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ABSTRACT

HTTP based online video streaming services have been consistently dominating

the online traffic for the past few years. Measuring and improving the performance of

these services is an important challenge. Traditional Quality-of-Service (QoS) metrics

such as packet loss, jitter and delay which were used for networked services are not easily

understood by the users. Instead, Quality-of-Experience (QoE) metrics which capture the

overall satisfaction are more suitable for measuring the quality as perceived by the users.

However, these QoE metrics have not yet been standardized and their measurement and

improvement poses unique challenges. In this work we first present a comprehensive

survey of the different set of QoE metrics and the measurement methodologies suitable

for HTTP based online video streaming services.

We then present our active QoE measurement toolPytomothat measures the QoE

of YouTube videos. A case study on the measurement of QoE of YouTube videos when
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accessed by residential users from three different Internet Service Providers (ISP) in a

metropolitan area is discussed. This is the first work that has collected QoE data from

actual residential users using active measurements for YouTube videos. Based on these

measurements we were able to study and compare the QoE of YouTube videos across

multiple ISPs. We also were able to correlate the QoE observed with the server clusters

used for the different users. Based on this correlation we were able to identify the server

clusters that were experiencing diminished QoE.

Dynamic Adaptive Streaming over HTTP (DASH) is an HTTP basedvideo stream-

ing that enables the video players to adapt the video qualitybased on the network con-

ditions. We next present a rate adaptation algorithm that improves the QoE of DASH

video streaming services that selects the most optimum video quality. With DASH the

video server hosts multiple representation of the same video and each representation is

divided into small segments of constant playback duration.The DASH player downloads

the appropriate representation based on the network conditions, thus, adapting the video

quality to match the conditions. Currently deployed Adaptive Bitrate (ABR) algorithms

use throughput and buffer occupancy to predict segment fetch times. These algorithms

assume that the segments are of equal size. However, due to the encoding schemes em-

ployed this assumption does not hold. In order to overcome these limitations, we propose

a novel Segment Aware Rate Adaptation algorithm (SARA) thatleverages the knowledge

of the segment size variations to improve the prediction of segment fetch times. Using
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an emulated player in a geographically distributed virtualnetwork setup, we compare the

performance of SARA with existing ABR algorithms. We demonstrate that SARA helps

to improve the QoE of the DASH video streaming with improved convergence time, better

bitrate switching performance and better video quality. Wealso show that unlike the ex-

isting adaptation schemes, SARA provides a consistent QoE irrespective of the segment

size distributions.
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CHAPTER 1

INTRODUCTION

Online video streaming services have become the most popular form of entertain-

ment in the recent years. With Video On Demand (VoD) services, the users are able to

watch varied contents: user-generated videos, movies, TV shows, sports etc., from multi-

ple different platforms-laptop, PC, televisions, game consoles, mobile phones and tablets.

Over the last few years, the video streaming services have accounted for most of the prime

time Internet download traffic. In North America alone, the top video streaming services,

Netflix and YouTube, accounted for 43% of the total peak download traffic in 2014. If

other VoD services such as Hulu and Amazon video services areconsidered, this percent-

age rises to as high as 63%. A similar trend could be found in the global Internet traffic.

Globally, video streaming traffic is expected to account for80% of the consumer traffic

on the Internet by 2019, up from 64% in 2014 [24].

The increasing dominance of video traffic over other Internet traffic could soon

make it a prime online service for the average user. More and more users are relying on

web-based services for their video entertainment needs. The trend of increasing cord-

cutters (users that cancel cable or satellite TV subscription) could also be correlated to

these trends. The number of devices that are connected to theInternet has also been in-

creasing. Most consumer devices are now connected to the Internet and have the capabil-

ities for media playback. These devices are not limited to the mobile phones, televisions,
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game consoles, tablets, or watches. With the advent of HTTP based video streaming

services, any device with a web browser can be used for video streaming.

In order to ensure the satisfaction of the existing users there has been an increasing

interest from the video service providers, Internet Service Providers (ISPs) and even wire-

less network providers to develop tools and techniques thatcould measure and improve

the user’s satisfaction. Measurement of existing quality of services is an important factor

in understanding the current system’s capabilities and also this assists the engineers in the

network and system forecasting.

Traditionally, the Quality of Service (QoS) metrics have been used to study the

performance of online services and networked elements. Quality of Service(QoS) as de-

fined by ITU [45] reflects the performance of the network and its components. It measures

the network’s ability to satisfy the needs of the service andis thus, a network-centric met-

ric. The common QoS metrics used are throughput, bandwidth,packet loss, delay, or

jitter. QoS metrics have been found to be more suitable to measure the performance and

reliability of the network elements. However, QoS metrics do not capture the quality of

service perceived by the user. The service perceived by the user is subjective and is influ-

enced by not only the network components but also several other confounding end-to-end

factors. These confounding factors include the effects of the service infrastructure, ter-

minal, client hardware and operating system, system load, and the user’s psychological

and environmental settings. In order to understand the user’s satisfaction with a service

it, is necessary to consider the effects of these end-to-endconfounding factors on the end

user’s perception of quality.
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1.1 Quality of Experience (QoE)

Quality-of-Experience (QoE) as defined by [44, 85] is a user-centric metric that

captures the overall acceptability of the service and includes the end-to-end factors. QoE

has also been defined as the degree of delight or annoyance experienced by a user of an

application or service [22]. QoE, thus, measures the performance as subjectively per-

ceived by the user. However, QoE and QoS are not mutually exclusive; rather, QoE could

be considered as an extension to QoS. QoE tries to capture theperformance of a service

with metrics that could be directly communicated by the user.

Typically, VoD streaming sessions last from several minutes to hours. If there

is a noticeable delay after a video link is clicked, or if there is an interruption during

the playback or any perceivable drop in the visual quality ofthe video, these can affect

the perceived quality of the user. The users of video streaming services usually have a

different set of expectations as compared to other types of web services.

The factors that affect the QoE for video steaming services are not easy to predict

or measure. There has been significant work in identifying these factors and developing

tools to measure the metrics that could used to estimate the QoE. We present a compre-

hensive survey of the various factors and the methods that are being used to measure the

QoE in Chapter 2.

1.2 HTTP Based Video Streaming Techniques

Compared to an average HTML web-page, the size of a typical video file is signif-

icantly larger. The average web page size is found to be 1.9 MBin October, 2014 [5]. In
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2007, based on their measurements, the authors in [37] foundthat the average YouTube

video size was 10 MB. Since then, YouTube has increased the maximum video file size

to 2 GB from 100 MB and also started hosting HD videos. The HD videos hosted by

YouTube have an average size of 32 MB per minute [60]. Using these numbers as ref-

erence, a user would need to wait for significantly longer durations if the users’ video

players were to download the entire file before starting the playback. This clearly would

affect the users’ QoE. Instead, online video streaming services are set up in such a way

that users can start viewing the content once the initial part of the video is downloaded,

without having to wait for the video to be completely downloaded.

The use of Hyper Text Transfer Protocol (HTTP) for video streaming has become

very popular over the last few years. Unlike the traditionalstreaming protocols, viz.,

Real-Time Streaming Protocol, Real-Time Media Streaming Protocol etc. [54], HTTP is

a stateless protocol. For HTTP based video services it is notrequired to have dedicated

video servers. With HTTP the content providers are able to reuse the existing web-servers,

caches and content-delivery architectures. The statelessapproach of delivery also reduces

the load on the servers by avoiding persistent feedback loops with the client and enables

the system to scale better. HTTP natively and easily supports mirroring and edge caching,

thus enabling large-scale expansion if necessary. HTTP is also widely enabled across Net-

work Address Translation (NAT) devices and firewalls. The ubiquitous nature of devices

compatible with HTTP makes it easier to port the video playeronto multiple client plat-

forms. HTTP based video streaming techniques are of two types: progressive download

and Dynamic Adaptive Streaming over HTTP (DASH).
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1.2.1 Progressive Download

The progressive download streaming technique refers to thecontinued download

of a video file, while the video player plays out the video content received so far. In

Progressive Download Streamingtechniques, the multimedia file is downloaded like a

regular file using HTTP over TCP from a web server hosting the content. With progressive

download, there is no direct feedback loop between the client and the server. On the

client-side, the entire video file is being downloaded as quickly as possible and stored

on the local disk. However, in order to reduce the amount of data delivered to the user

and to reduce the network resources utilized, the server-side could implement certain flow

control mechanisms. The video player (typically an embedded Flash player) starts playing

the video (for the data received so far) while it is still being downloaded.

Using HTTP over TCP for video transfers ensures reliable data delivery, but in

the case of low bandwidth availability or excessive packet losses during the transmission,

the playback may be interrupted. By using HTTP, the complexity on the server-side is

reduced and the clients are not affected by a firewall or a proxy. However, downloading

the media as fast as fast as possible, could lead to waste in bandwidth if the user decides

to quit before completely viewing the entire video.

With progressive download, an embeddedFlash Playeris used to play the video

directly from any suitable web browser [92]. The player downloads the video as a regular

file and stores it in a temporary folder. The downloaded videofile is usually an interleaved

stream of audio and video blocks with tags to indicate the time at which they are supposed

to be played. These tags help the Flash Player to skip backward or forward within the
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video file already downloaded. Since the entire video is stored locally, the backward skip

is simply a local operation. In case of a forward skip to a position in the video that has

not yet been downloaded, the Flash Player sends a new HTTP request with the byte-range

indicating the new position to the server. Although the progressive download technique

has been traditionally used for VoD, it could also be used forlive content as well.

Since the server does not maintain any state, the player handles the video playback

in two stages to ensure smooth playback. During the initial stage, the player waits for a

certain period of time known as theInitial Bufferingperiod, during which the content that

can play the first 30 to 40 seconds of playback is downloaded asfast as possible from

the server [36]. Once theinitial buffer is filled, the video playback starts. By delaying

the start of the playback, the player avoids the effect of packet delay and jitter on the

playback. The content is continuously downloaded and buffered while it is played by

the Flash player. If the difference between the amount of content played and the content

downloaded falls below a certain threshold, the video playback is paused resulting in an

interruption. The video playback remains interrupted until the threshold is crossed again

after which the playback resumes. The threshold values for different stages of buffer-

ing is not standardized and could vary across various implementations of the progressive

download video player.

The servers tend to employ flow control mechanisms, to improve the initial buffer-

ing time and also reduce the amount of unnecessary data transferred in case the user de-

cides to quit before watching the entire video [15]. Progressive download servers tend to
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send the video as fast as possible during the initial stages before settling down to a con-

stant sending rate. The sending rate during this steady phase is maintained at or slightly

above the playback speed to ensure smooth playback.

Since the video could be accessed by users from different hardware platforms, it

is necessary for the servers to be able to support various formats. Each of these different

formats are stored as separate files with a different URLs [34]. Before initializing the

video streaming, the default format and the resolution are determined by the player and

based on the hardware platform and screen resolution settings (such as full-screen and

wide screen). The selected format is typically fixed for the entire duration of the playback.

However, the player supports the ability to automatically change the format/resolution of

the playback depending on the network conditions. This shift is initiated by the player

at the user-end and results in the new video format file being downloaded. The popular

progressive download video streaming services include YouTube, Dailymotion, Vimeo

etc. At the time of writing this paper, YouTube has started supporting most of its videos

using MPEG-DASH (discussed in Section 1.2.2) in addition toprogressive download

[63].

1.2.2 Dynamic Adaptive Streaming Over HTTP (DASH)

Progressive download has the advantages of HTTP-based streaming, however, it

does not have the capability to adapt the video streaming rate during playback. Any

perturbations in the network during playback leads to buffer starvation which results in

playback interruptions. The Dynamic Adaptive Streaming Over HTTP (DASH) technique
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was proposed to support adaptive streaming over HTTP [91]. ADASH server does not

maintain any state information during the session. The rateadaptation is handled at the

client-end. By offloading the decision making process onto the client-end, the system

is able to scale well while still providing dynamic adaptivestreaming. It was observed

in [102] that the above advantages of DASH resulted in a better QoE for the users when

compared to the progressive download techniques.

DASH considers a media file to be a collection of several components: audio,

video, and subtitles that are stored separately on the DASH server. These components

are delivered to the user independently but combined at the time of the playback [91].

Each of these components is further divided into smaller chunks calledsegmentsand each

segmentcould be encoded into multiple versions. Everysegmentis identified by a unique

URL. The different versions of the same media file are calledrepresentations. Different

representationsvary in bit rate, resolution, format, language, and other characteristics.

When the user starts playing a video, the client first retrieves a Media Presentation

Description (MPD) file that is a manifest with the list of all the availablerepresentations,

suggested bandwidth for eachrepresentation, video dimensions, the digital rights man-

agement (DRM) information, the location of eachsegmenton the network (URL) and

other attributes of the media file. A sample MPD file can be found in Appendix A. In

order to play the video, not all representations need to be supported by the client device.

At the beginning of a session after downloading the MPD file, the video player

sends an HTTP request for the firstsegmentof the video using its URL. Typically, the

segmentwith the lowest resolution is requested first. While the firstsegmentis being
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downloaded, the player monitors factors such as throughput, delay, and client-buffer sta-

tus. [18] reviews several tools that could be used by the DASHstreaming services to

estimate the bandwidth. Based on these factors, end-devicecapabilities, and the user’s

preferences, the DASH player employs adaptation algorithms to determine the most suit-

able representation for the next segment [67, 73]. The player, thus, decides to either stay

with the same representation or shift to a higher or lower representation. The represen-

tation is selected to play the best possible quality of the video with the least number of

interruptions. Once the decision is made, a new HTTP requestis sent for the nextsegment.

Thus, the DASH player is able to adapt the quality of the videoat the boundary

of each segment in order to ensure uninterrupted playback. Since, DASH retains the ad-

vantages of HTTP services while providing adaptive streaming it has gained tremendous

popularity over the last few years. Currently the top video streaming services such as

Netflix, YouTube, and Hulu use DASH streaming [10].

1.3 Scope and Contribution of this Dissertation

In this dissertation, we focus on two aspects of QoE management for online video

streaming services. First, is the measurement of QoE for online videos and the second is

the improvement of QoE for online video streaming services.The contributions of this

dissertation are as follows:

• Although the importance of QoE as a measure has been generally agreed upon, the

factors affecting QoE and the metrics used to capture the effects of these factors has

not been standardized yet. There have been several tools andmethodologies used to
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measure the QoE for online video services. As an effort to unify these approaches

we have conducted an extensive survey of the existing literature on measurement of

QoE. This work has been published in [54] and a part of this survey is presented as

related work in Chapter 2

• We contributed to the development of a user-end active measurement tool,Pytomo

to measure the QoE of the popular video streaming service, YouTube. A paper

describing this tool was published in [51] and is briefly described in Chapter 3.

• We usedPytomoto study the QoE and the content delivery policies for users across

different ISPs in a metropolitan area. We present this data as a case study in Chapter

4. This work was published in [52].

• We propose the Segment Aware Rate Adaptation (SARA) algorithm for DASH

streaming services to improve the QoE in terms of bitrate switching events, video

quality and convergence times. This algorithm and the preliminary evaluations have

been published in [53,56]. The algorithm is presented in Chapter 6.

• We also present a study of the comparison of performance of SARA with existing

throughput based and buffer based rate adaptation algorithms is published in [55]

and is is presented in Chapter 7.

1.4 Additional Contributions

In addition to our work on QoE as presented in this dissertation we have collabo-

rated on a number of research projects that resulted in the following publications:
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• A comparative study on the server delivery policies and the perceived QoE of

YouTube video in US and Europe was published in [79].

• Apart from the measurement and improvement of QoE at the user-end, we have

also proposed an in-network efficient caching framework aimed at increasing the

cache-hits and reducing the cache-misses, which was published in [50].

• An experimental study on dynamic network reconfiguration ina virtualized network

environment using autonomic management was performed in collaboration with

Xuan Liu and was published in [70].

• In [19, 71], the Secure and Resilient Virtual Trust Routing (SeRViTR) framework

design, implementation, and and a testbed that enables us todemonstrate SeRViTR

was presented.

