This network is used throughout this chapter to study the opti-
mal design of a neural-NoC. (A) Connectivity matrix of neurons within the network,
(B) The degree distribution of the neurons. On average a neuron is shown to have

approximately 1000 connections.

6.1 Neural Network

A cortical column is a microcircuit of interconnected neurons thought to be a funda-

mental building block of processing within the cortex [202]. They are thought to be

repeated structures each of which performs the same computation but on a different

subset of the inputs and producing a different subset of the output. Due to the amount

of investigation into columns there is a significant amount of anatomical data available,

making these microcircuits an attractive choice for implementation in silicon. In fact,

their implementation is still the first major milestone objective of many silicon neural

network implementations [2]; this is despite the speculation about the existence and

function of columns [203][204].

In 2004, Binzegger et al. [205] provided a detailed analysis of the visual cortex of

a cat. The circuit model that they developed has been used by the majority of the

silicon neural network developers whom are interested in studying biological systems as

the fundamental column of the cortex [106][104][206][109]. As such, this circuit can be

considered a suitable benchmark for a single-chip implementation for a neural prosthesis

and it can be used comparatively with other previous silicon implementations.

The neural network model1 combined anatomical connection statistics [205] with axonal

1The author utilized a model developed by Richard Tomsett, based around the Binzegger results.
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spread measurements [207][208]. This model allows for neural networks between 10,000

and 100,000 to be generated with realistic biological properties.

For the purposes of neural-NoC implementation, the network model can be simplified to

a simple binary matrix representation removing superfluous biological details. A sample

connectivity matrix is illustrated within Figure 6.1a. Within this matrix, a connection

between two neurons is represented as 1, and no connection represented as a 0. As

shown in Figure 6.1b, each neuron has on average nearly 1,000 connections.

6.2 NoC Analysis

6.2.1 Neuron Placement

The empirical model described in section 5.6 provides an estimation of the number of

routing entries and the bandwidth for each routing strategy. From these figures an

estimation of the performance, the energy consumption, and the silicon area of a neural-

NoC can be determined. Placement of neurons upon specific processing cores has an

impact upon the routing strategy, as it affects the distance that packets have to travel

to communicate between two connected neurons. Therefore, to develop an estimation

of the performance of a routing strategy the best possible placement must be provided.

For instance, a multicasting routing strategy scheme with randomly placed connected

neurons degrades into a broadcasting strategy, as each neuron is likely to have to send a

packet to every processing core due to the random placement. Hence, optimal placement

is important to achieve the best performance and area/energy rewards.

Many research groups [132][119] have stated that due to the clustering of neurons within

a neural network, communication overheads can be reduced by forming localized groups

of connected neurons within the silicon architecture. As such, section 5.4 described a

process for partitioning a neural network and mapping it to a 2-dimensional grid. This

partitioning process means each packet has to travel a shorter distance through the NoC,

reducing the bandwidth and routing table overheads.

In Figure 6.2a the result of the simulated annealing algorithm described in section 5.4

is shown. This figure highlights the reduction in routing overheads that is achieved by

optimizing the placement of neurons upon processing cores using simulated annealing.
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(a) (b)

Figure 6.2: Partitioning and placement of neurons onto cores. (A) Results of simu-
lated annealing algorithm to find the lowest routing cost. (B) Reduction in routing cost
for different size NoCs by using the optimized neuron placement algorithm described in
section 5.4. The empirical model is used to calculate the routing cost, as can be seen the
routing cost calculated with random placement closely correlates with the theoretical

prediction provided by Equation 5.1

This optimization is further illustrated in Figure 6.3. This figure shows three sam-

ple neurons from the network described in section 6.1 implemented upon two different

network-on-chip grid sizes, using random and optimized placement. The neurons are

located on a particular core as labelled. The strength of connection between the neuron

and its connected destination processing cores is quantified through the colour. Fig-

ure 6.3a shows a small-scale example to provide further explanation.

The degree label indicates the number of neurons that the source is neuron is connected,

which as shown in Figure 6.1b is approximately 1000 neurons on average. The energy

label represents the energy calculation used during the simulated annealing algorithm,

as described in section 5.4.

As can be seen the optimization process does create clusters around the processing

core of the source neuron. However, some neurons are still connected to a considerable

proportion of the cores within the network-on-chip. In the following sections assume all

of the neural networks have gone through this partitioning and placement process.

6.2.2 Traffic Bandwidth

Figure 6.4 shows the traffic bandwidth information for a neural network with 65,000

neurons as described in section 6.1 for three different routing strategies implemented

upon a rectangular mesh 2-dimensional network-on-chip. The NoC contains multiple
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 6.3: Optimizing placement of neurons. Degree represents the number of neu-
rons that the source neuron is connected to. Energy represents the routing cost for
a source neuron as described in section 5.4. (A) Method to interpret the succeeding
figures. A neuron A is connected to 5 other neurons. Two of which are upon its own
core, two upon the core to its immediate left, and one on the core below. This informa-
tion is represented in the neuron-to-core connectivity matrix. (B)-(D) The connectivity
of three neurons randomly placed within a 64-core network. (E)-(G) The same three
neurons but with optimization of the placement. (H)-(M) The same information but

for a 1024-core network.



Chapter 6. Case Study 1 125

(a) (b)

Figure 6.4: Traffic results for a neural network containing 65,000 neurons for three
different routing strategies implemented upon a network-on-chip with a varying number
of processing cores. (A) The overall system bandwidth. A flit is the communication
of one packet from one processing element to a neighbouring processing element. (B)
The mean utilisation of each link within the network. With more processing elements,
there is more interconnections links, each of which can operate at a lower frequency.

.

processing cores which can each model a variable number of neurons. If each processing

core can model more neurons then fewer cores are required.

As expected, when the number of neurons upon a processing core increases, and therefore

there are fewer cores, the overall system bandwidth decreases. However, as shown by

Figure 6.4b the mean frequency that each interconnection link within the system operates

at increases.

The unicast routing scheme is many orders of magnitude more inefficient than the other

two routing schemes. This is to be expected due to the high degree of connectivity within

the neural network as shown in Figure 6.1b, as for each connection a separate packet

is transmitted. Multicasting does not perform significantly better than broadcasting,

even with the targeted routing of packets. This is due to each neuron being connected

to a wide spread of processing cores throughout the NoC, despite the partitioning and

placement routines described in the previous section.

In section 5.3.2 core-based routing was described. This involves every packet originating

from a processing element being routed in the same direction, as opposed to a neuron-

based routing, where the packet is routed according to the source neuron. Figure 6.5

demonstrates the effects of core-based routing for the proposed single-chip system. As

can be seen with core-based routing the bandwidth degrades to the same performance

as that of broadcasting. This is due to the inter-core connectivity, whereby due to the
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Figure 6.5: Traffic bandwidth comparison with core-based routing suggested by [172].

Figure 6.6: Total size of routing tables versus number of processing elements for a
65,000 neuron network.

large degree of connectivity each processing core is connected to almost every other core

within the NoC.

6.2.3 Routing Entries

The empirical model also provides information about the number of routing entries

required for the NoC. In Figure 6.6 the total size of all the routing tables for the three

different routing mechanisms is illustrated. This figure studies a neural-NoC with 65,000

neurons implemented upon a varying granularity of processing core. The size of routing

tables for unicasting remains static for each granularity, however, for both broadcasting

and multicasting the size of routing tables is dependent upon granularity.

Interestingly, there is an optimal granularity to reduce the routing table size. This is

caused by the total number of routing entries being a combination of two different mem-

ory elements, RAM and CAM. At coarse granularities, the memory is dominated by

RAM, whereas at finer granularities the RAM requirements reduce whereas the CAM

requirements increase. This is illustrated by Figure 6.7a, which shows the RAM/CAM
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(a) (b)

Figure 6.7: Finding the optimal granularity of processor to reduce size of routing
tables. (A) Contribution of CAM and RAM to total memory consumption for multi-
casting. (B) The optimal point varies with the size of the neural network that is to be

implemented.

combination for multicasting. Figure 6.7b shows the total routing table size for broad-

casting when implementing three different size neural networks. As can be seen, the

optimal granularity changes depending upon the size of neural network that is to be

implemented.

6.2.4 RAM

Section 5.5.2 describes the methodology for studying the area and power consumption

for the RAM component of the unit cells. In Figure 6.6 the total memory within all the

routing tables varies with the granularity of the processing cores. This is dissected in

Figure 6.8a to show the RAM required per unit cell. It is for these size cells that the

area and energy consumption is illustrated in Figure 6.8b and Figure 6.8c. The model

indicates that for the size of memories required DRAM should be the preferred option.

Clearly, as the number of neurons increases per processing core greater area and energy

resources for each core are required. However, the total resource usage for a given neural

network size must be considered. If a processing core models fewer virtual neurons more

processing cores are used. The total area and energy resources consumed by RAM is

detailed in Figure 6.8d. As shown, to minimize RAM overheads many fine grained

processing cores should be used as opposed to a small number of large processing cores.

With the optimal parameters the power and area consumed by the RAM can be reduced

by 7x to only 13mW and 1cm2.
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(a) (b)

(c) (d)

Figure 6.8: The area and energy resources required by the RAM component of the
neural-NoC. (A) The size of the RAM required by each unit cell increases as the number
of neurons increases per unit cell. (B) The area consumed by each RAM cell. (C) The
power consumed by each RAM cell. (D) The power and area relationship for a neural
network of 65,000 neurons implemented upon a NoC with varying granularity. The

labels represent how many neurons per processing core.

Also, as expected Figure 6.8 shows that in terms of RAM resources broadcasting is more

efficient than multicasting. This is caused by the non-requirement to store extra routing

information. Unicasting is not considered here as the bandwidth is too large as shown

previously and as such it is not expected to be the optimal strategy.

6.2.5 CAM

The content-addressable memory is also expected to consume a significant proportion

of the available resources. A CAMs energy consumption is strongly correlated with the

number of search operations it is required to carry out. Figure 6.9a illustrates how the

number of search operations varies with the processing core granularity. As shown, with

a fine granularity many more search operations are required. This is due to the increase

in the number of processing cores, and therefore CAMs.
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(a) (b)

Figure 6.9: The area and energy resources for the CAM component of the unit-cells.
(A) The total number of search operations required varies with the granularity of the
processing core. (B) The area/power relationship of the CAM component for a varying
granularity. To reduce resource usage in the CAMs a coarse granularity should be used.

For broadcasting, when a neuron produces a spike a packet is transmitted to every

processing core and therefore every CAM is searched. By having more processing cores

more searchers are undertaken, albeit each search is within a smaller CAM unit.

As can be seen by Figure 6.9b, the CAM area/power relationship scales in the opposite

direction to that of the RAM. To obtain the minimum area and power relationship

many neurons should be implemented upon each processing core. Also, by comparing

Figure 6.9b with Figure 6.8d CAMs are expected to consume 10x the power of the RAM

units, although a similar area is expected.

6.2.6 Interconnect

To determine the energy consumed by the interconnect fabric the mean length of each

interconnect link must first be determined. This can be estimated by taking the square

root of the area of a unit cell. Figure 6.10a illustrates how the area of a unit cell varies

with processing core granularity. This area is a combination of the area of the RAM and

CAM defined in the previous section alongside the area of the neuron model calculated

in Chapter 4. It can be seen that area is predominantly consumed by memory.

This unit cell area leads to the mean link length illustrated by Figure 6.10b. This figure

confirms the theoretical relationship described in Equation 5.7, whereby the mean link

length grows with the square root of the number of neurons per processing core.
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(a) (b)

(c)

Figure 6.10: Energy consumed in the NoC interconnections. (A) Total area of unit cell
and contributions of different components. (B) Mean link length of NoC interconnect.

