19,282 research outputs found

    QoE-driven rate adaptation heuristic for fair adaptive video streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) is quickly becoming the de facto standard for video streaming services. In HAS, each video is temporally segmented and stored in different quality levels. Rate adaptation heuristics, deployed at the video player, allow the most appropriate level to be dynamically requested, based on the current network conditions. It has been shown that today's heuristics underperform when multiple clients consume video at the same time, due to fairness issues among clients. Concretely, this means that different clients negatively influence each other as they compete for shared network resources. In this article, we propose a novel rate adaptation algorithm called FINEAS (Fair In-Network Enhanced Adaptive Streaming), capable of increasing clients' Quality of Experience (QoE) and achieving fairness in a multiclient setting. A key element of this approach is an in-network system of coordination proxies in charge of facilitating fair resource sharing among clients. The strength of this approach is threefold. First, fairness is achieved without explicit communication among clients and thus no significant overhead is introduced into the network. Second, the system of coordination proxies is transparent to the clients, that is, the clients do not need to be aware of its presence. Third, the HAS principle is maintained, as the in-network components only provide the clients with new information and suggestions, while the rate adaptation decision remains the sole responsibility of the clients themselves. We evaluate this novel approach through simulations, under highly variable bandwidth conditions and in several multiclient scenarios. We show how the proposed approach can improve fairness up to 80% compared to state-of-the-art HAS heuristics in a scenario with three networks, each containing 30 clients streaming video at the same time

    Adaptive delivery of immersive 3D multi-view video over the Internet

    Get PDF
    The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions

    Content-Aware Rate Control to Improve the Energy Efficiency in Mobile IPTV services

    Get PDF
    Summary To be able to deploy the mobile IPTV service, energy efficiency is an important design consideration due to the limited battery lifetime of mobile devices. Moreover, the Scalable Video Coding (SVC) scheme, which allows for data rate adaptation without reencoding, should also be considered for supporting a variety of mobile devices. This paper proposes a new streaming system, called the Content-Aware Streaming System (CASS), which improves energy efficiency by reducing the unnecessary transmission of bitstreams and by reducing the operating time of wireless network interface cards. The proposed streaming system utilizes the Peak Signal to Noise Ratio (PSNR) based on a content-aware and client buffer occupancy on the basis of a network-aware streaming system using SVC. The simulation results demonstrate the effectiveness of the proposed streaming system

    Measurement And Improvement of Quality-of-Experience For Online Video Streaming Services

    Get PDF
    Title from PDF of title page, viewed on September 4, 2015Dissertation advisor: Deep MedhiVitaIncludes bibliographic references (pages 126-141)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2015HTTP based online video streaming services have been consistently dominating the online traffic for the past few years. Measuring and improving the performance of these services is an important challenge. Traditional Quality-of-Service (QoS) metrics such as packet loss, jitter and delay which were used for networked services are not easily understood by the users. Instead, Quality-of-Experience (QoE) metrics which capture the overall satisfaction are more suitable for measuring the quality as perceived by the users. However, these QoE metrics have not yet been standardized and their measurement and improvement poses unique challenges. In this work we first present a comprehensive survey of the different set of QoE metrics and the measurement methodologies suitable for HTTP based online video streaming services. We then present our active QoE measurement tool Pytomo that measures the QoE of YouTube videos. A case study on the measurement of QoE of YouTube videos when accessed by residential users from three different Internet Service Providers (ISP) in a metropolitan area is discussed. This is the first work that has collected QoE data from actual residential users using active measurements for YouTube videos. Based on these measurements we were able to study and compare the QoE of YouTube videos across multiple ISPs. We also were able to correlate the QoE observed with the server clusters used for the different users. Based on this correlation we were able to identify the server clusters that were experiencing diminished QoE. DynamicAdaptive Streaming overHTTP (DASH) is an HTTP based video streaming that enables the video players to adapt the video quality based on the network conditions. We next present a rate adaptation algorithm that improves the QoE of DASH video streaming services that selects the most optimum video quality. With DASH the video server hosts multiple representation of the same video and each representation is divided into small segments of constant playback duration. The DASH player downloads the appropriate representation based on the network conditions, thus, adapting the video quality to match the conditions. Currently deployed Adaptive Bitrate (ABR) algorithms use throughput and buffer occupancy to predict segment fetch times. These algorithms assume that the segments are of equal size. However, due to the encoding schemes employed this assumption does not hold. In order to overcome these limitations, we propose a novel Segment Aware Rate Adaptation algorithm (SARA) that leverages the knowledge of the segment size variations to improve the prediction of segment fetch times. Using an emulated player in a geographically distributed virtual network setup, we compare the performance of SARA with existing ABR algorithms. We demonstrate that SARA helps to improve the QoE of the DASH video streaming with improved convergence time, better bitrate switching performance and better video quality. We also show that unlike the existing adaptation schemes, SARA provides a consistent QoE irrespective of the segment size distributions.Introduction -- Measurement of QoE for Online Video Streaming Services: A Literature Survey -- Pytomo: A Tool for measuring QoE of YouTube Videos -- Case Study: QoE across three Internet Service Providers in a Metropolitan Area -- Adaptive Bitrate Algorithms for DASH -- Segment Aware Rate Adaptation for DASH -- Performance Evaluation of SARA -- Conclusion and Future Research --Appendix A. Sample MPD Fil