1.5 Organization

The rest of this dissertation is organized as follows: Chapter 2 presents an ex-

tensive literature survey of different categories of QoE metrics and the various types of

measurement techniques proposed in literature. In Chapter3, we present our client-end

active measurement tool designed to measure the QoE of YouTube videos. A measure-

ment study that usesPytomoto study the QoE and server policies across different ISPs

in the same metropolitan area is presented in Chapter 4. Later, we propose a novel Seg-

ment Aware Rate Adaptation (SARA) algorithm for DASH video streaming in Chapter 6

followed by an comparative evaluation of SARA in Chapter 7. Chapter 8 concludes this
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dissertation.
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CHAPTER 2

MEASUREMENT OF QOE FOR ONLINE VIDEO STREAMING SERVICES: A

LITERATURE SURVEY

In traditional video broadcast services QoE metrics were measured by comparing

the reference with the outcome at the user-end. Reference reflects the undistorted content

in its original form at the server end. The outcome received at the client-end could be

potentially distorted or delayed. Based on the amount of information available about

the reference the QoE metrics for video services have been classified into the following

categories [33]:

• Full reference(FR) metrics: Complete copies of the reference and outcome are

available to evaluate the quality of the video received at the user in comparison with

the original content. This enables detailed subjective andobjective comparisons of

the videos. These metrics are best suited for traditional broadcasting and television

systems which have dedicated delivery networks. A few examples of FR metrics

are Peak Signal to Noise Ratio (PSNR) [86], Structural Similarity (SSIM) [99], and

Video Quality Metric (VQM) [86].

• No reference(NR) metrics: Only the outcome is available and the quality is to be

estimated without the reference stream. These types of metrics are more applicable

to online services, where the delivery network is shared by other services. In video

streaming services, it is hard to determine if the discrepancy in the quality is due to
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Table 1: Classification of QoE Metrics for Online Videos

Objective Metrics Subjective Metrics
Playback Start Time

Number of Interruptions
Duration of Interruptions Mean Opinion Score (MOS)

Quality of Video File
Bitrate Switching Events

User Engagement

the quality of the reference or due to the intermediate elements.

• Reduced reference(RR) metrics: The same set of parameters are derived from

both the reference and the outcome. These parameters could be at the application

layer: bit-rate, frame-rate or at the network layer: packet-loss.

The Full reference and Reduced Reference metrics are not suitable for online me-

dia streaming services. This is due to the distance between the client and the server and

also due to lack of separate feedback channels. Hence, No Reference metrics are most

suitable online streaming services.

2.1 Types of QoE Metrics for Online Video Streaming Services

Depending on the type of measurement mechanisms employed, the QoE metrics

could also be classified into objective and subjective metrics [85](Table 1).

2.1.1 Objective QoE Metrics

Objective QoE metrics are metrics that can be quantified withan automated mea-

surement tool. The following are the common objective QoE metrics that capture the
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factors that influence the user’s QoE.

1. Playback Start Time Theplayback start timeor theinitial delay is the time taken

from the moment a user clicks the video link until the video playback begins. The

playback start timetypically includes the time taken to download the HTML page

and the related objects, download and load the embedded video player plugin, and

buffer the initial part of the video. In the case of streamingvideos, the player starts

playing the video only after a part of the file is downloaded (calledInitial Buffering).

By doing so, the player overcomes the effect of the delay and jitter incurred during

the data transfer on the video playback. Theplayback start timeis an important

factor that affects the QoE, and hence, certain VoD services(such as YouTube)

usually tend to push data at higher rates initially and settle down for a lower rate

later [83]. It was observed in [59] that playback start time had a significant influence

on user retainment. If the playback start time extends by more than 2 seconds it

could result in the viewer abandoning the video completely [59]. Playback start

time can be used to quantify the QoE in any type of video streaming.

2. Number of Interruptions An interruption occurs when the playback of the video

is temporarily stalled. A streaming player downloads the initial parts of the multi-

media content into a playout buffer before the video has started playing. As long

as the rate at which the buffer is being filled is greater than or equal to the rate at

which the video is played, the playback is not interrupted. If the download rate falls

below the playback rate, the buffer gets depleted and the player waits for the buffer
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to be partially filled before resuming the playback; this wait time results in an in-

terruption of the playback. The interruption is thus a direct consequence of video

player’s buffer starvation. The interruptions are also referred to as(re)buffering

eventsand the frequency with which the buffering events occur is called thebuffer-

ing frequency. The re-buffering could also be a consequence of user interaction.

When a user skips to a different part of the video or changes the quality of the video

during the playback, the player needs to fetch the requestedcontent from the server

and then continue the playback from the desired position. Inthis case, the player

again waits for a certain buffering period before resuming the playback.

In case of DASH, if the player observes any drop in the receiving rate, it may

automatically switch to a lower bitrate so that the video playback is not interrupted.

However, if the network condition becomes significantly badthat even the lowest

bitrate content cannot be downloaded in time, then the user would see interruptions.

The interruption lasts until the playout buffer is partially filled with the content of

the desired bitrate. These interruptions or stall events during the playback lead to

a poor user experience [39]. It is found that the number of interruptions have a

significant impact on the QoE [33]. Users who experienced more interruptions in

the video tend to watch the video for shorter durations [59] and are likely to be

dissatisfied in the case of four or more interruptions for videos [40].

3. Duration of Interruptions Apart from the number of times the playback is inter-

rupted, the duration of each interruption (“buffering duration”) could also effect

the perceived QoE. If the interruption duration is one second, the users are less
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dissatisfied when compared to 3 seconds of interruption while watching YouTube

videos [39, 40]. In [81], it was concluded that the viewers prefer a single but long

stall event instead of several short stall events. Hence, the effect of the duration of

the interruptions and the number of interruptions on the QoEcould vary.

4. Quality of the Video File The quality of a video stream is based on the encoding

rate. The encoding rate is the average data required to play one second of the

video. The encoding rate of the video does affect the QoE of the users [64]. A

higher quality video (HD) would usually require a larger amount of data for each

frame and hence, results in a higher encoding rate. Progressive download streams

typically stick to the same encoding rate throughout the duration of the playback

irrespective of the change in the network quality. Adaptivestreaming techniques,

like Real-Time video streaming and DASH, vary the encoding rate depending on

the network parameters.

There are other video characteristics that have been used torepresent the quality

of the video such as the contrast, blurring [77], and blockiness [32, 65, 100, 103].

Blockiness manifests as a block appearing in the video. It iscaused by the block-

based coding schemes such as H.261, H.263, MPEG-1. These other video charac-

teristics have been mainly used in the traditional video broadcasting.

5. Bitrate Switching Events The Bitrate switching events are related to the Dynamic

Adaptive Streaming over HTTP technique (DASH). For DASH videos, the player

tends to pick a lower initial startup and gradually keeps increasing the quality before
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settling at a suitable bitrate. The bitrate could later be reduced when the rate of

the playback exceeds the buffering rate due to degraded network conditions. By

lowering the quality of the video streaming, the player minimizes the interruptions

during the playback. On the other hand, when the network conditions improve, the

bitrate is increased. Thus bitrate switching events could be of positive or negative

polarity. A bitrate switching event where the level of bitrate is increased is called

Positive switch, whereas a decrease in the existing bitrate is calledNegative switch.

However, frequent switching in bitrates can degrade the users QoE [102]. Hence, it

is necessary to ensure that the number of bitrate switching events are reduced. The

startup bitrate, number of bitrate switching events, and the average bitrate affect

the QoE [64,102]. Different polarities of bitrate switching events can have varying

effects on the QoE. Users were found to be more critical towardsnegative switching

events when compared toPositive switchevents [26].

6. Convergence Time is another objective metric related to DASH video streaming

services. As discussed in Chapter 1.2.2, the DASH player starts the playback with

lowest video quality and then gradually changes to the optimum quality (preferably

highest quality). The bitrate switching occurs at the boundary of each segment.

Depending on the rate adaptation scheme used and the networkconditions, the time

taken for the player from starting playback to reaching the highest quality could

vary and this duration is considered as theConvergence Time. The QoE of the users

can be improved by minimizing theConvergence Timefor DASH videos.

7. User Engagement User Engagement reflects the user involvement and interaction
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with the video. User engagement is measured in terms of the number of views and

the play time of the video. However, the play time might not reflect the amount of

time the user actually spends watching the video without getting distracted. It is

hard to quantify the user’s focus which is a subjective metric. The users who are

satisfied with the content and the QoE of the streaming session tend to spend more

time watching the video [31].

2.1.2 Subjective QoE Metrics

Subjective metrics are the QoE metrics based on collecting data directly from the

users based on their experience with the service. A limited set of human subjects are

exposed to the video service in a controlled environment andare asked to rate them on

a linear scale. Due to the use of actual human subjects, the ratings could be affected by

several physical and psychological confounding factors and hence, subject to user-bias.

The confounding factors can be broadly classified as (1) user-dependent: user interest,

purpose (educational, entertainment) (2) content-based:genre, age of the content and

popularity; or (3) device-dependent: quality of the Internet connection, screen size, and

the capabilities of the device. Such subjective metrics aresusceptible to bias and hence,

can vary from one subject to another. The best way to measure the effects of these factors

is to collect direct feedback from multiple users using robust sampling methodologies and

to use statistical analysis techniques to avoid any bias.

1. Mean Opinion Score(MOS) TheMean Opinion Score(MOS) is the most popular

subjective metric measurement scale that is often used to quantify these factors.
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Users watch videos and rate them on a five-point discrete scale: 1-bad, 2-poor,

3-fair, 4-good, and 5-excellent. The use of the MOS as a subjective metric has

become the de facto standard for subjective assessment. It is, however, not easy

to automate the MOS measurement since the influence of the human psychological

factors and the user bias needs to be considered. In order to predict the MOS, a

good understanding about the psychology of the users to predict the MOS ratings

is necessary.

2.2 Measurement of QoE Using Client-Side Instrumentation

To precisely capture the QoE as experienced by the user many studies have pro-

posed using tools closer to the client-end to measure the objective metrics. These metrics

are collected by using measurement tools that run on the userdevices. Depending on

how the data is collected by the tool, the user-end measurement studies can be further

classified into two categories: measurement based on activeand passive analysis

2.2.1 Measurements Based on Passive Analysis:

Passive analysis tools collect QoE metrics for the videos that are being watched

by the users. These tools run in the background and the QoE metrics are obtained in

real-time by analyzing the video streams being played. In this case, the videos for which

the QoE is measured is purely dependent on the interest of theuser and the tool has no

control over the selection or the playback duration of the videos.

In [92], the authors developed a client side passive measurement tool, YOMO that

collects the QoE metrics for progressive download videos, specifically YouTube videos.
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YOMO estimated the number of interruptions occurring whilewatching a YouTube video

by tracking the status of the playout buffer that reflects thetotal time, sayβ, that the

playback can continue in case of an interruption in the download. Here,β is the differ-

ence between the time in which the content could be played from the playout buffer,T

and the current play time of the video,t. In caseβ is smaller than a thresholdβ0, the

playback is interrupted. In case of YouTube, they found thatthe API waited for a certain

duration from the time the first byte of the video is downloaded before the playback is

started. However, this duration was observed to be inconstant and it did not have any

correlation with the video characteristics. The accuracy with which the duration of the

interruption is estimated depended on the accuracy in estimatingt, which is also the time

since the playback started. The authors proposed two methods to estimatet. In Method 1,

it was assumed that the video playback began as soon as the first Flash Video (FLV) tag

was downloaded. The accuracy of this method was found to be directly related to the

bandwidth. In this method, the error was sufficiently low forbroadband connections. In

Method 2; YOMO uses a Firefox plugin that retrievedt from the YouTube player. This

method resulted in an estimation independent of the bandwidth. The maximal error in this

method was 0.5 seconds whereas it was 20 seconds in the case ofslow connections with

Method 1.

In [30], the application layer metrics are used to estimate the QoE ofWindows

Media Playerusers. They developed a wrapper for the player to collect theapplication

layer metrics such as the number of packets lost, recovered,and received, the current data

rate of the stream, and buffer starvation, if any. The data collected from the player was
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sent to a centralized location to analyze and report on the statistics. The current work

used a distributed architecture that consisted of assessment servers, media clients, data

collection points, and report servers. The data collectionwas scheduled and collected by

the central assessment servers. The playback metrics collected from the application were

transferred to the data collection points and sent to the assessment servers, where the data

was analyzed. The analyzed results were sent to the report servers where the analyzed

data was made available to the customers. They demonstratedthat the application layer

metric, player buffer starvation, could be used as an indicator to predict the playback

interruptions. A similar approach is taken in [28] where themetrics such as the number

of packets lost and retransmitted at the application layer are measured and compared

against similar metrics for a reference stream to predict the user-perceived quality. The

authors in [28] concluded that the re-buffering frequency and initial buffering time are the

main factors affecting the QoE. In [29], the authors extended their earlier study by also

collecting theinitial buffering period, which is equal to thePlayback Start Timealong

with other application layer metrics to predict the MOS ratings for the videos.

In [74, 75], the authors used client-side instrumentation for HTTP based progres-

sive download video streaming. The instrument kept track ofthe user initiated actions

such as pausing, resuming playback, jumping within a video,and screen switching, etc.

The QoE metrics such as initial buffering time, mean buffering duration, re-buffering fre-

quency, and bitrate switching were measured for the video streaming sessions. Apart from

these objective metrics, the users were also asked to rate the videos using the MOS scale.

The objective QoE metrics and the subjective feedback from the users thus collected were
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used to correlate the objective metrics with the MOS. Similar to the previous studies, they

concluded that the re-buffering frequency is the main factor affecting the QoE in terms of

the MOS.

In [69], client-side instrumentation was used to collect data from 50 million view-

ers for 200 million views of both VoD and live streaming services that were served by 91

different content providers. They used the QoE metrics suchas re-buffering frequency,

playback start time, average bitrate, and failure to start video. Using these metrics, three

issues that could result in poor video quality were identified: (1) client-side bandwidth

variations during the playback, (2) variation in the CDN performance across the time and

geographic regions, and (3) heavily loaded ISPs. In order toovercome these issues, they

proposed a video control plane that utilized measurement-driven feedback on the perfor-

mance. The feedback enabled the control plane to dynamically adapt the video parameters

such as the CDN that was used and the bitrate to improve the quality.

In [31], client-side instrumentation was used to measure the initial playback time,

buffering ratio (defined as the ratio between buffering timeand play time), buffering fre-

quency, and average bitratefor different types of videos: long, short, and live. These

videos were accessed from multiple different content providers, that used varied stream-

ing techniques. A quantitative analysis was done on the correlation between the three

different factors: QoE metrics, content type, and user engagement. Based on the mea-

surements, it was concluded that the buffering ratio impacted the user-engagement for all

content types whereas the bitrate mainly affected the user-engagement for live streaming

videos. They also determined that theinitial buffering periodwas critical for the user
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engagement.

In the client-side passive measurement tools presented above, the authors devel-

oped wrappers around the players for different streaming services to capture different

metrics. They either polled the video player or observed thebuffer status of the player to

estimate the status of the video playback. The data collection in such tools requires the

active involvement of the users.

2.2.2 Measurements Based on Active Analysis:

In measurements based on active analysis, the requests for the videos are gener-

ated artificially and the QoE metrics for these videos are collected. Active measurements

circumvent the need for a user to sit and watch the entire set of videos that need to be eval-

uated. Active measurement approaches typically use crawlers or bots that crawl through

the video streaming websites and collect the QoE metrics fora large number of videos.

The advantage of using such tools is that they can be easily used to measure the QoE for

a large number of videos and do not require any user participation, thus eliminating any

subjective bias.

In [83], the latency of three video services, YouTube, Dailymotion, and Metacafe,

was measured and compared using active measurements. Automated scripts were run

on several PlanetLab nodes to fetch 1 MB of each video in 50 KB increments. They

computed the mean service delay for a video by averaging the service delays of three

consecutive 1 MB chunks to eliminate the effect of the size ofthe files. This service delay,

referred to as theincremental service delay, was independent of the client-side application
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as it did not account for the flow control or the buffering scheme used. By comparing the

incremental service delay for the three services, it was observed that YouTube delivered

1 MB of video content nearly 6 times slower than Dailymotion and Metacafe. However,

the incremental service delay is not a direct quantifier of the QoE.

