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1 INTRODUCTION

1.1 Definition and Properties

Wireless self-organized network research and applications have gained excessive

attentions in recent years. This is not only caused by that the self-organized

networking design presents a lot of technical challenges to researchers, but also by

that networked microsensor technology is predicted as a key technology for the

future (Business Week 1999). The trend of wireless communications will be based

on micro- and nanotechnologies that will enable the smart spaces of the future.

A network constructed by the nodes using these technologies will incorporate

a high level of integration as well as low-power operation in a small physical

package,(Darrin, Carkhuff & Mehoke 2004) and a key feature of such a network

is self-organization.

1.1.1 Self-organization

Self-organization is a process in which pattern at the global level of a system

emerges solely from numerous interactions among the lower-level components of

the system. Self-organization is often referred to as the multitude of algorithms

and methods that organize the global behavior of a system based on inter-system

communication (Dressler 2006).

Key features of self-organization include:

Self-healing : the network is able to automatically fix the network failures.

Network failures include node failure due to the battery off or node hardware

abnormity, path/route failures due to the mobility or node failure, channel

access failure due to the strong external noise, etc.

Self-configuration : the network is able to be automatically configured when
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it is deployed. This includes automatic functions such as channel selec-

tion, node role configuration in a heterogenerous network, neighbor finding,

topology awareness, etc.

Self-management : the network is able to automatically manage its operations

and communications, such as scheduling the transmission, wake-up/sleep

synchronization, clustering, etc.

Self-optimization : the network is able to optimize its parameters during the

operation. This includes energy optimization such as transmit power con-

trol, network optimization for connectivity and routing, scheduling opti-

mization, etc.

Basically, wireless ad-hoc networks and sensor networks are self-organization net-

works due to the high dynamics of these networks.

1.2 History Overview

The first generation of ad hoc networking goes back to 1972. At the time, the name

was called PRNET (Packet Radio Networks) (Minoli 1979). In conjunction with

ALOHA (Areal Locations of Hazardous Atmospheres) and CSMA (Carrier Sense

Medium Access), approaches for medium access control and a kind of distance-

vector routing, PRNET were used on a trial basis to provide different networking

capabilities in a combat environment.

The second generation of ad hoc networks emerged in 1980s, when the ad-hoc

network systems were further enhanced and implemented as a part of the SURAN

(Survivable Adaptive Radio Networks) program (Beyer 1990), which provided

a packet-switched network to the mobile battlefield devices in an environment

without infrastructure. This program proved to be beneficial in improving the

radios’ performance by making them smaller, cheaper, and resilient to electronic

attacks.

In the 1990s, the concept of commercial wireless ad-hoc networks arrived with

notebook computers and other viable communications equipment portable and

small-size . At the same time, the idea of a collection of mobile nodes was proposed

at several research conferences.(Ramanathan & Redi 2002)
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After year 2000, the concept and application of wireless communications extended

to large-scale sensing and actuating networks. This was driven by the factors

that, 1) Microeletromechanical Systems (MEMS) technology had made the sen-

sors smaller(Wameke & Pister 2002), and 2) circuit integration had made the

processing circuits and radio circuits smaller. Wireless sensor netwroking is con-

sidered to be applied to military, enviromental, habitat, industry/business, health,

and many more potential areas.

1.2.1 Wireless Ad-hoc Networks

An ad-hoc network is a (possibly mobile) collection of communications devices

(nodes) that wish to communicate, but have no fixed infrastructure available,

and have no pre-determined organization of available links. Individual nodes are

responsible for dynamically discovering which other nodes they can directly com-

municate with. A key assumption is that not all nodes can directly communicate

with each other, so nodes are required to relay packets on behalf of other nodes

in order to deliver data across the network. A significant feature of ad hoc net-

works is that repid changes in connectivity and link characteristics are introduced

due to node mobility and power control practices. Ad hoc networks can be built

around any wireless technology, including infrared and RF (Radio Frequency).

(Ramanathan & Redi 2002)

Wireless ad-hoc networks are sometimes also calledMobile Ad-hoc Networks (MA-

NET). In this thesis, these two terms hereafter refer to the same issue.

Wireless ad-hoc networks are desirable in case that infrastructure is either not

available, not trusted, or not able to be established in time. Examples of wireless

ad-hoc network application include exchanging data in conference meeting, catas-

trophy rescue, vehicles/fleet communication on road/sea, military communication

on hostile ground, etc. Figure 1.1 shows a conceptual ad hoc network consisting

of laptops, mobile terminals, and PDAs (Personal Data Asistant).

Wireless ad-hoc networks exhibit great difference from their wired counterparts.

Most critical issues are:(Sikora 2004)

• Topology control and routing are very difficult in a spontaneous net-

work. This is caused by 1) node mobility, and 2) random, autonomous

power on and off of the mobile nodes.
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Figure 1.1: An example of ad hoc network

• Mobility must be considered in most applications. Mobility can change the

network topology, routing performance, radio transmission range, avaibility

of services and data, etc.

• The number of devices in the field may vary from only two to some thou-

sands. This is regarded as scalability problem.

• Quality of service, in terms of packet delivery delay, jittering, transmission

error, etc., is difficult to be achieved.

• Mobile nodes and sensor nodes are battery operated. Changing battery is

not convenient or totally impossible. Thus energy efficiency design is very

important.

1.2.2 Wireless Sensor Networks

AWireless Sensor Network (WSN) consists hundreds or even thousands of wireless

sensor nodes that are low cost and small in size. The sensor nodes monitor or

sense the environment parameters, and the sensed data can be collected by one or

a set of central points called sinks, or be processed in a distributed manner. Due to

the larger scale of network and more nodes than that of Ad-hoc networks, some

high-capacity nodes dedicated to network communication and/or management

may be deployed together with sensor nodes. These nodes can take care of data

frame relaying, clustering, transmission scheduling, and network diagnosis, etc. A

typical WSN usually has a structure shown in Fig. 1.2.

WSNs are similar to wireless ad-hoc networks in many aspects. A wireless sensor
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Sink node

A Wireless Sensor Network

Communication node

Sensor node

Legends

Figure 1.2: A typical wireless sensor network structure

network with a large number of nodes that are usually distributed randomly in a

target field. Major issues of wireless ad-hoc networks such as multihop commu-

nication, energy efficiency, routing, and topology control also present in wireless

sensor networks. However, WSNs have some special features that are different

from traditional MANET. These features include data aggregation, localization,

tracing, coverage, etc.(Tubaishat & Madria 2003)

WSNs can be applied to following fields:(Sikora 2004)

• Control of machines and devices in the process and automation industry,

but also in home appliance.

• Temperature, pressure or gas sensors, valves and actuators, e.g., for heating,

ventilating and air-conditioning (HVAC)

• Medical monitoring (intra- and extra-corporal)

• Environmental monitoring, e.g., distributed in towns, forests, farming fields,

etc.

1.3 Objectives of the Study

In this thesis, the main goal is to improve the energy efficiency and communication

performance of wireless ad-hoc/sensor networks when mobility and scalability is
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considered. In order to achieve this goal, other self-organization problems such

as routing, clustering, synchronization, and throughput improvement are also

studied because usually a solution is a combination or trade-off of several aspects

of network property.

To achieve this goal, mathematical models of MANETs and WSNs in different

aspects such as energy consumption model, routing model, traffic delivery model,

and mobility model have been established and analysed.

In order to understand energy consumption behaviour of a mobile node, the struc-

ture and functionality of wireless transceiver has been inspected and the results

have been referred by later modelings and analysis.

We evaluate our proposals by software simulations. All the simulation processes

are written either within Network Simulator version 2 (NS-2)(Fall & Varadhan

2003) or individually in C++/Matlab(The Mathworks, Inc. n.d.).

1.4 Scope and Contributions

This thesis covers the lower layers of communication protocol stack of MANET

and WSN. We focus on the energy characteristics of physical layer, data link

layer, and network layer. At the physical layer, the details of energy cost in

transmitting, receiving, and sleeping mode are inspected. At the data link layer,

especially the Medium Access Control (MAC) sublayer, we study the connectivity

of the network caused by transmit power control. At the network layer, the energy

cost by network overheads and different routing protocols is studied.

Need to say that there are also tremendous research in upper layers of wireless

network protocol stack that contribute to performance and energy efficiency. How-

ever, due to the limit of possibility and capability, they are not included in this

research.

The thesis is a monograph, but most parts of context are the research results

have been published earlier in conference proceedings. Chapter 4 is based on

the work of (Gao & Jäntti 2004a). Chapter 5 is based on the work of (Gao &

Jäntti 2005a). Chapter 6 is based on the work of (Gao & Jäntti 2004b). Chapter 7

is based on the work of (Gao & Jäntti 2005c). Chapter 8 is based on the work of

(Gao & Jäntti 2005b). Chapter 9 is based on the work of (Gao & Jäntti 2006a).
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Chapter 10 is based on the work of (Gao, Nethi & Jäntti 2007). Chapter 11 is

based on the work of (Nethi, Gao & Jäntti 2007), in which I contributed to the

system modeling and protocol design, whileas Mr. Shekar Nethi contributed to

the coding and simulating in NS-2. Chapter 12 is based on the work of (Gao &

Jäntti 2006c).

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2 a brief introduction

to the current status of research of ad-hoc/sensor networks is presented. We

give special attention to energy efficiency at issues of connectivity, capacity, and

routing of ad-hoc networks. Chapter 3 discusses the energy consumption of a

typical wireless transceiver. This discussion gives essential concepts of how much

energy a wireless node consumes in different phases of participating the network

activities. In Chapter 4, in order to increase the energy efficiency, we analyse the

probability of finding a minimum-hop route by typical reactive routing protocols.

A minimum-hop route is believed to cost less energy and shorten the packet deliv-

ery delay. Chapter 5 illustrates the network capacity in term of how many bits of

user data can be delivered in multi-hop ad-hoc networks. We found that different

transmit power levels result to different network connectivities and topologies.

Thus a routing protocol will find different routes in term of hop counts. Consider

the energy cost by transmitting and receiving, an optimal transmitting power level

is expected to give best energy performance. In Chapter 6 a reactive routing pro-

tocol based on transmit power control is proposed. A modification of this protocol

to cope with communication gray zone is given in Chapter 7. Chapter 8 focuses

on the scalability problem of ad-hoc networks. A link-state clustering algorithm

is proposed to reduce the network overhead and increase the scalability. A global

synchronization scheme that can be integrated with the link-state clustering algo-

rithm is discussed in Chapter 9. Chapters 10 and 11 focus on multipath routing

protocols which are believed to give energy fairness and throughput improvement

to MANET and WSN in the situations that a single route is fragile due to the

bursty traffic or interference from other systems or nodes. Chapter 12 deals with

self-organization solutions for cellular-based multihop networks. A 2-hop 2-slot

uplink scheme is proposed to improve uplink throughput for elastic traffic and its

performance is analysed and evaluated. Chapter 13 concludes the research.



 



2 FUNDAMENTAL OF WIRELESS

AD-HOC/SENSOR NETWORKS

2.1 Radio Frequency Signal Properties

Many critical problems of MANET and WSN are caused by a simple fact: wire-

less communication is more difficult than that of the wired counterpart. Radio

communication is much more subjected to the change of environment and the in-

terference present, due to its open-to-air feature. Basically, one can find following

properties of radio communication(Schwartz 2005):

1. the average power measured over a distance from a transmitter decreases

inversely with the distance in term of d−α, here α is call path lose factor,

and the power decrease is hence called path loss.

2. the instantaneous power measured is found to vary randomly about this av-

erage power. The power probability distribution is commonly a log-normal

distribution with variance typically 6-10dBm. This phenomenon is com-

monly referred to as shadow fading. The overall effect of path loss and

shadow fading is called large-scale fading.

3. As a receiver moves the order of a half wavelength, the measured result may

vary many dB. This small-scale variation of the received signal is caused

by the destructive/constructive phase interference of many received signal

paths. The phenomenon is thus referred to as multipath fading. Different

statistical models have been applied to different environments. For a rel-

atively long path case, the signal received follows Rayleigh distribution; in

shorter distances a Ricean distribution fits better.

Putting these factors together, the statistical received signal power of a receiver

at d meters away from a transmitter can be expressed:

PR = y210x/10d−αPTGTGR (2.1)
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where PT is the transmitter power, GT , GR are antenna gain of the transmitter

and receiver, respectively, and these three terms are usually constant. x is a

random variable representing shadow fading, and follows a zero-mean gaussian

distribution with variance σ:

f(x) =
e−

x2

2σ2

√
2πσ2

(2.2)

where y is a random variable representing small-scale fading, and usually follows

Rayleigh statistics with Probability Density Function (PDF):

p(y) =
y

σ2
e−y2/2σ2

, y ≥ 0 (2.3)

where σ2 is the time-average power of the received signal before envelope detection.

Rayleigh fading is suitable for a communication environment in which there is no

line of sight between the transmitter and receiver and many objects attenuate,

reflect, refract and diffract the signal. In case that there exists a dominant signal,

usually the one in line of sight, Ricean model is a better estimation. Ricean fading

is denoted as

p(y) =
2y

σ2
e−

y2+A2

2σ2 I0(
Ay

σ2
) (2.4)

where A denotes the peak amplitude of the dominant signal and I0(·) is the

modified Bessel function of the first kind and zero-order.

2.2 Network Architecture and Protocol Stack

A wireless ad-hoc/sensor network consists of a number of wireless devices (also

called nodes) sharing the same radio interface, thus working in packet-delivery

mode. The devices are usually mobile in an area and operated by battery power.

The communication between the nodes can be either point-to-point, multicast,

or broadcast. The type of communication data can be any format, such as real-

time sensed information (in small amount), non-realtime files/databases (in large

size), realtime audio or video (in streamed format), etc. Because of the limit of

radio signal propagation distance and the purpose of efficiently reusing the radio

resource, a wireless ad hoc/sensor network usually works in multihop mode. In
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an ad-hoc network, communications between the nodes are distributed and bal-

anced, i.e., communication may happen between any two nodes; whileas a wireless

sensor network is usually data-collective and thus unbalanced, i.e., sensed data is

collected by one or several data sinking nodes. The sinks can be located at the

edge or in the middle of the network, or totally random. The number of nodes in

wireless sensor networks is usually much greater than their ad-hoc counterparts.

The protocol stack of such a network usually follows the OSI (Open System In-

terconnection) 7-layer model, as shown in Figure 2.1. However, the lower layers

are specialized in order to cope with wireless communication features. Especially,

the MAC sublayer copes with radio interface collision problem and the network

layer copes with multihop routing problem.

Network Layer

Media Access Control

Data link Layer

Physical Layer

Application Layer

Protocol Stack Function

Routing,
End−to−end delivery

Radio resource management
Collision reduction/avoidance
Transmitter−receiver delivery

Coding, modulation, etc.

Presentation layer,
Session layer, and
Transport layer

Figure 2.1: Wireless ad hoc network protocol stack and functions of layers.

2.3 Media Access Control

Media Access Control (MAC) is a sublayer at layer 2 of OSI 7-layer model. MAC

protocol must be deployed when a group of communication devices is sharing the

same physical medium. In wireless ad-hoc/sensor networks, MAC protocol design

is not a trivial issue. On one hand, we must consider the functionality of MAC

protocol, i.e., to avoid collisions when two or more nodes have data to transmit at

the same time; on the other hand, MAC layer design should also consider 1) the
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energy efficiency of the network, because MAC signaling is considered as overhead

of the communications, and 2) the fairness, because every node should have the

same opportunity to access the channel.

Cellular mobile systems usually use a scheduleling-based MAC protocol, because

in cellular systems the infrastructure can allocate/schedule the radio resource to

the mobile devices in its service area. Typical scheduling-based techniques include

FDMA (Frequency-Division Multiple Access), TDMA (Time-Division Multiple

Access), and CDMA (Code-Division Multiple Access). In a scheduling-based

system, the collision of communication is totally avoided. However, in wireless

self-organized networks, since there is no infrastructure that can schedule the

communication, distributed processes have to be deployed to make the nodes

schedule the communication by themselves. This makes scheduling techniques

not very favorable in wireless self-organized networks.

Another class of MAC protocols is based on random access. The simplest and most

fundamental random access MAC protocols for wireless networks are ALOHA and

slotted-ALOHA. A mobile node using ALOHA starts the transmission immedi-

ately when it has data to send. In a slotted-ALOHA network, the whole network

is synchronized by time slots. A node that has data to send waits for the beginning

of next time slot. Both ALOHA and slotted-ALOHA protocols have no mecha-

nism to prevent collisions. If the transmitted data packet collided, the dedicated

receiver cannot send back an acknowledgement (ACK) and the sending node will

retransmit after its ACK waiting timer expires.

A more sophisticated MAC protocol used in wireless self-organized networks is

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). In CS-

MA/CA, a node first senses the radio channel (the carrier) for a period; if the

channel is free the node sends the packet, otherwise it backs-off the transmission

with a random period to avoid collision. CSMA/CA is adopted as IEEE Wireless

LAN protocol in IEEE 802.11b standard (IEEE 1999). A modified CSMA/CA

protocol with synchronization features is applied in IEEE Wireless Personal Area

Network (WPAN) standard IEEE 802.15.4 (IEEE 2003).

Many more MAC protocols are proposed for energy efficiency and/or through-

put improvement, such as PAMAS (Singh & Raghavendra 1998), S-MAC (Ye,

Heidemann & Estrin 2002), T-MAC (van Dam & Langendoen 2003), and X-

MAC(Buettner, Yee, Anderson & Han 2006). A modified CSMA protocol known

as CSMA/CF (Collision Freeze) aimed to solve hidden node problem for IEEE
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802.15.4 beacon-based WSN is proposed in (Sheu, Shih & Lee 2009). A hybrid

Z-MAC (Zebra-MAC) proposed in (Rhee, Warrier, Aia, Min & Sichitiu 2008)

for WSN tries to borrow the advantages from both random access methods and

TDMA methods. There are also some MAC proposals that involve either multi-

channel radio or smart antenna. Some of these aforementioned protocols are

shortly illustrated in 2.3.3.

2.3.1 CSMA/CA

CSMA was first proposed in (Kleinrock & Tobagi 1975). In this protocol, a node

senses the wireless channel for ongoing transmissions before sending a packet. If

the channel is already in use, the node sets a random backoff timer and then

waits this period of time before re-attempting the transmission. On the other

hand, if the channel is not currently in use, the node begins transmission. A flaw

of this version CSMA is the hidden node problem(Tobagi & Kleinrock 1975), as

illustrated in Figure 2.2(a). In the figure, nodes A, B, and C are seperated in

distance so that nodes A and C cannot hear each other. When A is transmitting

to B, C cannot sense the transmission and thus starts its own transmission at the

same time. The result is that collision occurs on B.

b) RTS−CTS handshake deffers C’s transmit

A CB

B CA
D

a) Hidden node C causes collision at B

CTS

RTS

Figure 2.2: Hidden node problem with CSMA and the RTS/CTS solution

An elaborated version of CSMA is called MACA (Multiple Access with Collision

Avoidance) (Karn 1990). MACA defines Request-To-Send (RTS) and Clear-To-
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Send (CTS) control packets to announce an upcoming data transmission. A node

wishing to send a data packet broadcasts a RTS message containing the length of

the data frame that will follow. Upon receiving the RTS, the receiver responds by

broadcasting a CTS packet which also contains the length of the upcoming data

frame. Any node hearing either of these two control packets must be silent long

enough for the data packet to be transmitted. In this way, neighboring nodes

will not transmit during the data transmission, and the probability of collision is

reduced. An example of RTS/CTS solving hidden node problem can be seen in

Figure 2.2(b).

CSMA/CA is adopted by IEEE 802.11 as Wireless Local Area Network (WLAN)

MAC protocol with slight modifications, and known as CSMA/CA with Dis-

tributed Coordinate Function (DCF). In IEEE 802.11 CSMA, first the transmis-

sion of data packet must wait DIFS (DCF Interframe Space), and the transmission

of ACK must wait SIFS (Short Interframe Space). Second, in IEEE 802.11 MAC,

an ACK (Acknowledgement) frame is sent from destination back to source when

the receiver has correctly received the packet.

It is worth noting that CSMA/CA without RTS/CTS and CSMA/CA with RT-

S/CTS (i.e., MACA) can work together in one network. In IEEE 802.11 specifi-

cation, both of these schemes are adopted.

The mechanism of IEEE 802.11 MAC is shown in Figure 2.3. In the figure, the

node wishing to transmit (Src node) first waits for DIFS time, and keeps sensing

the channel during DIFS. If no channel activity has been dectected, the node

sends a RTS frame. If the receiver (Dst) node can hear this RTS, it differs SIFS

time before sending the CTS frame back. After the reception of the CTS, the

sending node differs also SIFS time before sending the data frame. The Dst node

differs another SIFS time between the end of receiving Data frame and the start of

sending ACK frame. DIFS is necessary for the RF transceiver to switch between

transmitting and receiving modes.