(C) Power consumed in interconnect links.

By combining the mean link length information with the bandwidth results provided in

Figure 6.4 an estimate of the power consumed in the interconnect fabric can be formed.

This is illustrated in Figure 6.10c. This figure shows that having a finer granularity,

with only a few neurons per core, increases the energy consumed in the communication.

However, the energy consumed in the communication is not of the same scale as that

consumed in the memory. Vainbrand et al. [133] developed a theoretical model of the

power in a neural-NoC and neglected to consider the energy consumed in the memory,

which has been shown here to be dominant.

6.2.7 Combined

In order to fully evaluate the neural-NoC infrastructure the contributions of the RAM,

the CAM, and the interconnect must be combined with the neural processing platform

described in Chapter 4.

In Figure 6.11a the total area varies with differing granularity of processing core. As

mentioned previously in section 6.2.3 there is an optimum granularity to reduce area
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overheads. This is mainly caused by the intersection in the scaling of the memory

components. ie. RAM is more efficient with a finer granularity, whereas CAM is more

efficient with a coarse granularity.

There is a similar relationship with the power consumption as illustrated in Figure 6.11b.

In fact, the optimal point is at the same level of granularity. Clearly, this leads to the

conclusion that for this size neural network each processing core should implement 256

neurons, whether multicasting or broadcasting is used.

The area consumed by a broadcasting strategy is less than that of multicasting, as

should be expected. However, multicasting is more energy efficient. In Figure 6.11b the

increased energy efficiency is accentuated at fine granularities. This is caused by the

dominance of the CAM units in the energy consumption at this granularity. In broad-

casting, each packet is transmitted to every destination regardless of if a connection

exists. This leads to at fine granularities many packets been transmitted to destina-

tions where they are not required and the CAM tables still being searched, needlessly

increasing the energy consumption.

The overall power/area relationship for a neural-NoC with the neural network described

in section 6.1 is illustrated in Figure 6.11c. This graph clearly illustrates the detrimental

effect that choosing the wrong granularity may have upon the final outcome of the

system’s performance, justifying the requirement to study the design parameters at an

early stage.

6.3 Traffic Simulator

The previous section illustrated detailed analysis of the area and power performance

of the designated neural-NoC. To clarify and investigate the design further a neural-

NoC traffic simulator has been developed. This simulator has been developed with the

intention of:

• confirming the theoretical performance parameters defined in section 5.3

• verifying correct performance of a system with the technological design parameters

defined by the empirical model from Figure 5.16
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(a) (b)

(c)

Figure 6.11: Overall area/power relationship for a neural-NoC. (A) Area varies with
granularity of processing core. (B) Power varies with granularity of processing core.

(C) The final area/power relationship with a varying granularity of system.

• evaluating the optimal design of sub-components of the neural-NoC

• studying the impact of the NoC infrastructure upon the computation of the neural

network itself

Each of the above objectives are discussed further in section 6.3.3. Firstly however, the

implementation of the software simulator is described in the following section.

6.3.1 Simulator Implementation

The simulator is developed in an object-oriented style using the Java programming

language. It is a cycle-based simulator.

The simulator is packet based - meaning all transactions consider only the communi-

cation of a complete packet, as opposed to breaking packets into smaller units known

as flits. Most NoC simulators do consider flit-based routing, as it provides performance

benefits. However, these benefits occur mostly when considering very large variable
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length packets. On the other hand neural spike packets are generally quite small and

with a fixed size, as a packet only contains the identity of its source neuron.

Each generated packet must be routed from its source to its destination(s). It is shown

in Figure 6.11, that for a neural-NoC broadcasting is comparable with a multicasting

routing strategy. For simplicity, and because it is not commonly implemented in software

simulators, it was decided to implement a broadcasting routing strategy. If correct

performance can be verified with a broadcast strategy then a multicast strategy will

perform even better.

The topology used by the simulator is a 2-dimensional flat mesh grid, with a variable size.

This allows for a comparison of varying granularity to be undertaken. The simulator

source code could be easily extended to include alternative topologies, such as a torus.

The simulator uses a simplified method of packet generation, as opposed to implementing

a complete neuron model. Each processing core stochastically produces neural spike

packets which are broadcast through the network. The rate of generation is controlled

by a global parameter to the simulator. This allows for the steady-state performance of

the network to be initially determined before characteristics of neural communication,

such as burstiness, are considered. In order to study specific neural communication

patterns a pre-defined list of spike events may be provided as a parameter to the neural-

NoC simulatorl.

Within the software simulator each packet is represented as an object, references to these

objects are passed between the various locations within the network, such as routers and

buffers. Each packet object contains the time of its creation. When packets have been

broadcast to all destinations their time is recorded, this information is used to calculate

the latency of the communication. This time is the simulation time, which is related to

the cycle of the simulator.

All generated packets are added to a global list. The throughput of the network can

be calculated by searching this list to determine those packets that arrived at their

destination within the allocated time period. The global packet list allows for the state

of all the packets to be determined, including historic packets which may have completed

traversing the network. If a global packet list was not kept object references to packets
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Figure 6.12: Design of router for the network traffic simulator. Each output port has
a buffer with a variable depth. Each input port has a single word buffer. Packets are
stochastically generated by the packet generator and held in a source queue until they
are able to be transmitted. The switch randomly selects a packet from an input port

to move into the correct output ports.

may be lost when they have finished traversing the network - making it difficult to

determine the throughput and latency of the network over an extended period of time.

If packets are unable to progress through the network any further they may be dropped.

The network implements a lifetime protocol, whereby if a packet becomes stuck and its

age is beyond the allocated lifetime the packet is dropped. Dropping of packets prevents

the network from being deadlocked, however, consideration must be made of how to

implement dropping packets efficiently in hardware.

The main component of the network simulator is the router. This component manages

the transmission of packets from their source to their destination. The router contains

four input ports and four output ports, whereby an output port of one router is directly

connected to an input port of a successive router. Each input port contains a single

buffer. If an input buffer is full then the proceeding output port will be unable to

transmit. The router’s switch will attempt to move the contents of the input buffer to

the required output buffers if there is available space. The size of the output buffer is

variable and is set by a global parameter to the simulator.

The design of the router and how the routers are interconnected into the network is

illustrated in Figure 6.12.

When a packet is generated, which happens stochastically, it is transmitted in a single

dimension first, be it a row or a column. When the packet reaches each router along that
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dimension it is duplicated and transmitted along the perpendicular direction, thereby

reaching all routers within the network. Each packet contains an identifier for the router

to determine whether to to switch the packet along the perpendicular direction. This is

the process illustrated in Figure 5.7b. Packets are randomly selected to transmit first

along the row or the column dimension of the network.

Each packet is assumed to be transmitted between two routers within a set time period

which is a global parameter of the simulator. The arrangement of the packet transmission

is not considered. For instance, a 32-bit packet could be transmitted in hardware in

parallel across 32 wires at 1MHz, across 1 wire serially at 32MHz, or in series-parallel

across 4 wires at 8MHz.

Each run of the simulation first of all proceeds through a warm-up state, whereby traffic

levels and patterns reach steady-state performance. Next, the simulation enters the

measurement state where the key characteristics of the network are measured before

entering cool-down where packets generated in the measurement state are still considered

whilst maintaining a background level of traffic. This protocol is specified by Dally et

al. [171].

Each router and the state of each packet is updated with a fixed global clock. To simulate

the nature of a network-on-chip the ordering of updates of routers and the switching with

routers was randomized. This removes the reliance of the traffic results on the simulator

implementation by preventing the system becoming deadlocked through a fixed-ordering

update scheme and uneven access to shared resources. Implementing a random order of

updates at each simulation cycle ensures a fair access and ensures no simulation artefacts

are present within the output. Random ordering effectively replicates a completely fair

arbitration scheme.

If the updating of routers was done in a fixed-order then the first routers to switch

would gain a priority within the network, as they would move their packets to the

destination first. The last routers to switch are therefore more likely to experience

bottlenecks because a majority of the packets have already been transferred, which may

have resulted in filling internal buffers. With a fixed-order update scheme, the last

routers to switch will always be the last routers, and therefore they will deadlock first.

By mixing the ordering of updates at each simulation cycle no router gains priority and

the traffic distribution and access to resources becomes uniform. It is an important
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Driver -f 10,100 -t 125 -k 16 -n 65536 -b 4 -l 50 -r 0.01 -s 0.0001 -e 0.0025

Listing 6.1: Sample instruction to instantiate and run the network traffic simulator

-------------Neural NoC Simulation ---------------

Settings:

Grid Size: 16

Neurons: 65536

Neurons/Core: 256

Phit Period: 125ns

Firing Rate: 10Hz

Max Life: 50

Buffer: 4

Runtime: 0.01s

Steps: 80000

Time Packets Meas. Lat. Dropped Thr.

4000 319 319 22.96 0 1.00

8000 644 325 23.10 0 1.00

12000 1003 359 23.05 0 1.00

16000 1358 355 23.05 0 1.00

20000 1680 322 22.97 0 1.00

24000 2024 344 23.27 0 1.00

28000 2371 347 22.92 0 1.00

32000 2690 319 23.02 0 1.00

36000 3072 382 23.22 0 1.00

40000 3397 325 23.22 0 1.00

44000 3723 326 23.06 0 1.00

48000 4080 357 23.21 0 1.00

52000 4386 306 23.13 0 1.00

56000 4739 353 23.01 0 1.00

60000 5055 316 23.07 0 1.00

64000 5382 327 23.02 0 1.00

68000 5680 298 23.17 0 1.00

72000 6004 324 23.17 0 1.00

76000 6307 303 23.15 0 1.00

No. of Packets: 6659.0

No. of Measurement Packets: 1624.0

Mean Latency: 23.06527093596059

Max Latency: 31.0

Dropped Packets: 0

Throughput: 1.0

Listing 6.2: Sample traffic simulation output

design consideration when implementing a neural-network on chip to ensure that the

routing strategy is fair, i.e. equal access to shared resources must be provided.

The software simulation can be instantiated from the command-line whereby it expects

a list of parameters. Multiple parameters may be defined to run a test over a defined

range of values. For instance, the command line instruction highlighted in Listing 6.1

will run the simulation twice, once with a mean firing rate of 10Hz, and once with a

mean firing rate of 100Hz. A sample output of the traffic simulation is illustrated in

Listing 6.2



Chapter 6. Case Study 1 137

Table 6.1: Theoretical limits for maximum mean firing frequency and minimum la-
tency as illustrated on Figure 6.13. fn represents the mean operating frequency of the
network-on-chip and is set at 8MHz, s represents the number of neurons within the

network and is set at 65536.

Grid Size Maximum Mean Firing Freq. (Hz) Minimum Latency (Clock Cycles)

k fsmax,broad
H0,broad

2fn
s

k
k+1

k
k−1

3
2k − 1

4 260 5

8 248 11

16 245 23

6.3.2 Simulator Results

The initial results of the simulator are shown in Figure 6.13 for three different NoC gran-

ularities. As can be seen, the output of the simulator corresponds with the theoretical

values of latency and throughput calculated in section 5.3 and as expected the maximum

throughput of the NoC decreases with an increasing number of processing cores.

The packet injection rate is defined as the ratio of packets injected to the highest theo-

retical throughput limit for a broadcast mesh NoC, as defined in (5.27).

By taking inspiration from calculating the effectiveness of solar cells using a “fill factor”

[209] methodology it is possible to determine the performance of each network topology

in relation to each other and also their theoretical limits. In photodiodes the fill factor

is calculated as the ratio of the maximum obtainable power to the product of the open-

circuit voltage and the short-circuit current [209]. A photodiode with a greater fill factor

has fewer losses and therefore a greater performance.