Similar to the studies based on passive analysis, the activemeasurements are also

done as close to the user as possible. These tools also capture the effect of the performance

of the user device and the last hop connectivity on the QoE. Since active analysis uses

crawlers, it requires minimal involvement of the users.

2.3 Measuring QoE Using Direct User Feedback

The QoE of users is a subjective metric and one popular methodof evaluating it is

to obtain the rating directly form the users. Typically, a set of users (friends, colleagues, or

volunteers) are requested to watch a set if videos in a controlled environment and provide

their rating on an MOS scale. These studies are found to be good at capturing the effect of

confounding factors on the QoE. In such subjective evaluations it is necessary to maintain

a consistent viewing conditions for the different users. The standard in [46] specifies the

conditions that are needed to be considered to conduct experiments that describe the view-

ing distance, room lighting conditions, selection of the subjects, video content selection,

and assessment and data analysis methods.

In [74], the authors created a platform that played HTTP streaming videos by

varying the objective QoE metrics and collected the MOS rating from 10 different subjects

who were non-experts in the estimation of video quality. Theauthors determined that the
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interruptions in playback was the main factors affecting the MOS rating.

Collecting a sufficient number of unbiased users to provide feedback on the videos

is a non-trivial task. This becomes even more difficult if thestudy targets different geo-

graphic areas. Some studies have used a crowd-sourcing model to overcome these limita-

tions. In a crowd-sourcing platform, users are provided with incentives to perform small

tasks. Example of such platforms are Mechanical Turk [16] and Microworkers [72]. How-

ever, such studies need to ensure the reliability of the results as the users are not monitored

or provided with any controlled environments. In order to gather the data that is more re-

liable, the tasks assigned need to be interleaved with gold standard data tests, consistency

tests, usage monitoring, and content questions as suggested in [40]

In [39], a subjective study was performed using both volunteers in a laboratory and

crowd-sourcing. This study compared the sensitivity to initial delay and the interruptions

while watching YouTube videos. Apart from YouTube videos, they also studied the effect

of the authentication time for the social networks and Wireless 3G Internet connection

setup time on the QoE. Based on the MOS data collected, the authors found that the

users in both the experiments preferred some delay before playback started instead of an

interruption. It was also observed that the results from crowd-sourcing were similar to the

results from the laboratory tests and the length of the videoclip did not have any influence

on the MOS.

In [102] the authors developed a framework to obtain the subjective ratings from

the volunteers to measure the QoE for an adaptive video streaming service and compare it
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with fixed bitrate video streaming (progressive download) technique. They used 141 vol-

unteers to rate artificially spliced variable bitrate samples that emulated a DASH session.

The volunteers were asked to rate the overall video viewing experience using a MOS rat-

ing and also rate their satisfaction with objective metricssuch as video-definition (video

quality), fluency (interruptions), response speed (initial delay). Based on these studies,

they found that for the DASH streams the number of interruptions affects the QoE more

than the video quality, the startup bitrate and slow bit-rate ramp-up also affects the QoE,

and the users are sensitive to frequent bit-rate switching.They also concluded that in

general the QoE of DASH videos was better than the progressive download videos.

The MOS feedback collected from the users either in a controlled lab or crowd-

sourcing environment can be used to understand the effects of various metrics on the QoE.

However, it is difficult and time consuming for the users to watch and provide feedback

on every video. This process of collecting data is also expensive and not easily repeatable.

2.4 Other Measurement Techniques

The client-end QoE measurement techniques are good at capturing the QoE at a

point closest to the user and can capture the end-to-end effects on the video performance.

However, it is necessary to gain access to the user machine inorder to perform the mea-

surement. For the network operators and service providers this approach might not be

the most suitable. They however have the advantage of uniquevantage points that have

access to the complete data passing through the network. There are different set of studies

that collect data from places other than the user-end to estimate the QoE.
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2.4.1 Estimating QoE from measurements within the network

While the measurements at the user-end estimate the user satisfaction, they cannot

be implemented easily by the network providers. A network provider can collect metrics

within the network in a faster and easier manner. There has been extensive research on

measuring the QoS metrics such as throughput, loss rate, delay, jitter, and packet re-

ordering and it was demonstrated that these network-level parameters affect the perceived

quality [57], [25], [93]. If the network-level metrics could be used to predict the QoE of

the user, it would help the network providers to extend the existing measurement tools to

evaluate the QoE.

The authors of [82] used Deep Packet Inspection (DPI) in the network to develop

a preliminary model to estimate the QoE in the case of progressive download services.

From the TCP headers of the packet traces collected, the timestamps of the TCP ac-

knowledgments at the client were monitored. By tracking theTCP segments and the

corresponding acknowledgments (ACKs), they were able to estimate the playout buffer

level at the client and predict the QoE metrics such as initial buffering time, number of

interruptions, and total duration of the interruptions. However, this requires the complete

packet trace and is an offline analysis approach.

In [34], the authors used Tstat [95], a DPI tool that implements a traffic classifier

from the flow-level statistics. YouTube traffic was analyzedfrom vantage points within

the ISPs and university campuses across Europe and the U.S.A. It was observed that all

YouTube video requests containedHTTP videoplayback tags in their HTTP head-

ers. By observing the time difference between theHTTP videoplayback request and
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the reception of the video data in the payload, the start up latency of the video was pre-

dicted (the initial buffering period at the user was ignored). The user behavior during the

playback was observed from the user-initiated bitrate switching, screen mode (full-screen)

switching, and the portion of the video actually watched to correlate with the system per-

formance. It was observed that although progressive download maintains the quality of

streaming with aggressive download, the amount of unused data was significantly high

as the users typically watched only a part of the video. The behavior of the users across

different devices (such as mobiles and PCs) was also studiedand it was observed that the

device, location, and infrastructure had no effect on the playback quality of the YouTube

videos.

An on-line QoE estimation algorithm for progressive download videos was pre-

sented in [62]. The packet-level metrics were obtained fromthe TCP headers and the

meta data information of the video. The network layer information was collected using

the Access Network TCP Monitoring Algorithm (ANTMA) [98] topredict the number of

interruptions and the duration of the interruptions in real-time. However, the algorithm is

designed only for an MP4 video format and makes two assumptions to work in real-time.

First, the node should see all the TCP packets in both directions. Second, no re-ordering

of packets takes place between the monitoring node and the TCP receiver. Based on their

analysis, the authors were able to predict the QoE metrics such as the number of interrup-

tions, and the playback start time in real-time by restricting the tool to run in the node in

the access network of the user.
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The QoE of services using DASH was estimated by using the session logs col-

lected from a node within the network and a server in [42]. Thesession logs were

generated using a packet capture method. These logs consisted of the complete MPD

file, and three timestamps for each video segment downloaded: interception time of the

HTTP-GET request from the client (including the URL), the interception time of the first

packet with the video payload (this gives the segment size),and theOK time stamp that

indicates the end of the last segment. The session log data collected was used to recon-

struct the DASH session that reflected the adaptation of the bitrate and the evolution of

the buffer-filling (in seconds) over the duration of the session. Based on the reconstructed

sessions, the authors were able to estimate the QoE metrics such as the number of in-

terruptions, initial buffering duration, average duration of each interruption, number of

bitrate switching events, and average re-buffering time due to user interaction.

In-network methods to measure the QoE of YouTube videos was presented in [84]

by estimating the number of interruptions during the playback based on arrival time of

TCP ACK messages.

The use of the in-network QoE estimation techniques eliminates the need to mod-

ify the existing video players or deploy additional software on the client or the server.

These tools can be deployed easily by network providers who have greater control over

the network compared to the user devices and are also platform independent. However,

due to the limited processing capabilities of the nodes in the network and large packet pro-

cessing times involved in Deep Packet Inspection (DPI), these techniques are best suited

for off-line processing. Packet loss and caching between the network monitoring node
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and the client can pose significant challenges to the estimation of the playout buffer state

using these tools.

2.4.2 Estimating QoE using Predictive methods

Assessing QoE based on the feedback of users is good at capturing the effect of the

confounding factors but it is a time consuming and expensiveprocess. It is also difficult

to be replicated or scaled. In order to retain the advantagesof subjective studies while

enabling replication and scalability some studies have proposed predictive models that

estimate the subjective MOS rating based on objective metrics.

The main challenge with such predictive models is to identify a relationship be-

tween the objective QoE or QoS metrics and the subjective MOSrating. This relationship

was found to be non-linear. A generic expression that captures the exponential relation

between the QoE and QoS parameters was proposed in [33] and iscalled the IQX hy-

pothesis. Here, the QoE for streaming services is considered in terms of the MOS and is

expressed as a function of loss and reordering ratio (causedby jitter). According to the

IQX hypothesis, the change of the QoE depends on the current level of the QoE given the

same amount of change in the QoS value but with a different sign, as shown in (2.1). If

the QoE is already very high, then even a small disturbance can effect the QoE; however,

if the QoE was already low to begin with, then a further disturbance will not be perceived.

∂QoE

∂QoS
∼ −(QoE − γ). (2.1)
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It was demonstrated that the proposed relationship provided a better approxima-

tion when compared to the original logarithmic approximations presented in [58]. A

similar pattern was seen in [59] where users watching the videos with better conditions

would have less patience with the initial startup delay and would abandon sooner.

The authors in [58] presented a simple model that defined the relationships be-

tween one of the QoS parameters: bandwidth, response times and the QoE. In [87], this

model was extended to capture the effect of multiple QoS parameters such as throughput

and delay on the QoE. A new discrete scale called the Opinion Score (OS) that ranges

from 0 to 5 was introduced to eliminate the constantγ from (2.1). Using the Opinion

Score values and applying the Multiple Linear Regression Model(MLR) from [17], a lin-

ear relationship between the QoE and multiple QoS parameters was defined as:

log(QoE) = a0 + a1QoS1 + a2QoS2 + ... + anQoSn (2.2)

where constantsai were estimated by the least squares method. On applying an exponen-

tial transformation on (2.2), the QoE/QoS exponential correlation is modeled as

QoE= ea0 + ea1QoS
1
+a2QoS

2
+...+anQoS

n (2.3)

The models in (2.1) and (2.3) were defined for web-pages and files. However, based on the

following studies, it was found that the aforementioned models were applicable for video

streaming services. In [14], the authors presented a similar non-linear model (2.4) using

a psychometric modelto estimate the MOS from the QoS parameters for HTTP-DASH

streaming systems using any N parameters.

QoE=

N−1∑

i=0

aiQoSkii (2.4)
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whereai are the constants andki are the exponents forN metrics.

ThePerceived QoEmodel [88] defines a non-linear relationship between the MOS

and objective QoE/QoS metrics. This no-reference model extracts parameters such as the

bitrateb, frame ratef , packet loss ratel, video jerkinessj, and quantization parameterq,

to approximately map the MOS. These parameters are combinedby the following non-

linear formula (2.5):

MOS= B × bbb + F × f ff + L× lll + J × jjj + ..+Q× qqq... (2.5)

The above formula uses specific weights (capital letters) and exponents that can be esti-

mated according to the service and the device being studied.This composite metric helps

capture the effect of multiple parameters on the MOS rating.

A preliminary model with limited scope that predicts the QoEin terms of MOS for

progressive download videos has been presented in the ITU-TP.1201 standard [43]. This

model considers sequences between 30 to 60 seconds and considers the interruptions, and

playback start time.

A cross-layer monitoring architecture was proposed in [89]to monitor the packets

at the node and the network level to measure the QoS metrics (packet loss ratio) and to

build a physical and network level view. A mapping tool estimates the Decodable Frame

Rate (Q) at the user for the streaming service based on the QoS measurements. The tool

then predicts the degradation in the QoE in terms of the MOS from the Decodable Frame

Rate (Q).

Pseudo Subjective Quality Assessment (PSQA) is a hybrid approach that com-

bines subjective and objective evaluation [96]. It is used to predict the subjective ratings
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of videos using automation. In this approach, an initial setof reference videos are evalu-

ated subjectively by users. These reference videos are samples of distorted videos whose

objective metrics are known. The result of the initial evaluation is used to train a self-

learning tool to predict the subjective rating in real time.

In [96] a framework for measuring the QoE of MPEG videos was presented. The

framework consisted of a streaming server, monitoring nodes (called probes), a data col-

lector server, a PSQA learning tool and a web-based reporting application calledWebstat.

The streaming server was used to deliver video content (MPEG) and audio content (MP3)

using several protocols, HTTP, RTP, and UDP. The probes collected frame level metrics

such as the loss rate (LR) of video frames, and the mean size ofloss bursts (MLBS)),

defined to be the average length of a consecutive sequence of frames lost but not part

of a longer such sequence. The probes transferred the collected metrics to the data col-

lector server using the Simple Network Transfer Protocol (SNMP). The perceptual QoE

was calculated by the PSQA tool, and the computed QoE metricswere presented using

thewebstatapplication. Before the framework was used for real-time measurements, the

PSQA tool was passed through a pre-processing stage during which it learned the effect

of LR on the QoE. During this stage, a fixed set of videos with different LR and MLBS

values were evaluated by a group of five human experts. The fiveexperts provided the

MOS values for each of the initial sequences. These MOS values were used as input to

train a Random Neural Network (RNN) on the two variables, LR and MLBS, and mapped

them into a perceived quality on a[0, 1] range. Once the pre-processing was complete, the

framework was ready to predict the MOS for the videos. Duringa real-time evaluation
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of the QoE, the probes collected the frame level informationof the video streams and

transferred the LR and MLBS metrics to the data collector server. Using the trained RNN

model, the PSQA tool used the LR and MLBS metrics as input to generate the MOS in

real-time.

The authors in [28], used the PSQA tool to predict the perceived quality of the

videos streamed using aWindows Media Playerthat uses UDP to transfer the data. Ob-

jective metrics, such asApplication Layer Packets LostandApplication Layer Packets

Retransmittedwere used to predict the MOS rating. Before applying this method in real-

time, the MOS ratings of certain sets of videos (called the reference streams) with known

objective metrics were evaluated by a group of participants. These volunteers were asked

to rate the reference video streams twice, once without lossand once with loss. The MOS

and the objective metrics for each stream were fed to aDynamic Time Warping(DTW)

predictor during its training stage. On completion of the training stage, the DTW pre-

dictor was ready to rate the streams in real-time. During real-time measurements, the

application layer metrics were obtained by polling theWindows Media Playerperiodi-

cally. It was found that the DTW predictor matched the patterns of the metrics of the

active streams with the reference streams to predict the MOSin real-time.

In [27], [35] the authors extended the PSQA to predict the QoEby using some

parts of the videos rather than the complete videos. These parts were used in both training

as well as in real-time prediction. With a set of preliminaryexperiments, it was demon-

strated that the MOS could be predicted with 70-80% accuracy.

A PSQA proposed in [23] is a reduced-reference model based on PSQA measures.
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This model used the packet loss rate but can be extended to other network metrics such

as the packet loss rate, mean loss burst size, end-to-end delay, and jitter. It was observed

that the results of the APSQA model correlate very well with the subjective scores when

compared to the full-reference models and no-reference models.

In [90], the authors used a no-reference PSQA model based on RNN to estimate

the QoE for Adaptive HTTP over TCP video streaming. The parameters considered were

the interruptions, average interruption duration, and themaximum interruption duration.

Another QoE metric unique to Adaptive HTTP streaming,Quantization Parameter(QP),

which controls the degree of video compression was also considered. The MOS collected

from the users viewing an initial set of distorted referencevideos was used to train the

PSQA-RNN tool that was later used to predict the MOS for othervideos.

In [20], the authors proposed a predictive model for the user-engagement as a

function of the QoE metrics. The user-engagement is defined as the amount of time

spent by the user in watching the video before quitting. In order to capture the effect of

the QoE metrics they use a machine learning algorithm. The QoE metrics, such as the

average bitrate, join time (playback start time), rate of buffering events, buffering ratio

(ratio between buffering and play time), and frequency of buffering were collected using

client-side instrumentation for both VoD and live sessions. They concluded that the main

confounding factors are the type of video, device, and connectivity.