IEEE 802.11 introduced a timing information called Network Allocation Vector

(NAV), which is embedded into both RTS and CTS frames. Because frame size

of RTS and CTS is fixed, and SIFS is also a fixed value, a sending node is able to

calculate the time that how long the channel will be occupied by the upcoming
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transmission, including all the interframe spaces, denoted as:

NAVRTS = SIFS + TCTS + SIFS + Tdata (2.5)

where Tdata = Ldata/R, is the time of sending the data frame. Ldata and R are the

data frame length in bits and the transmitting rate in bit per second, respectively.

TCTS is the transmitting time of CTS frame.

The receiver calculates another NAV after the receiving of RTS, and puts it into

the CTS frame. It is denoted as

NAVCTS = NAVRTS − SIFS − TCTS (2.6)

The nodes that have heard the RTS and/or the CTS thus are informed that the

channel will be occupied during NAV time, as shown in Figure 2.3. So they can

devote themselve into other activities rather than keeping sensing the channel

during the this time. A common use of NAV is to put these nodes into sleep

mode to save energy (Ye et al. 2002, van Dam & Langendoen 2003).

DIFS

CSMA contention
window

Src

Dst

Nodes that
hear RTS

Nodes that
hear CTS

Nodes that
just step in

NAV

NAV

Data

Differ Differ

DIFS

R
T

S

C
T

S

DIFS SIFS SIFS SIFS DIFS

R
T

S

A
C

K

Figure 2.3: IEEE 802.11 MAC with DCF

In order to cope with multiple transmitter problem, i.e., a number of nodes intend-

ing to send at the same time, and one must note that this number is dependently

variable, CSMA/CA uses a Binary Exponential Backoff (BEB) algorithm to set

the contention window before DIFS sensing. The contention window (as shown

in Figure 2.3) is divided into a number fixed length time sections denoted as

time slot. Each node, after sensing the channel for DIFS time will set a random
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number µ uniformly distributed in [0, CW − 1], where CW = CWmin at the first

transmission attempt.

The sending node counts down the generated random number and monitors the

channel at the end of each time slot. When CW reaches zero and the channel is

still idle, the node sends the DATA frame (in the case without RTS/CTS) or the

RTS frame (in the case with RTS/CTS handshake). If at the end of one time slot

the channel is sensed occupied, the node will halt the counter, and continues the

decrement when the channel is free again.

CW doubles by the following equation when the current attempt is failed, i.e.,

the channel is busy when µ counts to zero:

CW = min[2 · CW,CWmax] (2.7)

After a sucessful transmission, CW will be reset to CWmin.

Counter to zero, failed trail, increase CW

Node 1

Node 2

CTS

DATA

ACK

Counter to zero, start sending
DIFS DIFS

RTS

RTS

Channel free, counter continues

Time−slot

Node 3

Channel busy, counter halts Counter to zero, start sending

Figure 2.4: IEEE 802.11 Binary Exponential Backoff

Figure 2.4 shows an example of three nodes competing for the channel using BEB.

In the figure, node 1 caputres the channel first; nodes 2&3 halt their backoff

counter and continue after node 1’s transmission has finished. Then, node 2

captures the channel due to a smaller random number generated; and node 3

finds the channel is still busy when its counter counts to zero and uses BEB to

increase its CW. BEB is a heuristic algorithm to increase the efficiency of channel

utilization and gives fairness to the nodes (G.Bianchi 2000). However, Song,

Kwak, Song & Miller (2003) argue that an exponential increase with exponential

decrease backoff algorithm will give better throughput to the network.

IEEE 802.11 also supports an infrastructure mode of WLAN, in which user nodes
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are associated with one or more infrastructure nodes called Access Point (AP). In

a small network, one AP is enough to cover all the user nodes and this mode is

called Basic Service Set (BSS). In case the user nodes are scattered and a number

of APs are deployed to support them, then it is called Extended Service Set (ESS).

In ESS mode, different frequency channels have to be allocated to adjacent APs

in order to avoid collision, and handover mechanism must be invoked to cope with

node mobility. Figure 2.5 shows the examples of BSS and ESS respectively.

Radio Range of AP

AP

Radio Range of AP

Backbone Network

Basic Service Set

Backbone Network

AP AP

Extended Service Set

Radio Range of AP

Figure 2.5: IEEE 802.11 infrastructure modes

In the infrastructure mode, there is an enhanced Point Coordinate Function

(PCF) designed for access points. An AP running in PCF mode is able to control

the channel access by deploying a Collision-Free Period (CFP), in which the AP

uses a polling protocol to allocate access time for different user nodes. PCF mode

enables throughput control for each individual user node.

2.3.2 S-MAC for WSN

As mentioned in previous sections, WSN shares many common features with

MANET. However, they are specialized by their own characteristics, such as larger

network size in node number, more energy-constrained, unbalanced communica-

tion pattern, usually unattended after the deployment, etc.

There are a number of MAC protocols proposed for WSN. Among them the

Sensor-MAC (S-MAC) protocol (Ye et al. 2002) and its extensions have received

excessive attentions.

S-MAC is highlit by the following features:
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1. Energy saving by periodic sleeping and listening

2. Synchronization and Scheduling with neighbors

3. Passive clustering by scheduling

In a network that S-MAC is applied, neighbor nodes are synchronized by ex-

changing timestamps, or SYNC packets. A SYNC contains a schedule that will

be executed by the sending node. A node that has received a SYNC is able to

follow this schedule, i.e., synchronized with the sender. All timestamps exchanged

are relative rather than absolute, i.e., only between the transmitter and the re-

ceiver. All the nodes periodically wake up and listen to the channel, and the listen

period is significantly longer than clock error or drift.

When a node is powered on, it first listens to the channel for a certain moment

of time. If it has not heard a schedule from another node at end of this phase, it

then chooses a random sleep time and immediately broadcasts its schedule in a

SYNC message. A node that has received a schedule from a neighbor will follow

that schedule by setting its schedule to be the same. If a node receives a different

schedule after it has selected and broadcast its own schedule, it adopts both

schedules. Virtually, the whole network is passively clustered by the nodes that

broadcast the SYNC messages. A network forming/scheduling scenario example

can be seen in Figure 2.6. In this example, nodes B and D took the channel and

broadcast their SYNCs ahead of other nodes, thus are passively raised as cluster

heads. Node C has heard SYNC message from both B and D, as shown in the

example, will follow both schedules.

As shown in Figure 2.6, the S-MAC protocol applies a sleep mode to save energy.

In each period of SYNC broadcasting, The scheduled nodes wake up for two time

phases: a phase that a new SYNC schedule may come from the cluster head, and

a phase for communications, with the second phase right follows the first one. In

the second phase, the nodes who wish to send data message will broadcast RTS in

CSMA/CA fashion, shown as blue-colored time regions in the figure. Note there

may be multiple potential senders, thus a contention-based CSMA with RTS/CTS

is applied in this phase. After the second phase, only the nodes involved in the

current communication (i.e., the senders and intended receivers) remain awaken.

The other nodes in this cluster will turn off their radio and go into the sleep mode.
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Figure 2.6: A network forming/scheduling example using S-MAC protocol

2.3.3 Other MAC protocols for WSN

T-MAC (van Dam & Langendoen 2003) is an improved version of S-MAC. In T-

MAC, the length of awake period is reduced by listening to the channel for only a

short time after the synchronization phase. If no data is received during this awake

window, the node returns to sleep mode; if data is received, the node remains

awake until no further data is received or the awake period ends. The trade-off

of shorten the awake period is the reduction of throughput and increament of

latency.

Both S-MAC and T-MAC are synchronous duty-cycled MAC protocols, in which

the nodes are (locally) synchronized by exchanging SYNC schedules periodically.

Such an awake-sleep duty-cycle increases the latency of communication which

is proportional to the sleep duty-cycle, by which the energy efficiency relies on.

Based on this consideration, some asynchronous approaches are proposed. A

highlit one of these asynchronous protocols is known as X-MAC(Buettner et al.

2006).

X-MAC is an asynchronous protocol so that the energy overhead for synchroniza-
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tion is eliminated. All the nodes in a network chooses their own sleep schedule.

When a node has data to send, it sends out short preambles periodically. Each

short preamble contains receiver’s address. The dedicated receiving node wakes

up by its own sleep schedule, and keeps the awaken time longer than one period

of short preamble to guarantee that a preamble will be heard. The receiving node

sends back an early ACK immediately after a preamble is received. By receiving

this early ACK, the sending node will send the data frame. The mechanism of

X-MAC is illustrated in Figure 2.7 with comparison to long preamble Low Power

Listening (LPL) solution.

Receive early ACK

LPL Sender Data

Receiver address in data header

TimeLong preamble

Time

R wakes up

Receive Data
LPL Receiver

Extended Wake up time

Short Preambles with Receiver Address

Data

Receive Data

Time

Time

X−MAC
Sender

X−MAC
Receiver

Time & Energy
Saved at S&R

Send early ACK

Figure 2.7: Comparison of the timelines between LPL and X-MAC

(Rhee et al. 2008) propose a hybrid MAC protocol named Z-MAC for WSN.

This protocol combines both CSMA/CA and TDMA for high channel utilization

under heavy traffic situations and latency reduction. In Z-MAC, first an efficient

scalable channel-scheduling algorithm DRAND(Rhee, Warrier, Min & Xu 2006)

is deployed and by which each node will be allocated one time slot by marking the

ownership of that slot. The owner of a time slot has higher priority to access the

channel, which can be achieved by minimizing the contention window of CSMA.

However, if the owner of the current time slot has no data to send, other nodes

can steal this time slot by CSMA contention with the contention window size set

larger than that of the owner.

(Sheu et al. 2009) proposed a MAC protocol known as CSMA/CF for IEEE
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802.15.4 beacon-based multihop networks. The protocol aims to cope with hidden

node problem in such networks. In order to achieve the goal, the RF transceivers

are demanded to perform capture effect1. When a collision has been detected but

the early-arrived frame header has been successfully decoded, the receiving device

(the coordinator) will schedule the retransmission of the first frame into Collision-

Free Period (CFP) of the next beacon interval and inform the sending node by

the next beacon frame. CSMA/CF can significantly improve the throughput and

reduce the average access delay in dense networks. By reducing the retransmission

attempts, the protocol is also more energy efficient.

2.4 Network Layer and Routing

Routing in multi-hop MANET/WSN is a function to find one or more routes from

the source node to the destination node. All the intermediate nodes on a selected

route must be aware to forward packets to the next one, until the packets reach

the destination node. Routing protocol in the network layer plays an important

role in energy conservation. A well-designed ad hoc routing protocol will improve

the energy efficiency of the network in following ways:

1. The route-finding packets are overheads of communication. This requires

the reduction of packet length and the amount of occurances, thus will

reduce the power consumption.

2. In a given network topology, there exists an optimal route, along which

minimum energy consumption can be achieved.

3. A better route will suffer less congestions so that the chance of retransmis-

sion is reduced.

4. A node with poor battery residual shall not participate in routing, if there

are substituting nodes available.

1A function that enables the receiver to decode the un-collided part of the early-arrived
frame. In IEEE 802.15.4 it is frame header part, which contains frame control and address
data.
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2.4.1 Routing in MANET

Basically there are three categories of routing protocols proposed for ad-hoc net-

works: proactive, reactive, and the combination of these two.

2.4.1.1 Proactive and Reactive Routing

Proactive routing attempts to maintain routes to all destinations at all times,

regardless of whether they are needed. To support this, every node propagates

information updates about a network’s topology or connectivity throughout the

network. This propagation must be done periodically because the node mobil-

ity will make the connectivity information out of date. Destination-Sequenced

Distance Vector (DSDV) routing (Perkins & Bhagwat 1994) is an example of

proactive routing protocol. In contrast, reactive or on-demand routing protocols

determine routes only when there is data to send. If a route is unknown, the

source node initiates a search to find one, which tends to cause a traffic surge

as the query is propagated through the network. Nodes that receive the query

and have a route to the requested destination respond to the query. Typical

reactive routing protocols include Ad-hoc On-demand Distance Vector (AODV)

(Perkins & Royer 2001) and Dynamic Source Routing (DSR) (Johson, Maltz, Hu

& Jetcheva 2001).

The advantages of proactive routing include:

1. Every node in the network has the full topology information of the network.

This decreases the time of finding a route.

2. Full topology information also helps the nodes to select optimal route in

terms of latency, energy efficiency, or stability.

However, because proactive routing protocols need to periodically broadcast con-

nectivity information throughout the whole network, even though no data trans-

mission is going on, this increases the cost of routing overheads. This disadvantage

is exaggerated in wireless sensor networks, because in these networks the commu-

nication usually occurs far less frequently than that of ad-hoc networks, thus

resulting more severe energy loss by routing protocol.

The advantages of reactive routing is the reduction of network overhead. The
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routing overheads are sent only when there is data need to be transmitted. The

disadvantage of reactive routing include:

1. The time to find a route is longer than that of proactive schemes.

2. Because the route finding packet is broadcast throughout the whole network

in a flooding fashion, reactive routing schemes usually generate a so-called

“flooding storm” which impacts the data transmission during the routing

time.

3. It is more difficult to find an optimal route by reactive routing.

2.4.1.2 Ad-hoc On-demand Distance Vector Routing

AODV is the most popular routing protocol accepted by ad hoc network re-

searchers. AODV is the first routing protocol proposed by IETF (The Internet

Engineering Task Force) as the standard routing scheme for mobile ad-hoc net-

works (Perkins & Royer 2001) and IEEE 802.15.4 standard (IEEE 2006). Since

AODV is used in our research as the default routing protocol, here we give an

elaborated description of its mechanism.

AODV is a reactive routing protocol, which means that a route is established on

fly whenever a node has data destined to another node. In AODV, each node has

a route table in which a route to a destination node is held as a piece of record.

A piece of record contains following information:

1. Destination node identity

2. Next hop node identity

3. The number of hops to the destination

4. A sequence number used for route updating

When a node S has data packet(s) to send to another node D, it first checks

its route table. If the D’s identity cannot be found in the table, node S starts a

route finding procedure by broadcasts a Route REQuest (RREQ) message. Every

neighbor of S that has received the RREQ will look up its route table for D. If

D is not in table, the node broadcasts the RREQ again and record this RREQ
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and the precursor node in its local buffer. The RREQ is rebroadcast in such a

way until it reaches D or a node that has a route to D. In this case either D or

the node that has a route to D will send a Route REPly (RREP) message back

to its precursor node. Upon the reception of RREP, the intermediate nodes and

source node will put a route entry to the destination into the route table. This

procedure is illustrated in Figure 2.8.
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Figure 2.8: AODV routing procedure

A number of works have been concentrated on improving AODV for different

aspects, inlucding Multirate Ad-hoc On-demand Distance Vector Routing Proto-

col (MR-AODV) (Guimaraes & Cerda 2007), Reliable Ad-hoc On-demand Dis-

tance Vector Routing Protocol R-AODV (Khurana, Gupta & Aneja 2006), Ant

Colony Optimization and Ad-hoc On-demand Multipath Distance Vector (ACO-
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AOMDV) (bing Wang, zhao Zhan, min Wang & ping Jiang 2008), etc.

2.4.1.3 Energy-Efficient Routing

Energy efficient routing have been extensively studied. Singh, Woo & Raghaven-

dra (1998) present a detailed discussion of energy efficient route optimization.

There are basically two ways to improve energy efficiency in routing protocols:

• Minimizing energy consumption over a route. The idea of such a

routing protocol is to find a path from the source to the destination that

delivering of packet(s) through this route cost minimum energy. Usually

those distance vector routing protocols are aimed to this purpose.

• Maximizing lifetime of the network. A routing protocol aimed for this

purpose does not focus on the energy consumption over a route, instead,

it focuses on the balancing of battery resource of all the nodes involved in

the routing procedure. More sophisticated algorithms also consider other

balancing metrics such as the amount of traffic a node has dealt with, the

location of nodes, etc.

• Minimizing the routing overhead. Overhead of routing protocol include

topology exploration packets, route request broadcasting packets, route

maintainence packets, neighbor greeting packets, etc. They are necessary to

cope with mobility of the nodes or topology change caused by node power-

down or additions.

2.4.2 Routing in WSN

Energy-efficient routing for WSN differs from tranditional routing protocols for

ad-hoc networks. Tranditional ad-hoc routing algorithms focus more on avoiding

congestion or maintaining connectivity when faced with mobility (Broch, Maltz,

Johnson, Hu & Jetcheva 1998), and usually the communications is end-to-end

fashion, address-centric. On the contrary in WSN, the communications is more

data-centric, many-to-one fashion, and energy constrained. (Krishnamachari, Es-

trin & Wicher 2002). Also, since sensor nodes are resource poor, and number of

nodes in the network could be very large, sensor nodes cannot afford the storage
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space for “huge” routing table. Therefore reactive and hybrid routing protocols

are attractive in sensor networks.(Singh, Vyas & Tiwari 2008)

The concept of data-centric is based on the following features of WSN:

1. Global address is not feasible (too many nodes and frequent removals/affil-

iations)

2. Data query is often region-based.

3. Data is usually transmitted from every sensor node within the deployment

region with significant redundancy. Thus local data with high redundancy

must be processed and combined before being sent to sink.

Based on this concept, a number of routing protocols for WSN have been proposed,

such as SPIN (Sensor Protocols for Information via Negotiation) (Heinzelman,

Kulik & Balakrishnan 1999), Directed diffusion (Intanagonwiwat, Govindan, Es-

trin, Heidemann & Silva 2003), Rumor Routing (Braginshhy & Estrin 2002),

Gradient-based Routing (Schurgers & Sribastava 2001), Minimum Cost Forward-

ing Algorithm (MCFA) (Ye, Chen, Liu & Zhang 2001).

Some research focus on energy efficiency of WSN. These include Reliable Energy

Aware Routing Protocol (REAR) (Shin, Song, Kim, Yu & Mah 2007), Pairs

Energy Efficient Routing protocol (PEER) (Elshakankiri, Moustafa & Dakroury

2008), Reliable and Energy Effcient Protocol (REEP) (Zabin, Misra, Woungang,

Rashvand, Ma & Ahsan Ali 2008) and many other solutions.

2.4.2.1 Case Study: SPIN

SPIN is a family of data-centric protocols proposed by (Kulik, Henzelman &

Balakrishnan 2002). In SPIN, it is assumed that all nodes in the network are

potential sinks, and sensed data is described by a high-level name called meta-

data. Nodes running SPIN assign a high-level name to completely describe their

collected meta-data and perform meta-data negotiations before the transmissions.

This guaranttees that no redundant data is send throughout the network.

The SPIN family of protocols use three messages for communication:

• ADV : When a SPIN node has some new data, it sends an ADV message to

its neighbors containing meta-data(data descriptor)
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• REQ : When a SPIN node wished to receive some data, it sends an REQ

message.

• DATA : These are actual data messages with a meta-data header.

An example of SPIN can be seen in Figure 2.9. In this example, node A has

sensed some data and announces (broadcasts) by an ADV message. Upon the

reception of this ADV, node B may send back a request so the sensed data can

be delivered to B. Node B can announce that it has received such a meta-data

so that its neighbors may be interested. The interested nodes may send REQ to

fetch the data. However, if B is not interested of A’s data but B’s neighbors are,

steps (4) and (5) may happen earlier than steps (2) and (3). From this example

it can be seen that 1) information is delivered on request, 2) minimum routing

overhead is achieved, and 3) routing is data-centric instead of address-centric.

(6) Meta−data is delivered by requests

B

A

B

B B

B B

(1) A sends ADV to announce its meta−data

A

(2) B sends REQ if it is interested in A’s data

A
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A

(4) B sends ADV to announce its meta−data(3) A sends the requested data to B

A

(5) Some neighbors are interested

A

Figure 2.9: SPIN protocol
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2.4.2.2 Case Study: LEACH

Low-Energy Adaptive Clustering Hierarchy (LEACH) (Handy, Haase & Timmer-

mann 2002) is one of the most popular hierarchical routing algorithms for WSN.

The idea is to form clusters of the sensor nodes based on received signal strength

and use local cluster heads as routers to the sink.

The operation of LEACH is separated into two phases: the setup phase and the

steady phase. In the setup phase, the clusters are organized and cluster heads are

selected. In the steady state phase, the actual data transfer to the base station

takes place. Cluster-heads can stochastically be chosen by:

T (n) =
P

1− P ×
(
r mod 1

P

) , ∀n ∈ G (2.8)

T (n) = 0, ∀n /∈ G (2.9)

with P as the cluster-head probability, r as the number of the current round and

G as the set of nodes that have not been cluster-head in the last 1/P rounds.

Each node n determines a random number between 0 and 1. If the number is less

than T (n), the node becomes a cluster-head for the current round.