The fill factor of a network can be determined in a similar way; as a ratio between

the maximum product of achievable throughput and latency to the product of their

theoretical limits. The calculated fill factor for the developed simulator decreases slightly

with increasing grid size, suggesting that at smaller grid sizes the network is able to

perform closer to the theoretical limits.

The initial results illustrated in Figure 6.13 show the network performance with no

lifetime protocol. If a packet gets stuck it remains in its buffer until it can progress

as no packets are dropped. This means the network may reach a point whereby no

more packets are able to be transmitted as all buffers are full and the network becomes

deadlocked.
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Figure 6.13: Latency versus packet injection rate for three different NoC granularities.
The software simulator corresponds closely with the theoretical predictions provided by

equations in Chapter 5. See Table 6.1 for derivation of theoretical limits.

6.3.2.1 Packet Lifetime

In order to overcome this scenario the simulator design is extended to allow for packets

that have been deadlocked for a considerable length of time to be dropped, freeing up

resources and allowing the network to progress. The effect of different lengths of time

before packets being dropped can be seen in Figure 6.14. With a lifetime of 100 cycles, a

packet will be dropped if it cannot progress and is older than 100 cycles. This allows for

the network to partially recover, as illustrated in Figure 6.14b. It appears that a shorter

lifetime will significantly diminish the throughput of the network, whilst a longer life

cycle will allow for a more stable throughput.

Although the network is able to partially recover whilst dropping packets there will be

significant distortion introduced into the computation of the neural network. As such,

it will be preferential to avoid the network running under heavy loads continually. The

implications of a lifetime protocol in terms of hardware are discussed in section 6.3.3.
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(a) (b)

Figure 6.14: Investigating the impact of maximum packet lifetime upon the latency
and throughput characteristics of neural-NoC. The “life” is how many clock cycles a

packet may be stalled before it is dropped.
Neurons=65536, Grid Size=16x16, Buffer Depth=8

6.3.2.2 Buffer Depth

The latency and throughput characteristics are also reliant upon the depth of the buffers

within the routers. A small buffer increases the probability that a packet may be delayed

causing a backlog of traffic and increasing the number of packets that take longer to

traverse through the network. However, buffers are expensive in terms of area resources

[194] and large buffers should be avoided when possible.

The throughput and latency characteristics with a varying buffer size are shown in

Figure 6.15. The mean latency does not increase as rapidly with a small buffer, however,

more packets are dropped and therefore there is a weaker throughput. There is little

deviation in the latency and throughput characteristics once the buffer depth increases

above 4 suggesting this to be an optimal size.

Increasing the buffer size does not have a dramatic effect on the overall throughput and

latency characteristics. A leaky bucket analogy can be used to describe this [171], where

the buffer depth equates to the size of the bucket. Increasing the size of the bucket

does not have any effect upon the rate that the bucket leaks. The minor increase in

throughput with an increased buffer size can be linked with the bucket taking longer to

fill, such that fewer packets are lost when the bucket overflows.
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(a) (b)

Figure 6.15: Investigating the impact of buffer depth upon the latency and through-
put characteristics of neural-NoC.

Neurons=65536, Grid Size=16x16, Life=50

6.3.2.3 Operating Frequency

Equation (5.27) derived that the maximum throughput grows linearly with the operating

frequency of the network. This is confirmed in Figure 6.16 where the maximum achiev-

able mean neuron firing rate for a varying operating frequency increases with operating

frequency. By extracting this linear relationship it can be calculated that a neural-NoC

will be able to sustain a mean firing rate of 8kHz with a router operating frequency of

1GHz. However, this mean firing rate is far beyond what is typically required and as

such, this extra performance opens up the possibility of:

• running the network at a lower frequency to conserve power

• running the network at maximum frequency to model neural networks in faster

than real-time. Currently 1 second of simulation/operation time would represent

1 second of biological time. However, increasing the frequency of operation could

potentially simulate 1 second of biological time in significantly less than 1 second.

This concept is used in the next chapter, where 1 second of biology is simulated

in 25ms of real time.

• using serial links at high frequency between routers to reduce wiring area con-

sumption.

6.3.2.4 Traffic Distribution
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Figure 6.16: Comparing maximum mean neuron firing rate with network-on-chip
operating frequency.

In section 5.3 it is stated that the throughput of a network is limited by the bandwidth

that will saturate the bottleneck channel. In a broadcast mesh NoC this bottleneck

channel is any channel transmitting data to the outer layer of the mesh. This is caused

by in broadcasting every core receiving a copy of every packet transmitted. But, there is

an uneven distribution of what channels each core receives packets upon. For instance,

cores at the top of the mesh will receive the majority of their packets from the southern

channels, whereas their northern channels will receive few, if any, packets. Therefore,

these cores have some channels which are more heavily laden with traffic than other

channels, and as such they are more likely to drop packets first when the traffic increases.

This is why we see packets being dropped towards the edges of the mesh.

This hypothesis is confirmed analytically using the software traffic simulator, as illus-

trated in Figure 6.17. This figure shows a 16x16 core mesh. Each core is divided into four

segments, with the colour of each segment representing the traffic level for a particular

input channel to that core.

This uneven packet distribution suggests that a homogeneous router design is insufficient,

and instead, the resources of a router should be skewed towards the links that are under

the greatest burden. For instance, the channel buffers could be of different sizes inside

each router or the router may give priority to certain channels.

Alternatively, the link width or the link frequency could be adapted such that links

under a heavy load are wider/faster than those under a lighter load. This would allow

for faster packet transmission and thereby reduce the likelihood of collisions and loss of

packets in the outer layers of the mesh.
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Figure 6.17: Channel load distribution through the mesh.

The uneven distribution of load throughput the network impacts upon the location that

packets are dropped. Within Figure 6.18 the router locations within the mesh that

packets are dropped are shown. By having a heterogeneous router design, whereby

the outer routers are able to cope with higher traffic levels they will avoid becoming

bottlenecked, and as such, the network will drop fewer packets. In order to accommodate

greater traffic levels the routers must possess links with a higher bandwidth, either

through a wider link or a link with a higher frequency.

6.3.2.5 Impact upon Computation

As mentioned in section 4.2, the foundation of a neural network’s computation is based

around the communication of the spikes between neurons. It is therefore imperative that

a silicon neural network platform does not interfere with this communication pattern.

Ideally the platform should deliver the spiking information in a deterministic way to

avoid introducing unknown elements into the neural network’s computation.

Within this section the developed traffic simulator is utilized to study the impact of

the network-on-chip structure upon the neural model results. Three different encoding

schemes are considered, rate-, temporal-, and correlation- based encoding.
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Figure 6.18: Location of packets dropped within a 16x16 mesh. Colour represents
percentage of overall packets dropped.

Rate-based Encoding To study the performance of rate-based encoding upon the

proposed neural-NoC the traffic simulator was provided with a pre-defined list of spike

event packets. These packets were transmitted from their source to a destination node

and the number of arriving packets within a defined time period were counted. The ex-

periment was completed multiple times with a varying level of background traffic. The

expected packet rate was then compared with the achieved packet rate using covariance

correlation coefficient. The results can be seen in Figure 6.19. At low levels of back-

ground traffic the achieved packet rate is closely correlated with the expected packet

rate and all packets are transmitted in under 100 clock cycles. However, at background

traffic levels close to the threshold the correlation drops as some packets are lost and

others are held in transmission for a considerable number of clock cycles. Figure 6.20

compares the effect of packet injection rate upon the correlation of the rate-based en-

coding for three different grid sizes in. Clearly, to maintain a high level of correlation

the packet injection rate must remain below 0.5.

Temporal Encoding For latency based coding Figure 6.13 shows how below a packet

injection rate of 0.5 the mean latency remains close to the theoretical minimum. How-

ever, this mean latency calculation may hide important characteristics of the traffic pat-

terns. For instance, how does the latency of a neuron-to-neuron communication change
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Figure 6.20: Correlation between received events and transmitted events for different
background traffic levels for three different NoC sizes.

with the distance between neurons within the NoC. To study this the traffic model was

executed with different levels of background traffic whilst tagging a proportion of the

packets. Both how far these packets travelled and how long they took to reach their

destination were measured and the results are shown in Figure 6.21.

For low traffic levels the latency is deterministic and is proportional to the distance

between neurons. With increased traffic levels more variation is introduced into the

latency as packets are held waiting in buffers. This suggests that if some neuron-to-

neuron connections are temporally/latency related they should be located close to each

other within the NoC and/or the NoC should be operated at low traffic levels to avoid

variation in timings.

Correlation Encoding In correlation encoding information is related to the time

difference between events. For instance, after the onset of a stimulus, two separate

neurons may produce a spike that is transmitted to a third neuron. The third neuron

may interpret the time difference between the arrival of the two spikes in some way.

As such, there is a need to investigate the reliance of this time difference upon the

infrastructure of the neural-NoC.

In a similar design to the previous experiment spike events were tagged with a time and a

location and their progress through the network measured. The results of the correlation

encoding experiment are in Figure 6.22. Within this figure, the relationship between the
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(a) PIR: 0.03 (b) PIR: 0.30

(c) PIR: 0.60

Figure 6.21: Relationship between latency of packet transmission and distance be-
tween two neurons for a varying level of background traffic

change in timing and the distance between the two source neurons for three different

background activity rates is shown. The change in timing is defined as the difference

between the difference in the spike arrival times and the spike generation times. As

shown in this experiment there is less reliance upon the background activity rate and

more dependence upon the distance between the neurons involved in the computation.

Clearly, to minimize interference the neurons should be located close together or the

network should be operated at a frequency that negates the error introduced by the

delay in terms of clock cycles. For instance, a 10 clock cycle delay at an operating

frequency of 1MHz equates to only 10us, which is unlikely to alter the computation of

a neural network operating in the millisecond domain.

6.3.3 Simulator Discussion

In Figure 6.14b, it is illustrated how dropping of packets allows for the network to

continue to operate under heavy traffic loads. However, in section 6.3.2.5 the negative

effect of dropping packets and operating when the network is congested has upon the

neural computation is demonstrated. Therefore, ideally dropping and losing packets
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(a) PIR: 0.03 (b) PIR: 0.30

(c) PIR: 0.60

Figure 6.22: The effect of distance between neurons on correlation coding. ∆∆
represents the change in the difference between the packet transmission time and the

packet receive time.

should be avoided. By using the traffic simulator it can be proposed that operating the

network below a packet injection rate of 0.5-0.6 will allow for correct neural computation.

The dropping of packets using the lifetime protocol utilized in the traffic simulator may

also be very inefficient to implement. This is due to the requirement for each router to

track time and for each packet to store a record of its time of birth. This could seriously

hinder the design of the router and complicate the design of the internal buffers.

Equation (5.27) described the theoretical limit on maximum mean neuron firing fre-

quency for a neural-NoC implemented upon a mesh structure with a broadcast routing

strategy. From the traffic simulator it has been illustrated that the NoC can maintain

deterministic and best case performance at up to 0.5-0.6 packet injection rate. Equation

(5.27) can therefore be arranged to determine the minimum operating frequency of the

NoC for a required neural network (6.1). This frequency should be used as the maximum

time allowed for transmitting a packet between two routers.

fn = fs,maxs
k + 1

k

k − 1

k
(6.1)
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For example, for a neural network containing 100,000 neurons firing at a mean rate of

100Hz upon 256 processing cores an operating frequency of approximately 10MHz is

required. This equates to a latency of packet transmission through the NoC of 2.3us

and an equivalent NoC link throughput of 170Mb/s 2. These speeds are well within

what is currently achievable [132][118]. As such, for a neural-NoC the communication

should not become the bottleneck of the design and there should be more emphasis on

the efficient implementation of the memory and processing structures.