In [97], the authors presented an online learning QoE management tool that uses

machine learning to understand the effects of the objectivemetrics and application layer

metrics on the MOS ratings. The effect of objective metrics such as the video bitrate,
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audio bitrate, and frame rate on the perceived subjective QoE was studied. In the current

model, continuous feedback from the users (MOS) was collected and served as a datapoint

for the online learning algorithm. As the number of feedbackinstances increased so did

the accuracy of the model. By using online learning algorithms they avoided the need

for complex and expensive a priori subjective tests that usereference streams. They also

demonstrated that the learning algorithms can retain the accuracy in estimation of the QoE

without the use of a priori subjective studies.

In [12], the authors developed a framework that uses prediction models to realize

a QoE-aware QoS management strategy. The framework would predict the MOS rating

from the QoS parameters by using a statistical prediction model based on Discriminant

Analysis. The QoS parameters considered were the encoding bitrate and the frame rates of

the videos. A set of subjective measurements, where severalusers are presented with ref-

erence videos with degrading levels of QoS, were conducted.During these measurements

the feedback from the subjects was recorded in the form of a binary response (“accept-

able” or “unacceptable”). The main aim of these tests was to determine at what level

of the QoS metrics and the perceived quality becomes unacceptable. The data collected

from these measurements was then used as the input for the model that correlates the QoS

parameters with the QoE perception. Using this model, the degree of influence of those

QoS metrics had on the QoE was determined. The prediction model developed was used

to realize a management strategy to control the QoS parameters that could guarantee a

satisfactory QoE level.

A content-adaptive packet layer model to assess the QoE in terms of the frame rate
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quality for video services using RTP/UDP was presented in [101]. The bit-rate, packet

loss rate, temporal complexity (the acuteness of temporal changes of a video sequence),

and the frame type information of the transported video weredetermined from the packet

headers. Using all these factors, a model to predict the MOS was developed.

All the studies done so far attempted to build models to capture the relationship

between the QoS metrics, the objective QoE metrics, and the MOS. Due to the non-linear

relationship between these metrics, it is not easy to construct a simple model. Considering

the work done in the literature to date, it can be concluded that the relation between the

QoS metrics and the QoE score follows a non-linear exponential relationship. The use of

supervised learning techniques and neural network-based models could be used to predict

the QoE in real time. The effect of confounding factors on thesubjective QoE metrics also

needs deeper investigation and the inter-dependence of themetrics needs to be studied

further.

2.5 Summary

There has been a significant interest in developing tools to measure the QoE of

online video streaming services. Measuring QoE metrics at the user-end is most suitable

for capturing the effects of the end-to-end factors on the QoE. Obtaining direct feedback

from users could be expensive and difficult to automate. As aneffort automate the mea-

surement of QoE, we developed an an active measurement tool -Pytomo (see Chapter 3),

that measure the QoE of YouTube videos by crawling the YouTube website and emulating

an embedded video player to collect the QoE for each of the crawled videos.
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Table 2: QoE Measurement Studies: A Comprehensive View

Ref. Collection Data Collection Method VDT QoE Metrics
U N Passive Active DUF PS CL IBT I RF AL MOS Other

[92] X X PD X

[75] X X X PD X X X X User-Viewing Activities
[29] X X RTSP X X X X

[28] [27] [35] X X X RTSP X X

[90] X X X DASH X X

[31] X X Multiple X X X AverageBitrate,
Rendering Quality
Average Bitrate,

[69] X X Multiple X X FailureRate,
& Failure to Start video

[51] [80] [52] X X PD X X X

[83] X X PD X

[74] X X X PD X X X X

[40] X X PD X X X

[39] X X PD X X X

[96] X X X Multiple X LR, MLBS
[34] X X PD X Bitrate Ratio
[82] X X PD X X X

[62] X X PD X X X

[84] X X PD X X X X

[42] X X DASH X X X Bitrate switching,
Rebuffering (User initiated)

[102] X X DASH X X Startup and average bitrate,
bitrate switching events

U=User,N=Network,VDT = Video Delivery Technique, PD = Progressive Download, DUF = Direct User Feedback,
CL = Controlled Lab, PM = Passive Measurements, AM = Active Measurements, PS = Pseudo Subjective Quality

Assessment (PSQA), IBT = Initial Buffering Time, I = Interruption, RF = Rebuffering Frequency, AL = Application
Layer Metrics (Packet Loss)
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CHAPTER 3

PYTOMO: A TOOL FOR MEASURING QOE OF YOUTUBE VIDEOS

Measurement of QoE at the client end provides the advantage of capturing the ef-

fects of the end-to-end factors. In order to capture the users experience from a point clos-

est to the user, we developed a client-end active measurement tool, Pytomo, that crawls

the YouTube website and measures the QoE for YouTube’s progressive download videos.

3.1 YouTube’s Video Delivery Framework

YouTube is a video-sharing website that was founded in 2005 and was acquired by

Google in 2006. As of 2015, YouTube is one of the most popular user generated content

streaming service with more than 1 billion users [104].

Each YouTube video is associated with a base HTML page with a URL that

is usually in the formathttp://www.youtube.com/watch?v=video_id. The

base HTML page consists of multiple parts: the video description, embedded flash video

player, user comments and a list of related videos. The embedded video player retrieves

the URL of the video file from the base HTML page. The video is located on a different

set of servers from the HTML pages and are referred to as videoservers. A high-level

overview of YouTube’s video delivery framework and the video request pattern is pre-

sented in Fig. 1.

YouTube video streaming mostly employs a progressive download technique and
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Front-End Servers

Video Servers

Figure 1: YouTube Video Delivery Framework

recently has upgraded most of its videos to support DASH. At the server end, the video

files are delivered as regular HTTP objects. The servers do not maintain any state. The

VCR like functionality provided to the user is handled by theembedded video player. In

order to minimize the effect of jitter on the playback, the embedded player waits until

certain amount of the buffer (initial buffer) is filled before beginning the playback. Once

the buffer level reachesinitial buffer, the playback is initiated. The data received from

the HTTP connection is placed into the buffer, and the playerreads the buffered video.

As long as the amount of buffered data is more thanminimal playoutbufferthe playback

is maintained. Due to any perturbations in the network, if the buffer falls below the

minimal playoutbuffer, the playback is interrupted. The playback is resumed when the

buffer crosses theminimal restart buffer level.

The values for the various buffer levels employed by YouTubeare not published.

Hence, we used reverse engineering techniques and controlled evaluations to determine
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Table 3: YouTube Buffer Parameters

Buffer Level Value
initial buffer 2 seconds

minimal playoutbuffer 0.1 seconds
minimal restart buffer 1 second

the different buffer levels. For our evaluation setup we used the base HTML page and the

embedded player provided by YouTube to create a test webpage. On the client machine

we used a web proxy application [3] to force the client to retrieve the video file from a

test sever instead of YouTube’s video server. Under this scenario, we played the video

multiple times and each time we modified the initial deliveryrate, average delivery rate

and the duration of interruptions during playback to understand the pattern of response

from the embedded video player. Based on our evaluations, wedetermined the various

buffer lengths of the YouTube player to be as listed in the Table 3.

3.2 Pytomo: Description

The current tool, Pytomo [51], is a Python based open-sourcetool that measures

QoE as well as QoS of YouTube videos. Pytomo, is a platform agnostic, easily portable

tool that emulates a user’s video streaming session.

Pytomo is initialized with a bootstrapping phase where we consider an initial set of

video URL’s. These URLs by default are the most popular videos from the previous week

based on YouTube’s worldwide rankings. The aim of Pytomo is to collect the QoS met-

rics, QoE metrics and also information related to the Content Delivery Network (CDN)

used by YouTube to serve each of these videos. For each of the videos being considered,
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Pytomo performs the following steps [51,79]:

1. Get video URL: Pytomo downloads the base HTML page of the video and parses

it. In order to support different access platforms, YouTubehosts multiple formats

for each video. The URL for each of these is listed in the HTML file. Pytomo

parses the HTML file to retrieve: video metadata (video duration, list of video

formats, default quality etc.), the list of URLs associatedwith each video format.

The default video format for the current platform is considered by Pytomo for the

emulated video playback. The meta-data related to the videois logged for each

video crawled.

2. Domain Name Server(DNS) Resolution: The hostname from the URL of the

video file is resolved to the video server’s IP address. In order to study the ef-

fect of the DNS resolver’s IP resolution on the QoE of the videos, we use three

different DNS resolvers: the ISP’s default local resolver,Google Public DNS [4],

and Open DNS [7]. Each of these IP addresses are logged. If theIP resolved with

the three DNS resolvers is found to be different, the video file is downloaded from

each distinct IP address.

3. Collect QoS statistics: Pytomo starts its video performance analysis by collecting

QoS metrics based on Ping statistics (minimum, maximum and average delay) be-

tween the client and the video server. By default we use 10 packets, for the ping1. If

the IP addresses returned by the DNS resolved in Step 2 is different, then the QoS

is collected for each of the IP addresses.
1The number of packets is a configurable parameter and can be modified, if necessary.
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4. Collect QoE statistics: Pytomo emulates the YouTube player based on the buffer

parameters listed in Table. 3. The video playback session isemulated with the help

of two different time scales associated with the playback buffer:

• D(t): Amount of video (playback duration) content downloaded into the buffer

up to timet, i.e., the amount of video that is downloaded in terms of playback

duration (obtained through the timestamps of video tags).D(t) reflects the rate

at which the buffer is filled is dependent on the TCP connection between the

client and the server.

• P(t): Amount of the video (playback duration) already played up to time t.

P(t) reflects the rate at which the buffer is being drained. In order to ensure

that this time-scale is consistent with an actual video player we parse the flags

in the video file to determine which block of video is to playedat each time

unit.

Initially, the player waits untilD(t) reachesinitial buffer level, after which the

playback is initiated. The duration for which the player waits before starting the

playback is considered as theinitial bufferingperiod. Once the playback begins,

the player is considered to enter theplayback stage. During theplayback stage,

if amount of unplayed video(D(t)− P(t)) falls below theminimal playoutbuffer

the playback is interrupted((D(t)− P(t)) < minimal playout buffer). The play-

back resumes when the amount of video that has been buffered is greater than

minimal restart buffer(D(t)− P(t) > minimal − restart − buffer). By keeping
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track of the state of the playback, we are able to measure the QoE metrics: the

playback start time, the number of interruptions during video playback, duration of

the interruptions. By default, we limit the duration of the video session to the first

30 seconds of playback.

It was observed that YouTube uses HTTP redirection on their video servers (possi-

bly for load balancing). In case of HTTP redirections, the server serving the video

could be different from the IP resolved in the Step 2. In such scenarios, Pytomo

re-collects the QoS parameters from the previous step with the IP address of the

redirected server.

5. Logging the data: The QoS and QoE metrics collected from the previous steps are

logged into a text-based log file and local SQLite [9] database file.

6. Continue Crawl with Related Videos: Pytomocontinues the crawl by collecting

the QoS and QoE metrics for related videos. Once the video playback is com-

pletedPytomoparse the related video list to retrieve a subset of the related videos.

These videos are added to the Videos related to the current video (obtained through

YouTube API) are then added to the list of videos to be crawled.

For each video and the subset of related videos, the 6 steps listed above are ex-

ecuted. Pytomo thus continues crawling YouTube website while collecting the QoS and

QoE metrics for each of them. This process is repeated until the maximum number of

videos as configured by the user are crawled.

Pytomo is an active QoE and QOS measurement tool that is currently designed
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for YouTube progressive download videos. Pytomo enables usto automate the QoE mea-

surement without the need for a user to watch a video. The use of automation ensures

higher accuracy, repeatability and better scalability. The cross-platform design of Pytomo

allows the researchers, network engineers and service providers to deploy the tool onto

any client machine to study the user perceived video quality.
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CHAPTER 4

CASE STUDY: QOE ACROSS THREE INTERNET SERVICE PROVIDERS IN A

METROPOLITAN AREA

In Chapter 3, we presented the design ofPytomo, an active client-end QoE mea-

surement tool for the YouTube video streaming service. In this chapter, we present a case

study that investigates the QoE of the users connected to three different Internet Service

Providers (ISPs), located in the Kansas City, USA metropolitan area.

4.1 Data Collection

In this study, we identified volunteers located across Kansas City metro area.

Kansas City is a metropolitan area that spans the border between the U.S states of Mis-

souri and Kansas. With a population of 2.75 million, Kansas City ranks as the second

largest metropolitan area in Missouri (after Greater St. Louis) and is the largest with

territory in Kansas.

Based on our preliminary assessment, we found that the localtime between 8:00

PM and 10:00 PM, is the most common prime time for home Internet services. In con-

sistent with this trend, we asked the volunteers to run thePytomotool during this specific

time window. The tool was run on their personal machines connected to their respective

residential ISPs.

The first set of collection was performed by 19 users during prime time on Decem-

ber 8, 2011. A total of 1,260 videos were downloaded from 442 distinct video servers.
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The second collection was performed on the evenings of March14 and 15, 2012 by 32

different users. This collection consisted of a total of 2,390 videos from 988 distinct video

servers. For both sets of data collection, the video downloads were limited to 30 sec for

each video.Pytomostarted each crawl by initializing the playlist with 10 mostpopular

videos of the week, followed by selecting 2 random videos outof the related videos for

each video crawled. With this setting, we ensured that at least 10 videos were crawled

from each volunteers’s computer.Pytomocrawled on average 60 videos from each volun-

teer’s computer. At the beginning of each crawl session, theuser was prompted to enter

the ISP that they subscribe to. The volunteers were connected to three different ISPs, with

5, 9, 4 users in the December crawl and 8, 19, 5 users in the March crawl who were con-

nected to ISP-1, ISP-2, and ISP-3, respectively. Of these three ISPs, two of them (ISP-1

and ISP-3) were cable-based providers while ISP-2 was a DSL-based provider. Based

on preliminary tests, we determined that a small time gap before moving from down-

loading one video to the next was necessary, so that YouTube’s servers did not think that

it was a bot crawling their servers and therefore, did not block access for any requests

from each user’s computer. This delay between consecutive requests is even more critical

when crawling a large number of videos as YouTube was found toprompt a Captcha [2]

message if the delay was not introduced.

4.2 Results and Analysis

In this section, we present our analysis and observations onthe QoE of the resi-

dential users and how the variation in the video server selection dynamics in relation to
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the ISPs. We determine the relation between the variation inthe QoE and video server

selection patterns across the two different data collection periods for the individual ISPs.