An approach to increase the lifetime of LEACH-network is to include the remain-

ing energy level available in each node. The threshold T (n) is modify by:

T (n)er =
P

1− P ×
(
r mod 1

P

) × En current

En max
(2.10)

However, T (n)er in 2.10 will eventually decrease to a certain value so that the

cluster-head election fails, because of the presence of the second part in the equa-

tion. A solution to this is to add a factor that increases the threshold for any

node that has not been clusterhead for the last 1/P rounds:

T (n)′er =
P

1− P ×
(
r mod 1

P

) ×
[
En current

En max

+
⌊rs
P

⌋(

1− En current

En max

)]

(2.11)

with rs as the number of consecutive rounds the node has not been cluster-head,

and ⌊⌋ floor operation.

The modification can increase the network lifetime by 20-30%.(Handy et al. 2002)

LEACH is completely distributed and requires no global knowledge of network.
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Figure 2.10: An example comparing Network Coding with Traditional Method

However, LEACH uses single-hop routing where each node can transmit directly

to the cluster head and the sink. Therefore, it is not applicable to networks

deployed in large regions.

2.4.3 Network Coding

Network Coding (NC) is a new research area that may have interesting applica-

tions in practical networking systems. With network coding, intermediate nodes

may send out packets that are linear combinations of previously received infor-

mation. There are two main benefits of this approach: potential throughput im-

provements and a high degree of robustness(Fragouli, Le Boudec &Widmer 2006).

A simple example shown in Fig. 2.10 illustrates the advantage of NC over tran-

ditional communication method. In the example two nodes (A and B) needs to

send a packet to each other via a relay (S). In traditional method, each packet

is transmitted and relayed individually so that the whole procedure requires four

steps to accomplish. Using network coding method, the two packets (a and b) are

linearly combined (XOR is used in the example) and sent out by S, and nodes A

and B are able to extract the data packet from the other source by subtracting

the received packet from its own packet. The whole procedure takes only three

steps.

Basically NC consists of two functions: encoding and decoding.
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2.4.3.1 Encoding

Assume that a number of original packets M1, . . . ,Mn are generated by one or

several sources in the network. In linear NC, each packet is associated with a

sequence of coefficients g1, . . . , gn so that the combination is X =
∑n

i=1 giM
i. We

call g = g1, . . . , gn encoding vector and the encoded data X information vector.

Due to the linearity of combination, this encoding can be performed recursively,

which means each node can generate a new encoded packet by a new encoding

vector from an infromation vector.

2.4.3.2 Decoding

Assume that a node has received the set (g1, X1), . . . , (gm, Xm). In order to

retrieve the original packets, it needs to solve the system {Xj =
∑n

i=1 g
j
iM

j}.
This is a linear system with m equations and n unknowns M i. The system is

solvable only in the case m ≥ n, i.e., the number of received packets has to

be larger than the number of original packets. And due to the fact that some

combinations might be linearly dependent, m ≥ n is not sufficient. In practice,

an efficient algorithm is to use random network coding. (Lim & Lee 1994) show

that the probability of generating linearly-dependent combinations is negligible

even with a sequence lenght of 8.

2.4.3.3 Applications

Network Coding has been applied to WSN in many aspects. Due to its nature,

NC is very suitable in multicasting, data distribution, multipath routing, network

lifetime improvement, etc. For multicasting applications one can refer to (Tan &

Zou 2007, Goel & Khanna 2008),and (Shah-Mansouri & Wong 2008). (Oliveira

& Barros 2008) applied NC to distribute secret key throughout a sensor network.

(Wang & Lin 2008, Jardosh, Zunnun, Ranjan & Srivastava 2008) focus on buffer

management and distribution of data in sensor nodes. (Geng, Lu, Liang & Chin

2008, Toledo & Wang 2006) applied network coding in multipath data delivery

and routing.
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Low transmit power levelHigh transmit power level

Figure 2.11: Connectivity results if the transmit power level is either too high or too
low

2.5 Connectivity

Wireless transceivers can be designed to control the transmission power level.

The power level of a node determines its neighbor node set, i.e., the nodes it can

directly communicate with. Thus, different power levels of nodes generate different

connectivity structures and topologies of the network. It is desirable to choose

a low level transmit power in order to save energy and increase instantaneous

throughput of the whole network. However, a low transmit power may cause the

network partially or entirely disconnected. On the other hand, choosing a very

high power level at all the nodes may cause the network totally congested at the

radio interface and the energy cost is high. Figure 2.11 shows the connectivity

results using different power levels.

In most literature, it is assumed that wireless nodes use omni-directional radio

antenna and the coverage of radio signal is idealized as a circle centering at the

node. Disc shaped connectivity model can be justified by referring to (Booth,

Bruck, Cook & Franceschetti 2003), (Kwon & Gerla 2002), (Koskinen 2004), and

(Yu & Li 2003) and a number of related works. However, some other authors argue

that radio propagation characteristics must be considered, yielding the shape of

radio coverage irregular.



 



3 POWER CONSUMPTION ANALYSIS OF

WIRELESS NODE

3.1 Introduction

There are many MAC and network layer proposals for energy conservation for

different MANET/WSN applications. However, energy consumption is a mat-

ter more related to the physical layer, especially to the circuit design of radio

transceivers, therefore a thorough understanding of transceiver energy dissipa-

tion characteristics is necessary for practical energy-efficient upper layer protocol

design.

In this chapter, we inspect the properties of radio transceiver circuits of wireless

ad-hoc sensor node hardware from an energy consumption point of view. The

energy consumption of transmitting, receiving, and sleeping states are calculated

and compared. By the results of this inspection, we will analyse the energy-

efficient protocols currently proposed for the wireless ad-hoc/sensor networks.

3.2 Structure and Power Properties of Radio

Transceiver

A radio transceiver consists of two parallel parts: a transmitter and a receiver.

The main difference of power consumption between transmitting and receiving

locates at the physical layer, because upper layer functions, e.g., encoding/de-

coding, fragmenting/defragmenting, encrypting/decrypting, frame error generat-

ing/detecting, etc., are performed by logic processing devices such as a micro-

processor, which nowadays are low power CMOS (Complementary Metal Oxide

Semiconductor) ICs (Integrated Circuits). CMOS circuits consume much less

power than that of TTL (Transistor-Transistor Logic) devices, which are used

in air-interfacing circuits. In (Monks, Ebert, Wolisz & Hwu 2001), the authors
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studied WLAN transceiver hardware and claimed that the power consumed at

the MAC layer is less than 200mW whereas the physical layer circuits, especially

the air-interfacing circuits, consume more than 1000mW of power. Secondly,

the power consumed by these functions depends on the processing complexity,

for a symmetrical duplex communication, digital processing complexity is almost

equivalent for both transmit and receive.

Figure 3.1 shows a typical block diagram of an 802.11b Network Interface Card

(NIC) transceiver circuits (MAXIM Semiconductor 2001). From the figure one

can see that there are two function blocks that deffer from each other between

the transmitter and receiver sections. The first different place is at the antenna

interfacing: the transmitter applies a Linear Power Amplifier (LPA) whereas the

receiver applies a Low-Noise Amplifier (LNA). Another distinguishing place is at

the baseband processing block: the transmitter needs to convert the (modulated)

digital signal into analog form, thus a Digital-to-Analog Converter (DAC) circuit

is applied; the receiver needs to do the reverse function thus an Analog-to-Digital

Converter (ADC) is required.

Bandpass 
Filter LNA Amplifier

Linear Power
Amplifier

PLL

Bandpass 
Filter

DAC

ADC

Modulator

Demodulator

Figure 3.1: A typical WLAN transceiver block diagram

3.2.1 Amplifications

We can find that the power consumed by an LNA at receiver is lower than that

of an LPA at transmitter. For example MAX2644 is a typical WLAN LNA

IC. Its standard power consumption is 245mW. On the contrary, an LPA IC

MAX2242 consumes approximately 900mW when the output power is 22dBm

(MAXIM Semiconductor 2003). The reason is that the output of an LPA is used

to drive an antenna circuit, which requires a necessary current value to radiate

electromagnetic waves.
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3.2.2 ADC and DAC

Take a look inside the ADC and the DAC circuits, we can find that the power

consumed by a DAC is usually much lower than that of an ADC. For exam-

ple, MAX1186 is a 10-bit ADC working at 40Msps (samples-per-second) with a

typical power consumption of 105mW (MAXIM Semiconductor 2003). Analog

Devices (Analog Device 2004) also offers a similar IC (part number: AD9203, 10-

bit, 40Msps) with power dissipation of 108mW. Another Analog Devices product

AD9050 working at +5V consumes power as high as 400mW.

For DAC, the power consumption is much lower. MAX5185 is a 10-bit DAC

working at the same sampling rate as MAX1186. It consumes only 20mW of

power (MAXIM Semiconductor 2003). The reason of this is that the structure

of high-speed ADC circuit is much more complex than that of DAC circuit at

the same sampling rate and quantization level. One should be aware that ADC/-

DAC circuits are located in front of modulation/demodulation circuits, as shown

in Figure 3.1, therefore if the modulation is an M -ary phase modulation such as

DQPSK at 2Mbps or CCK at higher bit rates as specified by IEEE 802.11b, two

sets ADC/DAC circuits are necessary for in-phase and quadrature-phase respec-

tively. This will make the power consumption gap between ADC and DAC even

bigger.

Table 3.1: 802.11b WLAN PC card power consumption

Manufacturer Product Tx Power Rx
Power

InstantWare NWH1610 500mA 300mA
Proxim Co. ORiNOCO 600mA 330mA
Socketcom N/A 170-280mA N/A
BreezeCom SA-PCR 360mA 285mA
Cisco Cisco352 450mA 270mA
Fujitsu/Siemens E-1100 285mA 185mA
Average — 403mA 274mA

Overall, for a typical WLAN transceiver, the amplification of transmitter con-

sumes more energy than that of the receiver. The difference is about 500-600mW

when the transmitter gives maximum output. The reception process consumes

more energy at the ADC circuits, comparing to the DAC of the transmitting.

The difference is between 100mW to 700mW depending on the detail circuit de-

sign. This result explains that most present WLAN products have the same level
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of power consumption for transmitting and receiving. Table 3.1 lists the power

consumption feature of some WLAN products. On average the receive power con-

sumption is 68% of the transmit power consumption. (Veijalainen, Ojanen, Haq,

Vahteala & Matsumoto 2002) show that similar results hold in GSM terminals.

3.2.3 Hardware Architecture of Sensor Node

As shown in Figure 3.2, a wireless sensor node usually consists of four sub-systems,

namely computing subsystem, communication subsystem, sensing subsystem, and

power-supply subsystem (Raghunathan, Schurgers, Park & Srivastava 2002).

• A computing subsystem consisting of a microprocessor (or microcontroller

unit - MCU) and certain amount of memory (RAM, ROM, or flash memory).

• A communication subsystem consisting of a short range radio.

• A sensing subsystem consisting of one or a group of sensors or/and actuators

that link the node to the outside world.

• A power supply subsystem consisting of a battery and usually some sup-

porting circuits.

&
Actuators

Sensors

Communication
Sub−system Sub−system

Computing

Sub−system
Power Supply

Figure 3.2: Sensor node architecture

The computing subsystem, i.e., the MCU, usually operates under various operat-

ing modes for power management purposes. For example, ATMEL’s AT90S2313,

a typical 8-bit MCU for sensor node development, has three operating modes

(Atmel 2006), with active mode power consumption 2.8mA, idle mode power

consumption 0.8mA, and power-down mode power consumption < 0.1µA.
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The communication subsystem for sensor node also contains two parallel parts

for transmitting and receiving respectively. Due to the short range communica-

tion feature, the power consumption is significantly less than that of a WLAN

transceiver. For example, Chipcon’s 2.4GHz cc2420 transceiver consumes 18.8mA

power at transmitting mode, 17.4mA power at receiving mode, and only 20µA at

the power-down mode (Texas inst. 2007a).

The power consumption of sensors and actuators is entirely dependent on the

type of sensor. It can be varied from 45µA for a temperature sensor (Texas

Inst. 2007b) to some amperes for a motor-driven actuator. However, the real

energy consumption also depends on how the sensors and actuators are scheduled

to be active in operation.

There are quite a few sensor node projects or testbed designs available nowadays,

and many more are emerging when this document is being written. A more

detailed survey can be found in (Healy, Newe & Lewis 2008). Table 3.2 shows some

well-known WSN projects in details such as frequency band, power consumption,

etc.

3.2.4 Energy Estimation of Sensor Node

In the previous section the energy consumption of different parts/modules of a sen-

sor node is investigated. Many MAC and network layer protocols discussed/ref-

ered in this thesis rely on energy/power measurement. However, many WSN

hardware platforms do not provide energy measurement function as a hardware

solution. (Dunkels, Osterlind, Tsiftes & He 2007) provide a software-based on-line

energy estimation approach for sensor nodes. This method calculates durations

every time a hardware component is switched on or off. When a component is on,

the estimation mechanism stores a time stamp. The energy model is denoted as

E

V
= Imtm + Iltl + Ittt + Irtr +

∑

i

ICi
tCi

(3.1)

where V is the supply voltage, Im the current draw of the microprocessor when

running, tm the time in which the microprocessor has been running, Il and tl the

current draw and the time of microprocessor in low power mode, It and tt the

current draw and the time of communication device in transmit mode, Ir and tr

the current draw and the time of communication device in receive mode, and ICi
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Table 3.2: Sensor node projects

Name Platform Frequency Node Power
Cons.

Research
Team

i-BEAN N/A 868MHz or
2.4GHz

12mA at
stand-by

Millennial
Net Co.

BTnode ATmega 128L Chipcon
CC1000
(433-915
MHz) and
Bluetooth
(2.4 GHz)

9.9mW min.,
102.3mW
max.

ETH Zurich

iMote 2.0 ARM PXA271 TI CC2420
2.4GHz

0.13W at
stand-by,
0.26W at
transmit

Inter Co.

Mica2 ATmega128L Chipcon
CC1000

30 mW sleep,
33 mW
active, 21
mW radio

UC Berkeley

SenseNode MSP430F1611 Chipcon
CC2420

N/A GenetLab

EYES MSP430F149 RFM TR1001 15µW at
dormant,
20mW at
transmit

Twente Univ.

Cinet ATmega128L Chipcon
CC2420

40mA active,
20µA
powersave

Chydenius
Inst.

and tCi
the current draw and time of other components such as sensors and LEDs.

Fig. 3.3 shows the detail current drain when a IEEE802.15.4-based sensor node

sends out a data frame using CSMA/CA. The node consists of ATmega128L 8-bit

microcontroller and Chipcon CC2420 IEEE802.15.4-compatible RF module. The

measurement is achieved by adding a 5.25Ω resistor next to the power supply. We

measured the voltage over the resistor and calculated the current using Ohm’s rule.

Similar method has been used in (Erdogan, Ozev & Collins 2008, Hohlt, Doherty

& Brewer 2004).
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Figure 3.3: Power consumption measurement of Cinet sensor node

3.2.4.1 Case Study: Power Consumption of Cinet Node

We are interested in the real-time power consumption when the sensor node is

active and its radio is turned on1. Totally five phases are needed to send a frame

(Texas inst. 2007a):

1. Initialize radio module: the radio transceiver is turned on and transceiver’s

oscillator starts to oscillate. This phase takes several milliseconds.

2. Frame formatting: a frame is copied to the radio buffer using the serial bus.

This phase duration varies, depending on the frame length.

3. Waiting RSSI: the radio module waits for a clearance of channel. This phase

duration varies, depending on the channel situation.

4. Random backoff: IEEE 802.15.4 uses CSMA/CA MAC, so a random backoff

will reduce the chance of collision.

5. Sending the frame: the frame is sent out. The duration is proportional to

the frame length.

The above phases can be seen in Fig. 3.3.

As the time transitions given by the green line in Fig. 3.3, the duration t2 − t1

is the radio initialization phase, which takes approximately 5ms. There is an

impulse power consumption at the beginning of this time when the radio circuits

oscillator starts to run.
1we have observed less than 1mA current drain during the sleeping mode using Cinet node.
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The second duration t3−t2 indicates the local communication between ATmega128

and CC2420. In our test, a total of 37 bytes (including MAC header 9 bytes, IP

header 20 bytes and payload 8 bytes) were copied to CC2420. SPI was set at a bus

clock rate 7.7MHz/16 so that 37 bytes will take 0.615ms to transmit. Together

with SPI bus commands, we have observed approximately 1ms for this phase.

The power consumption raises 5mA from a floor of 30mA during this time.

The third duration is short. This is the time that CC2420 acknowledges to the

µC that frame buffer is ready.

The next duration t5 − t4 is the channel access time. CC2420 must find a valid

RSSI (Received Signal Strength Indicator) before the attempting of transmission.

During this time the radio module keeps listening to the channel so several power

consumption peaks are observed.

The duration t6 − t5 is the random backoff time of CSMA/CA, and t7 − t6 the

frame transmitting time. During the transmission, the power consumption stays

on a floor of 60mA.

At last, during t8 − t7 the radio module is turned off.

In average, sending a frame consumes 36.74mA in approximately 10ms.

3.3 Energy-Efficient Solutions

So far, energy-efficient design has been considered in the lower three layers (i.e.,

physical, data link/MAC, network/routing) by implementing sleep mode of the

transceiver or the whole node, transmitter power control, data aggregation, min-

imum hop routing, etc.

3.3.1 Sleep Mode

Most WLAN products and WSN radio transceivers provide a sleep mode or power-

down mode, dormant mode, etc.) when the communication is scheduled not

active, or no data is sensed. The power consumption of sleep mode is much less

than that of transmit/receive mode. A typical value from Fujitsu/Siemens E-1100

802.11b WLAN PC card is 9mA, two magnitudes lower than that of the active
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states.

So far, the solutions using sleep mode in wireless ad-hoc/sensor networks can be

classified into following categories:

• The implementation can be a pure MAC layer protocol, such as PAMAS and

S-MAC. In PAMAS a node turns off its radio when it overhears a packet not

addressed to it. In S-MAC, a mechanism called message passing is deployed

to modify the Network Allocation Vector for a burst of message. During

the burst all the irrelavent nodes will turn the radio off.

• There are also some proposals that apply this function to dynamically

change the network topology to result to a better energy-efficient perfor-

mance (BECA, AFECA in (Ya, Heidemann & Estrin 2000), and GAF in

(Xu, Heidemann & Estrin 2001)).

• Other proposals set the ad-hoc network to be hierarchical or clustered;

a cluster head coordinates the nodes in its cluster to be either active or

sleeping, e.g. (Chavalit & Chien-Chung 2002), (Liu & Lin 2003), (Chen,

Jamieson, Balakrishnan & Morris 2002). IEEE 802.15.4 specification pro-

poses a cluster-tree topology and cluster-heads can synchronize their cluster

members to be in sleep mode periodically (IEEE 2006).

The tradeoff of using sleep mode is the increament of transmission delay. A

sleeping node can immediately turns back to transmit mode when it has data to

send. But when the sleeping node is the destination, other nodes have to wait

for its sleep time-out if they have data destinated to this node. Sleep mode does

not show advantages in some communication types. For example, if the transport

layer has a consecutive packet series to transmit, putting a routing node into sleep

will degrade the performance.

3.3.2 Transmit Power Control

Power control can be implemented by varying the output strength of LPA. One

straightforward idea is to vary the amplification factor. In practice the amplifi-

cation factor of an analog amplifier is hard to be dynamically modified. A more

convenient solution to implement power control is to put a scaling processor be-

tween the modulator and the DAC, as proposed in Figure 3.4. Because the output
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power of an LPA is linear proportional to its input (Figure 3.5 shows the input-

output power property of MAX2242), thus we can control the output power by

scaling the value of input signal strength. Since the power control is usually ap-

plied by the MAC layer or network layer protocols, a digital scaling processor is

more suitable to interface the upper layer control signals.

By dynamically controlling the transmit power, a radio link consumes less en-

ergy and reduces the interference to other nodes, hence the network throughput

increases. As depicted in our previous discussion, power control is technically

feasible at radio transceiver. However, we should paid attention to the so-called

power imbalance problem. Authors of (Poon & Li 2003) claimed that flows that

use lower power levels generally have a higher probability of transmission failure.

A remarkable energy property should be noticed: the transmit power control does

not affect to the receive power consumption. Whatever the received signal quality

is, the receive power consumption is constant, as shown in Figure 3.4.

Bandpass 
Filter

DAC

ADC

Modulator

Demodulator

To passband

Digital
Scaler

Power Control
Signal

Figure 3.4: Power control implementation by a digital scaler

Another important principle in power control protocol design is that receive power

consumption CANNOT be ignored. In this respect we need to consider the re-

searches in (Doshi & Brown 2002), (Li, Aslam & Rus 2001), (Floreen, Kaski, Ko-

honen & Orponen 2003), (Bergamo, Maniezzo, Giovanardi, Mazzini & Zorzi 2002)

to give more detailed power consumption discussion. To make one step further,

we assert that dividing a long hop into some shorter links does NOT ALWAYS

save energy by current transceiver circuit design, even power control is available.