Adding extra buffer space may allow for bursty traffic to be temporarily dealt with, but

it does not solve long-term congestion issues as described by the leaky-bucket analogy.

Also, sharing of buffer resources should be avoided due to the technical overheads and

complexity that this introduces [194] and the deterministic nature of the traffic distribu-

tion. Due to the deterministic nature of the traffic distribution buffer resources should

be heterogeneously allocated throughout the system. For instance, a core in the corner

of the mesh will require smaller output buffers than a core in the centre of the mesh as

fewer packets will pass through it.

To overcome the uneven traffic distribution perhaps an original design choice of the

traffic simulator should be altered - the mesh topology.

Broadcasting in a mesh results in congestion as the traffic spreads to all the four corners.

If a torus topology was used the traffic would be allowed to spread more evenly resulting

in less congestion. Each link would have an equal bandwidth and the maximum mean

neuron firing rate would double as described in Table 5.3.

Initially a torus topology was discounted because of the increase in power and area within

the interconnect fabric. But, as shown in section 6.2.6 the power in the interconnect is

only a minor component of the overall system power and not the major contributor as

proposed by Vainbrand et al. [133].

6.4 Discussion

The estimated VLSI characteristics of the system are provided in Table 6.2. The pro-

posed neural-NoC is expected to consume 100mW of power and an area of 10cm2 for

2assuming a 17-bit packet length
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Table 6.2: Expected performance characteristics for proposed neural-NoC.

Neural Network Parameters

Size 65,000 neurons

Mean Neuron Firing Rate 10Hz

Mean Degree of Connectivity 1414

System Parameters

Technology Node 65nm

Voltage 1.2V

System Performance

No. of Processing Cores 256

Total Memory 2Gb

Memory / Processing Core 8Mb

Total Memory Bandwidth 18.5Gb/s

Total Communication Bandwidth 1.6Gb/s

Power 100mW

Area 10cm2

computing 65,000 neurons in 65nm technology. This is just within the range of the

specification outlined within Table 2.1. It is likely that with advancements in technol-

ogy, particularly reduction in fabrication size, these power and area values will reduce,

providing a more efficient and more capable platform.

The NoC system has been shown to not consume a significant proportion of the power

and the area and the traffic simulator illustrates that a neural-NoC will be able to

comfortably cope with the demand placed upon it. The current constraining factor

within the design is the area and power consumption of the memory components needed

to store the connectivity information of the neural network. This is due to the large

degree of connectivity between neurons.

Currently, at the optimal granularity the memory consumes 90% of the power and 80% of

the area of the proposed system. The CAM structure alone consumes 50% of the power.

This is due to the large no. of searchers of the CAM and the significant energy consumed

for each search. As illustrated by Table 5.4, in the last 10 years the energy/bit/search

has reduced by 5-10x which is promising trend for this application.

Alternatively, to reduce the energy consumed within the CAM they could be restructured

at a system-level. For instance, a multi-stage CAM could be introduced, which could

allow only a sub-section of the CAM to be required to be searched.
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Figure 6.23: Multi-stage CAM method to reduce energy consumption. When a packet
arrives a multiplexor selects only one of the sub CAMs to search. The selection is based

around contents of the input packet.

This process is illustrated in Figure 6.23 where a single CAM block is partitioned into

four separate CAMs. When a packet arrives a multiplexor inspects the contents of the

package and then selects one of the four CAMs to search. Thus the three remaining

CAMs are not searched and do not draw dynamic power. If this method was to be

implemented care would need to be taken to ensure that each CAM partition was of

equal size to ensure efficient layout. Also, investigations would have to be undertaken

to determine the optimum number of partitions.

The study into granularity has shown that choosing the wrong granularity can signif-

icantly hinder the outcome of the design. It is proposed that for this neural network

topology with 65,000 neurons that 256 neurons should be allocated to each processing,

giving 256 processing cores within the network itself.

The optimal granularity is strongly correlated with the synaptic connectivity pattern.

It is independent of many NoC design parameters, including topology and operating

frequency, and as such, this granularity may be beneficial to multiple design groups

with differing project objectives.

Recently, the development of systems with the same scale of processors as are required

for this application have been demonstrated, highlighting that the design is feasible.

Similar to the neural-NoC system most large multi-core systems suffer from a memory

wall 3 and as such the development of 3D processor memory stacks has become popular.

3The memory wall is caused by the difference in processing operating speed and the speed at which
it can access its required data from memory.
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Figure 6.24: Potential 3D layout. The memories for each processing core are inter-
leaved above the processing layer. This reduces the area consumption by 4x.

A review of recently demonstrated processor-memory stacks is provided within Table 6.3.

As can be seen, the 3D-MAPS project team at Georgia Tech have shown a device with

the same order of magnitude of processing cores and memory as are required for this

neural-NoC design.

The projects listed in Table 6.3 do not meet the specification requirements of a neural-

NoC in terms of energy consumption. However, a neural-NoC will be able to operate

at a much lower operating frequency as the system will be designed to work within a

biological time-scale. This should significantly reduce the energy consumption.

It is estimated that the area required by each unit-cell of the neural-NoC is 2.5mm2, of

which 2mm2 is memory and 0.5mm2 is processing. Therefore, 4 processing cores could be

placed within the area occupied by a memory required by a single processor. Hence, by

using a 3D arrangement, 4 memories could be stacked on top of a single block containing

4 processing cores. Each processing core could be connected using through-silicon vias

(TSV) to its memory upon an individual layer. This design concept is illustrated in

Figure 6.24. This would have the effect of reducing the total area consumption by 4x to

only 2.5cm2.

Typically, processor memory stacks allow for faster communication or reduced power

consumption between processing cores due to the reduced link length between cores

[215]. However, the neural-NoC is not constrained by the communication delay or energy

consumption in the interconnect and it is likely any gains would be offset by the increased

costs in routing information between the 3D layers using the through-silicon vias (TSV).
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The separation of memory and processing into different layers would also allow for opti-

mization of the fabrication technology for each process [216]. By optimizing the fabrica-

tion technology the area and power overheads, as well as the financial and manufacturing

complications[216], could be reduced.

All large-scale systems have used packet-switching on multiplexed wires for neural com-

munication at some level. However, previously implementations have often utilized

alternative protocols for local communication [168][119].

If all m processing cores were directly interconnected instead of using a network approach

then the system would require O(m4) in terms of wire length. For the 256-core system

proposed this would equate to at least 873m of interconnect wiring as opposed to the

0.174m needed. This of course is also neglecting the complexity of routing such a large

number of wires.

Alternatively, Seo et al. [120] proposed using a crossbar matrix approach. Table 5.2

describes how the area consumption of this design approach scales at O(n2) as opposed

to a NoC scaling at O(n). In practice, a 65000-neuron network would require a memory

array of 4Gb accessed at a rate of 43Gb/s. Using a multi-core approach the total

memory consumption required is reduced to only 2Gb, which is divided into 8Mb units

each accessed at only 72Mb/s.

The memory architecture outlined within Figure 5.15 may result in sparse memory ini-

tialisation. For instance, within the 256 processing core system, each RAM cell contains

28k entries at 256 bits/entry for a total of 7.2Mb. But, the empirical model suggests

that only 370kb of the 7.2Mb is initialised to 1 with the rest being set to 0. Therefore,

instead of the approach in Figure 5.15 a sparse matrix representation providing a list

of connected neurons could be used, as is illustrated in Figure 6.25. This would lead

to 370k entries at only 8 bit/entry requiring only 3Mb. However, there is 10-15x more

accesses required of the RAM. Therefore, despite the reduction in terms of area con-

sumption the sparse representation format does require a greater power consumption.

The comparison between these two techniques in terms of area and power is illustrated

in Figure 6.26.

Figure 6.11 shows how broadcasting compares with multicasting for a neural-NoC in

terms of area/power utilization. It is proposed that these techniques could be merged
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Figure 6.25: Illustration of sparse matrix RAM connectivity option. For each match
in the CAM a list of connected neurons is provided within the RAM. Each item in this

list will be a log2n-bit identifier if there are n neurons per core.

(a) (b)

Figure 6.26: Comparison in terms of area and power consumption between the orig-
inal RAM methodology and a sparse representation alternative.

to form a narrowcast methodology. This will involve packets being initially broadcast to

all destinations until they are prevented from travelling any further by a routing entry

at a particular core. These routing entries will already exist if a destination neuron is

upon the same core, which should always be the case. With initially broadcasting the

requirement to store routing information is removed until the edge of the packets area

of travel significantly reducing the area consumption by reducing the number of routing

entries from multicasting. Also, it will prevent packets from being transmitted further

than is required, which happens in a broadcasting scenario. In effect, narrowcasting will

assume the area relationship of broadcasting with the power relationship of multicasting.

This proposed routing methodology is illustrated within Figure 6.27 and the expected

area/power is highlighted in relationship to broad/multi -casting in Figure 6.28.
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Figure 6.27: Narrowcast routing strategy. When the neuron pn03, vn3 produces a
spike, a packet is broadcast through the network until it is instructed to stop travelling.
Each processing core that receives the packet is responsible for filtering the messages

so that only connected neurons are updated.

Figure 6.28: Narrowcasting area vs power relationship. Narrowcasting achieves the
same power performance as multicasting but with the same area performance of broad-

casting.

6.4.1 Recent Developments

In August 2014, IBM released their latest work within the neural network-on-chip

(NNoC) field within the journal Science [217]. This paper describes a single chip capable

of simulating 1,000,000 neurons and 256,000,000 synapses. There are key architectural

similarities between the work of this thesis and [217].

Firstly, both designs utilize a granularity of 256 neurons per processing core, which has

been shown within this thesis to be the most efficient.
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Table 6.4: Comparison between proposed NNoC and NNoC implemented in [217]

Feature This Thesis [217]

Application Neural Prosthesis Object Recognition and others

Neurons 65,000 1,000,000

Synapses per Neuron 1000 256

Total Synapses 65,000,000 256,000,000

Processing Cores 256 4096

Granularity 256 256

Technology 65nm 28nm

Size of Memory (Gb) 2 0.4

Power (mW/cm2) 10 20

Area (cm2) 10 4.3

Learning No No

Routing Style Dimension Order Dimension Order

Router Design 5-port 5-port

Network Topology Mesh Mesh

Secondly, the network topology is identical. Both designs use a mesh structure with

5-port routers.

Finally, both designs use packets to transmit synaptic information between cores. In

both designs these packets are routed between cores using dimension-order routing.

This IBM paper has shown that a design similar to that proposed within this chapter

is feasible and practical. Although the IBM design does demonstrate more neurons in a

smaller area this is compensated by the decrease in the number of synapses per neuron

and a smaller technology size of only 28nm. Table 6.4 provides a comparison between

the two design, clearly detailing the overall similarities.



Chapter 7

Neural Network Case Study 2 -

Granular Layer Rehabilitation

“Data! Data! Data!” he cried impatiently. ”I can’t make bricks without clay”

The Adventure of the Copper Beeches, Sherlock Holmes

Sir Arthur Conan Doyle

The work in this chapter was done in collaboration with Jun Wen Luo who

was responsible for the design of the central processing cores and under-

taking the results described in section 7.4.5. However, the focus of this

chapter is primarily upon the design and operation of the network-on-chip

infrastructure which was the sole responsibility of the author.

In this second case study the methodology described in Chapter 5 is utilized to study the

optimal design of a network-on-chip for the realisation of a cerebellar prosthesis. The

proposed design is then implemented fully within an FPGA and results demonstrating

its performance are provided.