    Look ahead to improve QoE in DASH streaming

    Full text link
    [EN] When a video is encoded with constant quality, the resulting bitstream will have variable bitrate due to the inherent nature of the video encoding process. This paper proposes a video Adaptive Bitrate Streaming (ABR) algorithm, called Look Ahead, which takes into account this bitrate variability in order to calculate, in real time, the appropriate quality level that minimizes the number of interruptions during the playback. The algorithm is based on the Dynamic Adaptive Streaming over HTTP (DASH) standard for on-demand video services. In fact, it has been implemented and integrated into ExoPlayer v2, the latest version of the library developed by Google to play DASH contents. The proposed algorithm is compared to the Müller and Segment Aware Rate Adaptation (SARA) algorithms as well as to the default ABR algorithm integrated into ExoPlayer. The comparison is carried out by using the most relevant parameters that affect the Quality of Experience (QoE) in video playback services, that is, number and duration of stalls, average quality of the video playback and number of representation switches. These parameters can be combined to define a QoE model. In this sense, this paper also proposes two new QoE models for the evaluation of ABR algorithms. One of them considers the bitrate of every segment of each representation, and the second is based on VMAF (Video Multimethod Assessment Fusion), a Video Quality Assessment (VQA) method developed by Netflix. The evaluations presented in the paper reflect: first, that Look Ahead outperforms the Müller, SARA and the ExoPlayer ABR algorithms in terms of number and duration of video playback stalls, with hardly decreasing the average video quality; and second, that the two QoE models proposed are more accurate than other similar models existing in the literature.This work is supported by the PAID-10-18 Program of the Universitat Politecnica de Valencia (Ayudas para contratos de acceso al sistema espanol de Ciencia, Tecnologia e Innovacion, en estructuras de investigacion de la Universitat Politecnica de Valencia) and by the Project 20180810 from the Universitat Politecnica de Valencia ("Tecnologias de distribucion y procesado de informacion multimedia y QoE").Belda Ortega, R.; De Fez Lava, I.; Arce Vila, P.; Guerri Cebollada, JC. (2020). Look ahead to improve QoE in DASH streaming. Multimedia Tools and Applications. 79(33-34):25143-25170. https://doi.org/10.1007/s11042-020-09214-9S25143251707933-34Akhshabi S, Narayanaswamy S, Begen AC, Dovrolis C (2012) An experimental evaluation of rate-adaptive video players over HTTP. Signal process. Image Commun 27(4):271–287. https://doi.org/10.1016/j.image.2011.10.003Android Developers webpage, ExoPlayer. Available online at: https://developer.android.com/guide/topics/media/exoplayer.html . Accessed: Jun. (2019)Bampis CG, Li Z, Bovik AC (2018) SpatioTemporal feature integration and model fusion for full reference video quality assessment. IEEE Trans on Circuits and Syst for Video Tech 29:2256–2270. https://doi.org/10.1109/TCSVT.2018.2868262Barman N, Martini MG (2019) QoE modeling for HTTP adaptive video streaming - a survey and open challenges. IEEE Access 7:30831–30859. https://doi.org/10.1109/ACCESS.2019.2901778Belda R (2013) Algoritmo de adaptación DASH: Look Ahead. Master Thesis. Universitat Politècnica de València. http://hdl.handle.net/10251/33359 .Belda R, de Fez I, Arce P, Guerri J C (2018) Look ahead: a DASH adaptation algorithm. Proc. of the IEEE Int. Symp. On broadband multimed. Syst. And broadcast., Valencia, Spain: article no. 158. https://doi.org/10.1109/BMSB.2018.8436718 .Blender Foundation webpage. Available online at: https://www.blender.org/foundation . Accessed: Jun. (2019).Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20-3:273–297. https://doi.org/10.1023/A:1022627411411DASH Industry forum webpage. Available online at: http://dashif.org . Accessed: Jun. (2019)Ghadiyaram D, Pan J, Bovik AC (2019) A subjective and objective study of stalling events in mobile streaming videos. IEEE Trans on Circuits and Syst for Video Technol 29(1):183–197. https://doi.org/10.1109/TCSVT.2017.2768542Ghent University. 4G/LTE bandwidth logs. Available online at: http://users.ugent.be/~jvdrhoof/dataset-4g . Accessed: Jun. (2019).Github webpage. A DASH segment size aware rate adaptation model for DASH. Available online at: https://github.com/pari685/AStream . Accessed: Jun. (2019)GitHub website. Dashgen, Multimedia Communications Group. Available online at: https://github.com/comm-iteam/dashgen . Accessed: Jun. (2019).van der Hooft J, Petrangeli S, Wauters T, Huysegems R, Alface PR, Bostoen T, De Turck F (2016) HTTP/2-based adaptive streaming of HEVC video over 4G/LTE networks. IEEE Commun Lett 20(1):2177–2180. https://doi.org/10.1109/LCOMM.2016.2601087Huang TY, Johari R, McKeown N, Trunnell M, Watson M (2014) A buffer-based approach to rate adaptation: evidence from a large video streaming service. Proc. of the 2014 ACM Conf. On SIGCOMM, Chicago, IL, USA: 187-198. https://doi.org/10.1145/2619239.2626296Institute of Telecommunications and Multimedia Applications website. Look Ahead Demo. Available online at: https://lookahead.iteam.upv.es . Accessed: Jun. (2019)ISO/IEC 23009–1:2014 (2014) Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats.Juluri P, Tamarapalli V, Medhi D (2015) SARA: segment aware rate adaptation algorithm for dynamic adaptive streaming over HTTP. Proc. of the IEEE Int. Conf. On Commun. Workshop (ICCW), London, UK: 1765-1770. https://doi.org/10.1109/ICCW.2015.7247436 .Juluri P, Tamarapalli V, Medhi D (2016) QoE management in DASH systems using the segment aware rate adaptation algorithm. Proc. of the IEEE/IFIP Netw. Oper. And Manag. Symp. (NOMS), Istanbul, Turkey: 129-136. https://doi.org/10.1109/NOMS.2016.7502805 .Kua J, Armitage G, Branch P (2017) A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Commun Surv & Tutor 19(3):1842–1866. https://doi.org/10.1109/COMST.2017.2685630Lee S, Youn K, Chung K (2015) Adaptive video quality control scheme to improve QoE of MPEG DASH. Proc. of IEEE Int. Conf. On Consum. Electron. (ICCE), Las Vegas, NV, USA: 126-127. https://doi.org/10.1109/ICCE.2015.7066348 .Li S, Zhang F, Ma L, Ngan K (2011) Image quality assessment by separately evaluating detail losses and additive impairments. IEEE Trans. on Multimed. 13-5:935–949. https://doi.org/10.1109/TMM.2011.2152382Liu C, Bouazizi I, Gabbouj M (2011) Rate adaptation for adaptive HTTP streaming. Proc. of the second annual ACM Conf. On multimed. Syst. (MMSys), San Jose, CA, USA: 169-174. https://doi.org/10.1145/1943552.1943575 .Medium webpage (2016) Toward a practical perceptual video quality metric. Available online at: https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652 . Accessed: Jun. 2019.Mobile Video Service Performance Study (2015) HUAWEI white paper. Available online at: http://www.ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf .Mok RKP, Luo X, Chan EWW, Chang RKC (2012) QDASH: a QoE-aware DASH system. Proc. of multim. Syst. Conf. (MMSys), Chapel Hill, NC, USA: 11-22. https://doi.org/10.1145/2155555.2155558Moldovan C, Hagn K, Sieber C, Kellerer W, Hoßfeld T (2017) Keep calm and don’t switch: about the relationship between switches and quality in HAS. Proc. of the Int. Teletraffic Congr. (ITC), Genoa, Italy: pp. 1-6. https://doi.org/10.23919/ITC.2017.8065802Müller C, Lederer S, Timmerer C (2012) An evaluation of dynamic adaptive streaming over HTTP in vehicular environments. Proc. of the 4th workshop on mob. Video (MoVid), Chapel Hill, NC, USA: 37-42. https://doi.org/10.1145/2151677.2151686Nguyen T, Vu T, Nguyen DV, Ngoc NP, and Thang TC (2015) QoE optimization for adaptive streaming with multiple VBR videos. Proc. of the Int. Conf. On comp., Manag. And Telecommun. (ComManTel), DaNang, Vietnam: 189-193. https://doi.org/10.1109/ComManTel.2015.7394285 .Qin Y, H. Shuai, Pattipati K R, Qian