For example in Figure 3.6, a single hop from A to C consumes power PAC can be
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Figure 3.6: Single hop link vs. multihop link

denoted as

PAC = Ptx:A−C + Prx (3.2)

where Prx is the constant power taken by the receiver. As we have discussed, Prx

is constant. When Ptx:A−C = Pmax, this link will consume maximum power.

If the packet is relayed by an intermediate node B, the power consumed by the

link A-B-C is

PABC = Ptx:A−B + Prx + Ptx:B−C + Prx (3.3)

The optimal position of B is at the middle point between A and C. If we assume

that the path loss factor of radio propagation α = 4, i.e., Ptx:A−B = Ptx:B−C =
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(1
2
)4Ptx:A−C , and Prx = 0.68Pmax as we discussed previously, we have

PAC = 1.68Pmax (3.4)

PABC = 1.49Pmax (3.5)

One can see that the energy conservation of the two-hop link is very limited. We

should also be aware that node B locating at such a perfect place is very idealistic,

since so far there is no routing protocol that can select relaying node close to this

position. To make it clear, Figure 3.7 shows the power comparison between these

two scenarios when B’s location is changing between A and C, with different

path loss factors. The zero line in the figure indicates the energy consumption

by one hop, and the curves indicate the overall energy consumed by deploying a

relaying node B. We can see for the typical wireless environment (α varies from

2 to 5), energy saved by multihop link is very limited or completely worse than

that of a single hop link (when α = 5). Furthermore, if a link is separated into

several sections, it will suffer more transmission failures than a single link thus

retransmission will consume more power than a single hop link.
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3.3.3 Impacts to Energy-Efficient Routing Protocols

A proper routing protocol can also contribute to saving energy. There are several

ways to achieve energy conservation by a routing protocol:

1. To find a route that consumes minimum energy when a packet is delivered

through it.

2. To find a route that excludes those nodes with less battery residual.(Tan &

Bose 2005)

3.3.4 Using Energy Efficient Coding

Using proper encoding scheme for the data to be transferred can also save energy.

Error detection/correction codings such as Reed-Solomon and convolutional codes

applied in cellular networks have been applied to wireless data link layer since long

time ago. In WSN, the advantage of applying coding scheme can reduce the re-

transmission thus save energy. However, due to the limited capability of sensor

node, complex encoding/decoding algorithms may require unaffordable resources

such as storage, memory, and energy. (Howard, Schlegel & Iniewski 2006) gave

an analysis of energy consumption when Error Control Coding (ECC) is applied

in WSN. The authors claim that In an urban outdoor setting, at higher frequen-

cies, ECC can be practical for sensor networks placed between buildings, espe-

cially when implemented with analog decoders. For indoor environments, ECC is

energy-efficient at high frequencies, for sensors placed at opposite ends of hallways

or in adjacent rooms, or on multiple floors or in a dense urban environment at all

frequencies.

Another direction is Distributed source coding (DSC). DSC has recently been

considered as an efficient approach to data compression in wireless sensor net-

works (WSN). Using this coding method multiple sensor nodes compress their

correlated observations without inter-node communications. Therefore energy

and bandwidth can be efficiently saved(Tang, Glover, Evans & He 2007).
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3.4 Concluding Remarks

In this chapter we inspected the power dissipation property of typical wireless

transceivers for ad-hoc networks and wireless sensor networks. The conclusions

are:

• Due to the circuit complexity of ADC, the energy cost at receiving phase is

not negligible.

• Putting a node into sleeping mode can save energy significantly.

• In short range communications, it is not energy-efficient to divide a direct

radio link into smaller multiple hops.



4 LEAST-HOP ROUTING ANALYSIS OF

ON-DEMAND ROUTING PROTOCOLS

4.1 Introduction

Since the radio coverage of mobile nodes is limited, wireless ad hoc networks

usually work in multihop mode, which means that some intermediate nodes may

participate as routers into a communication session between the source node and

the destination node. Multihop ad hoc networks have better performance of

energy efficiency and throughput than that of single hop peer-to-peer networks

(Doshi & Brown 2002, Gupta & Kumar 2000). However, to find a path from

source to destination raises the routing problems in multihop ad hoc networks.

Basically there are two categories of routing protocols for ad hoc networks: proac-

tive and on-demand. For energy conservation point of view, on-demand protocols

give better performance than those proactive ones (Cano & Manzoni 2000). The

authors of (Broch et al. 1998) also showed that on-demand routing protocols are

better in packet delivery goodput and generate less overhead. In (Perkins &

Royer 2001, Perkins & Bhagwat 1994, Johson et al. 2001, Park & Corson 2001),

some routing protocols are presented and among them we use AODV routing

protocol (Perkins & Royer 2001), which is an on-demand protocol, later in our

discussion.

One of the major international standards for wireless ad hoc networks is IEEE

802.11 (IEEE 1999). Since power control is not available for ad hoc mode in this

standard, it means that transmit power is fixed as a constant. Thus we can assert

that the minimum energy consumption route equals to the least-hop

route. If the traffic load is uniformly distributed in the network, then a least-hop

path suffers less congestions when delivering a packet, thus results in a faster

transmission. This is very important in real-time communications.

In (Raju, Hernandez & Zou 2000), the authors used a fuzzy logic algorithm to find

a least cost route using hop count in ad hoc networks. In (Sheu & Chen 2001), a
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shortest path routing protocol based on proactive scheme was introduced for the

consideration of propagation delay. In (Li, Wan, Wang & Frieder 2001), energy-

sensitive routing algorithms are discussed by both centralized and distributed

implementations and the authors declared that a route with less hops can achieve

better energy conservation performance.

In this chapter we will analyse on-demand routing protocols for the possibility that

an optimal route (least-hop) will be selected in different scenarios. Later two new

methods are proposed to improve the possibility of optimal route discovery. Since

the analysis is based on on-demand routing protocol, which is only applicable to

Ad-hoc networks, and the it is difficult to imagine a similar WSN scenario, the

rest of this chapter focus only Ad-hoc cases.

4.2 Least-hop Routing Analysis

In an on-demand routing ad hoc network such as AODV, suppose from the source

node S to the destination node D there are N paths noted as {Ni}. For each Ni

there are Hi hops. So we can denote the path set as {(Ni, Hi)} i = 1, 2, ..., N .

Figure. 4.1 shows an example of path set, which is denoted as {(N1, 3), (N2, 4)}.

S

D

Path 2

Path 1

Figure 4.1: A communication link with two paths

We consider a multihop ad hoc network, which is symmetric and normalized, i.e.,

every node has approximately equal number of neighbors and generates equal

amount of traffic. In that case, the probability that the air interface is occupied

(i.e. congestion) when a RREQ packet is to be broadcast is p for all nodes. In a

large random network this assumption holds well.
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Because the processing delay eventually happens at every hop that propagates

the RREQ packet, with a path of H hops, the time to propagate the RREQ with

k congestions is denoted as

TH,k = kτc +Hτp (4.1)

Here τc is congestion delay (the back-off interval a node has to do when it detects

the channel busy); τp is the processing delay.

In equation (4.1), the second term Hτp is a constant and dependent only on the

hop count H . The first term kτc depends on the probability of occurrence of k

congestions in H hops. The probability can be given by

Pr(H, k) =

(
H − 1 + k

k

)

pk(1− p)H , k = 0, 1, 2... (4.2)

The derivation of this can be found in Appendix 13.

4.2.1 Expected Delay

It is possible to explore the expected delay of propagation of a packet through an

H-hop path.

E(TH) =
∞∑

i=0

TH,i Pr(H, i) (4.3)

Substitute equations (4.1) and (4.2) into (4.3) we can evaluate the expected prop-

agation delay (see Appendix 13):

E(TH) = H

[

τp + τc
p

(1− p)

]

(4.4)

Equation (4.4) shows that the expected propagation delay consists of two parts:

the first part is the processing delay Hτp and the second part is the congestion

delay Hτcp/(1− p) dependent on congestion probability p.

Because equation (4.4) is proportional to the hop count H , it is clear that in

a given path set {(Ni, Hi)} i = 1, 2, ..., N , the least-hop path has the shortest

expected time to reach the destination if τc, τp, p are fixed.

When a congestion happens, the node will defer the transmission in NAV (network

allocation vector) interval (IEEE 1999). Time of processing a RREQ usually is
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much shorter than it, therefore τp ≪ τc. Then equation (4.4) becomes:

E(TH) = Hτc
p

(1− p)
(4.5)

Though the result shows that the least-hop path has the maximum probability

to be selected, in a complex network topology, there exist many paths from the

source to the destination. In this case the probability of selecting least-hop path

becomes rather small as the results of numerical analysis show in next section.

Equation (4.5) also indicates that when the congestion probability p increases, the

expected delay will also increase, as shown in Figure 4.2. If p goes to 1 (always

congested), E(TH) goes to infinity, i.e. the packet will never reach the destination.
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Figure 4.2: Propagation time E(T ) vs. congestion probability p

4.2.2 Numerical Analysis for Grid and Random Topolo-

gies

First let’s think of the probability that the least-hop path is selected. The condi-

tion that the least-hop path (without losing generality, always denoted as N1) with

H1 hops and along the path there are k congestions, will have less propagation

time than all other paths Ni that have longer propagation delay is represented as

Pr
H1,k|less

= Pr{TH1 < TH2, ..., TH1 < THn|H1, k} (4.6)
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This is the probability that when the least-hop path N1 suffers k congestions, all

other paths will suffer more than k congestions. When two or more paths suffer

the same number of congestions, they have a contention to reach the destination

and the chance is equal (1/m if there are m competitors). The overall probability

for the least-hop path is

Pr
H1,k

= Pr
H1,k|less

+

N−1∑

m=1

Cm
N−1 Pr{THi

= TH1
︸ ︷︷ ︸

m

and THj
> TH1

}/(m+ 1) (4.7)

Probability PrH1,k|less can be derived as

Pr
H1,k|less

= Pr
H1,k

N∏

i=2

Pr(Hi, ki > k) (4.8)

Here Pr(Hi, ki > k) is the probability that path Ni will suffer more than k con-

gestions

Pr(Hi, ki > k) =
∞∑

j=k+1

Pr(Hi, j), i = 2, ..., N (4.9)

and

Pr{THi
= TH1

︸ ︷︷ ︸

m

and THj
> TH1

} =

m∏

i=1

Pr(Hi, k)

N−1∏

i=m+1

Pr(Hi, ki > k) (4.10)

If we substitute equations above to equation (4.7), we can find the probability of

least-hop route N1 suffering k congestions. Therefore, the overall probability that

the least-hop path will be selected is the summation for all the cases of k, that is,

from 0 to ∞:

Pr
H1

=

∞∑

k=0

Pr
H1,k

, (4.11)

Equation (4.11) is too complex to be derived analytically, therefore we demon-

strate some numerical and simulation results.



52 Acta Wasaensia

4.2.3 Numerical Results

It is clear that when the total number of paths increases, the probability that

the least-hop path to be selected decreases. As shown in Figure 4.3, we keep the

least-hop path to be 2 and 3 hops, other paths 3 and 4 hops, respectively in (a)

and (b).
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Figure 4.3: Probabilities in different scenarios, N is the number of paths except N1.

It is also possible to see from Figure 4.3 that when the congestion probability

increases, the least-hop probability PrH1
increases, too. This is caused by that a

longer path has higher probability to suffer more congestions. To make it clear,

Figure 4.4 shows the changes with different congestion rates p. Here H1 = 3, Hi =

4.
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Another factor is the network scale. As the network size increases, from the source

to the destination there are more paths and the number of hops of each path also

increases. In Figure 4.5 one example situation is considered: we fix the congestion

probability and increase bothN andH . In the figure, we present 5 situations. The

values along X-axis are Hi, H1, and N , respectively from up to down. We can

see when the network scale increases, the least-hop route probability decreases.
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Figure 4.5: Pr vs. network scale

Need to mention that in a real wireless ad hoc network it is possible that there

are more than one least-hop path. Thus the probability to select the one of them

is m×Pr, here m is the number of least-hop paths and Pr is the probability that

one of these paths will be selected.

4.3 Solution and Simulation Results

Here we suggest two methods that will increase the least-hop path probability.

4.3.1 Approach 1 - Waiting Window

In the current on-demand protocols such as AODV and DSR, the destination

node will immediately send a RREP packet upon having received the first RREQ

packet. This was based on response time consideration, i.e., to establish a path

as soon as possible. From the previous analysis we know the first RREQ may

not be the optimal one. A simple and slight change at the destination node can



54 Acta Wasaensia

improve the least-hop path probability if we set a Waiting Window (WW) at the

destination node. Upon receiving the first RREQ packet, the node activates a

Waiting Window Timer (WWT) instead of sending RREP packet immediately.

Within the timer there might be some other RREQ packets coming by different

paths. When the WWT expires, the node compares all the RREQ packets by

hop counts data inside and selects the minimum one to send RREP. The RREQ

packets that arrive after the WW will be discarded. This can be illustrated in

Figure 4.6.

D

RREQ RREQ RREQ

Waiting Window

WWT starts

Time
RREQ

WWT stops

S

Figure 4.6: Waiting Window

One rule should be notified: if the source node and the destination node are

neighbors, i.e. H = 1, it is not necessary to activate the waiting window at all.

The disadvantage of Waiting Window method is when the network size becomes

large, hop count of routes increases. This implies potentially longer intervals

between the arriving RREQs. Thus we have to increase the duration of WW.

Finally it will be a rather significant impact to the system performance. In our

simulations we have observed that it can be as long as 100ms between the first

and second RREQ arrivals.

4.3.2 Approach 2 - Multiple Reply

Since the Waiting Window scheme increases the delay of route establishment

phase. In order to overcome the problem, we propose an alternative method,

in which the destination immediately sends a RREP upon having received the

first RREQ. The RREP will be propagated back to the source and a route is

established within the first time. The source can start sending data packets alone

the first established route, which may not be the least-hop route. If we set that
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the destination node will reply every arrived RREQ with a RREP. The source

will receive several RREP packets. When a new RREP packet comes, the source

compares the hop count field in RREP and either chooses the new one if the hop

count is less than that of the current route or discards it otherwise. Figure 4.7

gives an example of this scheme.

S

D

Path 2

Path 1

Congestion Delay

S

D

Path 2

Path 1

S

D

Path 2

Path 1 S

D

Path 2

Path 1

RREQ RREP DATA

(1) (2)

(3) (4)

Figure 4.7: Multiple Reply

This approach can guarantee the shortest route establish time. The disadvantage

is that sending multiple RREPs will increase network overhead. However, because

the delivery of RREP is a point-to-point transmission, this overhead increment

is not significant. Let’s denote that a RREP packet has LRREP bits and a data

packet has LDATA bits. Transmitting one bit takes unit energy. Total traffic (load

+ overhead) of Multiple Reply scheme will consume energy

Emr =
N∑

i=1

HiLRREP +H1LDATA, (4.12)
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In a typical on-demand routing protocol, a route is selected by the probability

of PrHi
, as discussed in equation (4.11). The energy cost by the traffic (load +

overhead) is

Eo = (LDATA + LRREP )

N∑

i=1

Pr
Hi

Hi (4.13)

According to the AODV specification (Perkins & Royer 2001), LRREP is 44 bytes,

LDATA is usually 532 bytes. A communication session such as TCP or CBR

usually have multiple data packets. Compare with the traffic load, multiple RREP

overhead is negligible. When the number of data packets increases, the overall

energy consumption Emr is less than Eo because of the selection of least-hop route.

Figure 4.8 shows some comparison results.
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Figure 4.8: Energy Comparison: Multiple Reply vs. Original AODV

4.3.3 Intermediate Node Policy

The logic in intermediate nodes should be changed for these two new schemes. In

the current on-demand protocols, an intermediate node will forward the RREQ

only once upon having received it first time. Later arrivals are discarded. To

guarantee the least-hop path, the node now should inspect the hop count data in

every incoming RREQ and update its temporal route table if the hop count in the

new RREQ is less than the current data. An example is illustrated in Figure 4.9.
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Figure 4.9: Intermediate node policy

4.3.4 Simulation Results

The simulations have been done in Network Simulator (NS-2 ver2.26) (Fall &

Varadhan 2003). In the simulations, we set up a network with 25 mobile nodes in

an area of 800x800 m2. The nodes are fixed as a 5x5 grid as shown in Figure 4.10

and mobility is prohibited. The distance between nodes is 200m thus a node can

hear from those neighbors at direct angles (e.g., node 7 can hear from nodes 2, 6,

8 and 12).

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

200m

Random Links

Figure 4.10: Simulation topology

The physical layer is Two Ray Ground and omnidirectional antennas with unity
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gain. The MAC layer is IEEE 802.11 MAC. Routing protocol is AODV. The

simulation time is 200 seconds. During the simulation, there are 10 Constant Bit

Rate (CBR) connections randomly generated. The rate of each CBR connection

is 1/2/4 packets per second respectively for different congestion rates. We observe

a route between nodes 2 and 22, as shown in Figure 4.10, after 10 random CBR

connections have been established.

Since waiting window is unscalable, we prefer to choose multiple reply scheme. We

pay attention to two metrics between the original AODV and AODV with multiple

reply: the average packet delivery delay, and the average power consumption over

a link. The average packet delay comparision is given in Figure 4.11(a). The

average power consumption over a link is equal to the average hop count over a

link. Figure 4.11(b) shows the comparisons between two schemes with different

packet rates. It can be seen that the least-hop route gives up to 30% energy saving

and average delivery delay is only 50% compared to original AODV.
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Figure 4.11: Average delivery delay and power consumption.

4.4 Concluding Remarks

In this chapter, we have inspected the route discovery properties of on-demand

routing protocols. Based on the packet congestion probability p, we found that

the expected packet delay along a path is proportional to its hop count H and

p/(1 − p), here p is the congestion probability. We derived the probability that

the least-hop path will be selected when using an on-demand routing protocol.

It shows that when the network topology becomes complex, the probability of

least-hop path to be selected decreases dramatically. For this problem we suggest
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two solutions: 1) waiting window, and 2) multiple reply. The waiting window

scheme allows the destination to select the least-hop path after several arrived

RREQ packets; whiles the multiple reply scheme allows the source to do the

route selection. The multiple reply scheme establishes a route as fast as possible

and seemed to be a better choice.



 



5 ENERGY-LIMITED AD HOC NETWORK

CAPACITY

5.1 Introduction

The capacity of mobile ad hoc networks can be considered in different aspects.

Some researchers have paid attention to the instantaneous throughput of the

network, i.e., how many bits can be transmitted in the network in a certain

duration, or how many traffic links can be established simultaneously (Gupta &

Kumar 2000), (Gupta & Das 2001) and (Toumpis & Goldsmith 2000). However,

from another point of view, nodes in an ad hoc network are constrained by the

battery energy. Thus we can define the network capacity as the ratio of the

number of transmitted bits to the energy consumed by this transportation. Here

the transportation means end-to-end communication through a multihop path.

In a multi-hop ad hoc network, we need to consider the energy consumed by all

the intermediate routing nodes. In (Rodoplu & Meng 2002) the authors have

given the network capacity definition as bit per joule. In some specific type

ad hoc networks such as sensor networks, the traffic is not very heavy, thus the

network survivability—transmit as much as data before the batteries run out—is

more important than the network instantaneous throughput.

One of the major energy-saving methods is power control. Power control at the

MAC layer have been heavily discussed and it is found that power control can

save energy significantly. On the other hand, by using different power levels, the

network connectivity changes. Research shows that a lower transmit power will

result to more simultaneous transmissions, because the co-channel interference

is reduced (Gupta & Kumar 2000). However, the reduction of transmit power

increases hop count from the source to the destination. This will 1) increase

the energy consumption of the packet reception, because it is proportional to

the route hop count, 2) increase the delay of packet propagation, 3) increase the

overall probability of transmission failure, and 4) increase the network overhead.
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In this chapter we inspect the network energy performance. Attention is focused

on the energy consumption of the end-to-end transmission with different node

densities and transmit power levels.