Animal and human motor movements, such as walking, running or even riding a bicycle,

rely upon the coordinated timing and activation of muscles. The cerebellum is the vital

controller within this process and it is responsible for the encoding of time within the

millisecond range, known as passage-of-time encoding (POT) [218]. Incorrect encoding

within the timing of movements may result in dysmetria, a condition caused by damage

157
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to the cerebellum and which results in a patient being unable to control body movements

reliably [219].

It is proposed that a neuroprosthesis can be created that will allow damage to the

cerebellum to be overcome. For this, an efficient computational platform that can mimic

the complex function of the cerebellar neural network will be important.

The encoding of time within the cerebellum is believed to be controlled by the granu-

lar layer, that primarily consists of Granule and Golgi cells. Many models have been

developed that replicate the function of the granular layer. The random projection

model [220][221] is a popular, robust and plausible model and is therefore used as the

foundation for this study.

Previously, implementations of this model have been completed using software [221],

which are slow to process. Although a more recent GPU implementation exists [103]

that performs faster, a more suitable platform is required for biological experiments.

An FPGA platform with flexible input and output connections will allow for in-vivo

experiments allowing further investigation into the biological features of the network.

Lessons learned in the development of this platform may also be beneficial for a neu-

roprosthetic system. Previous hardware implementations of the cerebellum, such as a

VLSI mixed-signal programmable array [74], have considered only simplified models of

the cerebellum.

In the following section the random projection model is introduced, with a particular

focus upon its network properties. This network is then evaluated using the previ-

ously described methodology to determine the optimal design parameters. Next, the

implementation of the neural-NoC is described before providing results of the system’s

performance that illustrate how it can be used in a neural prosthesis.

7.1 Passage-of-Time Computational Model

The cerebellum granular layer consists of granule and Golgi cells. The model proposed

in [221] contains over 1000 Golgi cells and 100,000 granule cells. The granule cells are

collected within a granular cluster, which send excitatory inputs to a local Golgi cell.

The Golgi cells are randomly connected in return back to the granule clusters. On
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Figure 7.1: The network properties of the granular layer model. (A) The connectivity
between cell units. The different colours represent the grouping of cell units. Image
produced by Gephi graphing software. (B) Illustration of a cell unit. 100 granule cells
make up a single granular cluster. The output of each of these cells is connected to
a single Golgi Cell. The output of the Golgi cell is randomly connected to a selection
of granular clusters. (C) The distribution of the number of connections between Golgi

cells and granular clusters.

average, a Golgi cell is connected to only 8 granule clusters. This topology is illustrated

within Figure 7.1.

Each granule and Golgi cell is modelled as a conductance-based, leaky integrate-and-

fire unit. The development of these neuron models is described in [222]1. For the

development of the neural-NoC, the state of the neuron model can be simplified to a

simple all-or-nothing digital pulse, generated if the cell produces an action potential.

The Golgi cells activate at a mean rate of 40Hz.

The Golgi-to-granule cell transfer of information is studied using the network-on-chip

empirical model described earlier. The empirical model is used to determine the opti-

mum routing methodology and the optimum network-on-chip size to achieve the best

performance. The network of Golgi cells is mapped to processing cores within the

network-on-chip using the simulated annealing algorithm described previously.

Clearly, the properties of the neural network model described here differ greatly from

the previous case study in terms of the number of connections. As such, the optimal

1The neuron models were developed by J. W. Luo, PhD Student, Newcastle University
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design parameters of the NoC will be different to what was previously highlighted in

Chapter 6.

7.2 NoC Analysis

The regular structure between a cluster of granule cells and their nearest Golgi cell

highlighted in Figure 7.1(B) allows some simplifications to be made to the neural-NoC

design. Each granule cell may be updated sequentially and their output summated

in order to form the input to a Golgi cell. This removes any requirement to transfer

granule cell spiking information through a network, leaving only the Golgi-to-granule

information.

All three of the standard routing methodologies described in section 5.3 have been

analysed with the granular model to determine the system bandwidth, the memory

overheads and the power and area requirements.

In Figure 7.2a, the bandwidth for each routing scheme is compared with the number of

Golgi cells per processing core. Having more Golgi cells per core means the NoC can be

smaller and therefore in all instances the bandwidth reduces.

In the previous case study, broadcasting performed similarly to multicasting, but with

this network model it performs much worse. This is caused by the each Golgi cell being

connected to only 8 granule clusters on average as opposed to the previous example

where the connectivity was greater than 1000. As the connectivity is very low packets

are only required to be transmitted to a minority of the destinations within the chip.

Multicasting offers a reduced bandwidth in comparison to unicasting, although only by

a factor of 2.

Figure 7.2b illustrates the size of the memory tables. For unicasting, the size of the

memory tables required remains constant for each granularity of processing core. At

fine granularities broadcasting offers a similar level of memory size, but this increases

greatly as the number of neurons per core grows. For multicasting, the burden imposed

by the requirement to store extra routing information can be clearly seen in the difference

between it and broadcasting memory sizes. Multicasting requires approximately 2x as

much memory as unicasting - an inverse of the bandwidth relationship.
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(a) (b)

Figure 7.2: Comparison of the bandwidth (A) and memory requirements (B) for three
different routing strategies implementing the granular layer model upon a neural-NoC

for a varying level of processing core granularity.

Bandwidth and memory size can be used to determine the power and area relationships of

each proposed design as described in the methodology. This is illustrated in Figure 7.3a.

Due to the simpler communication requirements of the granular model the neural-NoC

performance becomes much more reliant upon the processing platform. Therefore, as

shown in this figure, the power versus area relationships remain similar for all three

different routing strategies. The contribution of the processing, the communication and

the memory towards the overall power consumption for a unicast routing startegy is

highlighted in Figure 7.3c

However, by removing the computational contribution to power and area it is possi-

ble to analyse the effect of the different routing mechanisms upon the power and area

relationships, as highlighted in Figure 7.3b. It is clear in this figure that unicasting pro-

vides the best performance characteristics. Multicasting requires a similar level of power

consumption but a far greater investment in area due to the CAM/RAM requirements.

The significantly increased level of bandwidth in broadcasting means that it will result

in approximately 2 orders of magnitude increase in terms of power consumption.

In Figure 7.3b, the effect of granularity upon the power and area consumption in the

communication infrastructure is highlighted. For unicasting a very fine granularity, with

a minimum number of neurons per core provides the most efficient platform.

Also, by reducing the number of neurons per core the update of that core can be com-

pleted in less time. A large number of smaller cores can complete the same computation

quicker than a small number of large cores. This is beneficial for the granular layer
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(a) (b)

(c)

Figure 7.3: Power and area relationships for a neural-NoC implementing the granu-
lar layer model. (A) The power/area is dominated by the processing platform and as
such, the different routing methodologies do not have a great impact. (B) Without the
processing platform included the power and area of each routing method can be com-
pared. Unicasting is a clear favourite for this scenario. The numbers within the figure
represent the number of processing cores- i.e the granularity of the system. Clearly, the
granularity greatly impacts the communication overheads. (C) The contribution to the

overall power consumption of different components of the neural-NoC.

neural-NoC platform as a secondary objective is to run large-scale simulations in accel-

erated time. Therefore, with a fine granularity a greater level of performance is achieved

whilst also reducing the cost in terms of area and power consumption.

7.3 Design

For initial verification of the design concept and for use in exploratory investigation

by neuroscientists an FPGA-based design is selected for the first stage in development.

However, it is shown in the previous section how the design will comfortably scale to an

ASIC platform that will meet the specification of a neural prosthesis device provided in

Table 2.1 if required.
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Figure 7.4: A Xilinix VC707 evaluation board containing a Xilinx Virtex-7
XC7VX485T FPGA.

The chosen FPGA is a Xilinx Virtex-7 XC7VX485T installed upon a Xilinx VC707 evalu-

ation board. This FPGA contains nearly 500,000 logic cells, 2800 arithmetic units, 37Mb

in on-chip block memory and 700 user I/O pins [148]. The evaluation board supplies

all the required configuration circuitry alongside additional memory and input/output

resources. An image of this setup is provided in Figure 7.4.

The neural processing platform, which implements the conductance-based, leaky integrate-

and-fire model was developed by Jun Wen Luo and is described in [222]. As mentioned

previously, a single Golgi cell receives the summated response from a single cluster of

granule cells. It is the responsibility of the NoC to manage only the communication

of events from the Golgi cells to their connected granular clusters. This process of

communication separation is illustrated in Figure 7.5.

Each processing core implements 2000 granule cells and 20 Golgi cells. Ideally, each core

would implement fewer cells to reduce the power and area consumption, as described

in the previous section. However, the available resources upon the FPGA and the

chosen core design methodology constrains the granularity to 20 cells. Each processing

core requires approximately 50 arithmetic units, and there are 2800 arithmetic units
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Figure 7.5: Illustrating the separate communication structures within the granular
layer neural-NoC platform. Communication between granular clusters and Golgi cells is
handled upon the processing core. Communication from Golgi cells to granular clusters

is managed by the NoC infrastructure.

available upon the FPGA, meaning 56 processing cores available. The granular layer

modelled contains 100,000 granule cells and 1000 Golgi cells, so with 50 processing cores

each core is required to implement 20 Golgi cells. The NoC design however is not reliant

upon the chosen granularity and the number of processing cores within the network is

flexible.

A general overview of the neural-NoC design is provided in Figure 7.6. To implement

1000 Golgi cells, 50 cores are arranged in a rectangular mesh. Each processing core is

attached to an interface module that is responsible for packetizing spike events from the

core and inserting the packets into the network. It is also responsible for receiving the

packets and buffering the inputs until required by the granule cells.

The interfaces are each connected to a router which inspects the contents of the packets

to determine the directions of which to route the packets. The packets are transmitted

between routers using a 4-phase handshake. The network itself is mesochronous, meaning

each module operates at the same frequency but with an unknown phase difference [223].

A special processing core is attached to the network to provide an external interface.

Packets can be sent to/from this core to inspect/update the status of the system. This

special processing core is referred to as a listening module. A configuration module is

supplied, which is responsible for communicating the connectivity of the network to the



Chapter 7. Case Study 2 165

Figure 7.6: Granular Layer Neural-NoC Design Overview.

processing cores within the system. The global frame master is utilized to manage the

timing and arbitration system.

In the following sections each of these components are described in further detail.

7.3.1 Time

The processing core updates a new granule cell on each clock cycle. Therefore, after 100

cycles a cluster of granule cells has been calculated and the response is fed to the Golgi

cell. If there are n Golgi cells upon the core then in n ∗ 100 cycles all of the Golgi cells
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Figure 7.7: Illustration of frame-based encoding for the neural-NoC. Packets are
communicated whilst the processing cores compute the updated states of the cells. If
the communication of packets exceeds the computation time then the cores are paused

until the communication is complete, then the next frame can begin.

have been updated. This time is known as a processing frame and is equivalent to a

single iteration within the software model.

This processing frame is managed globally throughout the chip using a single clock cycle

from the global frame master. This is an identical approach to that of IBM in [217].

The communication of packets from Golgi cells to granular clusters happens concurrently

with the computation. If packets are still travelling through the network at the end of a

time-frame then the succeeding time-step is stalled until the network has finished trans-

ferring packets. This novel neural-frame-based encoding ensures that all packets are

transmitted to their destination in the same frame as of which they are generated. On

receipt the packets are buffered and utilized by the granular clusters in the succeeding

frame. This has the benefits of: maintaining compatibility with the synchronous soft-

ware model; removing timing errors caused by packet transit delays; and allowing for a

coherent accelerated time mode of operation.

This frame-based process is illustrated in Figure 7.7.