Before we present our analysis, we present our observationson the naming con-

vention used by YouTube at the time of our study. The actual video file URL was found

to be typically of the form:http://o-o.preferred.SERVER_CODE.v[1-24]

.lscache[1-8].c.youtube.com, which identifies the domain name of the actual

server to be in the formo-o.preferred.SERVER_CODE.v[1-24].lscache[1-8]

.c.youtube.com. Here, SERVER CODE identifies a server ID, behind which, is

likely, a cluster of video servers in a data center environment. The naming convention

of SERVER CODE seems to indicate the geographic location of video server clusters, that

are commonly named by including IATA’s 3-letter airport codes usually at the beginning;

for example, the IATA airport codedfw refers to Dallas-Forth Worth-Texas,iad refers

to Washington, DC,ord refers to Chicago-Illinois, and so on (see Table 4); this wasalso

noted in [11]. While these are certainly logical domain names, the naming convention

seems to indicate that they are located in the geographic region identified via the IATA

airport code. TheSERVER CODE also gives us an indication of where or how far the

video servers are from the users.
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Table 4: Access Patterns for The Video-Server from 3 ISPs with QoE Metrics (± denotes 95% confidence interval)
December 2011 March 2012

Server No. of Playback % Videos RTT Download No. of Playback % Videos RTT Download
code Samples Start Time Interrupted (ms) Rate Samples Start Time Interrupted (ms) Rate

(sec) (Mbps) (sec) (Mbps)
ISP-1

all (ISP-1) 654 1.18±0.09 10.24 160.39±9.05 1.35±0.08 1468 0.49±0.05 1.90 68.89±5.61 2.60±0.20
dfw06g01 41 1.45±0.71 9.75 100.63±19.67 1.30±1.16 - - - - -
iad09g05 613 1.15±0.09 10.29 164.43±9.48 1.35±0.08 213 0.65±0.09 2.81 104.92±22.40 1.82±0.22
xo-ord1 - - - - - 1213 0.44±0.05 0.99 62.83±4.68 2.82±0.24
lax04s12 - - - - - 20 0.97±0.16 0.00 80.44±1.52 1.69±0.46
ord12so5 - - - - - 22 1.44±0.55 45.45 43.84±1.10 0.55±0.13

ISP-2
all (ISP-2) 347 0.77±0.07 1.80 85.33±2.64 1.50±0.08 602 1.23±0.07 16.28 65.24±2.52 1.78±0.24
dfw06g01 175 0.89±0.09 2.85 90.59±6.26 1.35±0.08 - - - - -
iad09s12 6 1.50±0.31 0.00 77.15±20.78 1.14±0.21 - - - - -
lga15s20 36 0.62±0.45 5.56 72.58±9.46 1.76±0.54 - - - - -
dfw06s10 3 0.85±0.74 0.00 35.33±5.74 1.58±2.37 - - - - -
dfw06s08 - - - - - 46 1.42±0.20 4.34 63.46±6.13 0.96±0.06
mia05s05 65 0.42±0.06 0.00 79.07±15.48 1.78±0.23 93 0.67±0.67 1.07 69.61±3.41 2.52±0.55
sjc07s11 62 0.83±0.10 0.00 87.65±6.90 1.50±0.18 6 2.71±2.63 33.33 122.15±34.63 1.06±0.56
sjc07s15 - - - - - 147 2.91±0.54 43.54 99.29±7.08 0.67±0.07
atl14s01 - - - - - 88 0.34±0.05 0.00 57.65±2.39 2.77±0.64
atl05s01 - - - - - 28 0.34±0.05 0.00 57.84±1.25 2.42±1.06
ord12s05 - - - - - 44 1.30±0.34 54.54 44.46±1.06 0.50±0.04
ord12s06 - - - - - 109 0.52±0.12 4.35 45.18±1.57 1.82±0.26
xo-ord1 - - - - - 41 0.34±0.05 0.00 66.54±16.37 3.86±1.36

ISP-3
all (ISP-3) 259 0.78±0.07 0.77 78.27±2.64 1.68±0.17 320 0.63±0.05 0.63 109.657.05 1.84±0.20

ISP3-dfw1 259 0.78±0.06 0.77 78.27± 2.65 1.68±0.17 - - - - -
ISP3-mia1 - - - - 132 0.54±0.05 1.53 95.07±11.72 2.02±0.35
ISP3-sjc1 - - - - 188 0.68±0.07 0.00 119.90±8.67 1.73±0.25
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Figure 2: StartTime : December 2011 Figure 3: StartTime: March 2012

4.2.1 Analysis of User’s QoE

The factors that we considered to compare the QoE of the userswere: Encodin-

gRate, StartTime, InitialRate, DownloadInterruptions, andDownloadRate. Since YouTube

supports multiple formats for the same video, the format selected can also influence the

QoE of the user.

• EncodingRate: The encoding rate represents the quality of the video and isthe

average amount of data required to playback one second of thevideo. We found

that the default quality of videos downloaded by users of different ISPs were sim-

ilar. Since the video format selection is dependent on the type of the machine and

YouTube’s estimation of the data rate to the user, we can say that the machines and

the networks used by the users are homogenous as perceived byYouTube. This

confirms that any variation in the QoE dependent on the network or video server

performance and not on the video quality.
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• StartTime and InitialRate: Table 4 shows the average start time (with 95% con-

fidence interval) observed for users accessing YouTube fromdifferent IPSs when

video servers are located in different geographic areas (more on server locations

will be discussed in. The CDF ofStartTime(Fig. 2 & 3) reflects the overall distri-

butions for the two time periods. While in most cases, the average start time was

less than 1 sec., we found that for ISP-2, there were at least two server locations that

were experiencing an average start time of 2 sec or more in theMarch 2012 crawl.

Although the averageStartTimefor all servers for ISP-1 and ISP-3 had reduced

from December 2011 to March 2012, for ISP-2 it had increased.For the most pop-

ular servers out of these three ISPs, servers used for ISP-3 had significantly faster

StartTimes.

• Interruptions and DownloadRate: From the data collected, we also calculated the

percentage of video interruptions experienced, which is shown in Table 4. During

the March 2012 crawl, videos served for ISP-3 customers had the least number of

interruptions, while at the same time, the number of interruptions was relatively

higher for ISP-2 customers. From the table, we can also observe how each of

the video servers contributed to the interruptions. For example, the new server ID

sjc07s15 (i.e., San Jose, California) that served most videos in the March 2012

crawl for ISP-2 had an unusually high number of interruptions at 43.54%. Not sur-

prisingly, this affected the average download rate from this server ID, which was

among the lowest. Also, there was a strong correlation between the percentage of

interruptions and the download rate.
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Figure 4: Download Interruptions: De-
cember 2011

Figure 5: Download Interruptions:
March 2012

While we do not have additional data to correlate whether this anomaly is due to the

network or servers, we can make a preliminary inference in the case when multiple

server IDs are located in the same city. We note two server IDslocated in Chicago:

ord12s05 andord12s06; the former one is used by both ISP-1 and ISP-2,

while the latter one is used only by ISP-2. Since accessingord12s05 shows high

interruptions (and a low download rate) for both providers,but low interruptions in

case oford12s06, it is very likely thatord12s05 is experiencing high load or

some anomaly. Thus, we were able to isolate the set of serversthat were the cause

for reduced QoE.

In Figs. 4 and 5, we present severity of interruptions by categorizing the number of

interruptions (shown in percentage) into three groups: 1 to2 (“low”), 3 to 4 (“mod-

erate”), and more than 4 (“high”). We observe that the severity of interruptions was

often low, while for a notable number of cases, severity was moderate for ISP-1 in

the December crawl and for ISP-2 in the March crawl.

53



4.2.2 Two-Samplet-test

In order to determine if the difference in the QoE between December 2011 and

March 2012 crawls was significant, we performed the two-sample t-test between the two

datasets to determine thep-values (see Table 5). For thet-test the most commonly used

significance levels are 0.1, 0.05 and 0.01. We select the significance level as 0.01 because

it is the most conservative one. We found that for ISP-1 and ISP-2, p-value≪ 0.01

for StartTime. Thus, we can say that StartTime in the March 2012 crawl was highly,

statistically significantly different than in the December2011 crawl. While for ISP-1,

StartTime was less in March 2012, it was higher for ISP-2. There was no statistical

difference for ISP-3. These results are consistent with Fig.3.

Table 5:p-value for two-samplet-test

p-value ISP-1 ISP-2 ISP-3
StartTime 2.2× 10

−16
1.18× 10

−8 0.44
DownloadRate 2.2× 10

−16 0.52 0.22
Average. RTT 2.2× 10

−16
1.35× 10

−08
4.19× 10

−13

H0: µDec = µMar vs.Halt: µDec 6= µMar

In regards to the download rate for ISP-1, the March 2012 crawl was highly statis-

tically significantly different (actually higher) than in the December 2011 crawl. However,

there was no statistical difference for the download rate for the other two providers. In

regard to the Average RTT, the March 2012 crawl was highly statistically significantly

different (actually higher) than in the December 2011 crawlfor all the providers.
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4.2.3 Video Server Selection Dynamics

Besides determining QoE at the provider level as discussed above, we also studied

how different video server selections impact QoE for different providers. In addition, we

studied the change in the server dynamics observed between the two crawls by users

connected to the same ISP. We first briefly comment on whom the video servers belong

to. We analyzed the mapping from the IP addresses of the servers and the autonomous

systems (AS) that they were associated with. We found that for the December 2011 data

set, there were three ASes 15169, 36040, 43515 – all are ownedby YouTube or its parent

company, Google. For the March 2012 data set, the same three ASes showed up, except

that we found a non-YouTube autonomous system (AS 2828) to respond to about 2% of

the requests. This verifies that CDN is largely owned by YouTube as reported in [94],

except that YouTube still seems to have some partnerships with others for some content

distribution for serving the Kansas City metropolitan area.

4.2.3.1 Video Server Selection based on ISP

Figure 6: Server access pattern for top ten videos: December2011
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Figure 7: Server access pattern for top ten videos: March 2012

We observed that video servers that were accessed varied significantly between

users of different ISPs located in the same geographical location. We next discuss our

results by dividing the set of videos into two different groups: the top ten most popular

videos for the week and the rest. The top ten videos were accessed byall users irrespective

of the ISP provider they are associated with.

Fig. 6 shows the access patterns for the ten most popular videos of the week from

the December 2011 crawl. The nodes on the left indicate the ISPs from where users are

gaining access while each small dot on the right indicates a server cluster that is organized

by server IDs. Here we see that except for the server IDdfw06g01 that was accessed by

users in ISP-1 and ISP-2, no other video servers were accessed by users of more than one
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ISP. The observations for the March 2012 crawl are shown in Fig. 7. We noted a similar

pattern while the common set of server IDs was found to be different and the access spread

out to a larger number of video servers.

Based on these observations, we can infer that even when accessed from the same

geographic area, the selection of the video servers for the most popular videos was depen-

dent on the ISP and not on the geographic location of the users. If we consider the access

patterns for the top ten videos in March 2012, ISP-1 and ISP-2were served from two

common video servers (xo-ord1, ord12s05) for some videos while users in ISP-3

did not access any common video servers. Furthermore, by thepresence of ISP-3’s name

in theSERVER CODE of the ISP (not shown here to maintain anonymity) and distinct IP

addresses for these servers, which were not observed to be associated with other ISPs, we

inferred that these video servers are dedicated to serve requests from users located in this

ISP; this could possibly be due to a business partnership between this ISP and YouTube.

When all videos were considered, we found that the server allocation patterns

were similar to the ones found for the top ten videos. From Table 4 (March 2012 crawl),

we see that out of all video servers that were accessed by users of ISP-1 and ISP-2, only

two are common (xo-ord1, ord12s05) (similarly, for the December 2011 crawl).

Users of ISP-3 are served by a dedicated set of video servers.

From the above observations, it is safe to conclude that video servers at YouTube

are divided into cluster groups with each cluster dedicatedto different ISPs, or shared in

some cases between a group of ISPs. While we can come to this conclusion, the question

remains on how providers and YouTube worked together to invoke preferred video server
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selection. We believe that this was done using DNS. For example, Bind version 9 of

DNS introduced a feature calledViews [66]. This can be used to channelize a request

from a source IP address or a group of IP prefixes (that residesin a particular ISP) to

resolve to a particular domain name and IP address. In other words, there seems to be

an agreement between YouTube and large ISPs so that requestsfor videos from end users

from a particular ISP can be directed to a particular server or a set of specific servers.

While [94] discussed that selections are based on DNS, theirwork does not identify that

there are potential business agreements in place between YouTube and ISPs to make this

happen. To our knowledge, we are the first to point out that such agreements may be in

place between YouTube and large ISPs to ensure that certain servers are preferred based

on the source IP addresses of an ISP.

4.2.3.2 RTT and the Location of Video Servers

We observed that the value of the average RTT does not play a significant role in

the selection of the video server. For the three different ISPs, servers that were serving

the most number of videos are not necessarily the ones that had the lowest RTT. For ISP-1

and ISP-2 in the December crawl, we see that the most popular server clustersiad09s12

anddfw06g01 had the highest average RTT values. Also, servers that had the lowest

average RTT did not have the best average data rates.

In Fig. 8, we show the scatter plot of RTT and the download rates for all the

videos downloaded from the most popular serverdfw06g01, and other servers by all

users in the December 2012 crawl for ISP-2. From this plot, wesee that the RTT to the
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most popular server was not always the lowest. In the March crawl, a similar observation

was made for ISP-1, ISP-2, and ISP-3 where the popular clusters were the ones with a

relatively higher RTT. Based on this observation, we infer that users were predominantly

directed to a specific server cluster depending on the originating provider, which was not

necessarily based on the average RTT.

Our observation contradicts the observation in [94], wherethe authors observed

that the server with the lowest RTT values was the preferred one. The previous work

considered RTT from the edge of the network,not from the end users’ computers. Our

measurement was conducted from the end users’ perspective and confirms the findings

in [51]. Thus, it is possible that the network segment from the end users to the edge of the

network contributed to the overall RTT. Secondly, the edge of the network to the video

server is not a good indicator for how end users would perceive RTTs.

4.2.3.3 Change in Video Server Dynamics

Since the two crawls were performed with a gap of three months, we were able to

study the change in the YouTube distribution architecture over this time span for all three

ISPs considered (see Table 4).

For ISP-1, there were two video server clusters in the December 2011 crawl; of

these two, only one of them was found in the March 2012 crawl along with three new

ones. Similarly, for ISP-2, there were six video server clusters in the December 2011

crawl; three of them were found in the March 2012 crawl along with six new ones. This

suggests that video servers allocated to the same ISP also change over a short period of
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Figure 8: RTT (msec) and Download Rates (Mbps) Comparison for the December 2012
Crawls for ISP-2
time (three months).

Note further that users of ISP-3 were always served by dedicated servers. Servers

observed in March 2012 were found to be different compared to the ones in December

2011. Based on the locationSERVER_CODE, we can also infer that the locations of these

servers were different. From this, we infer that YouTube has a dedicated set of servers in

multiple locations for ISP-3 customers. These servers, at any given time, were exclusive

to this provider irrespective of the popularity of the videos. This substantiates the obser-

vation we made in the previous section on policies being in place between YouTube and

its providers.
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4.2.4 Limitation of the Study

Recall that our study is limited to a particular geographic area with users access-

ing from residential providers in an evening time frame, andthat this is an observational

study and the data collected is a voluntary and convenient sample. Clearly, observations

may differ for different geographic areas. Secondly, we limited our data collection to first

30 sec of each video; observations may differ when the entirevideo is considered. Our

crawl mechanism limits the number of videos crawled, allowing us to observe only a rep-

resentative set of server locations – it is not meant to capture the entire CDN architecture

of YouTube.

The purpose of this case study is to demonstrate that our proposed approach

can effectively measure end-users’ QoE and can analyze, forexample, the impact of

provider distribution policies on end-users’ QoE. In orderto objectively evaluate the im-

pacts of ISPs distribution policies, we recognize that enforcing randomization, such as

how Nielsen conducts TV show ratings, is necessitated.

4.2.5 Summary

Using Pytomowe are able to objectively evaluate the QoE of users accessing

YouTube videos in an automated web-crawl. We can also measure the QoS metrics and

retrieve the CDN related information. We were able to study the variation in the QoE of

YouTube videos when accessed from the same ISP in the same geographic location across

different time periods. Based on our analysis, we were able to isolate the video servers

that were causing degraded QoE and identify the location of these video servers. We also

61



would like to point out that this was the first study that studied the QoE of YouTube videos

and their distribution policies with data collected using active analysis from actual user

computers in residential areas.
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CHAPTER 5

ADAPTIVE BITRATE ALGORITHMS FOR DASH

With HTTP basedprogressive downloadstreaming, the video file is treated as a

large web object with the video player playing the file while simultaneously downloading

it [52]. The video player provides functions such as play, pause, and seek. As long as the

rate at which the video is being downloaded is marginally higher than the playback rate,

the user experiences seamless playback. However, any reduction in the throughput results

in buffer underflow leading to an interruption in the playback. These interruptions, termed

asbuffering events, could result in significant degradation of the users’ Quality of Experi-

ence (QoE) [39]. Although theprogressive downloadtechnique provides all the benefits

of HTTP, it does not support dynamic adaptation of the playback quality according to the

network conditions, thus, resulting in playback interruptions due to perturbations in the

network.

Dynamic Adaptive Streaming over HTTP (DASH) allows the video player to

adapt the bitrate based on the current network conditions and user preferences. Adobe’s

HTTP Dynamic Streaming (HDS), Microsoft’s HTTP Smooth Streaming (HSS), and Ap-

ple’s HTTP Live streaming are the most popular commercial implementations of DASH.

The open standard for HTTP based adaptive streaming, MPEG-DASH [78] was released

by MPEG in 2011. In the last few years, more and more video service providers are shift-

ing to DASH. Netflix, YouTube and Hulu are some of the leading video service providers
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that currently use DASH.