Power control is one of the major methods applied in ad hoc networks to save

battery energy (See e.g. (Swetha, Kawadia, Screenivas & Kumar 2002) and the

references therein). Increasing the transmit power will reduce the average hop

count of routes. Since the number of hops is reduced, the end-to-end packet drop

rate is potentially reduced. However, increasing the transmit power will increase

the energy consumption of a single radio link. Meanwhile the co-channel inter-

ference will also increase thus increase the packet error rate (PER) at a single

link. In (Imran, Sorav, Gupta, Misra, Razdan & Shorey 2002), the authors in-

spected the TCP performance of ad hoc networks by setting different transmit

power levels. They established a model to analyse the change of packet error

rate (PER) when transmit power varies. They asserted that a medium power

level gives optimal energy performance in respect of packet retransmission. How-

ever, they inspected the energy performance only over a fixed source-destination

couple by varying the distance between them. Another argument is the network

instantaneous throughput. It is stated that lower transmit power can let more

simultaneous transmissions thus the network throughput is increased. However,

from a network point of view, for an end-to-end connection, lower transmit power

will involve more nodes as routers. Consequently these nodes have less resource

for their own traffic thereby reducing the network throughput. We leave these

arguments for further research.

5.2 Energy-Aware Capacity

Besides the instantaneous throughput, the capacity of ad hoc networks also de-

pends on the energy consumption. One of the basic gaols in battery-operated ad

hoc networks is to make the whole network functioning as long as possible. We

define the energy-aware ad hoc network capacity as the inverse value of the

expected energy consumed by a single packet delivery, denoted as

C =
1

D(Pt + Pr)
(5.1)
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here D is the expected route length, i.e., the number of hops alone a route. Pt, Pr

are normalized transmit and receive power, respectively. Idle power consumption

is assumed negligible. This formula is based on the assumption that every traffic

link has equal amount of data to transmit1.

Equation (5.1) is based on the assumption that the communication channel is

error-free. If we take the packet delivery failures in to account, we can draw the

conclusion in term of the packet error rate. We suppose that for each single hop

the packet has probability p to be failed and retransmission will be triggered.

Thus alone a route with D hops, the probability that there are k retransmissions

is denoted as:

Pr(D, k) =

(
D − 1 + k

D − 1

)

pk(1− p)D, k = 0, 1, 2... (5.2)

therefore the expected value of retransmission can be derived as

E(k,D) =

∞∑

0

kPr(D, k) = Dp/(1− p) (5.3)

The energy capacity regarding to transmission failure becomes

C(p) =
1

[D + E(k,D)](Pt + Pr)
=

1− p

D(Pt + Pr)
(5.4)

It is clear from this equation that when p grows, the energy capacity of the network

decreases.

5.3 Arbitrary Topology

We start the analysis from an arbitrary grid topology, i.e., the network is an

m × n matrix. By this node distribution we can set different transmit power so

that every node can reach a different set of nodes.

The power consumption taken by the data delivery depends on the established

route. However, different transmit power levels will result to different network

topologies, therefore establish different routes between the source and the desti-

1Therefore the result of the analysis may not be applicable to certain WSN applications
because the traffic pattern is usually sink-oriented in such applications.
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nation. It is necessary to inspect that how the change of transmit power affects

to the routing result. Considering such a grid network, point-to-point traffic

happens randomly between any two nodes S and D. Here we denote the source

and the destination nodes as S(xs, ys) and D(xd, yd), respectively. Note that

xs, xd ∈ [0, n− 1], and ys, yd ∈ [0, m− 1].

If the transmit power is minimized, i.e., every node can only hear those nodes

at its direct angles, the distance of the source and the destination can be given

Dp1 = |xs − xd|+ |ys − yd| , here Dp1 is the distance using power level 1. Without

loss of generality, we set (xs, ys) = (0, 0) and (xd, yd) = (x, y), it can be rewritten

as Dp1 = |x|+ |y| .

Since S and D are randomly selected, it is possible to derive the expected dis-

tance in such a network, denoted as

D∗
p1 = E{|x|+ |y|} = E{|x|}+ E{|y|} (5.5)

The random variables x and y for rows and columns are independent, therefore

we derive the row expect E{|x|} only. For a single row of nodes, the expected

distance between the source and the destination is the average of the distances

that the source node is fixed at a certain place for all the possible places:

E{|x|} =
1

n

n−1∑

i=0

1

n− 1

n−1∑

j=0,j 6=i

|i− j| = n+ 1

3
(5.6)

The detail derivation can be found in Appendix 13.

Thus the expected distance of a random source-destination pair in the network

using power level 1 becomes

D∗
p1 =

n + 1

3
+
m+ 1

3
(5.7)

If we increase the transmit power level, the network topology becomes more com-

plicated. At this situation routing protocol plays very important role. It is pos-

sible to deploy a least-hop routing protocol that always selects the route with

minimum hop count. For instances, routing protocols such as DSDV (Perkins

& Bhagwat 1994) and AODV (Perkins & Royer 2001) are designed for finding a

minimum hop route.
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Figure 5.1: Number of hops to destination at different power levels

If we increase the transmit power so that a node can reach more nodes as shown

in Figure 5.1, the expected distance between a random source-destination pair

becomes

D∗
p2 = max

{
n + 1

3
,
m+ 1

3

}

(5.8)

D∗
p3 =

⌈

E

{ |x|
2

}

+ E

{ |y|
2

}⌉

=
m+ n

6
(5.9)

D∗
p4 = max

{
m+ 1

6
,
n+ 1

6
,
m+ n + 2

9

}

(5.10)
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According to the analytical results, we can compare the power-aware capacity of

different transmit power levels, as shown in Table 5.1. Here we set the size of

the network as m = 10, n = 15, the radio path loss factor α = 4. For the radio

ranges as 1,
√
2, 2, and

√
5, the corresponding transmit power Ptxi

, i ∈ (1, 4) are

normalized to 0.1, 0.4, 1.6, and 2.5, respectively. The receiver power consumption

Prx is normalized and fixed to be 1. This setting is based on the survey of power

consumption of current WLAN products. The result shows that using power level

2 gives the best energy performance.

Table 5.1: Power-aware capacity

Level E{D} Ptx C

1 9 0.1 0.101
2 5.33 0.4 0.134
3 4.5 1.6 0.085
4 3 2.5 0.095

Node density should also be considered because different transmit power levels

should be set for different node densities. Figure 5.2 shows the comparison of

energy consumptions over the expected distance route with different transmit

power levels. For each individual density d, we set power level 1 to be 0.01,

0.05, 0.1, and 0.5 (very high, high, low, and very low), respectively, denoted as

Ptx1,d
, d ∈ [1, 4]. Prx = 1 and fixed for all the cases. It can be seen that when

the node density increases, the energy consumption trends to decrease when we

enlarge the radio range. Actually for the lowest density case Ptx1,4
= 0.5, the

maximum power Ptx4,4
is 12.5 times higher than that of receive power. This is not

common in local ad hoc networks.

5.4 Random Distributed Network

In a randomly distributed ad hoc network, we need to find out the expected

geometric distance between any two nodes and the expected hop distance.
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Figure 5.2: Energy consumption over the expected route in a mesh topology network
with a scale of m = 15, n = 10 with different node densities

5.4.1 Expected Geometric Distance

between any two nodes randomly distributed within a unit square has been derived

by (Weisstein 2005):

D∗ =

∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

4

√

(x− u)2 + (y − v)2dxdudydv

=
1

15

[√
2 + 2 + 5 ln(1 +

√
2)
]

= 0.521405433 . . . (5.11)

5.4.2 Expected Hop Distance

Suppose the transmit power can reach a distance of R and the node density is

ρ, thus the number of neighbours is πR2ρ. We assume that the network is dense

enough so that we can always find at least a single node from any given area.

The Probability Density Function (PDF) of number of nodes at a distance of r

is denoted as p(r) = 2r/R2 if the nodes are uniformly distributed. By a reactive

routing protocol such as AODV, for the source node, all its neighbours have the

same chance to be selected as the next hop node. The expected distance of the

hop from the source node to the first routing node is (Olafsson 2004)

D∗
1 =

∫ R

0

rp(r)dr =
2

3
R (5.12)
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here D1 means the distance for the first hop.

For an intermediate node, only those nodes that have not received a routing packet

RREQ will be the next hop candidates, as shown in Figure 5.3. The expected

value of Di, (i > 1) is

D∗
i =

1

As

∫∫

As

√

x2 + y2dxdy ≈ 0.7670R (5.13)

here As is the area of the shadow region. In the figure, the current node has

received a RREQ and starts to broadcast it. According to the AODV routing

protocol, only those nodes in the gray area can be the next hop candidates.

(-2/3,0) (0,0)

D
Precursor

Current
Node

Nodes in the
shadowed 
area can be 
selected

x_left x_right

Figure 5.3: Routing progress of an intermediate node

Based on the previous discussions, we can find the expected route distance, i.e.,

the average number of hop count, in a random ad hoc network. Suppose we have

a square area of A, thus the average end-to-end distance D∗ = 0.5214
√
A. With

a minimum-hop routing protocol, we can derive the expected route distance in

term of hop counts, denoted as:

D∗
rand =

D∗ −D∗
1

D∗
i,i>1

+ 1 ≈ 0.5214
√
A+ 0.1003R

0.7670R
(5.14)

Thus the energy-aware capacity in a random topology ad hoc network can be

evaluated by equation (5.1). This expression is the statistically upper-limit of

the ad hoc energy-aware capacity, because we assume that the routing protocol

can always find a minimum-hop path. The realistic situation is not as perfect as

this assumption. However, when the node density is high and the expected hop
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Table 5.2: Transmit power setting in simulation and the expected results

Level i Ptxi
(mW) Ri(m) Drandi 1/Ci

-1 0.2 48.2 5.99 301.01
0 0.5 67.1 4.34 219.38
1 1 79.8 3.67 187.35
2 5 119.3 2.50 137.53
3 25 178.4 1.72 128.66
4 100 252.3 1.25 187.70
5 200 300 1.07 268.30

count is not big, the AODV routing protocol can approach to this limit, as we

will see in the simulation section.

5.5 Simulation

AODV is deployed in our simulations. As mentioned, traffic load affects the

AODV routing significantly because a node that has been suffered heavy traffic

load has less chance to be selected anymore as a router, even though its location

is very suitable. On account of this point, we apply our simulation with relatively

light traffic, which usually happens in sensor networks.

The transmit power setting is refered to the Cisco Aironet 350 802.11 WLAN

card (Cisco 2004). Here we set the maximum transmit power to be level 5 and it

can cover 300m distance. However, in order to compare with some longer route

distance D, we set other two lower levels, denoted as 0 and -1. The path loss

factor α = 4. The settings and corresponding radio coverage Ri, expected route

distance Drand and the capacity 1/Ci are listed in Table 5.2. Prx is 50mW for all

the cases. 200 nodes are randomly distributed in a 400× 400 m2 square.

For each simulation 40 Constant Bit Rate (CBR) traffic connections are estab-

lished randomly between two nodes. Each CBR link transmits 1 packet per second

so that the entire network traffic is light. Mobility of nodes is ignored in our anal-

ysis and thus set to be 0 in the simulations.

The simulation results coincide nearly with our analysis. In Figure 5.4(a) one can

see that route distance of simulation corresponds to our analysis, especially when

the average hop count is less than 4. When the average hop count increases, which

means the ratio D/R increases, there are more chances that a detoured route will
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Figure 5.4: Compare with Simulation Results

be established. Thus the simulations give longer hop count than that of the

analysis. Figure 5.4(b) shows the energy performance comparison between theory

and the simulation. The simulation results fit the theory well. It is interesting to

see that at transmit power level 3, both give the best energy performance, while

the expected route distance is around 2.

5.6 Concluding Remarks

In this chapter we analysed the energy performance of ad hoc networks that utilize

transmit power control. We assert that minimizing the transmit power will not

result to the best energy conservation, because the energy taken by receiving a

packet is fixed at a single hop. When the transmit power decreases, the energy

consumption taken by the receivers becomes more and more significant. In both
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arbitrary and random node distributions we found this conclusion is true. To

achieve the optimal energy performance, the average route distance should be

kept as 2 or 3 hops with a moderate transmit power.



 



6 A POWER-AWARE ON-DEMAND

ROUTING PROTOCOL

6.1 Introduction

Power control is an practical method for energy efficiency among the existing

approaches. In CDMA cellular networks power control has very sophisticated

implementation. In ad hoc networks because there is no infrastructure acting as

coordinator and connection may occur between any two nodes in the network,

power control is much more complex than that in cellular systems. In many

works this issue has been addressed. In (Swetha et al. 2002), power control

is demonstrated to increase traffic capacity of entire network, increase battery

lifetime, and reduce the contention at the MAC layer. The authors further propose

a power-control-enabled routing protocol for proactive routing schemes such as

DSDV. In (Jung & Vaidya 2005) and (Agarwal, Katz, Krishnamurthy & Dao

2001), power control implementation on MAC layer has been proposed. The

authors in (Park & Sivakumar 2002) asserted that the optimal transmission power

is determined by the network load, the number of stations, and the network

grid area. Based on this conclusion, they proposed two power control schemes:

Common Power Control (CPC) for entire network scale and Independent Power

Control (IPC) for hop-by-hop scale. (Doshi, Bhandare & Brown 2002) give energy

efficiency comparison between multi-hop link and single hop link. The authors

declared that an intermediate node acting as relaying device will decrease the

energy consumption if its location is good. (Gomez & Campbell 2004) propose

a viarable power control scheme so that a Minimum Spanning Tree (MST) is

constructed for network connectivity. Some research focus on routing algorithm

which considers battery residual of each node(Tan & Bose 2005).

(Gomez, Campbell, Naghshineh & Bisdikian 2003) proposed a power control rout-

ing algorithm called PARO for wireless networks. In PARO, the source node first

uses maximum power to send data packet directly to the destination. Whereas
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each node (between the S-D pair) enables overhearing to calculate the power con-

sumption using a cost function as if the data packet is relayed by it. Then the

best candidate will announce a redirection command to both the source and des-

tination nodes to take the router role. This procedure is recursive until the cost

function cannot be optimized anymore.

In this chapter we propose an energy efficiency Power-Aware Routing (PAR)

protocol which can be adapted to the existing reactive routing algorithms such

as AODV (Perkins & Royer 2001) and DSR (Johson et al. 2001). The protocol

selects energy efficient route based on transmitter-receiver power adjustment when

routing packet such as RREQ is propagated from source to destination nodes.

6.2 Hop-by-Hop Power Control

Hop-by-hop power control is proposed in (Bergamo et al. 2002) and (Doshi et al.

2002). This method requires that each node can put the transmit power level

PTX , at a suitable format field in the transmitted packet. It also requires that the

radio receiver can measure the received signal strength, PRX . With these power

values, the node that has received the packet can estimate the link attenuation.

In another word it can estimate the distance between the transmitter node and

itself. Upon the received signal power, the node can adjust its transmission power

to the remote node by:

P ∗
TX = PTX − PRX + SR +M (6.1)

Here SR is the minimum signal power required to correctly receive a packet. M

is a power safety margin introduced to take into account channel and interference

power level fluctuations. When a packet from this node is sent and received by

the remote node, the remote node can do the same adjustment. This results in a

close loop power control.

Here it arises a so-called power imbalance problem. We suppose that the ad hoc

network follows IEEE802.11 MAC protocol (IEEE 1999), which uses RTS/CTS

handshake to avoid collisions. If two nodes are transmitting a packet to their

own destinations at the same time, one destination node may be interfered by

another transmitting node which is not aware of this problem. This is illustrated

in Figure 6.1: when node C has a packet to D, it broadcasts RTS packet and
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Figure 6.1: Power imbalance problem: when A is transmitting to B, it violates the
communication between C and D.

D replies a CTS packet by adjusted power. This signal cannot be heard by A,

because the distance between C and D is shorter than that between A and B.

Thus both A and C transmit simultaneously and cause collision at D.

This problem can be solved by setting maximum power when transmitting RTS

and CTS packets. That is, in Figure 6.1, when node D has received a RTS packet

(which is sent with maximum power), it replies a CTS packet with maximum

power. This will of course prohibit any possible transmission in its full power cov-

erage. Node A will be notified and will not transmit during the time specified by

the CTS from D. However, when we consider the situation given in Figure 6.2, this

solution will prohibit the simultaneous transmission even they may not interfere

each other.

Range of RTS/CTS

A B DC

Communication Range with Power Control

Figure 6.2: Simultaneous transmissions between A and B, C and D are possible, but
prohibited by RTS/CTS
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6.3 Power Control Routing

Based on the result of (Cano & Manzoni 2000) and related works, it shows that

reactive routing protocols such as AODV and DSR give better performance than

their proactive counterparts. Here we propose a power control routing scheme for

reactive routing protocols.

We assume that a route in ad hoc networks is always a duplex link. All the nodes

in the network have normalized the transceiver, i.e., with the same maximum

transmit power and the same variation scale.

6.3.1 Uplink and Downlink Power Control

In AODV or DSR protocol, when a route is to be established, the source node

initiates a Route Request (RREQ) packet, which is broadcast to all its neighbours.

For power control issue, we assign each intermediate node two distinguish transmit

power values for uplink PTXup
and downlink PTXdown

, respectively. For the source

and the destination nodes, there is only one direction that either PTXup
or PTXdown

is available. As depicted in Section II, when a node sends a packet, it embeds

its transmitting power into the packet, which is RREQ at here. Because the

source node doesn’t know the location of its neighbours, it will broadcast the

RREQ packet with maximum power. The nodes that have received the RREQ

can adjust its uplink transmit power by equation (6.1).

The same broadcast will continue by the neighbours with maximum power until

the RREQ packet reaches the destination. The destination node will send a Route

Reply (RREP) packet to its uplink node, the same, with embedded transmit power

data. The node that receives this RREP can now adjust its downlink transmit

power by equation (6.1). This procedure can be illustrated by Fig. 6.3.

After a route has been established, equation (6.1) can be applied for both uplink

and downlink power adjustment along the route when DATA packets and their

ACK are exchanged hop-by-hop.
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(b) RREP loopback

Figure 6.3: Route Establishment with Power Control

6.3.2 Energy Efficient Route Finding

When a RREQ packet is sent with maximum power as depicted previously, it is

possible that several neighbours with different distance to the source will receive

it. This may result to that a less efficient route will be selected, as shown in

Figure 6.4.

In the figure, a route is to be established from nodes S to D. According to section

3.3.2, a moderate hop distance will have best energy efficiency, therefore the

optimal route is S-1-2-3-D. However, S initiates a RREQ with maximum power;

both nodes 1 and 2 will receive it. First there is a contention between node 1

and 2 to relay the RREQ. If node 2 gets the chance first, both nodes 3 and D

will receive the RREQ and D will send RREP upon the reception immediately.

Thus a less efficient route S-2-D is established. Actually this is true when original

AODV or DSR is applied. On the other hand, if node 1 wins the contention and

forwards the RREQ packet, both nodes 2 and 3 will receive it. In the case node 2

has already received the same RREQ once. It will discard the packet according to
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Figure 6.4: Route Selection with Maximum RREQ Power

AODV and DSR protocols. Now it is for nodes 2 and 3 to compete for the channel.

We will get another less efficient route S-1-3-D if node 3 wins the contention.

In order to find the optimal energy efficient route, two rules are deployed. The first

is that every intermediate node holds a transmission back-off interval according to

the received RREQ signal power. As mentioned at beginning, we’ve assumed that

all the nodes here have normalized transmitter power. Upon receiving a RREQ

packet, it is possible for the node to estimate the distance between the uplink

node and itself by radio propagation equation:

PRX =
KPTX

Dα
(6.2)

According to (Doshi et al. 2002), there exists an optimal distance Dopt by which

the minimum hop-by-hop power consumption is achieved. We denote the received

signal power as PRXopt
when Dopt is given by equation (6.2).

The back-off time is set according to the ratio of actual received signal power to

PRXopt
, denoted as:

Tbk = c‖PRX − PRXopt
‖ (6.3)

Here c is a constant. This rule will guarantee that a more energy efficient hop

will be chosen. Apply this to Fig. 6.4, node 1 will send RREQ before node 2.

The second rule is about multiple RREQ receptions. If we look at Fig. 6.4 again,

we will get node 1 to relay the RREQ first. Both nodes 2 and 3 will receive it, but

node 2 has received one RREQ already. By original rule node 2 will discard the
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second RREQ. Unfortunately this will result to route S-1-3-D selected. However,

it is possible for node 2 to compare the received signal power of these two RREQ

packets. If the condition satisfies:

‖PRX1 − PRXopt
‖ > ∆+ ‖PRX2 − PRXopt

‖ (6.4)

then the node that receives the new RREQ will replace the uplink node by the

current one. Here PRX1 and PRX2 are the received signal power of previous RREQ

and current RREQ, respectively. ∆ is a safety margin to tolerate signal fluctua-

tions. It means the node that generates the second RREQ is closer to the optimal

distance. The node will replace the previous uplink node by the current one. Back

to Fig. 6.4, if node 2 backs-off its RREQ, it will receive the second RREQ from

node 1, with the signal power satisfying equation (6.4). Thus node 2 will replace

the uplink node from S to 1. Because the second RREQ that node 2 received has

better power condition to equation (6.3), node 2 will send the RREQ before that

of node 3, which has received a RREQ from node 1 already. The same update will

happen on node 3 thus the optimal energy efficient route S-1-2-3-D is established.