With 20 Golgi cells per processing core the processing frame will require a minimum of

2000 cycles to complete. At an operating frequency of 50MHz this requires 40µs. Each

frame is equivalent to 1ms of biological time hence, there is a 25x speed-up over real-

time. However, if the neural-NoC is required to operate in real-time for use in hybrid

bio-electronic experiments the global frame-master could be programmed to stall the

network such that each time frame is only initialised every ms.
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Figure 7.8: Packet types and format. The 13-bit packets can be of four different
types, which is denoted by the 2-bit header value.

7.3.2 Packet Format

The packet format is illustrated in Figure 7.8. In the current design packets are of a

fixed 13-bit length. The two most significant bits are the packet header representing

the type of packet. The remaining 11-bits make up the packet body. Packets can be of

four different types: Golgi-to-granule (GTG); Golgi event (GE); configuration start/stop

(CS); and broadcast (BC).

Golgi-to-granule The most common type of packet is GTG. This packet is produced

when a particular Golgi cell produces a spike. On production of a spike the interface

inspects the connectivity memory to determine a list of granular clusters that are con-

nected to the spiking Golgi cell. For each connection a separate packet is generated.

The 11-bit body of the packet contains the destination of the connected cluster. The

first 6-bits of this body represent the processing core where the cluster is located and the

remaining 5-bits represent the cluster upon that core. No identification of the spiking

Golgi cell is attached to the packet as it is unnecessary for this particular granular layer

model. Although, if the packet length was extended it could be easily included.

The routers use the 11-bit body to route the packets through the network to the correct

destination. All GTG packets are expected to be transmitted within a single processing

frame. If they are not, then the network is stalled until all messages are finished.

Golgi Event The GE packet is also produced when a Golgi cell produces a spike. This

packet is used to inform the listening element that a particular Golgi cell has spiked. The

listening element may communicate this information outside of the device if requested.
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The packet body contains the 11-bit identifier of the spiking Golgi cell. The routers on

inspection of the packet header route the packet towards the listening element.

Configuration The CS packets are used to setup the connectivity of the network.

These packets target a specific processing core within the network. On receipt of the

packet the interface module enters configuration mode. Any further packets received

by this interface are then inserted into the connectivity memory in the order that they

are received overwriting the previous contents. When a second CS packet is received

by the interface it leaves configuration mode and resumes its normal tasks. The 6 most

significant bits of the packet body represent the target processing core. The configuration

process is outlined in further detail in section 7.3.10.

Broadcast Broadcast packets are transmitted to all destinations within the network.

The contents of their body change depending upon the reasoning behind the transmission

of the packet.

7.3.3 Interconnection Link

The interconnection link is responsible for managing the transmission of packets between

two routers. The design utilizes a full-parallel topology whereby the whole 13-bit packet

is transferred in a single cycle along 13 separate wires. The transmission of the packet

is managed using a 4-phase handshake protocol. The 4-phases are described below and

are annotated in Figure 7.9.

1. Master initialises the data lines, requests permission to send and waits for acknowl-

edgement.

2. Slave responds with acknowledgement and accepts the data if there is room in its

buffer.

3. Master turns off request.

4. Slave turns off acknowledgement.
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Figure 7.9: Interconnection link design and 4-phase handshake protocol.

Figure 7.10: The switch uses a 64x5-bit LUT to determine the direction in which to
route a packet.

7.3.4 Router

The router contains 4 input channels, 4 output channels and a switch. The input

channels act as a slave in the interconnection link described above and contain a single

register as a buffer. When data is available in the register a signal is used to alert the

switch.

The output channels represent the masters in the interconnection link. Each output

channel contains an individual FIFO buffer, configured with a depth of 2. A signal is

attached to the switch to which details the availability of the buffer. A central global

buffer per router is avoided due to the complexity of managing shared access during

busy periods [194]

The switch uses a round-robin technique to service the input channels. If an input

channel has data available the switch inspects the packets contents to determine the

required output channel(s). If the output channels are busy then the input channel is

left unserviced and the switch moves onto the next channel. If all input channels are

empty then the switch is disabled to conserve power.
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The routing of packets is deterministic and is defined by routing LUTs which are pre-

configured at compile-time.

The LUTs makes intelligent use of the FPGA resources to be implemented as efficiently

as possible. For example, the current packet format limits the number of destinations in

the network to 26 = 64. The switch must inspect the most significant 6-bits of the body

and determine whereabouts the target core is located in relation to itself and whether to

transmit the packet along the north, east, south or west channels or to its own processing

core. Hence, there are 64 possible input values and 5 different responses, which can be

represented in a 64x3-bit LUT. A single Virtex-7 FPGA slice contains a four 64x1-bit

LUT [160]. Therefore only a single slice is required to store the routing information

for each switch. The FPGA has 75,900 slices available. This process is illustrated in

Figure 7.10.

7.3.5 Interface

The interface contains two major components, a transmitting and a receiving component.

The transmit component is attached to the output of the processing core. Every 100

clock cycles the processing core transmits a pulse stating that a Golgi cell has been

calculated and updated. This is accompanied by a 5-bit identifier and a 1-bit signal

representing if the cell produced a spike. If the cell did produce a spike the interface

uses the identifier as an index into a LUT (RAM1) to fetch a pointer to a second LUT

(RAM2). The contents of this second LUT is a list of lists of the Golgi-to-granule

connections of this core. The pointer references the start of the list for the particular

Golgi cell. The interface then produces a packet for the initial connection in the list and

passes the packet to the router. Once the packet has been transferred it attempts to

transfer the next packet in the list. This continues until all packets in the list have been

transmitted. The end of the list is represented by a Golgi event packet. This process is

illustrated in Figure 7.11.

Figure 7.12 illustrates the receiving component of the interface. This is responsible for

summating the received packets and transmitting the summated values at the correct

time to the granular clusters upon the processing core. For this, a flip-flop buffer ar-

rangement is used to maintain correct operation. When a packet is received a value of
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Figure 7.11: Interface packet transmit methodology. The interface detects when a
Golgi cell produces a spike, GOLGIID is used as pointer into LUT1, which provides an
index into LUT2 that contains the list of Golgi-to-granule connections. The interface

then produces an individual packet for each connection.

Figure 7.12: Interface packet receive methodology. On receipt of a GTG packet the
interfaces uses the least significant 5-bits as an index into the RAM2. The value stored
in RAM2 is incremented to represent receipt of a synaptic event. Simultaneously the
interface is retreiving values from RAM1 and transmitting the synaptic values to the

core for processing. At the end of a time frame RAM1 and RAM2 are swapped.

1 is inserted into the target granular clusters corresponding row in buffer A. If a second

packet is received for the same cluster then this value is incremented. Meanwhile the

processing core is retrieving the previous frames input contents from buffer B. At the

end of the processing frame buffer B is cleared and swapped with buffer A.

7.3.6 Unit Cell

The unit cell of the network consists of the router, interface, and processing core along

with associated routing and connectivity tables wrapped into a single VHDL module.

7.3.7 Network

A network consists of multiple unit cells interconnected. The process of creating any

size of network was automated through development of a MatlabTMscript.
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7.3.8 Global Frame Master

The global frame master uses a clock-gating routine to control the system time. The

frame master receives a signal from all of the routers within the network. This signal

represents the state of the router: ‘1’ if the router has packets tranversing through it,

‘0’ if the router is quiet. At the end of the frame, if any routers are still busy the clock

to the processing cores are disabled. Only when all the routers are quiet is the clock

enabled to allow the processing cores to continue.

7.3.9 Listening Module

The listening module receives a GE packet from every Golgi cell when they produce a

spike. The objective of this element is then to pass on the list of Golgi events to an

external user using a PC.

With 1000 Golgi cells within the system and an expected 25x speed-up over real-time

there are 25M possible events to transmit per second. However, with an expected mean

firing rate of 40Hz there is only a 4% chance of a Golgi cell producing an event. As such, a

rate of only 1M events/second is expected. With 10bits required to represent the identity

of a Golgi cell data throughput of 10Mb/s is needed. This data rate is comfortably

within the operating range of the USB, Ethernet and PCI protocols available upon the

evaluation board.

To reduce development lead-time a simple UART-based protocol was utilized for de-

bugging. Unfortunately, this can only realistically achieve a data throughput of up to

100kb/s, meaning only a subset of the Golgi events may be transmitted or the neural-

NoC may be paused whilst the FPGA-to-PC interface transmits the required data.

7.3.10 Configuration Mode

The configuration mode is used to setup the connectivity between Golgi cells and gran-

ular clusters. This can be done either before the model begins to operate or during

operation, as long as the simulation is paused. The process of configuration is described

below:
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1. Halt network.

2. Transmit CS configuration packet to target core.

3. Target core receives CS packet and enters configuration mode.

4. Transmit BC packet containing Golgi-to-granule connection information.

5. Packet received by target core and is entered into connectivity memory.

6. Repeat steps (4) and (5) until all connections are initiated.

7. Transmit CS configuration packet to target core.

8. Target core receives CS packet and leaves configuration mode.

9. Optionally, move on to configure another core.

10. Restore network to operating mode.

To ensure that packets arrive in a consistent order with which they are transmitted a

delay is inserted between transmission. Alternatively, the global frame master could be

utilized to ensure that the previous packet has reached its destination before transmission

of the next packet.

Assuming that there is a 10 cycle delay between the transmission of each configuration

packet, there is an operating frequency of 50MHz, and with 1000 Golgi cells there is 8000

Golgi-to-granule connections it is reasonable to predict that using the protocol defined

above full configuration of the network will require 1.6ms.

7.3.11 Self-test Mode

A built-in self-test (BIST) routine validates that all routers are functioning and the inter-

connection links are operating correctly. An initial packet is generated by an individual

router and transmitted to a pseudo-random router within the network. On receipt of

this packet the router updates the packet’s contents and selects an alternative router

to forward the packet onto. This process is repeated until the packet is received by the

initial router, where the packet’s contents can be checked for consistency to confirm the

network is operating as expected.
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Table 7.1: FPGA Area Utilization for Granular Layer Model. FPGA: Xilinx Virtex-7
XC7VX485T

Processor Router Interface Connectivity Tables Module Total Utilization

Slice Registers 2884 441 245 38 3676 176424 29%

Slice LUTs 4379 724 369 0 5592 268455 88%

BRAM 20 0 0 0 20 960 93%

DSP48E1s 48 0 0 0 48 2304 82%

The self-test routine may be initiated when the network is first powered. If the routine

fails the user can be informed through an on-board status LED or through the FPGA-

to-PC interface.

7.4 Results

To validate the correct functionality of the neural-NoC each individual component of the

design was extensively tested before integration into the complete system. In this section,

a detailed description of the testing of the network is provided along with illustrations

of the performance of the granular layer model.

7.4.1 FPGA Implementation

The system design was synthesized, placed, and routed for the target platform using

Xilinx ISE 14.6. The final design consisted of 48 processing cores arranged in a 6x8

mesh. This allowed for 960 Golgi cells and 96000 granule cells to be modelled.

The FPGA area utilisation results are available in Table 7.1. For this case study it

can be clearly seen that the processing core is more costly in terms of area than the

network components. Also the processing core had a maximum operating frequency of

4x slower than the network. As such, two separate clock domains were used with a

4-phase handshake at the interface between the two domains.

7.4.2 Configuration Test

The configuration mode was tested using a behavioural level simulation. A test-bench

was developed to stimulate the network with the process outlined in section 7.3.10.
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Figure 7.13: Global frame master demonstration.

This involved the test-bench storing a list of the connections, and then sequentially

transmitting the information of each connection to the target core of the configuration

mode. The target core contained a pre-defined list of expected connections. When

the pre-defined list matched the received list a signal was raised indicating that the

configuration had been successful.