The components of a typical DASH-server are depicted in Fig.9. As discussed

briefly in Section 1.2.2, a DASH server encodes each video into multiple representations

that vary in bitrates (encoding rates), display resolution, video dimensions etc. Each

representation is split into multiple smaller video chunkscalledsegments. Each segment

is of a fixed playback duration (1, 2, 4, or 10 seconds). The server also creates a Media

Presentation Description (MPD) file for each DASH video. TheMPD file is an XML

representation of the metadata of the video that includes information about the playback

duration, available representations, minimum bandwidth required for each representation,

segment duration, codec, etc. The MPD file also contains the URL for the individual

segments.

On the client-side, the DASH player determines the set of representations that can

be used for its specific platform and depending on the networkcharacteristics, the player

downloads the appropriate bitrate for the next DASH segmentto be downloaded. The

choice of the segment to be downloaded plays a critical role in the QoE management by

the DASH player. DASH clients employ adaptive bit rate (ABR)algorithms to determine

the appropriate representation for each segment to be downloaded. Consider a simple

case where two clients (client1 and client2) are accessing the same video from different

access networks as shown in Fig. 9. In this case the web-server is hosting a DASH video

with three different representations (1Mbps, 2Mbps, and 5Mbps). The server also hosts

an MPD file with the metadata of the DASH video. Both clients start by playing the

video with the lowest representation to ensure the lowest playback start time. While
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downloading each segment, the clients measure the network throughput based on the

segment fetch times. If the network path forclient1 is capable of supporting the highest

video quality, the player will soon shift to the highest bitrate. Whereas forclient2, if the

ABR algorithm determines that the network can only support 2Mbps it switches to the

appropriate representation (lower than the highest quality). The ABR algorithm used by

each client continuously measure the network throughput todetermine the bitrate suitable

for each segment. Thus, the client can shift the bitrate at the boundary of each segment.

The aim of an ABR algorithm is to manage the users’ QoE by dynamically adapt-

ing the bitrate of the video. The users’ QoE is typically determined by metrics such

as initial delay (time taken to begin playback), frequency of rebuffering events, average

playback quality, number of bitrate switching events, and convergence time (time taken to

reach the optimal quality) [54]. The bitrate switching events are either positive (switching

to higher bitrate) or negative polarity (switching to lowerbitrate). Since the three differ-

ent QoE metrics could be competing with each other, a typicalABR algorithm tries to

maximize the average quality of playback while minimizing the other metrics: playback

start time, duration and number of buffering events, and thenumber of bitrate switching

events.

As long as the time taken to download the next segment is less than the amount

of data buffered, the player does not face interruptions in playback. An ABR algorithm

could use the observed network throughput and buffer occupancy in estimating the bitrate

for the next segment so that the users’ QoE (determined) is maximized. In the following

sections, we present some of the related works in ABR algorithms. We then study QoE
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Figure 9: Overview of a DASH System

management with popular ABR algorithms in the literature and in Chapter 6 present our

Segment-Aware Rate adaptation (SARA) algorithm that improves the QoE of the user

especially in low bandwidth networks.

5.1 Related Work

In this section, we discuss existing literature related to ABR algorithms in DASH.

The DASH standard does not specify any mechanism for rate adaptation, hence, the client

is allowed to use any adaptation scheme. Due to this flexibility, any ABR algorithm can be

easily implemented in the player with minimum support or modification on the server end.

All the popular video service providers use proprietary ABRalgorithms to enhance the

users’ QoE. Two of these proprietary players and an open-source player (Adobe OSMF)

were compared in [13] in terms of their QoE management capabilities. It was observed

that the players were either too slow to converge, leading tofrequent bitrate switching

events or were too slow to start the playback. These observations demanded a need to

develop ABR algorithms than can maintain better QoE under varying network conditions.
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Most ABR algorithms rely on the network throughput measuredat the application

layer. Since HTTP is an application layer protocol, these algorithms use the segment fetch

times to estimate the network bandwidth. Optimistic estimation of the network bandwidth

could result in the ABR algorithm requesting a higher bitrate than what the network could

support resulting in playback interruptions. On the other hand, pessimistic estimations

could result in lower video quality. In [68], the segment fetch times are used to estimate

the network throughput that is in turn used as an input to an additive increase and aggres-

sive decrease algorithm. Using the average value of the segment throughput estimations

could result in the favoring the outliers. Hence, a throughput based approach with a har-

monic mean download rate to overcome the effect of outliers is used in [48]. In [76],

the authors proposed a QoE-aware version of the adaptation algorithm used by OSMF [8]

called QDASH. The ABR used by OSMF is a throughput based additive increase and one-

step decrease algorithm. QDASH uses in-network throughputmeasurements to estimate

the best bitrate.

Due to the high variability in network conditions and difficulty in accurate band-

width measurements, a pure buffer-based ABR algorithm is presented in [41]. However,

due to the lack of enough buffer information during the initial stages, this approach relies

on the network metrics during the starting phase. This approach uses a rate map struc-

ture that maps the current buffer occupancy to the optimum bitrate to estimate the next

segment’s bitrate.

Since the sizes of the individual segments (even for same bitrates) can vary sig-

nificantly [41, 56], the download times over HTTP for varioussegments can also vary
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significantly [38]. The variation in the segment download times (used to indirectly de-

termine the available bandwidth) is more critical for rate adaptation in low bandwidth

environments.

In the following sections, we present two of the most popularABR algorithms in

the literature. Later in Chapter 6, we discuss our novel ABR algorithm that improves the

QoE of DASH video streaming services.

5.2 Throughput Based Rate Adaptation (TBA)

The Throughput-Based rate Adaption (TBA) (Algorithm. 1) isan ABR algorithm

that determines the next bitrate based on the measured throughput for the most recent

segment downloaded. TBA is an additive up-shift and aggressive down-shift algorithm

and is based on the algorithm presented in [68].

Before starting the video playback, the video player retrieves and parses the stan-

dard MPD file from the server. From this MPD file the player retrieves the metadata of

the video: media playback duration, segment duration, video dimensions, list of repre-

sentations and the URLs for each of the segments. The representations and the suggested

bitrates for each representation are stored in the setR = {rmin, . . . ri . . ., rmax}.

Each segment that is downloaded is placed into a video buffer(B). The size of this

buffer is limited. The current buffer occupancy, i.e., the the number of unplayed segments

is given by (Bcurr). With TBA algorithm, an initialization threshold (Binit) is defined.

Before downloading each segment, the video player invokes the TBA algorithm to deter-

mine the appropriate representation to be downloaded for the next segment. As long as the

68



Algorithm 1: Throughput Based Rate Adaptation Algorithm [68]
Input:

Rateprev: The bitrate of most recent segment
Bcurr: Current buffer occupancy
Tn: Average Throughput of the most recentn segments

Initialization:
if Bcurr ≤ Binit then

ln+1 = rmin

else
if Tn > ǫRateprev then

if Rprev = rmax then
ln+1 = rmax // Bitrate already at maximum

else
ln+1 = Rprev ↑ // increase by one level

else if Tn ≥ Rprev then
ln+1 = Rprev;

else
if Rprev = rmin then

ln+1 = rmin // Bitrate already at minimum

else
ln+1 = max{ri|ri < Tn} // decrease to maximum possible

bitrate

Result:
ln+1: the bitrate of the next segment to be downloaded

current buffer occupancy (Bcurr) is below the initialization threshold (Binit), the lowest

bitrate is downloaded. The segment with the lowest bitrate is typically the smallest and

by selecting it we ensure that the playback start time is minimized. While downloading

each segment, the player measures the throughput observed and the average throughput

calculated from the most recentn segments is saved asTn. Before downloading any sub-

sequent segments, the player invokes the TBA algorithm module with the following input
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parameters: current buffer occupancy (Bcurr), the bitrate used for the previous segment

(Rateprev), and the average throughput observed for the most recentn segments (Tn).

OnceBcurr increases beyond thresholdBinit, the additive increase phase is ini-

tiated. In this phase, if the observed throughput (Tn) is greater than the current bitrate

by a predefined threshold (ǫ), the bitrate for the next segment is increased. If the current

bitrate is already at the highest (rmax), the maximum bitrate is maintained, else, the next

higher bitrate is selected. Thus, the bitrate selected is increased by one-level each time

the throughput is found to be higher than the current value, making the TBA algorithm an

additive increase algorithm.

If the average throughput (Tn) is found to be close toRateprev, the current bitrate

is maintained, else, ifTn falls below the current rate then the bitrate is reduced. TBA

employs an aggressive down-shift approach. This is to ensure uninterrupted playback, at

the expense of video quality. If the current rate is already at the lowest bitrate (Rmin), the

lowest bitrate is retained. If not, it selects the highest bitrate that can be supported byTn.

Typically, the buffer is limited (Bmax = 60 segments) to limit the unused data in case the

user decides to quit before watching the entire video.

Thus, by using the TBA algorithm, the player is able to adapt the video quality to

match the throughput observed in the network.

5.3 Buffer-Based Adaptation

A Buffer-based rate adaptation algorithm was presented in [41]. Since the network

throughput could vary significantly, the Buffer Based Adaptation (BBA) algorithm avoids
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using the throughput measurements and selects the next bitrates based exclusively on the

current buffer occupancy. The BBA algorithm is presented inAlgorithm. 2.

During the initial stages of buffering, when the information from the buffer occu-

pancy is minimum, it does not reflect the network conditions.Hence, BBA uses a network

capacity estimate to ramp up the bitrate. During the initialization phase, the bitrate is in-

creased if the rate at which the buffer is filled is 0.875 timesgreater than the segment

playback duration (Vs) i.e. ∆B ≥ 0.875 ∗ Vs).

According to the BBA approach, the buffer is divided into tworegions based on

two threshold values:reservoir (r)andcushion (cu)wherer < cu. As long as the current

buffer occupancy (Bcurr) is below the initialreservoir (r), the BBA algorithm is conser-

vative and selects the lowest bitrate (rmin). Once the buffer occupancy is more thanr,

the rate adaptation is initiated. If the current buffer occupancy (Bcurr) is higher than the

cushion (r + cu) then BBA selects the maximum bitrate.

Except for the initial stages where BBA considers the rate atwhich the buffer is

being filled, BBA solely depends on the current level of the buffer occupancy. After the

initial phase, the next bitrate is calculated using aratemap. Theratemapis a continuous

function (f ) of buffer occupancyBcurr and is pinned at both ends (f(0) = Rmin and

f(Bmax) = Rmax) of the current buffer occupancyf(Bcurr).

If the Bcurr is betweenr andr + cu, the rate adaption scheme checks the value

returned by the rate map function,f(Bcurr). If the value is greater than bitrate one level

higher than theRprev, denoted byRprev ↑, then the bitrate for the next segment will be

increased by one level. Whereas, if the value is less than thebitrate one level lower than
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theRprev, denoted byRprev ↓, then the bitrate for the next segment will be decreased to

the value that such thatri > f(Bcurr)

The BBA algorithm tends to take an additive increase and aggressive decrease

approach based on the buffer ratemap, whiler < Bcur < cu.

Algorithm 2: Buffer Based Rate Adaptation Algorithm [41]
Data:
Vs : Segment playback Duration
r : The size of reservoir
cu : The size of the cushion
∆B: Rate of buffer increase

Input:
Rateprev: The bitrate of most recent segment
Bcurr: Current buffer occupancy
Tn: Average Throughput of the most recentn segments

Initialization:
if Bcurr ≤ r then

if ∆B ≥ 0.875 ∗ Vs then
ln+1 = Rprev ↑ // increase by one level

ln+1 = rmin

else if Bcurr ≥ (r + cu) then
ln+1 = rmax

else if f(Bcurr) ≥ Rprev ↑ then
ln+1 = max{ri|ri < f(Bcurr)}

else if f(Bcurr) ≤ Rprev ↓ then
ln+1 = min{ri|ri > f(Bcurr)}

else
ln+1 = Rprev

Result:
ln+1: the bitrate of the next segment to be downloaded
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CHAPTER 6

SEGMENT AWARE RATE ADAPTATION FOR DASH

The ABR algorithms proposed in previous literature typically use parameters like

average segment download rate [68], available bandwidth [76] or buffer occupancy [48].

The client typically starts with the lowest representation, and then based on one of the pa-

rameters measured during the download, estimates the best representation for each sub-

sequent segment. In most of these case the throughput measurements are based on the

segment fetch times. Although the segments of each DASH video are of equal playback

duration, due to the encoding schemes and the compression techniques used, the sizes of

the segment (even with same bitrates) are found to have significant variations. Our anal-

ysis of the Big Buck Bunny video [1,6] for three different representations (3.9 Mbps, 3.6

Mbps, and 2.9 Mbps) found that the segments vary in sizes; seeFig. 10. For the represen-

tation with a 3.9 Mbps rate, we note that the segment size varies from 538 KB to 3.9 MB

with the average segment size being 1.8 MB. A similar trend was found in the segment

sizes for the other bitrates.

In this chapter, we present Segment Aware Rate Adaptation (SARA), a novel

DASH rate adaptation algorithm that we developed to improvethe QoE for DASH videos

by considering the variation in the segment sizes during thethroughput measurement and

rate adaptation phase. SARA was published in [56].
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Figure 10: Variation in Segment Sizes for the Big Buck Bunny Video: 4 sec. segments

SARA uses buffer occupancy, throughput measurements, and the individual seg-

ment sizes to estimate the optimum bitrate for the next segments (Algorithm. 3). Since

the segment download rates are affected by their sizes [38],SARA calculates the through-

put as the Weighted Harmonic Mean (WHM), where the weights are proportional to the

sizes of the segments. The WHM throughput also reduces the effect of outliers in the

throughput measurements.

In this chapter, we provide a detailed description of the proposed SARA algorithm

and its associated components: an enhanced MPD file, a WHM throughput estimation

module and finally the SARA algorithm.
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6.1 Enhanced MPD

Each DASH video is associated with a Media Presentation Description (MPD) is

an XML file that contains information related to the video such as: the metadata related

to the video (playback duration, segment dotation, playback timescale), the adaptation

sets (video set, audio set, subtitles set), representations supported for each adaptation

set. The video set representations could wary from each other in various aspects such

as codec, video display parameters (height, width, frame-rate), recommended bandwidth.

The individual URLs for each segment of every representation set is also listed in the

MPD file.

We propose to enhance the standard MPD file by listing the individual segment

sizes along with the URLs. Using these segment sizes the client could make an informed

decision during the rate adaptation phase. In our evaluation setup, we added the seg-

ment sizes to the standard MPD file during the pre-processingphase at the DASH server.

These sizes are later used in the throughput estimation (Section 6.2) and SARA algorithm

(Section 6.3).

6.2 Throughput Estimation with Weighted Harmonic Mean

In order for the rate adaptation algorithm to pick the appropriate bitrate, most

ABR algorithms estimate the throughput based on the download rates of the individual

segments. When the average segment throughput is used to estimate the overall network
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throughput, the measurements could be affected by the instantaneous variations since av-

erage value tends to favor the outliers. The effect of instantaneous variations in the mea-

sured throughput can be avoided by using harmonic mean and was used in [48]. However,

the segments being downloaded for a DASH streaming session are of different sizes, and

since the average download rate over HTTP depends on the file size distribution [38]. In

order to accurately predict the download rate for the next segment, we assigned weights

(w1,w2..wn) that were proportional to the segment sizes. These weightsand the respective

segment download rates (d1, d2..dn) were used to calculate the Weighted Harmonic Mean

(WHM) download rate. The weighted harmonic mean download rate for n downloaded

segments is given by

Hn =

∑n

i=1wi∑n

i=1
wi

di

(6.1)

Based on theHn computed for lastn segments, the time to download the next

segment is predicted bywn+1/Hn. By using WHM download rate, we are able to estimate

the download rate of the segments irrespective of the variation in the segment sizes.

6.3 Segment Aware Rate Adaptation Algorithm (SARA)

Our algorithm, SARA selects the most suitable representation for the next segment

to be downloaded from the set of available representations (R). Prior to starting the video

playback the player downloads the enhanced MPD file from the video server. The MPD

file is parsed at the client-end to retrieve the video representations and the suggested

bandwidths for each representation. The list of bandwidthsare stored as a set of bitrates,
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r = {rmin, . . . , rm, . . . , rmax }. Also the list of individual segment URLs and their

respective sizes are also parsed and stored.

