2,084 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Highly reliable, low-latency communication in low-power wireless networks

    Get PDF
    Low-power wireless networks consist of spatially distributed, resource-constrained devices – also referred to as nodes – that are typically equipped with integrated or external sensors and actuators. Nodes communicate with each other using wireless transceivers, and thus, relay data – e. g., collected sensor values or commands for actuators – cooperatively through the network. This way, low-power wireless networks can support a plethora of different applications, including, e. g., monitoring the air quality in urban areas or controlling the heating, ventilation and cooling of large buildings. The use of wireless communication in such monitoring and actuating applications allows for a higher flexibility and ease of deployment – and thus, overall lower costs – compared to wired solutions. However, wireless communication is notoriously error-prone. Message losses happen often and unpredictably, making it challenging to support applications requiring both high reliability and low latency. Highly reliable, low-latency communication – along with high energy-efficiency – are, however, key requirements to support several important application scenarios and most notably the open-/closed-loop control functions found in e. g., industry and factory automation applications. Communication protocols that rely on synchronous transmissions have been shown to be able to overcome this limitation. These protocols depart from traditional single-link transmissions and do not attempt to avoid concurrent transmissions from different nodes to prevent collisions. On the contrary, they make nodes send the same message at the same time over several paths. Phenomena like constructive interference and capture then ensure that messages are received correctly with high probability. While many approaches relying on synchronous transmissions have been presented in the literature, two important aspects received only little consideration: (i) reliable operation in harsh environments and (ii) support for event-based data traffic. This thesis addresses these two open challenges and proposes novel communication protocols to overcome them

    Wireless Sensor Networking in Challenging Environments

    Get PDF
    Recent years have witnessed growing interest in deploying wireless sensing applications in real-world environments. For example, home automation systems provide fine-grained metering and control of home appliances in residential settings. Similarly, assisted living applications employ wireless sensors to provide continuous health and wellness monitoring in homes. However, real deployments of Wireless Sensor Networks (WSNs) pose significant challenges due to their low-power radios and uncontrolled ambient environments. Our empirical study in over 15 real-world apartments shows that low-power WSNs based on the IEEE 802.15.4 standard are highly susceptible to external interference beyond user control, such as Wi-Fi access points, Bluetooth peripherals, cordless phones, and numerous other devices prevalent in residential environments that share the unlicensed 2.4 GHz ISM band with IEEE 802.15.4 radios. To address these real-world challenges, we developed two practical wireless network protocols including the Adaptive and Robust Channel Hopping (ARCH) protocol and the Adaptive Energy Detection Protocol (AEDP). ARCH enhances network reliability through opportunistically changing radio\u27s frequency to avoid interference and environmental noise and AEDP reduces false wakeups in noisy wireless environments by dynamically adjusting the wakeup threshold of low-power radios. Another major trend in WSNs is the convergence with smart phones. To deal with the dynamic wireless conditions and varying application requirements of mobile users, we developed the Self-Adapting MAC Layer (SAML) to support adaptive communication between smart phones and wireless sensors. SAML dynamically selects and switches Medium Access Control protocols to accommodate changes in ambient conditions and application requirements. Compared with the residential and personal wireless systems, industrial applications pose unique challenges due to their critical demands on reliability and real-time performance. We developed an experimental testbed by realizing key network mechanisms of industrial Wireless Sensor and Actuator Networks (WSANs) and conducted an empirical study that revealed the limitations and potential enhancements of those mechanisms. Our study shows that graph routing is more resilient to interference and its backup routes may be heavily used in noisy environments, which demonstrate the necessity of path diversity for reliable WSANs. Our study also suggests that combining channel diversity with retransmission may effectively reduce the burstiness of transmission failures and judicious allocation of multiple transmissions in a shared slot can effectively improve network capacity without significantly impacting reliability

    Performance and energy efficiency in wireless self-organized networks

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Low power radio networks

    Get PDF
    Low power radio networks are the networks which depend upon wireless radio links and consume very low energy for their operation. These networks suit best for applications where frequent renewal of power supply is not possible. Power supply has always remained a major concern in radio networks. An efficient low power consuming network is always recommended for greater mobility and lifetime of the network. This thesis introduces low power radio networks, their features and applications. Energy concerns and various techniques that can be used for energy conservation are discussed, along with the security techniques that can be used to make the system reliable. Different technologies available in the market and their features and applications are considered. Included is a detailed study of the IEEE 802.15.4 standard. A simulation study of the CSMA/CA algorithm and topology discovery algorithms is presented

    Cluster based jamming and countermeasures for wireless sensor network MAC protocols

    Get PDF
    A wireless sensor network (WSN) is a collection of wireless nodes, usually with limited computing resources and available energy. The medium access control layer (MAC layer) directly guides the radio hardware and manages access to the radio spectrum in controlled way. A top priority for a WSN MAC protocol is to conserve energy, however tailoring the algorithm for this purpose can create or expose a number of security vulnerabilities. In particular, a regular duty cycle makes a node vulnerable to periodic jamming attacks. This vulnerability limits the use of use of a WSN in applications requiring high levels of security. We present a new WSN MAC protocol, RSMAC (Random Sleep MAC) that is designed to provide resistance to periodic jamming attacks while maintaining elements that are essential to WSN functionality. CPU, memory and especially radio usage are kept to a minimum to conserve energy while maintaining an acceptable level of network performance so that applications can be run transparently on top of the secure MAC layer. We use a coordinated yet pseudo-random duty cycle that is loosely synchronized across the entire network via a distributed algorithm. This thwarts an attacker\u27s ability to predict when nodes will be awake and likewise thwarts energy efficient intelligent jamming attacks by reducing their effectiveness and energy-efficiency to that of non-intelligent attacks. Implementing the random duty cycle requires additional energy usage, but also offers an opportunity to reduce asymmetric energy use and eliminate energy use lost to explicit neighbor discovery. We perform testing of RSMAC against non-secure protocols in a novel simulator that we designed to make prototyping new WSN algorithms efficient, informative and consistent. First we perform tests of the existing SMAC protocol to demonstrate the relevance of the novel simulation for estimating energy usage, data transmission rates, MAC timing and other relevant macro characteristics of wireless sensor networks. Second, we use the simulation to perform detailed testing of RSMAC that demonstrates its performance characteristics with different configurations and its effectiveness in confounding intelligent jammers