With an operating frequency of 156MHz a single processing core was able to be config-

ured in 12µs.

7.4.3 Global Frame Master

The operation of the global frame master is demonstrated in Figure 7.13. In this figure, a

Golgi cell produces a spike, which causes packets to be transmitted through the network.

As it is the 20th Golgi cell on the processing core the time frame is about to end. The

successive time frame cannot begin until the communication is complete. The global

frame master inspects the status of all the routers, only when all the routers declare

that they are silent does the global frame master allow the processing to continue.

7.4.4 Network

The network operation was initially tested separately from the processor implementation.

This allowed for:
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1 at 3862400 ps(2): Note: GX ,2,1$1 =000&3862400 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

2 at 3888 ns(2): Note: TX ,2,1$1 =4206&3888000 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

3 at 3926400 ps(2): Note: TX ,2,1$1 =4306&3926400 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

4 at 3984 ns(2): Note: TX ,2,1$1 =4561&3984000 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

5 at 4041600 ps(2): Note: TX ,2,1$1 =4225&4041600 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

6 at 4092800 ps(2): Note: RX ,3,0$000 =4206&4092800 ps (/ scaledtb/uut/MJ03/XLXI_2 /).

7 at 4099200 ps(2): Note: TX ,2,1$1 =4263&4099200 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

8 at 4156800 ps(2): Note: TX ,2,1$1 =4465&4156800 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

9 at 4214400 ps(2): Note: TX ,2,1$1 =4656&4214400 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

10 at 4272 ns(2): Note: TX ,2,1$1 =4403&4272000 ps (/ scaledtb/uut/MJ12/XLXI_2 /).

11 at 4272 ns(2): Note: RX ,3,1$000 =4465&4272000 ps (/ scaledtb/uut/MJ13/XLXI_2 /).

Listing 7.1: Sample output generated by behavioural testing of network-on-chip de-
sign. Line 1 represents a Golgi cell producing a spike on Core (1-2). The first packet
with contents 0x4206 is generated on line 2. This packet is received by Core (0-3) on

line 6.

• The simulations to be completed in less-time. Due to the complexity of the proces-

sor simulation required an extended processing time. For instance, a post-translate

simulation2 required 12 hours for 1 seconds of operation.

• Fine-grain control of the input to the network. For instance, the rate of firing rate

could be easily controlled.

To verify the network latency and throughput characteristics behavioural-level Monte-

Carlo testing of the implementation was performed using Xilinx ISim 14.6.

Each interface module was connected to a model processor. This model processor gener-

ated Golgi cell events randomly at a defined mean rate. The interface then interpreted

these events and generated the necessary packets as defined in their connectivity lists.

The generated packets were then transmitted to the required destinations throughout

the network.

All of the packet events were logged by use of the report3 VHDL command. An example

of the generated log file is provided in Listing 7.1. A MatlabTMscript was generated to

interpret the log file and determine the latency and throughput characteristics.

In Figure 7.14 the latency results are illustrated for the sample network containing 48

processing cores in a 6x8 mesh layout. The figure shows 5 box plots with each box plot

being obtained from over 10,000 data samples. The whiskers represent approximately

±3σ with the outliers beyond this range.

2A post-translate simulation is a simulation of the circuit design after the VHDL has been converted
into real FPGA sub-components.

3The report command displays a string on the command line. This command is often used when
debugging.
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Figure 7.14: Neural-NoC performance. Latency of packet transmission versus mean
firing rate.

(a) (b)

Figure 7.15: Latency of packet transmission against distance packet is required to
travel. (A) Mean Golgi firing rate of 32Hz. (B) Mean Golgi firing rate of 64Hz.

As the mean firing rate increases from 16Hz to 256Hz the median latency increases

slightly from 84 to 98 clock cycles. Since the processing cores operate approximately 6x

slower than the network components each packet can be considered to be transmitted

on average in 16.3 processing cycles.

No packets were lost at any of the measured frequencies. Within typical cerebellar

systems, the Golgi cells fire at a rate of up to 100Hz [221], which is within the defined

network performance characteristics.

In Figure 7.15 the latency is shown against the distance that the packet is required to

travel for two different mean firing rates. As the packets travel further through the

network the average latency increases. From this figure, the zero-load latency of each

step through the network can be determined as approximately 10 clock cycles.
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7.4.5 System

For final system verification the network-on-chip design was integrated with the granule-

Golgi processing cores. This section illustrates three different experiments completed to

confirm the correct operation.

Firstly, Figure 7.16 illustrates spike raster plots of the neural-NoC response demonstrat-

ing passage-of-time encoding. Figure 7.16(A) shows the response of 40 random granule

cells and Figure 7.16(B) 40 random Golgi cells. The granule cells can be seen to go

through bursting phases whilst the Golgi cells maintain a regular spiking interval.

Figure 7.16c compares the NoC response with the software implementation described

in [221] using a similarity index metric. For further explanation of this metric refer to

[221]. As can be seen by this figure, the response of the NoC and the software is closely

correlated. It is believed that the small variation in response is caused by the translation

of the processing core from software to hardware. This translation involves switching

from floating-point to fixed-point arithmetic and using a simplified Euler integration

technique.

Secondly, for further verification an experiment conducted in [221] is repeated to demon-

strate the effects of blocking certain ion channels within the neural models. This has

the effect of removing the temporal correspondence within the granule cells and they

instead fire randomly. In Figure 7.17a, the ion channels within the granule cells are

blocked resulting in the granule cells being unable to integrate the mossy fibre input

signals over extended periods of time, resulting in sparse firing. Alternatively, in Fig-

ure 7.17b, the ion channels within the Golgi cells are blocked resulting in excessive firing

from the granule cells as they no longer receive inhibitory feedback from the Golgi cells.

The similarity index response highlighted in Figure 7.17c corresponds with the expected

response provided in [221] illustrating correct operation.

Finally, an FPGA cerebellar prosthetic was connected to a model of a multichannel

recording/stimulating system and the closed-loop response was recorded and compared

with the expected response. This experiment was conducted by project colleague Jun

Wen Luo and is described in [222].
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(a)

(b)

(c)

Figure 7.16: Neural-NoC system dynamics. (A) Granule cell behaviour. (B) Golgi
cell behaviour. (C) Similarity index between software and hardware.

7.5 Discussion

The system has demonstrated correct operation in the previous section. However, it is

important to critically analyse the performance and the design of the system to ensure

that future developments are focused in the correct areas. In this section, the imple-

mented neural-NoC is analysed from three perspectives: firstly, the system’s capability;

secondly, the component design; and finally, the system’s practicality.
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(a)

(b)

(c)

Figure 7.17: Neural-NoC system dynamics with with certain ion channel inhibition.
(A) Granule cell output with certain ion channels channels blocked in granule cells. (B)
Granule cell output with ion channels blocked in Golgi cells. (C) Similarity index of

normal behaviour, and the behaviour of (A) and (B).

(a) (b)

Figure 7.18: Neuroprosthesis laboratory experimental setup. (A) Bio-silicon closed-
loop system example. (B) Experimental equivalent.
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7.5.1 Capability

The neural network studied in this case study is simpler than most biological neural

networks. Despite this perceived simplicity, previous implementations have struggled to

achieve comparable performance.

For example, the software (C-coded) implementation described in [221] requires an ex-

ponential increase in runtime as the system complexity grows. For a system of the

same size as demonstrated here a Intel Quad Core with 8GB of RAM requires 30 sec-

onds to compute. Beyond 100,000 granule cells the implementation runs out of memory

resources and can no longer operate.

Alternatively, Yamazaki and Igarashi [103] have shown how a GPU can process 100,000

granule cells in real-time. Similar GPU implementations have been shown to typically

achieve a 20x speed increase over equivalent CPU implementations [101][102]. However,

as mentioned previously, GPUs suffer from memory and communication weaknesses mak-

ing them unsuitable for large-scale neural processing. Also, in terms of neuroprosthesis

GPUs are inhibited by the inflexibility of their input/output connections.

The FPGA-based neural-NoC utilizes distributed local memory banks to avoid the as-

sociated problems of GPU-based designs. Namely, the problem of sharing memory

resources and strict memory access patterns.

The processing time required by the neural-NoC approach remains constant regardless

of the current state of the system. Only the extra communication time managed by

the global frame master may result in delays to the execution time. Due to the parallel

nature of this communication and the clustering within the granular layer model this

communication time should not increase with increasing model complexity. As such, a

model containing 1,000,000 granule cells should complete in the same time as that of

100,000 granule cells. A 100,000 granule cell system has been demonstrated completing

1sec of real-world activity in 25.6ms.

However, currently a larger granular neural-NoC can not be implemented due to the

constraints of the FPGA. A bigger FPGA could provide a platform for a larger system.

But, the current FPGA platform can be considered top-of-the-range so it is unrealistic to

request more resources. Alternatively, by reducing the size of the implemented processing

core, more cores could be placed upon the FPGA to allow for a bigger granular layer
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system. It can be seen by comparing Table 7.1 with Table 4.5 and Table 4.8 that the

resources required by the granule cell processing cores is far greater than the previously

developed Hodgkin-Huxley and Izhikevich cores described in Chapter 4.

7.5.2 Design

The designed NoC meets the specified requirements of the system and performs correctly.

There has been no design time invested in many common NoC features that have been

deemed unnecessary for this application.

For instance, the implemented NoC uses a store-and-forward routing mechanism whereby

the entire packet is received by a router before transmission to the next router. Alterna-

tive mechanisms such as wormhole4 or virtual cut-through5 may reduce latency [194] of

transmission and have been previously used by spiking neural network platforms, such

as EMBRACE [224]. However, due to the low traffic levels of the granular layer model

store-and-forward was determined to be sufficient and most suitable in terms of the time

required to develop.

EMBRACE also utilize adaptive routing, whereby packets can change the route to their

destination depending upon the local instantaneous traffic levels [167]. Again, the low-

traffic levels and the fact that the designed system is operating well below its threshold

mean that adaptive routing is an unnecessary overhead in terms of design time and

silicon area utilization.

SpiNNaker utilize adaptive emergency routing to overcome failures in point-to-point

links, primarily between chips [4]. This adaptive routing is required due to the high

expected rate of failure of components when constructing a system on the scale of SpiN-

Naker. However, in a single-chip FPGA-based platform point-to-point link damage is

expected to be uncommon. A number of FPGA-specific fault correction techniques, such

as wear-levelling [225], could be integrated into the system if it is to be used in a critical

application.

4In wormhole routing the beginning of the packet may be forwarded to its destination before the
whole packet is received. [194]

5Virtual cut-through is similar to wormhole but the network guarantees that the route of the packet
is available to transmit before beginning [194]
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SpiNNaker also utilizes link encoding between network components [4] with the aim

of reducing power consumption by reducing the number of bit transitions [194][201].

Similar techniques could be easily implemented within the current granular layer NoC

design. However, once again the low-traffic levels mean that the NoC links consume

only a nominal amount of power in terms of the overall consumption as illustrated by

Figure 7.3c.

7.5.3 Practicality

The system has demonstrated high raw performance. However, it’s potential can only

be fulfilled by overcoming simple practicalities that are often neglected.

For instance, a neuroscientist may wish to inspect the state of all 100,000 granule cells

at each time step; therefore, the state of each granule cell would need to be transmitted

externally from the FPGA. In accelerated mode this will require an external communi-

cation channel with a bandwidth of at least 4Gb/s. On top of the development of this

channel, time would need to be invested in producing PC software able to receive and

interpret the data.

In terms of closed-loop experiments, 100,000 granule cells may be calculated upon the

FPGA but there may be less than 100 output channels available that are capable of com-

municating with biological cells. This is a common problem in bio-silicon experiments

[7].