One situation needs to be considered, as shown in Fig. 6.5. In the figure, both

nodes 1 and 2 are located far away from the source with about the same distance,

they will back-off the relaying of RREQ by approximately the same Tbk. If we

assume that node 1 wins the contention, it will send RREQ to 2 and 3. Node 2

will replace its uplink node from S to 1 because the later one has better energy

performance according to equation (6.4). When node 2 broadcasts the RREQ,

node 3 will replace its routing data because node 2 shows a better energy budget

than that of node 1. Thus a less efficient route S-1-2-3-D is established.

S

1

2

3 D

Figure 6.5: Less Efficient Route

This problem can be recovered by setting a simple rule: if the back-off interval Tbk
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is expired, the node will drop any duplicated RREQ. We can see that the optimal

route S-2-3-D will be selected as illustrated in Fig. 6.6.

Tbk: backoff delay after receive of RREQ

S

S

Tx

Rx

Tx

Rx

S
Rx

Tx RREQ

RREQ

RREQ

Contention window

RREQ

RREQ

Time

Tp

Tp

RREQ

RREQ

Tx

Rx
S

RREQTp

Node2 receives a duplicated RREQ after Tbk, rejects it

Tbk

Nodes

Tbk

Node3 receives a duplicated RREQ
before Tbk, accepts it

Tp: propagation delay

Figure 6.6: Contention window plays role to select route

6.3.3 Summary of Power Control Routing Protocol

Here we summarize our power control routing scheme:

1. Hop-by-hop power control is achieved by equation (6.1).

2. RTS/CTS handshake uses maximum power to avoid collisions.

3. RREQ is broadcast with maximum power.

4. An intermediate node backs-off RREQ packet. The back-off interval is pro-

portional to the difference between the received signal power and an optimal

value.

5. Upon receiving a duplicated RREQ packet, the node compares it with the

previous one. If found it is better, it will update its routing table.

6. A node should drop all the RREQs that come after the back-off interval.

6.4 Energy Efficiency Analysis and Simulation

Results

The power control routing scheme proposed at here cannot increase the network

capacity because maximum power is used in RTS/CTS handshake. This is neces-
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sary to avoid collisions. However, the scheme can select an energy-optimal route

based on any reactive routing protocol. Meanwhile, a moderated transmitter

power reduces the interference to other receiving nodes thus will improve the re-

ception quality. By this means it increases the network throughput because the

rate of retransmission is reduced. A back-off of RREQ packet forwarding is in-

troduced, proportional to the difference between the received signal power and

the optimal one. This will increase the route establishment latency. However,

when the node density is high, this is not a problem. The routing latency in a

dense network becomes lower because the back-off delay Tbk approach to zero if

there are always nodes available at optimal distance. In original AODV, all the

nodes in the radio coverage of a transmitting node receive the RREQ and all will

start channel contention. In our scheme, this is scattered by the distance equation

(6.3). If the density of network is properly high, there are always nodes located

at the proper distance from the RREQ-source node and these nodes will start

contention to relay RREQ earlier than other nodes. It means that fewer nodes

will join the contention thus latency is reduced.

6.4.1 Simulation Environment

A simulation model is setup for the scheme described above. We compare the

energy efficiency performance of our algorithm with other three schemes: the

original AODV, AODV using MAC-layer power control(Jung & Vaidya 2005), and

PARO described in Sec. 6.1. Mobility is set as random walk with moving speed

between SPEEDMIN to SPEEDMAX m/sec. After the arrival of a destination, a

node will stay there (pause) for a random time from PAUSEMIN to PAUSEMAX

seconds and then randomly select another destination and moving speed. Traffics

are generated as Constant Bit Rate (CBR) with 512 bytes user data in each

packet. Every traffic link will transfer 1000 packets at a rate of 4 pakcet/sec. The

simulation time is 250sec.

For the power control, the transmitter power level is rectified into 4 stages: 1

(level 4), 0.5 (level 3), 0.2 (level 2), and 0.1 (level 1). We set the radio path loss

factor α = 4 and assume 200m can be covered by the maximum power (level

4), and receiver sensitivity is -96dBm, antenna gain K = 1. Thus by the power

levels we set, the radio coverage radius are 200m, 158.74m, 119.96m, and 92.83m,

respectively.
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The results are given in the following figures.

In this model we don’t consider the energy consumptions taken at MAC and

network layer, such as RTS/CTS handshakes, broadcasting of RREQ and replying

RREP, etc, because the protocols been examined here all use maximum power for

them and result in identical power consumption.

6.4.2 Simulation Results and Discussion

6.4.2.1 Route Length and Energy Efficiency

An example of the routing results by the three protocols is given in Fig. 6.7, in

which AODV gives the shortest path (5 hops) from the source node (ID=24) to

the destination node (ID=03), meanwhile PARO produces the longest path (8

hops), and PAR has moderate hop count (6 hops). Fig. 6.8 shows the statistics of

route distance of 100 randomly selected source-destination pairs. It can be seen

when the network scale (node number) increases, all the three routing algorithms

have longer route distance. Among them PARO gives longest route distance,

AODV gives the shortest, and PAR’s is slightly higher than AODV, and both are

50% shorter than PARO. This is because PARO uses a very different mechanism,

which is not based on RREQ flooding, to explore then energy optimal route.

6.4.2.2 Power Consumption and Standard Deviation

Fig. 6.9 shows the result of average energy drain of different scenarios. We can

see that when packet receiving energy consumption is not considered, AODV with

MAC power control, PARO, and PAR all exhibit significant energy reduction from

AODV, whereas PARO is the best. This is due to the fact that PARO’s redirection

algorithm does not consider receiving energy cost at all. However, when the

receiving energy is considered, PAR becomes the most energy-efficient and PARO

becomes the worst except original AODV. This result supports the statement in

Chapter 3 that energy consumption during receiving is not neglectable.

Fig. 6.10 shows the average route establish time, which is counted from the RREQ

broadcasting from the source node to the time the RREQ comes back. Since

PARO does not use RREQ/RREP flooding, and the final route establishing time

is dependent on data packet generate rate as each new data packet may trigger
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Figure 6.7: A typical result from three routing protocols

a redirection, we do not compare it in our simulations. From the figure one can

see that the route establish time monotonically increases with the network scale

for both protocols, and PAR’s time is 30% higher in a small network, and up to

100% higher in a large network, than that of AODV. This is caused by RREQ

back-off at the intermediate nodes.

6.4.2.3 Link Stability

When a node involved in a route has moved out of the radio coverage of precursor

node, a link break occurs. A new route establishment approach is triggered by the

precursor node sending Route Error RERR packet. Frequent link breaks degrade
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Figure 6.8: Average route distance in hop counts

the transmission performance because they cause both transmission delay and

extra overheads. Fig. 6.11 shows the simulation results of link break counts of

different scenarios. We have set a moderate mobility of network with randomly

1-10m/s moving speed. In our protocol, since it selects the nodes with a distance

around 100m as optimal next-hop candidates, the link break is significantly less

than that of the original AODV. PARO has best link stability in small scale

networks. However, when the network scale increases, it exhibits a deteriorated

performance. This is due to the reason that PARO produces extremely long

route in large scale network thus the accumulated hop-by-hop break probability

is significantly increased.

6.5 Concluding Remarks

In this chapter we have demonstrated our approach to energy conservation for

ad hoc routing and compared its performance with other solutions. In a reactive

routing protocol, it is possible to select a more energy efficient route by inspecting

the hop-by-hop transmitting and received power when route request packet is

broadcast throughout the network.

With MAC layer power control, a significant amount of energy can be saved



Acta Wasaensia 85

40 50 60 70 80 90 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Network scale in node number

N
or

m
al

iz
ed

 e
ne

rg
y 

co
st

 o
f d

at
a 

pa
ck

et
 d

el
iv

er
y

AODV tx−only
AODV tx+rx
AODV w/pc tx−only
AODV w/pc tx+rx
PAR tx−only
PAR tx+rx
PARO tx−only
PARO tx+rx
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compare to that non-power-control scheme. With power-aware routing protocol

presented in this paper, we obtain even better energy conservation. In our pro-

tocol, since a long hop is trend to be divided into shorter multihops, more nodes

are involved into the network activity evenly. This makes energy drain even in

the network and increase the overall network lifetime.

With proper distance of a hop, the link can endure more node mobility and

the probability of route broken is reduced. This will increase the transmission

performance and reduce the network overhead.

The power control routing scheme we proposed here is simple to be implemented

on any reactive ad hoc routing protocol, even though we deployed AODV in our

simulation. The scheme also requires that transmitter power scalable. This is not

a technique problem because there are products available for this purpose.
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Figure 6.10: Average route establish time (AODV and PAR only)
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7 POWER-AWARE ROUTING TO COPE

WITH COMMUNICATION GRAY ZONES

7.1 Introduction

Communication Gray Zone (CGZ) problem was discovered in (Lundgren, Nord-

ström & Tschudin 2002). (Kim, Lee, Kwon, Lee & Choi 2007) have also re-

ported that gray zones exist in carrier sensing and packet reception from their

IEEE802.11a testbed measurement results. A CGZ in ad hoc network is defined

as an area in which data messages can not be exchanged although the HELLO

messages indicate neighbor reachability, as shown in Figure 7.1. A node in CGZ

suffers very high packet drop rate.

reliable data
packet 
coverage

HELLO
coverage

Communication
Gray Zone

T

Figure 7.1: Communication Gray Zone

The CGZ problem comes with reactive routing protocols such as AODV (Ad

hoc On-Demand Distance Vector). AODV relies on neighbor sensing to keep

track of those nodes which are used as relay points for data transmissions in a

multihop path. To achieve this, AODV uses periodic HELLO messages. The
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communication gray zones are caused by the different properties between HELLO

and DATA packets. The reasons are:

• Different Transmission Rate - control messages are sent at a basic bit rate

while data packets are usually at higher bit rates. Transmission at lower bit

rates is more reliable than that at higher rates.

• No Acknowledgements - Receiving a broadcast HELLO message doesn’t

mean that transmissions are reliable in the opposite direction.

• Small Packet Size - Control messages are shorter than data packets, thus

are less prone to bit errors.

• Fluctuating Links - At the transmission borderline, communication tends

to be unreliable. A successful HELLO receive doesn’t mean that consistent

communication is also possible.

In (Lundgren et al. 2002), some methods are proposed to eliminate the commu-

nication gray zone, including 1) exchanging neighbor sets, 2) N-consecutive HEL-

LOs, and 3) SNR (Signal-to-Noise Ratio) threshold for control packets. Among

them the SNR threshold method achieves the best performance. However, the

experimental scenario they deployed was relatively simple. (Aguero, Galache

& Munoz 2009) recently analysed the relationship between Signal-toNoise Ra-

tio (SNR) and Frame-Error Rate (FER) of IEEE802.11 at different transmitting

bit rate and proposed an SNR-AWARE DSR protocol to cope with the prob-

lem. In this chapter we deploy a modified Power-Aware Routing (PAR) protocol

as depicted in Chapter 6, in which the nodes in CGZ will not be selected as

routing devices. The protocol also enables the nodes keep monitoring the link

quality through a route. When the node is moving into a gray zone, a new route-

establishment procedure will be invoked to prevent the CGZ phenomenon.

The solution proposed in this chapter is based on the reports and analysis from

MANET. However, CGZ is a common phenomenon in all wireless communication

systems if the facts listed above present. In recent work the idea has been borrowed

to solve link stability problem in IEEE802.15.4 sensor networks in Cinet. We have

observed a significant packet delivery ratio improvement.
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7.2 Power-Aware Routing Protocol

7.2.1 Range of Gray Zones

The actual shape of CGZ is usually an irregular circular area around a trans-

mitting node due to the variation of co-channel interference and geographical

environment of the network. For this reason we select the signal-to-noise ratio as

measure to detect the gray zone. It is also possible to use bit error rate (BER) or

packet error rate (PER) as measurement, as it can be shown that BER/PER are

monotonous functions of SNR. The current 802.11 hardware measures the link

quality in terms of SNR(YDI-Wireless n.d.).

In (Clark, Leung, McNair & Kostic 2002), the authors found that the BER and

PER of IEEE802.11b radio link are approximately inverse-proportional to the

receive SNR. They also inspected the BER and PER of IEEE802.11b at different

bit rates. To achieve the same PER, 1Mbps (Barker-1 modulation) rate requires

approximately 4dB lower Eb/N0 than that of 11Mbps (PBCC-11 modulation).

Think of the radio power attenuation formula Eq. 6.2 wherein α is the path loss

factor varying from 2 to 5 in different environments, the range of 11Mbps rate is

from 63% to 83% of that of 1Mbps for a 4dB gap.

The PER results given in (Clark et al. 2002) were measured on a fixed packet

length, which is 1000 bytes. To find the effect of packet length, we deployed

a MATLAB Wireless LAN toolbox (CommAccess 2003) to check the PER for

different packet lengths and bit rates. In this MATLAB simulator, we set the

DATA packet 512 bytes and the HELLO packet 50 bytes. The simulation shows

that an approximately 4dB SNR reduction will make the PER of HELLO packets

equal to that of DATA packets. This result coincides with that of (Clark et al.

2002).

Datasheet of Cisco Aironet 350 WLAN PC card (Cisco 2004) also gives a hint

to estimate the range of CGZ. Table 7.1 shows the transmission ranges at 1 and

11Mbps, respectively for both indoor and outdoor environments. These results

were measured under the normal data packet transmission. The range of CGZ is

around 60% for both indoor and outdoor environments.

In (Dominique & Guerin-Lassous 2003), IEEE802.11 throughput was measured

over distance. With a full range of 150 meters, the throughput of UDP transmis-
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Table 7.1: Cisco A350 radio range

Rate Indoor Outdoor

1Mbps 107m 610m
11Mbps 40m 244m

sion dramatically decreases beyond 75-90 meters. This indicates that the CGZ is

about 40-50% of the full range.

Based on the previous results, we found that the range of gray zone seems rel-

atively large. Later in our simulation, we will set rest 40% of radio coverage

to be gray zone. In another word, we define Communication White Zone (see

Figure 7.1) that has a radius DWZ = 0.6Dmax.

7.2.2 PAR Protocol to Cope with CGZ

The PAR protocol basically consists of two parts: hop-by-hop power control and

energy-efficient gray-zone-avoiding routing. Hop-by-hop power control is achieved

by the way that the transmitter power PT can be embedded into a packet to let

the downlink node to adjust uplink power P ∗
T by Eq. 6.1.

Here we summarize the PAR protocol given in Chapter 6 with new features to

cope with CGZ.

1. Hop-by-hop power control. At MAC layer, RTS/CTS handshake uses maxi-

mum power to avoid collisions. Such a handshake also results to a close loop

power control using Eq. (6.1) so that the DATA packet can be transmitted

at a proper power level.

2. RREQ is broadcast with maximum power. Thus upon the reception of a

RREQ, the node is able to calculate the hop weight byWh = |Pr−Popt|. Here
Pr is the received power and Popt is the ideal power that the transmitting

node locates at optimal distance Dopt. Dopt depends on the gray zone range.

We set Dopt = 0.5Dmax.

3. An intermediate node i accumulates the hop weight, denoted as
∑

iWhi
=

Whi
+

∑

i−1Whi
and puts it into the outgoing RREQ. Upon the receiving

of a duplicated RREQ, the node compares the new W ′
hi

with the previous

one. If it is found that W ′
hi
< Whi

, the node will update its routing table.
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4. A Gray Zone Alarm (GZA) RERR is issued when a node which is already

using maximum transmit power has detected several consective reception

failures. A failure is detected when the result of Eq. (6.1) is greater than a

threshold, denoted as

P ∗
T > PGZA. (7.1)

5. When a DATA packet is to be transmitted, the RTS/CTS handshake will

give the transmitting node possibility to estimate the required transmit

power and adjust the power accordingly.. If it is found that current power

level is not enough for a secured transmission, the node will increase the

power until it uses the maximum power.

7.3 Analysis and Simulation Results

The PAR scheme deployed here can select an energy-optimal route based on

any reactive routing protocol. A moderated hop distance will less likely lead to

gray zone phenomenon. Meanwhile, a moderate transmit power will reduce the

interference to other nodes thus improve their reception quality. It means that

the network throughput is increased because the rate of retransmission is reduced.

7.3.1 Simulation Environment

A simulation model is setup for the gray zone problem described above. Dif-

ferent scenarios in respect of node density, node mobility, and network scale are

simulated. We compare three different routing schemes: the original AODV, the

AODV with control packet SNR threshold (noted as AODV-th hereafter), and

the PAR protocol with gray zone features. The second scheme is one of three

schemes proposed in (Lundgren et al. 2002) with the best link performance. Here

control packets include HELLO, RREQ, RREP, RERR, and MAC layer control

packets such as RTS/CTS/ACK. In our simulator, The SNR threshold is set for

AODV-th that DATA packets and control packets can be received at the same

distance, i.e., only those nodes within the range that DATA packet can be reached

are regarded as network neighbours.

Nodes are set to move in a rectangular area in random waypoint model. Traffics

are generated as Constant Bit Rate (CBR) with 512 bytes user data in each packet.
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Every traffic link will transfer 100 packets at a rate of 4 pakcets/sec. 10 CBR

links are established.

The radio transmit power is rectified into 6 stages. This is based on the Cisco

A350 datasheet as shown in Table 7.2. We assume 200m can be covered by

the maximum power (level 6). Thus radio coverage radii of other levels can be

determined by Eq. (6.2), as shown in Table 7.2. We set DWZ = 0.6Dmax, i.e.,

for the power level 6 with a coverage of 200m, range between 120m and 200m

is regarded as gray zone. The optimal distance is set within the range between

power level 1 (63.25 m) and 2 (94.57 m).

Table 7.2: Available transmit power settings (from Cisco Co. Ltd.)

Level Power Range(α = 4)

1 1 mW (0 dBm) 63.25 m
2 5 mW (7 dBm) 94.57 m
3 20 mW (13 dBm) 133.75 m
4 30 mW (15 dBm) 148.02 m
5 50 mW (17 dBm) 168.18 m
6 100 mW (20 dBm) 200 m

7.3.2 Simulation Results and Discussion

7.3.2.1 Packet Drop Rates

Fig. 7.2(a) shows the packet drop rates among three schemes in different scenarios:

node densities, mobilities, and network scales. Both AODV-th and PAR have very

low packet drop rate. When the network scale increases, the average hop count of

routes increases, therefore it can be observed that drop rate increases for all the

three schemes. However, the increment of PAR and AODV-th is less significant

than that of AODV. The packet drop rates are stable in respect of node density

for all the three schemes. When mobility increases, both AODV-th and PAR have

increased drop rate while AODV doesn’t show big change.

7.3.2.2 Link Stability

In PAR, since the nodes at a moderate distance are more likely to be selected,

the link break probability is significantly less than that of the original AODV.
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Figure 7.2: Packet Drop Rate (a) and Link stability (b)

Fig. 7.2(b) shows the simulation results of average link break counts in different

scenarios. In all the cases PAR and AODV-th show very low link break compare

to AODV; When the node mobility and the network scale increase, AODV’s link

break increment is the most significant. These figures correspond to those packet

loss figures.

7.3.2.3 Energy Consumption and Standard Deviation

Figure 7.3 shows the result of total energy drain. In all the cases AODV-th

consumes much more energy than that of AODV and PAR. When the network

scale increases, all the schemes show an increment of energy consumption, because

the average hop count increases. Among them the increment of AODV-th is more

significant. It seems that node density and mobility do not affect the energy

consumption of all these three schemes. The disadvantage of AODV-th and AODV

routing can be explained as: AODV-th tends to select nodes that are too close to
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the precursor, while AODV tends to select nodes in a gray zone.
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Figure 7.3: Average Energy Drain

Another important metric is the standard deviation of energy drain. A network

with more even energy drain among the nodes has longer network lifetime (Cho

& Kim 2002, Jäntti & Ki 2005). Figure 7.4 is the standard deviation of energy

drain when the node density increases. It shows that PAR gives the least standard

deviation of energy drain among these three schemes while AODV-th performs

the worst.
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7.4 Cinet Implementation Results

We adopted this idea in Cinet Sync2Sink protocol. The Cinet Sync2Sink protocol

applies a global synchronization protocol described in Chapter 9. When the SYNC

frame is broadcasted, which is similar to RREQ broadcasting in AODV or DSR,

each node receives a new global timestamp. In the meantime each node is able to

estimate the link quality to the node who sends the SYNC frame1. A threshold

of LQI or RSSI has been selected to select the upstream nodes as relays to the

Sink.