F, Sen S, Wang B, Yue C (2018) ABR Streaming of VBR-encoded videos: characterization, challenges, and solutions. Proc. of ACM CoNext 2018, Heraklion, Greece: 366–378. https://doi.org/10.1145/3281411.3281439 .Samain J, Carofiglio G, Muscariello L, Papalini M, Sardara M, Tortelli M, Rossi D (2017) Dynamic adaptive video streaming: towards a systematic comparison of ICN and TCP/IP. IEEE Trans on Multimed 19(10):2166–2181. https://doi.org/10.1109/TMM.2017.2733340Sheikh H, Bovik A (2006) Image information and visual quality. IEEE Trans on Image Process 15(2):430–444. https://doi.org/10.1109/TIP.2005.859378Shuai Y, Herfet T (2016). A buffer dynamic stabilizer for low-latency adaptive video streaming. Proc. of the Int. Conf. on Consum. Electron., Berlin: 1–5. https://doi.org/10.1109/ICCE-Berlin.2016.7684742 .Tavakoli S, Egger S, Seufert M, Schatz R, Brunnström K, García N (2016) Perceptual quality of HTTP adaptive streaming strategies: cross-experimental analysis of multi-laboratory and crowdsourced subjective studies. IEEE Journal on Select Areas in Commun 34-8:2141–2153. https://doi.org/10.1109/JSAC.2016.2577361Yarnagula H K, Juluri P, Mehr S K, Tamarapalli V, Medhi D (2019) QoE for Mobile clients with segment-aware rate adaptation algorithm (SARA) for DASH video streaming. ACM trans. On multimed. Comput., Commun., and Appl. (TOMM) 15(2):article no. 36 https://doi.org/10.1145/3311749 .Yin X, Sekar V, Sinopoli B (2014) Toward a principled framework to design dynamic adaptive streaming algorithms over HTTP. Proc. of the 13th ACM workshop on hot topics in Netw. (HotNets), Los Angeles, CA, USA: 1-7. https://doi.org/10.1145/2670518.2673877 .YouTube webpage (2019) Youtube press. Available online at: https://www.youtube.com/yt/about/press . Accessed: Jun. 2019.Youtube webpage, Google I/O ‘18: Building feature-rich media apps with ExoPlayer. Available online at: https://youtu.be/svdq1BWl4r8?t=2m . Published: May (2018)Yu L, Tillo T, Xiao J (2017) QoE-driven dynamic adaptive video streaming strategy with future information. IEEE Trans on Broadcast 63-3:523–534. https://doi.org/10.1109/TBC.2017.2687698Zhao S, Li Z, Medhi D, Lai P, Liu S (2017) Study of user QoE improvement for dynamic adaptive streaming over HTTP (MPEG-DASH). Proc. of the Int. Conf. On Comput., network. And Commun. (ICNC): multimed. Comput. And Commun., Santa Clara, CA, USA: 566-570. https://doi.org/10.1109/ICCNC.2017.7876191 .Zhou Y, Duan Y, Sun J, Guo Z (2014) Towards a simple and smooth rate adaption for VBR video in DASH. Proc. of the IEEE Vis. Commun. and Image Process. Conf, Valletta, pp 9–12. https://doi.org/10.1109/VCIP.2014.7051491Zhou C, Lin C-W, Guo Z (2016) mDASH: a Markov decision-based rate adaptation approach for dynamic HTTP streaming. IEEE Trans. on Multimed 18(4):738–751. https://doi.org/10.1109/TMM.2016.252265

    Towards SVC-based adaptive streaming in information centric networks

    Get PDF
    HTTP Adaptive Streaming (HAS) is becoming the de-facto standard for video streaming services. In HAS, each video is segmented and stored in different qualities. The client can dynamically select the most appropriate quality level to download, allowing it to adapt to varying network conditions. As the Internet was not designed to deliver such applications, optimal support for multimedia delivery is still missing. Information Centric Networking (ICN) is a recently proposed disruptive architecture that could solve this issue, where the focus is given to the content rather than to end-to-end connectivity. Due to the bandwidth unpredictability typical of ICN, standard AVC-based HAS performs quality selection sub-optimally, thus leading to a poor Quality of Experience (QoE). In this article, we propose to overcome this inefficiency by using Scalable Video Coding (SVC) instead. We individuate the main advantages of SVC-based HAS over ICN and outline, both theoretically and via simulation, the research challenges to be addressed to optimize the delivered QoE
    • …
    corecore