Weinstein et al. [144] illustrated a software package to efficiently program FPGA-based

neural models. This allowed for the high performance of FPGAs to become accessible

to non-specialists interested in accelerating their models, particularly neuroscientists.

Also, SpiNNaker has developed a compiler to translate the common PyNN programming

language to their implementation [226]. A similar software tool would be required for the

granular layer model if it is to be commonly used by non-engineers. For example, a tool

could accept a network connectivity file as an input, partition the cells of the network

into processing cores, and then send this partitioning and connectivity information over

a PC-to-FPGA interface to the connectivity module in the NoC. This would remove

from the user any need to get involved with any HDLs6 or programming of the FPGA.

6Hardware description language, such as Verilog or VHDL



Chapter 7. Case Study 2 184

7.6 Summary

In this section, a NoC hardware architecture has been developed to implement a model

of the cerebellar granular layer involving up to 100,000 neurons. The design has been

shown to operate in real-time for biological experiments and accelerated time for large-

scale simulations to explore the dynamics of the cerebellar network.



Chapter 8

Conclusions

“Having gathered these facts, Watson, I smoked several pipes over them, trying to

separate those which were crucial from others which were merely incidental.”

The Crooked Man, Sherlock Holmes

Sir Arthur Conan Doyle

8.1 Summary of Motivation

The aim of this study is to extend the research into neural modelling platforms capable

of integration with neural prosthesis. Chapter 2 provides a thorough review of the recent

progress in neural prostheses, which have the potential to treat previously thought of as

incurable diseases, including motor conditions like tetraplegia, sensory conditions such

as loss of sight or hearing, and even cognitive diseases. There is a clear and evident

trend in all of these systems towards closed-loop systems which rely upon two way

communication between an implant and a patient’s neurological tissue.

This closed-loop paradigm requires real-time, online computation of many complex fea-

tures and it is believed that by mimicking the brain’s circuits this high level of function-

ality and complexity can be reproduced, potentially adding significant benefit to many

types of neural prosthesis. However, within a neural prosthesis, this computational

platform must be portable, necessitating significant energy and size constraints.

185
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The desire of wanting to recreate the computation of neural circuits is fundamental to

many different projects, as the brain shows a remarkable ability in many disciplines,

from design features such as automatic repair and redundancy to high-level algorithms

such as pattern recognition. But, despite the clear link between prosthesis and neural

modelling platforms the research literature shows a clear gap of integration of both

aspects into a single system.

Therefore, this thesis has explored the electronic requirements for the computation

within neuroprosthesis systems.

8.2 Synthesis of Results

This thesis has generated results through initially developing the theoretical underpin-

nings of a design concept in order to evaluate the optimal design parameters. These

optimal design parameters are then further evaluated and studied through practical im-

plementation. This design process has been used in two design studies, first of all into

neural processing and secondly into neural network requirements.

For the neural processing, the design theory process flow is widely used in many DSP

applications but it has rarely been used in such detail for a neuromorphic system - par-

ticularly considering the unique constraints of neural prosthesis. The neural network

design study combines many different design process flows, including the neural process-

ing aspect, into a single methodology for the determination of optimal neural network

operation for the first time.

In a similar method to Vainbrand et al. [133], this study has attempted to focus first of all

on the design parameters through a design theory study before implementing a complete

electronic platform. The results of [133] have been extended to consider additional design

features, alongside the specific constraint of neural prosthesis applications.

The importance of an initial design theory study has been highlighted in this thesis

through the results shown, particularly the high reliance of the final system performance

upon the granularity of the system - a factor that has to be chosen at a very early stage

in the design process. For example, incorrect selection of this parameter has been shown

to cause an impact of between 3x and 5x in the power and area results.
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The issue of granularity has only been considered previously by Cassidy et al. [127].

However, the issue of power which is fundamental to long-term neural prosthesis and

many other applications was not considered as it was not within their design scope.

The two major design studies have produced results related to granularity and other

design processes in three major areas.

Computation Firstly, implementation of neuron processing calculators is very com-

mon and done using a variety of technologies and techniques. For instance, software

running on PCs or supercomputers is very popular due to its practicality, but it is

commonly agreed that the calculation and performance will always be limited by the

underlying architecture, which is not always suitable for neural processing. With soft-

ware approaches the underlying CPU will always have overheads in terms of power and

area for components which are fundamentally not required by the application.

Similarly, analogue techniques are popular, perhaps due to the fundamental idea that a

neuron membrane works similarly to how a transistor functions. However, it has been

shown not to be quite that simple due to scaling and capacitance issues and analogue

techniques inherently suffer from not being reconfigurable.

This thesis has investigated the alternative that has gained more traction in recent years

- dedicated digital circuit design. The thesis has considered multiple neuron models to

investigate the difference between options and on multiple design paradigms.

The Hodgkin-Huxley model implemented upon an FPGA was shown to be feasible in

Chapter 4. Izhikevich suggests that this model is too computationally expensive to be

worthwhile in comparison to other models such as his own or the leaky integrate and fire

system. However, as described in section 4.6 there is only a 15x difference in performance

as opposed to the expected 100x [136]. This is caused by the limitations in memory, as

opposed to the arithmetic requirements considered by Izhikevich.

This has implications for future development of neural systems, as engineers should not

necessarily preclude HH on the basis that it is too computationally expensive, if they

do desire to have the increased computational realism. After all, in later chapters the

processing has been shown not to be the bottleneck upon the overall system anyway.
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For instance, even with the Izhikevich model only 65000 neurons can be implemented in

the proposed design due to area limitations imposed by the network.

Communication Secondly, a large focus within the research literature is upon com-

munication between of spikes between neurons, due to the widely held belief that the

volume of communication is a bottleneck. The primary reason for the holding of this

belief is due to the implementation of neural network systems upon platforms that are

not suitable, such as, Von Neumann architectures or large supercomputers that have

been designed with different communication patterns in mind. This thesis has shown

that communication bottlenecks can be mitigated through the correct selection of de-

sign parameters and the efficient implementation of networks suitable for neural network

style communication.

The scale of connectivity within neural networks introduce problems for storing the

network connectivity information, but the rate of injection into these networks is very

low in comparison with typical silicon systems. As such, the burden moves from a

communication centric to a memory centric issue.

Memory Finally, the thesis has contributed to the field of knowledge surrounding

memory issues in neural-networks-on-chip by studying the design requirements of differ-

ent networks and the limitations imposed by certain current technologies. This clearly

indicates where future research in different memory structures may benefit neural-

networks-on-chip design. It is clear that memory is the dominating factor in terms

of area and power of any system, but this can be mitigated somewhat by the correct

use of granularity as illustrated in all of the practical case studies. This choice of granu-

larity is applicable across many different neural network-on-chip systems not just those

targeted towards neural prosthesis.

Correct granularity and the use of local on-chip distributed memory significantly reduces

the memory and bandwidth restrictions inherent in many systems. It has been shown

how even traditional high performance memory devices such as GPUs are not particu-

larly suitable for neural network-on-chip due to the memory access patterns of neural

networks being inherently different to those of typical GPU applications.



Chapter 6. Conclusions 189

8.3 Implications

The major implications of the project are:

Firstly, demonstrated across all aspects of the thesis is that achieving a high performance

highly efficient neural network-on-chip system is achievable. However, it relies upon the

correct choice of platform and design parameters to meet the application requirements

Secondly, the granularity of a neural network-on-chip is fundamental to the performance.

Choosing a granularity should always have reasoning and justification to match the

project specifications. For instance, in the second network case study the granularity was

adapted to meet the performance criteria as opposed to increase efficiency of area/power

relationships.

Finally, although dedicated hardware is fundamental to achieving high performance, this

does not mean that we should move away from the digital design approach. The thesis

illustrates that digital can achieve what is required and it will continue to scale with

technology. Also, its reconfigurability will never truly be matched by analogue design

techniques.

8.4 Limitations

Firstly, this study introduces a methodology for investigating the optimum design of a

neural network-on-chip. The key limitation to the methodology is the lack of consider-

ation towards online learning within the model. Implementing online learning will add

complexity to the system and will likely change some of the key findings in terms of

power and area usage and optimum granularity. However, this limitation is mitigated

by:

• The addition of online learning to the methodology will not change any of the

existing methodology described, only add to it.

• Online learning is, and is always likely to be, an added extra, which is non-vital,

perhaps even detrimental to many system. In fact, a large proportion of the key

neural network-on-chip studies have also discounted learning from their designs,
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such as [217]. Many common signal processing algorithms use artificial neural

networks with offline learning. For a neural prosthesis, learning would not be

required except perhaps for a memory prosthetic.

Secondly, a key limitation to the study is that no ASIC device has been manufactured to

provide verification of the results of the conceptual studies and the design methodology.

This does not impact the accuracy of the results, as many of the theoretical principles,

such as granularity, do not fully rely upon direct relationship with implemented tech-

nology, but are systematic. For instance, a different granularity will always require a

different number of bytes in memory, which will always require a different power and

area usage.

Finally, consideration has been taken at all points through the design cycle to investigate

the most up to date technology for inclusion within the methodology. For instance,

the use of the latest developments in CAM when studying memory usage. However,

the neural network-on-chip application requires designs to be taken from a wide pool

of component designs, from the optimal design of a transistor, through to the most

efficient layout of components, through to 3D design principles. This however, will

of course make the full practical design more difficult to achieve and more costly to

implement. For instance, although 3D technology is suggested, this is not currently

at the same level of maturity of 2D design techniques in terms of design tools and

power/area usage estimations. Once again the fundamental design parameters are not

limited by this factor as they will continue to scale with technology. For instance,

designing a more efficient arithmetic unit may not necessarily alter the optimum way to

design an Izhikevich neuron, it may just reduce its total area and power usage.

8.5 Future Work

Successful implementation of a neural prosthesis using a neural network-on-chip will rely

upon a cross-disciplinary team of neuroscientists, engineers, physicians and others. As

such the options for future work in this field is varied, ranging from investigating the

networks to be modelled to the design of low leakage transistors. The CANDO project

recently started at Newcastle University is an excellent example of the opportunities
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involved in neural prosthesis development and the wide range of skills required for its

development.

It is clear from investigating the research literature in the field that a lot of the existing

work in neuromorphic technology is based around a set of incomplete assumptions about

the biology. Some of these have been mentioned in the thesis, such as the true detail

required in spikes, such as specific timing or amplitude. Also, true information about the

encoding of information within the spikes is fundamental to fully diagnose brain state

and operation. There are further biological unknowns that have not been discussed,

such as the function of astrocytes. It is not generally known in the field if these other

cells impact upon the computation of the brain.

From an engineering perspective, the neural network-on-chip performance will continue

to improve with improvements in technology that is fundamental to the operation. For

instance, it has been shown already that dramatic improvements in CAM efficiency in

recent years significantly improves potential performance.

As this study has focused upon providing a design methodology to find the optimum

design parameters to underpin a particular design, an obvious future work project would

be implement a neural network-on-chip for a specific neural prosthesis, such as that

currently being considered as part of the CANDO project, in order to treat epilepsy.

8.6 Concluding Statement

The aim has been to extend the knowledge of neural modelling designs for neuropros-

thesis. This has been achieved through developing a methodology that other research

groups can use to develop new systems. Information can be taken and extended upon

by research groups in their own designs.

The methodology for studying both processing and networks on chip for neural networks

can be easily implemented by other neural network designers who wish to take applica-

tions forward. This scenario has been illustrated within Chapter 7, where the existing

work undertaken throughout Chapter 5 and Chapter 6 was translated to a closely related

topic with slightly different design parameters, in order to create a prototype working

system.
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