We set up a network with 9 routing nodes and 5 noise sensor nodes in our lab-

oratory. According to (Srinivasan & Levis 2006, Maheshwari, Jain & Das 2008)

and a number of related works, an LQI threshold LQIth > 90 or equivalently

RSSIth > −60dBm indicates a Packet Reception Ratio (PRR) 90% or higher.

Fig. 7.5 shows the data frame delivery ratio when the hop count to sink is in-

creased. Note that LQIth = 0 indicates a non-Link-State routing protocol. It

can be seen that at LQIth = 90 the PRR hits the maximum value in multihop

scenario, which improves PRR by 10% comparing with that of LQIth = 0. A low

LQI threshold results in that the network has less number of hops from the sink

to the most remote nodes, but the radio the link goodput is poor due to the long

distance of the hops. On the other hand, a high LQI threshold gives good radio

performance, but a remote data packet has to be relayed by more routers back to

the sink, and it also aggravates the hidden node problem(Bachir, Barthel, Heusse

& Duda 2005).

1IEEE802.15.4 MAC layer is able to report the Link Quality Indication (LQI) or Receive
Signal Strength Indication (RSSI) to upper layer.
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Figure 7.5: Cinet testbed throughput result using grayzone elimination

7.5 Concluding Remarks

With PAR protocol we deployed and modified in this chapter, we obtained sig-

nificant reduction of packet drop rate and link breaks, which is usually caused by

the communicaton gray zones. With proper distance of a hop, a link can endure

more node mobility, and the probability that a route breaks decreases. This will

increase the transmission performance and reduce the network overhead. AODV-

th also gives good link stability and small packet drop rate. The disadvantage of

AODV-th is that, since there is no power control routing, a hop distance tends

to be very short compared to the utilized transmit power level, it decreases the

energy performance.

In PAR protocol, since a long hop is trend to be divided into shorter multihops,

more nodes are involved into the network activity evenly with proper transmit

power. This makes even energy drain in the network and thus increases the overall

network lifetime.



8 LINK-STATE CLUSTERING

ALGORITHM AND ENERGY

PERFORMANCE STUDY

8.1 Introduction

MANET can be categorized into two types depending on the features of wireless

devices: homogeneous and heterogeneous. In a homogeneous ad hoc network

every mobile device has the same amount of resources such as radio capacity,

battery energy, transmission rate, etc.; while in a heterogeneous ad hoc network

mobile devices have different amount of resources. Furthermore, MANET can be

also classified as peer-to-peer (i.e., flat) networks or hierarchical (i.e., clustered)

networks.

Most of ad hoc routing protocols such as DSDV, AODV, and DSR are designed

for flat networks. Research shows that when the network scale becomes large,

these protocols generate significant routing overhead and finally make the network

performance unacceptable (Cano & Manzoni 2000, Das, Perkins & Royer 2000,

Perkins & Royer 1999). For this reason, clustered ad hoc networks are considered

to be better solutions for large scale ad hoc networks (Xu & Gerla 2002, Cai,

Lu & Wang 2003). Clustering is especially attractive for heterogeneous networks,

since high capacity nodes are natural candidates for clusterheads.

Clustering algorithms can be classified into two categories: clusterhead-based and

non-clusterhead-based (Cai et al. 2003). In (Hou & Tsai 2001), it is shown that

clusterhead-based schemes outperform non-clusterhead-based scheme in term of

reducing the traffic overhead for large-scale ad hoc networks. Also in a hetero-

geneous ad hoc network, it is convenient to construct a clusterhead-based net-

work due to the different capacities of the nodes. There are also researches re-

lated to the clustering algorithm of non-uniformly distributed ad hoc networks

(Kawadia & Kumar 2003). More general clustering discussions can be found

in (Ramathandran, Kapoor, Sarkar & Aggarwal 2002) and (Chen, Liestman &
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Liu 2004).

In this chapter we introduce a clustering algorithm suite, which can be applied to

both heterogeneous and homogeneous ad hoc networks. The clustering algorithm

is based on the radio link state between the clusterheads and slaves therefore we

denote it as “Link State Clustering Algorithm (LSCA)”.

8.2 LSAC for Heterogeneous Networks

8.2.1 System Model

We assume such a heterogeneous ad hoc network, in which there exists two kinds

of nodes: Heavy-weight Nodes (HN) and Light-weight Nodes (LN). HNs have

higher battery capacity than that of LNs. A HN has two stages of transmit power

(and the radio range): the higher one PTx h used for inter-cluster and the lower

one PTx l for its slaves. All the nodes use IEEE802.11-like CSMA/CA MAC pro-

tocol. This assumption is an abstract model of practical ad hoc networks, such

as a network that contains both Personal Data Assistants (PDA) and laptops,

where PDAs are regarded as LN and laptops as HN. Furthermore, we can clus-

terize any heterogeneous ad hoc network in a way that all the mobile nodes with

their battery capacity Eb greater than a threshold Ebth as HN and those with

battery capacity less than Ebth as LN.

8.2.1.1 Inter-cluster and Intra-cluster Traffic

A clusterhead is dedicated to both inter-cluster and intra-cluster traffic. A way to

distribute the radio resource for these two types of traffic must be considered. It

is possible for clusterheads to use different radio interfaces (i.e., different frequen-

cies) or to use different time intervals to avoid the inter- and intra-cluster traffic

collision. However, to use different radio interfaces requires more complexity of

the nodes, and the energy consumption is higher. Thus we choose the second way

and assume that clusterheads are synchronized.

All the nodes, HNs and LNs, are uniformly and randomly distributed. Mobility

is considered in this model.
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8.2.2 Clustering Algorithm

The clustering algorithm is described as follow:

1. Each HN will always act as a clusterhead, which contains a predetermined

Cluster ID (CID) and a Slave Table (ST). The CID will be broadcast

and shared by all its slaves.

2. A HN periodically broadcastsBEAcon for Clustering (BEAC) containing

its CID with transmit power Ptx l. The period to broadcast is TBEAC , which

can be either fixed or variable.

3. A LN should always be a slave of one and only one HN. If no BEAC is

heard, the LN marks itself as Orphan node and keeps listening to the radio

channel.

4. Cluster Forming A LN sets itself as clusterless when it is powered on, i.e.,

CID=UNKNOWN. Upon the reception of the first BEAC, the LN marks

itself as a LN of the corresponding HN and sends back a Beacon Reply

(B REP). The HN will add it to ST. The LN also records the SNR of the

received BEAC, denoted as Γ. Γ represents the link state.

5. Cluster Updating If a LN has received a new BEAC from another HN,

it will compare the link state with the previous one. If Γnew > Γold +∆, it

updates its HN by sending two packets: a B REP to inform the new HN,

and a Slave Cancel (SCAN) to inform the old HN to remove it from the

slave table. Here ∆ is chosen large enough to prevent the link fluctuating.

This algorithm does not require any change of 802.11 firmware, i.e., MAC layer

and lower protocol stack. A BEACON frame is simply a broadcasting frame

containing the information described in this section.

Since this algorithm lets the slave nodes monitor the link state to its clusterhead

for cluster updating, we denote it as Link-State-Aware Clustering (LSAC).

This clustering algorithm is fully distributed. An example of LSAC heterogeneous

clustering can be seen in Figure.8.1.

If a LN needs to send packets to another node, it will first forward the packet

to its clusterhead. The clusterhead will first check its ST that whether the des-

tination node is in the table. If not, it will deploy a routing protocol amongst
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Figure 8.1: An example of heterogeneous LSCA.

the clusterheads to find a route to the destination. Because the number of nodes

involved into routing dramatically decreases, so does the overall routing overhead.

8.3 Performance Analysis

8.3.1 Cluster head population

One of the most important metrics of wireless ad hoc networks is the network

connectivity. In a clustered ad hoc work described in section 8.2, the network

connectivity consists of two parts:

1. the connectivity of clusterheads, which is a flat ad hoc subnet, and

2. the coverage of clusterheads should cover the whole service area, i.e., every

slave node should in the radio range of at least one clusterhead.

(Younis & Fahmy 2004) proved that in HEED if Rt ≥
√
5(2 + 1/

√
2))Rc ≈ 6Rc,

the cluster heads are connected, where Rt denotes the inter-cluster communication

radius and Rc denotes intra-cluster communication radius. (Lin & Tsai 2006) has

proved that a lower bound Rt ≥ (1+

√
26+16

√
2

4
)Rc ≈ 2.75Rc is sufficient for cluster

head connectivity.

In (Santi & Blough 2002, Koskinen 2004, Yu & Li 2003, Olafsson 2004, Gupta &

Kumar 1998, Bettstetter 2002) and a number of related researches, the connec-
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tivity of flat ad hoc networks is investigated in terms of network scale A, number

of nodes N , and radio radius r. As claimed in (Yu & Li 2003), in order to keep a

probability that every node is connected to the whole network no less than 90%,

the node density must not be less than 2.5 node per unit area if all nodes have

unit radio radius (r = 1). In (Bettstetter 2002), a lower bound of uniformly dis-

tributed random network connectivity is given. Gupta & Kumar (1998) asserted

that that if n nodes are placed in a disc of unit area in ℜ2 and each node trans-

mits at a power level so as to cover an area of πr2 = (logn + c(n))/n, then the

resulting network is asymptotically connected with probability one if and only if

c(n) → +∞. Penrose (1997) has shown that the longest edge Mn of a minimum

spanning tree of n points randomly distributed in unit area satisfies

Pr(nπM2
n − log(n) < b) = e−e−b

(8.1)

Hence, by setting r =
√

(b+ log(n))/nπ, the connectivity probability becomes

e−e−b

. Now it would be easy to compare how much more power would be needed to

keep the clusterhead based backbone network connected with the same probability

as the flat network:

Rflat =
√

(b+ log(N))/Nπ (8.2)

Rcluster =
√

(b+ log(NH))/NHπ (8.3)

For the second question, we suppose a uniformly distributed random ad hoc net-

work in an area of A. Let F (r) denotes the Cumulative Density Function (CDF)

of distance r between two randomly selected points. Indeed F (r) is a function of

node density ρ, denoted as (Bettstetter 2002)

F (r) = 1− exp(−ρπr2) (8.4)

The probability that a slave node hears at least one cluster head is then

Pr(r) = Pr
{

min
i
di ≤ r

}

= 1− Pr
{

min
i
di ≥ r

}

= 1−
∏

i

Pr {r ≤ di} = 1− (1− F (r))NH (8.5)

here NH is the number of cluster heads. This is called local connectivity of the

network (Olafsson 2004). Thus the probability that all LNs are locally connected,
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denoted as Prall, is

Pr
all

= Pr{(All LNs are connected)}

=
[
1− (1− F (r))NH

]NS
(8.6)

NS is the number of slaves.

Through the above discussion we can find out the suitable number of cluster-heads

with the given radio range and node density.

8.3.2 Overhead Analysis

Overheads in a clustered ad hoc network consist of two types: clustering over-

head and routing overhead. Here we compare the energy consumption taken by

the clustered network proposed with flat ad hoc networks using typical reactive

routing protocol such as AODV.

In a flat network using AODV, routing is a procedure of flooding RREQ packets.

To estimate the energy consumption taken by one routing procedure from node

S to node D, we have

EAODV =
∑

i,i 6=D

(EtRREQ +
∑

j∈Ni

ErRREQ) + ERREP . (8.7)

here EtRREQ stands for the energy of broadcasting RREQ at each node except the

destination D. ErRREQ is the energy consumed by a neighbor node of i for receiving

the RREQ and Ni is the neighbor set of node i. When the RREQ message reaches

the destination node D, D will send a RREP back to S by recuring the path.

From the equation we can see that for each RREQ broadcast, there are multiple

receptions of it. This is called overhearing. The transmission of RREP is point-

to-point. Thus in a large scale ad hoc network if every node has a big number

of neighbors, energy taken by delivering RREP is usually negligible comparing

with that of broadcasting RREQ. Equation (8.7) shows that the energy taken by

flooding RREQ consists of two parts: sending and receiving RREQ. In a fully

connected network, a RREQ will be received by all the neighbours of the sending

node and result in multiple RREQ receptions (overhearing), therefore energy cost

of receiving is much higher than that of sending.
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Figure 8.2: Analytical Overhead Energy Consumption Comparison

Let’s suppose that in the network there are N(N ≫ 1) nodes, equation (8.7)

becomes

EAODVN
=

N−1∑

1

(EtRREQ +NErRREQ) + ERREP

≈ N(EtRREQ +NErRREQ) (8.8)

Here N is the expected number of neighbors of the network, denoted as N =
Nπr2

A − 1.

From above analysis we can find that in a dense flat network using AODV, the

energy consumption of routing overheads follows EAODV ∝ Θ(N2), if A, r are

fixed.

To model the overhead cost of a clustered network, one must also consider the

energy consumed by clustering activities. Thus we introduce a metric—the ratio

of routing events λr and clustering event λc, denoted as

δ =
λc
λr

(8.9)

δ stands for the average number of clustering events between any two routing

events, thus we can derive the energy cost of clustered routing:

EC = EAODVNc
+ δEcluster

= EAODVNc
+ δNc(EtBEAC +N sErBEAC) (8.10)

here Nc, N s are the numbers of HNs and average slaves of one HN, respectively.
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Table 8.1: LSAC Simulation Settings

Area 600m x 600m
No. of Nodes 50 to 300
No. of HNs in Clustered mode 30
AODV mode Tx power 800mW
Cluster mode HN to HN Tx Power 800mW
Cluster mode HN to LN Tx Power 300mW
Rx Power in all cases 400mW
AODV mode radio range 200m
Cluster mode HN to LN radio range 120m
Mobility 2.5m/s, waypoint
Traffic amount 40 random CBR
Simulation time 50sec.
Re-clustering interval 3sec.
Media Access Control IEEE 802.11
Radio path loss factor (α) 4
Bit rate 2 Mbps

Figure 8.2 shows the energy cost of overheads for different scenarios in a square

area of A = 600 × 600m2. In the figure, we present two flat AODV results with

node radio range of 120m and 200m, respectively. For the clustered model, the

radio range between HNs is 200m and between HN and LN is 120m. Four different

clustering rates δ are given. We can see that when δ is less than 10, the clustered

model outperforms flat AODV in most cases. Nevertheless, δ = 1 is enough for

accurate routing. It seems that reducing the radio range of a flat network will

result in less overhead energy consumption. However, this will make two problems

worse: 1) increase the number of hops thus increase the end-to-end transmission

delay, and 2) increase the hop count will make the connections less stable, thus

result in more re-routing procedures, which also consumes more energy.

8.4 Simulation and Result Analysis

Simulation environment settings are as shown in Table 8.1. Figure 8.3 shows

the overall energy cost of some flat AODV and clustered modes in different node

populations. Please note that y-axis is in logarithm scale. It can be seen that

when the network scale is not big (i.e., 50 nodes), the clustered mode does not

give advantages in term of energy consumption. As the network scale grows,

clustered modes show no significant energy drain increment, but flat networks
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Figure 8.3: Energy Consumption Comparison

energy consumption increases dramatically. Since in all the scenarios the traffic

amount is constant, we can assert that in a large-scale flat ad hoc network, the

energy consumed by routing overhead is dominating. On the other hand, a large-

scale clustered network gives much better and stable energy performance. When

the number of network nodes increases, energy taken by routing/clustering slightly

increases.

8.5 LSAC for Homogeneous Networks

The LSAC algorithm given in Section 8.2 is designed for heterogeneous ad hoc

networks, in which the nodes are pre-determined to be HNs or LNs. Also, the

population of HN is pre-deterministric according to the service area. However in

many cases, the total number of nodes and the size of service area are unknown,

or nodes are homogeneous that we cannot pre-determine that which nodes will

act as clusterheads. In this section, we propose a modified LSAC, denoted as

LSAC-ho, which can be applied to homogeneous ad hoc networks.

In order to select clusterhead, we suppose that every node holds a budget variable

for clusterhead election. The budget can be its battery residual, or elapsed time

it has been acting as a clusterhead, etc. Every node has two transmission power

levels: the higher one is used to communicate with other clusterheads when it is

acting as a clusterhead. There are 3 issues need to be considered: cluster forming,

clusterhead re-electing, and clusterhead canceling. Following rules are given:
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1. Cluster Forming When a node is powered-on, it marks itself clusterless

and sets up a random waiting timer Tw and starts to monitor the radio

channel for BEAC. We set Tw > TBEAC so that a node has higher priority

to be a slave of its nearby clusterhead. If no beacon is heard within Tw, the

node mark itself as a clusterhead. Once a node is notified as clusterhead, it

sends a BEAC immediately.

2. Clusterhead Re-electing A slave embeds its budget γb in B REP packets.

If a node is set as clusterhead, it starts a timer Th for acting as clusterhead.

When Th expires, it selects the node that has highest γb as the next cluster-

head and sends it a packet to notify it.

3. Clusterhead Canceling If a clusterhead hears a BEAC from another clus-

terhead, it will set itself as a slave and send a B REP to the other cluster

head.

A cluster forming example is illustrated in Figure 8.4. A state transition diagram

is shown in Figure 8.5. The cluster forming phrase is asynchronous and dynamic

so that a new node can easily join to an existing network or two subnetworks can

merge together seamlessly. Here we deploy the battery residual as the metric to

initiate clusterhead re-electing. However, in a sensor network, if the devices are

too simple to retrieve this information, a random selection is acceptable.
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LSAC gives very good scalability in term of clusterhead population. Figure 8.6

shows the simulation results of average number of clusterheads when total number

of nodes varies. Different intra-cluster radio ranges are presented. We can see that

as the number of nodes grows, the number of clusters converges to a upper-limit.

An empirical formula can be drawn from our simulation results:

NH ≈ 2.4A/πr2 (8.11)

Figure 8.7 shows the comparison between the simulation results and Equation

(8.11).
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8.6 Radio Resource Distribution

In section 8.2 we discussed the radio resource assignment for intra- and inter-

cluster traffic. In case a time-division based assignment is deployed, we need to

consider the durations dedicated to intra-cluster traffic and inter-cluster traffic.

Let’s assume that every node, includeing clusterheads and slaves, generates ᾱ traf-

fic by average. If the nodes are normally distributed, the average traffic generated

by a cluster is

T = ᾱ(
NS

NH

+ 1) (8.12)

The overall traffic generated by all the nodes is

T = ᾱ(NS +NH) = ᾱN (8.13)

The generated traffic is delivered through a clusterhead backbone. The number

of clusterheads involved depends on the route distance. In Chapter 4, we found

a first order approximation of mean hop count of a flat ad hoc network using

reactive routing protocol in term of network area A and radio radius R, depicted

as equation 5.14.

If the network is symmetric, i.e., all the nodes have the same amount of data

to each other. Thus the time duration ratio between inter-cluster traffic and
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intra-cluster traffic is

η =
Tinter

Tintra
=

(D + 1)T
∑

i T
= D + 1 (8.14)

8.7 Concluding Remarks & Future Work

In this chapter we proposed a clustering algorithm based on the link state between

clusterheads and slaves. This algorithm can be applied to both pre-determined

heterogeneous networks (LSAC-he), and homogeneous networks construct a vir-

tual backbone (LSAC-ho). We inspected the routing and clustering overhead of

our algorithm and compared it with that of a flat reactive ad hoc network. The

simulation results show that the overhead energy consumption of a flat ad hoc net-

work is a dominating factor of overall energy drain. By the implementation of our

clustering algorithm, routing and clustering overheads cost becomes very small.

For a homogeneous ad hoc network, it is still possible to apply our clustering

algorithm. Simulations show that our algorithm is scalable.

We used a NS-2 based simulator with some prelimilary results of energy efficiency.

Research in the near future will focus on the following topics:

1. End-to-end packet delivery delay. On one hand, a packet may travel through

more nodes in clustered mode because all the packets must pass through

clusterhead(s). On the other hand, because of the synchronization and less

network overhead, a clustered network may have less radio interference than

that of a flat counterpart.

2. Mobility impacts. Most of the overhead in clustered networks is caused by

beacon broadcastings and receptions. A proper rebroadcasting period of

beacon depends on the mobility of the nodes. An optimal rebroadcasting

period is desired to minimize the clustering overhead when the connectivity

of the network is kept.

3. Comparison with other types of clustering algorithms.



 



9 A GLOBAL SYNCHRONIZATION

SCHEME FOR CLUSTERED SENSOR

NETWORKS

9.1 Introduction

Synchronization is an important issue for many applications in MANET and

WSN. A synchronization scheme helps the nodes coordinate the transmission/re-

ception of data, avoid collisions, analyse and track events correctly, and perform

a more efficient sleeping policy for energy saving. Especially for energy efficiency

in WSN, many works have been conducted to this issue: Gao, Niu & Yang (2009)

applied a global synchornization scheme to periodically put the sensor nodes into

sleep and claimed the network lifetime increase from 22 hours to 20 days on

an IEEE802.15.4 platform. Chalhoub, Guitton, Jacquet, Freitas & Misson (2008)

proposed a MAC scheduling algorithm based on synchronization for IEEE802.15.4

tree-based WSN to save energy. They claimed that 33% energy can be saved by

applying the scheme in NS-2 simulations. Slama, Jouaber & Zeghlache (2008)

proposed a distributed TDMA algorithm for WSN in which global synchroniza-

tion is achievable, and by simulations they found the network lifetime is prolonged

in terms of running time comparing to previous works.