Each segment is downloaded and placed in a buffer of maximum sizeBmax. The

buffer is associated with three thresholds:I, Bα, andBβ as illustrated in Fig. 11. These

thresholds are defined in terms of the number of segments. Based on the buffer occupancy

at any given time,Bcurr, the rate adaptation goes through the following four stages:

I B B BmaxBcurr

Desired operation range

0

Figure 11: SARA Streaming Buffer Thresholds

1. Fast Start (Bcurr ≤ I): When the buffer occupancy is belowI, the lowest bitrate is

selected. This ensures that the playback start time is kept as low as possible. It was

observed that minimizing playback start time is important to prevent the user from

abandoning the video session [59].

2. Additive increase (I < Bcurr ≤ Bα): Once the buffer occupancy goes beyondI,

the algorithm enters the additive increase stage. In this stage, the bitrate is incre-

mented in small (single) steps to avoid the buffer going backbelow I and thus,

taking a conservative approach. The video quality is increased only if the amount
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of time required to download the next segment of the bitrate one more than the

current level (rcurr ↑) is less than the video left in the safe region of the buffer

(wcurr+1
n+1 /Hn < Bcurr − I). By using an additive increase approach, we ensure that

the video quality not increased to a very high value resulting from over-estimating

the network capacity.

3. Aggressive switching (Bα < Bcurr ≤ Bβ): The region betweenBα andBβ is

the most preferred buffer occupancy. In this stage, based onthe current network

bandwidth and the buffer occupancy, the most suitable bitrate that is greater than

or equal to the current bitrate is selected. During this stage, SARA determines the

maximum bitrate that can be downloaded before the video buffer goes lower than

the safe region (Bcurr−I). In order to determine this, it considers the next-segment

size for every representation. However, if it determines that the download time

required for the next-segment of the current bitrate is higher thanBcurr − I, then it

switches to a lower bitrate value that is most suitable.

4. Delayed Download (Bβ < Bcurr ≤ Bmax): When the buffer occupancy increases

beyondBβ, the most suitable bitrate for the current network bandwidth is selected;

however, the request for the segment is sent only when the buffer occupancy falls

toBβ. The delay is denoted byδ and is given byBcurr - Bβ. The delayed download

limits the total number of segments in the video buffer, thusavoiding unnecessary

downloads in case the user prematurely quits watching the video.

The rate adaptation algorithm, SARA, is presented in Algorithm 3. SARA is
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Algorithm 3: Segment Aware Rate Adaptation Algorithm
Data:

R : Set of available bitrates{rmin, ...,ri, ...,rmax }
I, Bα, Bβ , Bmax: Buffer constants (number of segments)

Input:
n: Segment number of the most recent download
rcurr: Bitrate of the most recently downloaded segment
Bcurr: Current buffer occupancy in seconds
r = {rmin, ..,rm, .., rmax } Available bitrates
Wn+1 = {wmin

n+1, ..w
i
n+1, ..w

max
n+1 , } sizes of the(n+ 1)th segment

Hn: Weighted Harmonic mean download rate for the first n segments
Initialization:
if Bcurr ≤ I ; // Fast Start
then

ln+1 = rmin;
else

if (
wcurr

n+1

Hn

) > Bcurr − I then

ln+1 = max{ri|ri ∈ R,
wi

n+1

Hn

≤ Bcurr − I, i ≤ curr};
δ = 0;

else if Bcurr ≤ Bα ; // Additive Increase
then

if
wcurr+1

n+1

Hn

< Bcurr − I then
ln+1 = rcurr ↑ ; // increase by one level

else
ln+1 = rcurr;

δ = 0;
else if Bcurr ≤ Bβ // Aggressive Switching
then

ln+1 = max{ri|ri ∈ R,
wi

n+1

Hn

≤ Bcurr − I, i ≥ curr};
δ = 0;

else if Bcurr > Bβ // Delayed Download
then

ln+1 = max{ri|ri ∈ R,
wi

n+1

Hn

≤ Bcurr − Bα, i ≥ curr};
δ = Bcurr - Bβ

else
ln+1 = rcurr;
δ = 0

Result:
ln+1: the bitrate of the next segment to be downloaded

δ: The wait time before downloading the next segment79



invoked after downloading each segment to determine the bitrate to be selected for the

next segment. The algorithm is initialized with the list of the available video bitrates

(representations),R and the thresholds for the bufferI (default=2),Bα, Bβ, Bmax. These

parameters remain constant during the entire playback.

SARA is invoked with the following inputs: the segment number of the most re-

cent segment that was downloaded, the current bitrate (rcurr; default isrmin), current

buffer occupancy (Bcurr), the sizes of(n + 1)th segment across all the available repre-

sentations(wmin
n+1,. . .wm

n+1,. . .wmax
n+1 ), and the current weighted harmonic mean download

rate.

At the start of the video session (or after an interruption due to buffer starvation),

the number of segments in the buffer is belowI and the playback begins in theFast Start

phase, during which the lowest bitrate is selected. Also, the delayδ is set to zero so that

the next segment is downloaded immediately. Once the bufferoccupancy increase beyond

I, the adaptation enters theAdditive Increasestage.

The time required to download the next segment that corresponds to the current

bitrate is given by(wcurr
n+1/Hn). At any time during the playback, it is not feasible to

download the next segment of the current bitrate before the buffer goes belowI, i.e., if the

time taken to download the next segment is greater thanBcurr − I; the highest possible

bitrate that can be downloaded in the durationBcurr − I is selected based on the next

segment size and the current weighted harmonic mean download rate (Hn). SARA tries

to maintain the buffer occupancy aboveI; else, it switches to the lowest bitrate (rmin).

In theAdditive Increasestage, the algorithm starts the adaptation process during
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which the video bitrate is gradually increased. The increase in the quality is done in

single steps;rcurr↑ indicates the next level of the bitrate. By using single stepincrements

we ensure gradual quality changes, thus, avoiding the unpleasant effect of rapid bitrate

switches. However, the step size is a configurable parameterthat can be based on the

desired aggressiveness. When the video session is in the additive increase stage, i.e., the

current buffer occupancy (Bcurr) is belowBα. If the amount of time needed to download

the next segment of the bitrate, which is one more than the current bitrate i.e.,rcurr↑ is less

thanBcurr − I, then the next level is chosen. Otherwise, the current bitrate is maintained.

Use of additive increase increases the number of bitrate switching events compared to

aggressive switching however, since these switches are of positive polarity, they are not

perceived negatively by the users [26].

WhenBcurr <Bα, SARA takes a conservative approach of giving a higher priority

to minimize the start time and interruptions over the video quality. OnceBcurr goes

beyondBα, it starts to be more optimistic. WhileBα < Bcurr < Bβ the highest bitrate

whose segment could be downloaded before the current buffergoes belowI (wi
n+1/Hn

≤ Bcurr − I) is selected. By utilizing the segment sizes in the decisionmaking process,

we ensure that even when the segment sizes fluctuate, the download time of the segment

can be predicted with better accuracy. In theaggressive switchingstage, the next segment

request is sent immediately. The algorithm selects the highest possible video rate, while

making sure that the buffer is maintained at a steady level.

When the network conditions are favorable and the buffer occupancy increases be-

yondBβ, the algorithm selects the best possible bitrate similar tothe aggressive switching
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stage, but instead of sending the request for the next segment immediately, it waits until

the buffer occupancy falls toBβ . This limits an unnecessary data fetch in case the user

decides to prematurely quit watching the video. The algorithm returns the bitrate for the

next segment and the waiting time to issue the request for thenext segment.

The main objective of SARA is to be able to provide consistentQoE to the users

irrespective of the segment size variations, and also to provide lower negative bitrate

switching events by better estimation of the segment download times.

6.4 Preliminary Evaluation of SARA

As a preliminary evaluation, we studied the performance of SARA under limited

bandwidth in comparison with a basic rate adaptation algorithm. The basic rate adaptation

algorithm starts by downloading the segment with the lowestbitrate. While downloading

the first two segments (same asI in SARA) with the lowest bitrate, the average down-

load rate of the segments is measured. When the buffer occupancy is greater than two

segments, the bitrate is increased from the lowest bitrate.Based on the measured average

throughput and the current buffer occupancy, it selects thebitrate for the next segment,

which is one less than the the bitrate closest to the available bandwidth. The buffer size

for the basic adaptation was set to a maximum of 10 segments (40 seconds) and uses an

optimistic switch-up and switch-down bitrate switching.
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For the preliminary evaluation we used a single client and server setup over the

Global Environment for Networking Innovation(GENI) [21] testbed. We used the popular

open-source videoBig Buck Bunny. The open source version of this video is available in

20 different representations. The total length of the videois around 596 seconds, and each

representation is split into 150 segments, each with a 4 second playback duration.

We first demonstrate the rate-adaptation mechanism of SARA when the bandwidth

between the server and the client was fixed at 1 Mbps as shown inFig. 12. The variation

in segment sizes for different bitrates available for the Big Buck Bunny video are plotted.

Since SARA uses aggressive up switching some of the bitrate levels were skipped. In

the current figure we only plot the variation in segment sizesfor bitrates that were played

during playback. The figure also shows the actual bitrates selected by SARA algorithm

for each of the segments. As we can see, SARA initially startsby playing the lowest

bitrates as gradually increases to the highest bitrates.

We then studied the effect of the variation in the segment sizes on the two adapta-

tion schemes. We did this by limiting the network bandwidth between the client and the

server to 1 Mbps. The buffer size of the basic adaptation algorithm was configured to be

10 segments and SARA was configured withBα = 5, Bβ = 10, andBmax = 12. The

video was played using both ABR algorithms, the experiment being repeated 10 times.

The results reported are based on the statistical mode of thebitrate values measured, since

video qualities are at discrete values. In Fig. 13, we show the variation in the video bitrate

selected by each ABR along with the segment sizes (in KB). Even with a steady band-

width we noticed that the variation in the segment sizes affected the segment download
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Figure 13: Effect of Segment Sizes on Basic and SARA (Bandwidth = 1 Mbps)

times. Although the sudden changes in the segment sizes affected the bitrate selected

by both the schemes, the basic algorithm failed to anticipate the decrease in the segment

sizes, forcing it to pick a lower bitrate. However, since SARA had the segment infor-

mation it was able to predict the segment download times and thus, maintained higher

bitrates for longer durations.

Next, we studied the bitrate adaptation for both the algorithms with the network

bandwidth fixed at 4 Mbps and 8 Mbps. The results are shown in Fig. 14 and Fig. 15,

respectively. In both the cases, we observed that due to theAdditive Increasestage of

SARA, it takes a longer time to reach the highest bitrate compared to the basic ABR
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algorithm. Particularly, withBα = 10, it takes about 20 seconds to reach the highest

bitrate. However, once SARA reaches the highest bitrate, itsustains the higher bitrate for

longer durations. Even withBα = 5, we see that the bitrate picked by SARA was always

better than (or at least as good as) the basic adaptation. WithBα = 10, SARA converges to

the highest bitrate steadily, but at a slower rate than the basic scheme. Subsequently, there

are no bitrate switches when the segment sizes vary. Having alarger buffer gives a cushion

to SARA and avoids responding to sudden changes in the segment download rates. The

use of a buffer size of 10 segments translates to a video playback of 40 seconds, which

seems reasonable considering that a user may watch a movie that may last 30 minutes or

longer as is the case with most videos on Netflix.
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Figure 14: Bitrate Variation when Bandwidth = 4 Mbps
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Based on our initial evaluations we find thatBα = 10 provides better QoE in terms

of bitrate switching events. Hence, for the extensive evaluation and comparative analysis

for SARA presented in Chapter 7, we useBα = 10.
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CHAPTER 7

PERFORMANCE EVALUATION OF SARA

In this section we present the results from an evaluation of QoE with SARA on

the GENI testbed under varying network conditions and compare its performance with

the TBA and BBA algorithms.
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Figure 16: Experiment Layout

7.1 Evaluation Platform

The ABR algorithms were evaluated in a controlled globally distributed networked

virtual testbed,Global Environment for Networking Innovation(GENI) [21]. With GENI

we were able to create a virtual network topology that is geographically distributed. We

created a topology consisting of a server cluster and multiple clients connected through

by gateways on either end as depicted in Fig. 16. At the serverend, a cluster of four
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Table 6: DASH Video Datasets

Title Number of Bitrates Genre
Big Buck Bunny 20 Animation

Of Forest and Men 19 Documentary
The Swiss Account 17 Sport

Valkaama 20 Movie

HTTP web servers, each running Apache2 was used. The clientsran on Ubuntu 12.04.

The server cluster and clients were connected by gateway nodes on each side. We used

Traffic Control (tc)[61] on the gateway nodes to modify the network conditions between

the clients and the server clusters to emulate a real network. Traffic Controlis an in-built

Linux module to configure the available bandwidth between the servers and the clients.

The video players used by the commercial DASH video servicesare closed-source

and proprietary, hence difficult to be modified. In order to evaluate SARA, we developed

our own open-source emulated DASH player,AStream, the code for which can be ac-

cessed from GitHub [49].AStreamis an open-source Python based player that has a

buffer module that emulates a video playback buffer. Data from the buffer is played one-

second at a time, and the data can be to the buffer written until it is full. The DASH client

module inAStreamstarts by downloading and parsing the MPD file from the server. It

can be configured to select any one of the three ABR algorithms: SARA, BBA or TBA.

The different buffer parameters for each algorithm can be configured to study the perfor-

mance of the algorithm under different conditions and settings. Each of the clients in our

experiments were configured to run the emulated DASH playerAStream.

89



0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

500

Segment Numbers

S
eg

m
en

t S
iz

es
 (

K
by

te
s)

 

 

552051bps
642534bps
824821bps

Figure 17: Segment Size Variations for the Video: Of Forest Men
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Figure 18: Segment Size Variations for the Video: The Swiss Account
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Figure 19: Segment Size Variations for the Video: Valkaama

In the current evaluation, we considered four different videos, each from a dif-

ferent genre: animation, documentary, sport, and movie (See Table 6) obtained from [6].

The available video bitrates for each video were between 17 and 20. Each segment was of

4 seconds fixed playback duration. We limited the video session durations to a maximum

playback duration of 10 minutes. The variation in the segment sizes for the Big Bunny

Bunny was presented in Fig. 10 and the remaining three videosare presented in Fig. 17,

Fig. 18 and Fig. 19. Although each of these video have 17 to 20 representations, only

three representations are plotted for clarity and a similarpattern was found for the other

representations.

While DASH ensures that there are no interruptions in playback by switching the

bitrate, frequent bitrate switching is shown to degrade theQoE of users [64]. On the other
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hand, a higher quality of the playback improves the QoE of theusers [102]. An ABR

algorithm starts by playing the lowest bitrate and ramps up towards higher bitrates. The

time taken to reach the highest possible bitrate for any network bandwidth is called the

convergence time. To study the QoE management capability of all the three ABR algo-

rithms we used three different QoE metrics to evalaute theirperformance. In addition to

the two objective metrics number of bitrate switching events and convergence time dis-

cussed in Section 2.1.1 we also introduce a new quality factor, Qratio. The relative video

quality measureQratio is the ratio of the total quality of the video played when compared

to basic TBA algorithm. LetfTBA(x), fBBA(x) andfSARA(x) denote the bitrate selected

for a segmentx by the TBA, BBA, and SARA algorithms respectively. TheQratio for

BBA and SARA in comparison to the TBA algorithm is given by

Qratio(BBA) =

∫
fBBA(x) dx∫
fTBA(x) dx

(7.1)

Qratio(SARA) =

∫
fSARA(x) dx∫
fTBA(x) dx

(7.2)

7.2 Bandwidth Variation Scenarios

We evaluate the QoE metrics under varying bandwidth environments and different

type of network interruptions. Four different bandwidth scenarios were enforced by con-

figuring theTraffic Controlmodule on the server gateway node and the scenarios were as

follows

1. Fixed Bandwidth: In this case, we limit the maximum bandwidth between the
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client and the servers to a fixed bandwidth of either 0.5, 1, 4,or 6 Mbps. These val-

ues were selected to cover the low bandwidth network environments; particularly

targeted in the design of SARA algorithm. With fixed bandwidth, we aim to eval-

uate the convergence time of the ABR algorithm under steady but limited network

environments.