    Development of Multiple Protocols in Novel Simulation Environment

    Get PDF
    abstract: When one considers the current state of wireless communications, it becomes clear that it is both absolutely amazing and something of a mess. Present communications standards are the result of local optimizations over time that led to a confusing set of suboptimal and fragile wireless standards. Starting from a clean sheet of paper, Bliss Laboratory for Information, Signals, and Systems (BLISS) is considering a fluid set of communications standards co-optimized with flexible but power-efficient computational implementations that will enable the next revolution of wireless communications. The main aim is to enable much higher data rates and much lower data rates with corresponding lower power consumption as the needs of the users vary. The thesis mainly looks at the different sections of the work done, to prime the development of the protocol development engine. It discusses channel modeling, and system integration of receiver and channel noise. It also proposes a Carrier-Sense Multiple Access (CSMA) Media Access Control (MAC) layer protocol implementation for (Wireless Fidelity) Wi-Fi protocol. This work also talks about the Graphical User Interface (GUI), which is a part of Protocol Development Kit (PDK) - a combination of the Protocol Recommendation Engine (PRE) and simulation package to aid the development of protocols. It also sheds light on the Automatic Dependent Surveillance - Broadcast (ADS-B) radio protocol, that will eventually replace radar as Air Traffic Control's (ATC) primary tool for separating aircraft. All the algorithms used in this thesis, to define radio operation were in principle defined by mathematical descriptions; however, to test and implement these algorithms they had to be converted to a computer language. There were multiple phases of this conversion. In the first phase, the implementation of these algorithms was done in Matrix Laboratory (MATLAB). To aid this development, basic radio finite state machines and radio algorithmic tools were provided.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Routing for Wireless Sensor Networks: From Collection to Event-Triggered Applications

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of sensing devices using wireless communication to exchange data. In the past decades, steep advancements in the areas of microelectronics and communication systems have driven an explosive growth in the deployment of WSNs. Novel WSN applications have penetrated multiple areas, from monitoring the structural stability of historic buildings, to tracking animals in order to understand their behavior, or monitoring humans' health. The need to convey data from increasingly complex applications in a reliable and cost-effective manner translates into stringent performance requirements for the underlying WSNs. In the frame of this thesis, we have focused on developing routing protocols for multi-hop WSNs, that significantly improve their reliability, energy consumption and latency. Acknowledging the need for application-specific trade-offs, we have split our contribution into two parts. Part 1 focuses on collection protocols, catering to applications with high reliability and energy efficiency constraints, while the protocols developed in part 2 are subject to an additional bounded latency constraint. The two mechanisms introduced in the first part, WiseNE and Rep, enable the use of composite metrics, and thus significantly improve the link estimation accuracy and transmission reliability, at an energy expense far lower than the one achieved in previous proposals. The novel beaconing scheme WiseNE enables the energy-efficient addition of the RSSI (Received Signal Strength Indication) and LQI (Link Quality Indication) metrics to the link quality estimate by decoupling the sampling and exploration periods of each mote. This decoupling allows the use of the Trickle Algorithm, a key driver of protocols' energy efficiency, in conjunction with composite metrics. WiseNE has been applied to the Triangle Metric and validated in an online deployment. The section continues by introducing Rep, a novel sampling mechanism that leverages the packet repetitions already present in low-power preamble-sampling MAC protocols in order to improve the WSN energy consumption by one order of magnitude. WiseNE, Rep and the novel PRSSI (Penalized RSSI, a combination of PRR and RSSI) composite metric have been validated in a real smart city deployment. Part 2 introduces two mechanisms that were developed in the frame of the WiseSkin project (an initiative aimed at designing highly sensitive artificial skin for human limb prostheses), and are generally applicable to the domain of cyber-physical systems. It starts with Glossy-W, a protocol that leverages the superior energy-latency trade-off of flooding schemes based on concurrent transmissions. Glossy-W ensures the stringent synchronization requirements necessary for robust flooding, irrespective of the number of motes simultaneously reporting an event. Part 2 also introduces SCS (Synchronized Channel Sampling), a novel mechanism capable of reducing the power required for periodic polling, while maintaining the event detection reliability, and enhancing the network coexistence. The testbed experiments performed show that SCS manages to reduce the energy consumption of the state-of-the-art protocol Back-to-Back Robust Flooding by over one third, while maintaining an equivalent reliability, and remaining compatible with simultaneous event detection. SCS' benefits can be extended to the entire family of state-of-the-art protocols relying on concurrent transmissions

    Quality-of-Service-Adequate Wireless Receiver Design

    Get PDF
    • …
    corecore