2. Short Interruptions: For the various bandwidths listed above, we considered mul-

tiple short interruptions in the network data transfer. Foreach of the bandwidth sce-

narios (1, 4, or 6 Mbps), we introduced 10 second interruptions (bandwidth falling

to 0.005Mbps) for every minute of segment download as shown in Fig. 20(a).

3. Long Interruptions: For long interruptions, we considered 3 counts of 1 minute

interruptions (bandwidth falling to 0.005Mbps), for all four bandwidths as shown

in Fig. 20(b).

4. Truncated Gaussian: When the bandwidth was around a few Mbps, it was ob-

served to follow a Gaussian distribution [47]; hence, to emulate a public network

with low bandwidth, we used a truncated Gaussian with a mean bandwidth of

3Mbps as depicted in Fig. 20(c).

7.3 Evaluation of QoE

For every scenario listed in Section 7.2, we evaluated the performance of the three

ABR algorithms: TBA, BBA, and SARA. For each of the first threescenarios, we also

changed the maximum bandwidth to 0.5, 1, 4 and 6 Mbps, replicated 5 times, for each of
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Figure 20: Bandwidth Scenarios
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Figure 21: Bitrate Switching Events: Mean Bandwidth = 4Mbps

the four videos. For the Gaussian case, we used 10 trials for each video and algorithm

combination. We discuss the QoE at the client-end based on different QoE metrics in

the following sections. The errors bars shown in the bar plots discussed in the following

sections indicate variance.

7.3.1 Bitrate Switching Events

In Section 2.1.1, we discussed the bitrate switching eventswith DASH. For im-

proved QoE with DASH streaming it is necessary to minimize the number of bitrate
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Figure 22: Polarity of Bitrate Switches with Long Interruptions: Mean Bandwidth =
1Mbps

switching events. We evaluated the number of bitrate switching events and their polarities

observed for each of the adaptation algorithms under varying network conditions.

In Fig. 21, we plotted the number of bitrate switching eventsobserved for all the

videos under the different bandwidth scenarios when the maximum bitrate was set to

4Mbps. The error bars indicate the variance of the number of bitrate switching events for

the respective scenarios. For the fixed and short interruptions case, we found that TBA and

BBA faced a similar number of bitrate switching events whereas SARA experienced 30%
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less bitrate switching events. In case of long interruptions, TBA performed significantly

worse with a very high variance. This high variance was observed fo the Valkaama video

as seen from Fig. 23(b) and this is caused by the high fluctuations in segment sizes similar

to the changes around the segment numbers 50 and 82 as shown inFig. 19. From this

result, we can also see that SARA not only reduces the number of bitrate switching events

but also provides consistent bitrate switching irrespective of the bandwidth conditions.

Different polarity of the bitrate switching events is foundto affect the users dif-

ferently. Users tend to be more tolerant towards positive switching events as compared to

negative switching events [26]. Users also tend to perceivepositive switching events as a

favorable event. In Fig. 22, we present the polarity of the bitrate switches in the case of

long interruptions, where the maximum bandwidth was limited to 1 Mbps. Since the ABR

algorithms are additive increase and aggressive switch-down, we observed that most of

the switching events are upward switches. With SARA, we not only observed a reduction

in positive switches, we find the negative switches to be significantly lower. The variance

in the switching events with TBA is very high due to the high switching events observed

with one particular video (Valkaama). Since SARA explicitly considers the segment size

variations, it is able to better estimate the variation in the segment fetch times and hence,

sustain a consistent QoE, irrespective of the video specificsegment size distributions.

When we considered the QoE with individual videos for short and long interrup-

tions (Fig. 23), we found that the video selection affects the QoE with TBA and BBA

algorithms. This can be attributed to the lack of explicit consideration of the segment size
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Figure 23: Bitrate Switching Events: Mean bandwidth = 0.5Mbps
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variations. In Fig. 10, Fig. 17, Fig. 18 and Fig. 19 it was shown that even though the seg-

ments are of same playback duration, the sizes for the videoscan vary significantly. These

variations, if not considered, can affect the ABR algorithm’s perception of the network

bandwidth, thus affecting the QoE management. Since, SARA considers these variations,

the QoE management with SARA is more consistent across all the video.

7.3.2 Video Quality

In Table 7 we present the video quality measure for BBA and SARA in compar-

ison with TBA for all the scenarios. We see that overall, SARAperforms 4%-5% better

than TBA for fixed and short interruption scenarios, whereasBBA is relatively worse.

Video playback with SARA experienced significantly higher quality (18%) when the net-

work experiences long interruptions, which is significantly better than TBA or BBA. Fur-

thermore, SARA was able to sustain this improved quality even in the low bandwidth

cases. We find that better estimation of segment fetch times is critical in improving the

video quality in low bandwidth environments.

Table 7: Video Quality Measurement of BBA and SARA in Comparison with TBA

Bandwidth
Video Quality Measure (Qratio)

0.5Mbps 1Mbps 4Mbps 6Mbps
Scenarios BBA SARA BBA SARA BBA SARA BBA SARA

Fixed 0.84 1.04 0.83 1.04 0.83 1.05 0.83 1.04
Short Interruptions 0.82 1.03 0.84 1.04 0.84 1.05 0.84 1.04
Long Interruptions 0.93 1.19 0.97 1.17 0.91 1.13 0.98 1.18
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Figure 24: Convergence Time: Mean Bandwidth = 6Mbps

7.3.3 Convergence Time

One of the challenges of an ABR is to reduce the convergence time (Section 2.1.1).

For the BBA that depends on the buffer occupancy to determinethe appropriate bitrate,

the convergence time was found to be higher. In the current evaluation, where the buffer

size was 240 seconds (as recommended by [41]), the BBA algorithm waited until 90%

(216 seconds) of the buffer was full before switching to the highest bitrate. However, in

the case of SARA, the throughput measurements, along with the awareness of the segment

sizes, enabled SARA to make better estimates of the downloadrate of the next segments.
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This drove the player towards the highest bitrate much faster. In Fig. 24, we see that the

convergence times of SARA were significantly better than both TBA and BBA. We found

similar trends when the maximum bandwidth was reduced to 0.5, 1, or 4 Mbps.

7.4 Summary

The ABR algorithms employed by DASH clients can improve the QoE of the users

by selecting the best bitrate. However, the existing ABR algorithms are found to be either

too slow in convergence, cause unnecessary bitrate switching, or deliver video quality

that is not optimal. The throughput and buffer-based adaptation techniques are found to

be lacking in QoE management in low bandwidth networks. One of the reasons we found

this to be as it was, was the assumption that the video segments are of the same size. The

variation in the segment sizes can significantly affect the throughput and download times

observed for each segment. With the Segment-Aware Rate Adaptation (SARA) algorithm

we limit the error in the download rate estimation. In this chapter, we demonstrated the

SARA algorithm can improve the QoE of the users in DASH systems. This improvement

was demonstrated by evaluating SARA under various network conditions and by compar-

ing its performance with the throughput-based (TBA) and buffer-based adaptation (BBA)

algorithms. These evaluations showed that SARA performs significantly better than TBA

and BBA with lower bitrate switching events, higher video quality, and faster convergence

times. We believe that this algorithm can improve the QoE management for DASH video

players in mobile networks and other bandwidth constrainednetwork environments.
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CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

Quality of Experience for online video streaming services is an important factor in

understanding the user’s perception of the video services.In this theses we present solu-

tions for the measurement and improvement of QoE for online video streaming services.

As a solution to measure the QoE of online video streaming services we designed

Pytomo, an active QoE measurement tool that can used to emulate an user’s YouTube

browsing session and collect the QoE metrics such as video quality, playback start time,

interruptions, and duration of interruptions in an automated manner. UsingPytomowe

were able to correlate the QoE ofYouTubevideos with the video selection strategies of

different ISPs. The platform independent nature and automated QoE collection ofPytomo

enables the users, network engineers and the service providers to collect the QoE metrics

from various end devices without having to make the users watch the videos.

In order to improve the QoE of DASH video streaming services,we studied the

limitations of the existing ABR algorithms. We found that the existing algorithms as-

sume that the video segments are of same sizes, which affected the estimation of segment

fetch times. We then presented an enhanced MPD file that liststhe individual segment

sizes along with the URLs and designed a novel rate Segment Aware Rate Adaptation

(SARA) algorithm. With SARA we are able to leverage the segment sizes in conjunction

with the throughput measurements and buffer occupancy to provide better QoE even in
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low bandwidth environments. Using the GENI testbed we simulated variable network

environments with short and long interruptions in playbackand also a truncated Gaussian

scenario that replicates real networks to study the performance of SARA in compari-

son with the Throughput Based Adaptation (TBA) and Buffer Based Adaptation (BBA)

schemes. Based on these evaluations, we demonstrated that SARA supports a better video

quality in addition to lower bitrate switching events and better convergence times. Due to

the segment awareness employed by SARA, we observed that it provides consistent QoE

irrespective of the video segment size distributions, which was not the case with TBA or

BBA algorithms.

The next step forPytomoit to extend it to perform QoE measurement for DASH

videos from different video service providers (YouTube, Dailymotion etc). Secondly a

mobile friendly version would enable us to perform QoE measurements for hand-held

devices.

Ultimately, we plan to integrate SARA into an existing videoplayer, to evaluate

the QoE based on metrics collected during video playback andalso collect the MOS score

based on user feedback.
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APPENDIX A

SAMPLE MPD FILE

<?xml version="1.0" encoding="UTF-8"?>

<!-- MPD file Generated with GPAC version 0.5.1-DEV-rev5379 on

2014-09-10T13:30:18Z-->

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" minBufferTime="PT1

.500000S" type="static" mediaPresentationDuration="PT0H9M56

.46S" profiles="urn:mpeg:dash:profile:isoff-live:2011">

<Period duration="PT0H9M56.46S">

<AdaptationSet mimeType="video/mp4" segmentAlignment="true"

group="1" maxWidth="480" maxHeight="360" maxFrameRate="24"

par="4:3">

<Representation id="320x240 45.0kbps" mimeType="video/mp4"

codecs="avc1.42c00d" width="320" height="240" frameRate

="24" sar="1:1" startWithSAP="1" bandwidth="45226" >

<SegmentTemplate timescale="96" media="media/

BigBuckBunny/4sec/bunny_$Bandwidth$bps/

BigBuckBunny_4s$Number$%d.m4s" startNumber="1"

duration="384" initialization="media/BigBuckBunny

/4sec/bunny_$Bandwidth$bps/BigBuckBunny_4s_init.

mp4" />

<SegmentSize id="BigBuckBunny_4s1.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s2.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s3.m4s" size="200.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s4.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s5.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s6.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s7.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s8.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s9.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s10.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s11.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s12.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s13.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s14.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s15.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s16.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s17.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s18.m4s" size="168.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s19.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s20.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s21.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s22.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s23.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s24.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s25.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s26.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s27.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s28.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s29.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s30.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s31.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s32.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s33.m4s" size="168.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s34.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s35.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s36.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s37.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s38.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s39.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s40.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s41.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s42.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s43.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s44.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s45.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s46.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s47.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s48.m4s" size="168.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s49.m4s" size="200.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s50.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s51.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s52.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s53.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s54.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s55.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s56.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s57.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s58.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s59.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s60.m4s" size="152.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s61.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s62.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s63.m4s" size="184.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s64.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s65.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s66.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s67.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s68.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s69.m4s" size="200.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s70.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s71.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s72.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s73.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s74.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s75.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s76.m4s" size="136.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s77.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s78.m4s" size="160.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s79.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s80.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s81.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s82.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s83.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s84.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s85.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s86.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s87.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s88.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s89.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s90.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s91.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s92.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s93.m4s" size="176.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s94.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s95.m4s" size="152.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s96.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s97.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s98.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s99.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s100.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s101.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s102.m4s" size="144.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s103.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s104.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s105.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s106.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s107.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s108.m4s" size="176.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s109.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s110.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s111.m4s" size="200.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s112.m4s" size="152.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s113.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s114.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s115.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s116.m4s" size="136.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s117.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s118.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s119.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s120.m4s" size="160.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s121.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s122.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s123.m4s" size="160.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s124.m4s" size="144.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s125.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s126.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s127.m4s" size="200.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s128.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s129.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s130.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s131.m4s" size="200.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s132.m4s" size="168.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s133.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s134.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s135.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s136.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s137.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s138.m4s" size="184.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s139.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s140.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s141.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s142.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s143.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s144.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s145.m4s" size="192.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s146.m4s" size="112.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s147.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s148.m4s" size="184.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s149.m4s" size="176.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s150.m4s" size="32.0"

scale="Kbits"/>

</Representation>

<Representation id="320x240 89.0kbps" mimeType="video/mp4"

codecs="avc1.42c00d" width="320" height="240" frameRate

="24" sar="1:1" startWithSAP="1" bandwidth="88783" >
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<SegmentTemplate timescale="96" media="media/

BigBuckBunny/4sec/bunny_$Bandwidth$bps/

BigBuckBunny_4s$Number$%d.m4s" startNumber="1"

duration="384" initialization="media/BigBuckBunny

/4sec/bunny_$Bandwidth$bps/BigBuckBunny_4s_init.

mp4" />

<SegmentSize id="BigBuckBunny_4s1.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s2.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s3.m4s" size="400.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s4.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s5.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s6.m4s" size="296.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s7.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s8.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s9.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s10.m4s" size="392.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s11.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s12.m4s" size="384.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s13.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s14.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s15.m4s" size="312.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s16.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s17.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s18.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s19.m4s" size="320.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s20.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s21.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s22.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s23.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s24.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s25.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s26.m4s" size="320.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s27.m4s" size="360.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s28.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s29.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s30.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s31.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s32.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s33.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s34.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s35.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s36.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s37.m4s" size="312.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s38.m4s" size="288.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s39.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s40.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s41.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s42.m4s" size="328.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s43.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s44.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s45.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s46.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s47.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s48.m4s" size="272.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s49.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s50.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s51.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s52.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s53.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s54.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s55.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s56.m4s" size="280.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s57.m4s" size="296.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s58.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s59.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s60.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s61.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s62.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s63.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s64.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s65.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s66.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s67.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s68.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s69.m4s" size="392.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s70.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s71.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s72.m4s" size="320.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s73.m4s" size="320.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s74.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s75.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s76.m4s" size="256.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s77.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s78.m4s" size="312.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s79.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s80.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s81.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s82.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s83.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s84.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s85.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s86.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s87.m4s" size="384.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s88.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s89.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s90.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s91.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s92.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s93.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s94.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s95.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s96.m4s" size="336.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s97.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s98.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s99.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s100.m4s" size="392.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s101.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s102.m4s" size="280.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s103.m4s" size="344.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s104.m4s" size="320.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s105.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s106.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s107.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s108.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s109.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s110.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s111.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s112.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s113.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s114.m4s" size="320.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s115.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s116.m4s" size="280.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s117.m4s" size="360.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s118.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s119.m4s" size="304.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s120.m4s" size="312.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s121.m4s" size="296.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s122.m4s" size="296.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s123.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s124.m4s" size="296.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s125.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s126.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s127.m4s" size="392.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s128.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s129.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s130.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s131.m4s" size="392.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s132.m4s" size="352.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s133.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s134.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s135.m4s" size="352.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s136.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s137.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s138.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s139.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s140.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s141.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s142.m4s" size="376.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s143.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s144.m4s" size="384.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s145.m4s" size="328.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s146.m4s" size="232.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s147.m4s" size="288.0"

scale="Kbits"/>
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<SegmentSize id="BigBuckBunny_4s148.m4s" size="368.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s149.m4s" size="360.0"

scale="Kbits"/>

<SegmentSize id="BigBuckBunny_4s150.m4s" size="60.8"

scale="Kbits"/>

</Representation>

</AdaptationSet>

</Period>

</MPD>

%\end{verbatim}
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