Synchronization in wireless ad-hoc/sensor networks can be done either globally

(i.e., all the nodes in the network agree a common clock time) or locally (i.e., a set

of nodes geographically located close agree a common clock time). On the other

hand, synchronization can be also classified as external (i.e., there is an external

clock reference such as GPS) or internal (i.e., nodes agree a common clock among

themselves). In (Elson & Römer 2002), the authors claim that energy efficiency,

scalability, robustness, and ad hoc deployment are the key principles of time

synchronization design in wireless sensor networks.

In wireless ad-hoc/sensor networks, synchronization is usually performed by pass-

ing a time-stamped message to the nodes that need to be synchronized. Two basic
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ways can be used to perform synchronization between two nodes: sender-receiver

synchronization and receiver-receiver synchronization. In sender-receiver synchro-

nization a pair of nodes adjust their clock by exchanging a synchronization frame

(e.g., NTP in (Mills 1994)); in receiver-receiver synchronization two or more re-

ceivers adjust their clock by receiving a (broadcast) synchronization frame from

a common reference node (e.g., RBS in (Elson, Girod & Estrin 2002)).

Authors in (Li & Rus 2004) proposes a global clock synchronization scheme that

a time-stamped message is passed through a loop of nodes. The scheme can be

applied to both flat topology and clustered topology. They implemented Research

of (Elson & Estrin 2001) deals with synchronization problem in a way called post-

facto sychronization. In post-facto scheme, the synchronization is proceeded after

some nodes in the network have detected an event. Post-facto synchronization is

more energy efficient comparing to the traditional ones.

Authors in (Ganeriwal, Kumar & Srivastava 2003) proposed a global synchro-

nization protocol denoted as TPSN—Time-sync Protocol for Sensor Networks.

In TPSN, first the network runs into a “level discovery phase” by a root node

broadcasting level-discovery message. Once the level-discovery phase is done.

The whole network is synchronized by sender-receiver pair-wise synchronization

initiated by the root node. However, this scheme will encounter heavy collision of

level-discovery messages when the node density increases, because level-discovery

messages are broadcast. (Sommer & Wattenhofer 2008) implemented one-hop

TPSN using their Tinynode platform, which has XE1205 RFmodule, and achieved

an average of 191.54µs synchronization error.

Most of these synchronization schemes rely on direct physical layer operatibil-

ity, i.e., the timestamp can be directly inserted into the outgoing frame during

the transmission and arrival of a frame can be captured by hardware interrupt

when the frame is being received(Maróti, Kusy, Simon & Lédeczi 2004, Elson

& Estrin 2001, Elson et al. 2002, Ganeriwal et al. 2003). For example (Maróti

et al. 2004) implemented their Flooding Time Synchronization Protocol (FTSP)

onto Mica2 moto platform which operates a separated RF module of 433MHz.

(Cox, Jovanov & Milenkovic 2005) adopt the FTSP to an IEEE802.15.4 plat-

form, but synchronization function still relies on a separated RF module Chipcon

CC2420, which is able to capture the time when Start-of-Frame Delimiter (SFD)

is being received. However, the sensor nodes are trend to have higher integration,

smaller size, thus lower energy cost and fault rate. Direct hardware access may
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not available in the future. For example, Jennic JN5139 is a new IEEE802.15.4-

compatible platform shipped with a single chip(Jennic Co. Ltd. 2006).

Moreover, most of the above proposals do not consider the sleeping of sensor nodes

and assume that the sensor node clock is always running after synchronization.

In fact, most sensor platforms employ sleeping mode to save energy, and during

the sleep a node usually runs on a much slower crystal with much higher drift,

compared to that during the normal mode. For example when a Cinet node goes

to sleep, it is operated by a 32kHz ceramic oscillator, instead of the 7.3728MHz

crystal oscillator in running mode. Some applications even employ “deep sleep”

mode, in which the node will loss all the RAM data.

On the other hand, due to the scalability problem of large scale sensor/ad-hoc

networks, it is desired to organize large-scale networks into clustered architecture.

A clustered ad-hoc/sensor network can greatly reduce the network overhead cost

in routing and medium access control (Xu & Gerla 2002, Cai et al. 2003).

In this chapter a global synchronization scheme for clustered ad-hoc/sensor net-

works is proposed. The clustering protocol is a cluster-head-based scheme and

cluster forming (cluster head election) is proceeded by beacon broadcasting peri-

odically sent by cluster heads. The proposed synchronization is globally initiated

by a default cluster head called synchronizer and spread out through the clus-

ter heads in the network. Synchronization is periodically repeated in order to

cope with node mobility and clock driftings. The protocol only assumes a CS-

MA/CA MAC layer as fundamental and no direct hardware access is necessary.

Compatibility with IEEE802.15.4 is discussed later in the chapter.

The rest of the chapter is organized as follows: Section 9.2 describes the global

synchronization scheme. A brief introduction of random competetion clustering

using link state is given in this section as well. Section 9.3 gives performance

analysis of our scheme. Time accuracy of the scheme is also discussed. Section 9.4

presents the settings and results of simulation. Section 5.6 concludes the paper.

9.2 Synchronization Scheme

The synchronization scheme proposed in this paper is based on the LSCA—Link

State Clustering Algorithm proposed in Chapter 8(Gao & Jäntti 2006b). Since
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LSCA is based on random competetion, it clusterizes a network within O(1) time,

thus a fast and simple scheme. Link state monitoring results in a high stability

for cluster maintenance (Gao & Jäntti 2006b).

Round i+1

Time

Round i

TmTc Ts Tm Tc Ts

Figure 9.1: Network timing of LSCA

To enable the global synchronization, the network periodically runs in round,

with each round three phases: re-clustering phase (with time Tc), synchronization

phase (with time Ts), and operating phase (with time Tm), as shown in Fig. 9.1.

Once the network is clustered, it runs into the synchronization phase. Our syn-

chronization scheme is receiver-receiver-based. In order to synchronize the whole

network, a network synchronizer (denoted as S-node) is introduced. The S-node

is a cluster head by default. To guarantee this, the CSMA/CA back-off of S-node

in C-phase is set to zero so that it will always win the contention.

9.2.1 Global Synchronization Scheme

After a clustering phase, the S-node starts to broadcast a Synchronization Beacon

(SB) using inter-cluster communication power PH . A SB frame is marked as

S(l, τd), where l is called synchronization layer (for the S-node l = 0) and τd is a

random differ time as a number of time slots. We set 0 ≤ τd ≤ Ws, where Ws is

the duration of synchronization window (SWIN). Each time slot interval, denoted

as ts, is set long enough so that the radio propagation time tp is negligible, i.e.,

tp ≪ ts.

The cluster heads of the first synchronization layer that have received S(0, τd) will

align their clock to start next SWIN at the same time as they know τd from the

received SB. Again, each cluster head differs the rebroadcasting of SB by a random

time τd. The SB sent by the i-th layer cluster heads is marked as S(i%N +1, τd),

where N is a constant that prevents co-channel interference. Typically N = 3 or

4.

An illustration of this synchronization scheme is shown in Figure 9.2. The idea of
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random delay of SB is similar to CSMA/CA, in which a random backoff is used

to avoid collision. For example in Figure 9.2, nodes 1 and 2 (l = 1) will likely

broadcast SB at different time slots, thus collision of SB on node 3 is avoided.

The idea that the cluster heads having received a SB frame will be aligned to start

next layer synchronization is similar to IEEE 802.11 DCF function (IEEE 1999),

in which network allocation vector (NAV) is used to align the neighbouring nodes

for the next channel contention.
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Figure 9.2: Synchronization scheme for beacon-based clustering (only CLHs are shown
in the figure)

A cluster head may not be synchronized due to the collision of SB frames. In this

case, the cluster head will run in unsynchronized mode until it receives a SB in

next round. However, the probability that a cluster head runs in unsynchronized

mode is very small, as analysed in Section 9.3.

9.2.2 Network operation

A sychronized cluster head starts O-phase to maintain the cluster by sending CB

frames after N ×Ws time, as shown in Figure 9.2. Between two consecutive CB

frames the time is equally divided into a number of windows. Here we still use Ws

as window duration so that the synchronized cluster head can coordinate with

each other. CB frames sent by a synchronized cluster head is now denoted as

CB(i, τd), where i is the synchronization layer of the cluster head and τd is the

random delay in term of ts. The random delay of CB is used to avoid collision
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on those slave nodes that can hear CB frames from different cluster heads at the

same synchronization layer.

A slave node that has received a CB(i, ∗) should keep awaken in next Ws for the

case that CB(i+ 1, ∗) may be heard. Because the cluster heads are synchronized

in layers, CB(i, ∗) should always come before CB(i + 1, ∗). This is illustrated as

an example in Figure 9.3, in which CH1
i and CH2

i are two i-th layer cluster heads,

and CHi+1 is a i+ 1-th layer cluster head.

n

Clustering Beacons

n

For inter−cluster comm. or inactive

Ws

CH1
i

CHi+1

CH2
i

CHi+1
CHi+2

CH1
i

CH2
i

Ws Ws Ws

Figure 9.3: The slave node n can receive CB from cluster heads at same and/or
different layers without collision.

O-phase duration is M ×N ×Ws, where M , denoted as O-phase duration, is an

integer constant dependent on the nodes’ clock precision and network topology

change caused by mobility.

9.3 Analysis

9.3.1 Synchronization Accuracy

In Section 9.2.1 it is mentioned that the signal propagation time tp is negligible,

i.e., tp ≪ ts. If ts = 1ms, which is close to the slot duration defined in IEEE
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802.15.4 standard1, and usually the radio range of sensor nodes is shorter than

200m, we have the radio propagation time tp = 200
3×108

= 0.67µs, which is much

less than ts. This synchronization scheme can make the network synchronized at

1ms level.

Nowadays for embedded sensors, the clock accuracy is achieved to 10−6 (Römer

2001). It means that the clock drifting of two sensor nodes is around 60µs after

one minute. If in O-phase it is chosen M = 100 and N = 4, then synchronization

will be re-proceeded afterM×N×Ws = 6.4 seconds. Our synchronization scheme

keeps an accuracy of 1ms level, which is much greater than the clock drifting in

6.4 seconds.

9.3.2 Synchronization probability

The synchronization scheme proposed in this chapter gives high probability to

synchronize the whole network, because only cluster heads are involved in syn-

chronization phase. Furthermore, each cluster head will have maximally 6 neigh-

bouring cluster heads (as the optimal case in cellular system). The synchroniza-

tion phase is initiated from the S-node, therefore these neighbouring cluster heads

will belong to different synchronization layers on a planar area2.

Suppose that there are n i-th layer cluster heads neighbouring to an unsynchro-

nized cluster head. The probability that this node will be synchronized is: at

least one i-th layer cluster head sends SB in a time slot different from other n− 1

cluster heads, denoted as

Pr(n,Ws) =







n∑

k=1

(−1)k+1Pn
k
CWs

k
(Ws−k)n−k

Wn
s

, Ws ≥ n
Ws∑

k=1

(−1)k+1PWs
k

Cn
k
(Ws−k)n−k

Wn
s

, Ws < n

(9.1)

It can be seen that the probability a cluster head to be synchronized is very high

as Ws ≥ n holds. With Ws = 16 and n = 6, Pr(6, 16) = 0.9966. Figure 9.4 shows

Pr(n,Ws) at different n and Ws.

1In IEEE 802.15.4 15ms time is equally divided into 16 slots between two consecutive CBs.
A beacon frame takes one slot.

2The case that all the neighbours belong to the same synchronization layer happens when
the network is deployed on the surface of a sphere. The cluster head on the opposite pole to
the S-node may encounter such a case.
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Figure 9.4: The probability of receiving an SB without collision

9.4 Simulation Results

We set a simulation scenario of 200 nodes uniformly and randomly distributed in

a square of 600×600 sq.meters. Mobility is considered and a random way-point

model is deployed with a nonzero minimum speed. The total simulation time is

300 sec. and statistics are collected every 10 sec. We set ts = 1ms, Tc = 1sec,

Ws = 16, N = 4, and M = 100 as default. The default value of beacon range

Rb = 100m and inter-cluster communication range Rc = 200m.

Since in LSCA, mobility of nodes will make a cluster head (except the S-node) be

canceled by hearing a CB from another cluster head and join the second cluster

as a slave, and a slave node may rise up to be a cluster head when it doesn’t hear

CB for a certain period, the number of unsynchronized cluster heads will increase

as mobility increases. Figure 9.5 shows the population of unsynchronized cluster

heads at different mobility settings. From the figure one can see that the chance

that most cluster heads are synchronized is rather high.

To cope with the increasing unsynchronized cluster heads caused by mobility, a

shorter O-phase duration is desired. Figure 9.6 shows the population of unsyn-

chronized cluster heads as M increases. Figure 9.7 shows the ratio of collided

S-frames to the total number of sent S-frames. From the figure we can also assert

that the main fact that causes cluster heads unsynchronized is mobility, because
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Figure 9.5: Population of unsynchronized cluster heads vs. mobility

the ratio of collided S-frames is independent of M and node speed.
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Figure 9.6: Population of unsynchronized cluster heads vs. M (average node speed:
6m/s)

9.5 Testbed Implementation

We implemented our synchronization scheme on Cinet testbed, which is an IEEE

802.15.4 platform using ATmel128L controller and CC2420 RF module. In the
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Figure 9.7: SB collision ratio statistics at different M and mobility settings

testbed 10 nodes are deployed as cluster heads3, and they are arranged 1 to 3 hops

away from the S-node. The sink node is allocated as S-node and periodically

broadcasts SYNC frame every 5 seconds. The SYNC frame contains following

data:

1. Sink Address: 2 bytes IEEE802.15.4 short address

2. Sequence number: 1 byte, incremented by SINK at each round

3. Next Sync Time: 4 bytes integer in milliseconds, indicating next SYNC

broadcasting time

Once a cluster head has received a SYNC, it will send a SYNC-ACK frame back

to SYNC in O-phase. By counting the throughput of SYNC-ACK we will have

the statistics of synchronization efficiency. The SYNC-ACK contains the clock

drift of the node so that the accuracy of synchronization is evaluated.

9.5.1 Synchronization performance

Fig. 9.8 exposes the mean clock drift before the next SYNC frame arrives to

each node. One can see that the average of clock error for all the nodes at

3Due to the shortage of nodes, we do not have slave nodes in the test. Anyway this does not
vary the results.
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Figure 9.8: Clock drift of the nodes at end of each synchronization phase

different layers is small with only some drifting from each node. The driftings of

each node is caused by the node’s oscillator which has relatively constant skew

during the test time. However, the first layer nodes (ID=1,2,3) have least variance

comparing to the third layer nodes (ID=8,9,10). This is due to the fact that the

time uncertainty caused by channel access (which is only from the S-node indeed)

at the first layer is much smaller than the nodes at deeper layers. Note the time

unit in the Figure is in milliseconds, this magnitude is much higher than that of

theory (1ms) is due to the timer interrupt of ATmega128L is probably blocked by

other interrupts such as radio communication interrupt.

Fig. 9.9 shows the reception goodput of SYNC-ACK packets. Clearly the first

layer nodes have best goodput and the furthermost nodes (layer 3) have the worst.

As explained in this chapter, a node with more upper-layer neighbors has lower

chance to be synchronized. Layer 3 nodes unfortunately have more upper-layer

neighbors than that of layer 1 nodes, which have only the S-node. Another reason

causing the goodput deterioration is the SYNC-ACK packets from remote nodes

have to travel through longer, thus have higher chance to be lost or dropped.
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Figure 9.9: The reception goodput of SYNC-ACK

9.5.2 Energy performance

Energy performance is tested by putting the nodes (except the Sink, which is al-

ways main-powered) into sleep mode. As shown in Section. 3.2.4, wireless devices

consume very tiny energy when the radio transceiver is turned off. And no node

should transmit when its neighbors are all sleeping.

9.5.2.1 Coping with Clock Drift

Usually the drifting of a crystal oscillation is called PPM (Portion per Million),

denoted as p. We also assume that all the nodes are running at the same clock

rate, denoted as R MHz. The maximum drifting between arbitrary two systems

will be:

∆T = 2× p×T/R (9.2)

where T is the synchronization period.

In an energy-efficiency oriented sensor network sleeping cycle is usually the dom-
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Table 9.1: Energy drain and synchronization performance

Node no. Tslp/T Mean Current (mA) SYNC-ACK goodput (%)
1 0 (no sleep) 43.1 100
2 0.990 2.54 100
3 0.992 2.31 99
4 0.994 2.18 56

inating factor in T, i.e., Tslp ≫ Tc ≈ Ts ≈ Tm, equation (9.2) becomes:

∆T ≈ 2× p× Tslp/R (9.3)

All the nodes that have received a SYNC frame should then set their sleep timer

by Tslp = T− Tc − Ts − Tm −∆T .

9.5.2.2 Energy Efficiency Bound

Energy efficency is defined as the ratio of the time the network is in sleep mode

versus the overall time. We have:

ηe =
Tslp
T

=
T− Tc − Ts − Tm − δ

T

Subsititute ∆T from equation (9.3) and let Tslp → ∞:

ηe ≈ 1− 2p

R
(9.4)

This indicates that the energy saving is only dependent on the accuracy of clock

oscillations throughout the whole network if sleep time is set long enough.

9.5.2.3 Experiment Results

We set up a network with 1 sink and 4 nodes. Node 1 is always on and other 3

nodes use different Tslp. The average current drain of each node in one synchro-

nization cycle is shown in Table. 9.1. In the experiments we set T = 10s, Ts =

50ms, Tm = T − Ts − Tslp. During the sleep, a node runs on a 32.768kHz exter-

nal ceramic clock which has ±50ppm in specification. This means that there are

maximum 2 × 50 × Tslp/32.768/1000 time skew between any two nodes. Taking

Tslp ≈ T, it gives 30.5ms time skew at worst in 10 seconds. The result from node
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2 shows that the syncrhonization scheme can save up to 99% of energy without

loss of performance. As Tslp increases, the probability of missing SYNC frame

becomes higher. Especially for node 4, because the ηe (0.994) is very close to the

theoretical limit (0.9969 from Eq. 9.4), the perfomance deteriorates dramatically.

9.6 Concluding Remarks

In this chapter we proposed a global time synchronization scheme for clustered

wireless ad-hoc/sensor networks. The synchronization is proceeded right after

the cluster-forming phase and continued by network operation phase. In order to

cope with mobility of nodes and clock drifting, synchronization must be period-

ically repeated. Because only cluster heads are involved in the synchronization

and a collision-avoidance mechanism is introduced when broadcasting synchro-

nization frames, this scheme presents a high probability that the whole network

is synchronized.



10 LOAD BALANCED AODV — AN

IMPROVEMENT OF PERFORMANCE

AND FAIRNESS

10.1 Introduction

An ad-hoc wireless network consists of a set of wireless nodes that want to com-

municate with each other (in packet-switching format) without infrastucture (i.e.,

base stations). To achieve this, a distributed routing protocol is necessary in case

that the radio signal of a source node cannot reach the destination node directly.

The source node has to send packets to some other nodes in between and let

these nodes relay the packets to the destination. Basically there are two types of

routing protocols: proactive and reactive. A proactive routing protocol tries to

update the network topology all the time so that every single node has complete

up-to-date network topology. When a routing request initiated, the source node

is able to find a route from its topology table. On the contrary, a reactive routing

protocol tries to find a route on fly when there is a traffic request at source node.

To achieve this, the source node broadcasts a route request packet. It is shown

that reactive routing protocols perform better than proactive ones in terms of

connect times and throughput (Dyer & Boppana 2001).

Amongst the existing reactive routing protocols, AODV (Perkins & Royer 2001)

is one of the most interested. AODV is a distributed protocol based on distance

vector algorithm, which tries to find a route with shortest distance vector. When

a source node has packet(s) to a certian destination to which the source node does

not have a route, the source node broadcasts a RREQ (Route REQuest) packet

to all its neighbors. Upon the receive of RREQ, each intermediate node first looks

up its own route table in cache; if the destination node address is not in the table,

the intermediate node re-broadcasts the RREQ and regards the node that sends

this RREQ as its precedor. This procedure continues until the RREQ reaches

the destination node. The destination node sends RREP (Route REPly) upon
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receiving the first arrivel RREQ. Each intermediate node forwards the RREP to

its precedor until the RREP arrives at the source node. Meanwhile, each node

(including the source node) having received the RREP establishes a route entry

in its route table. A route entry contains the destination node address, next hop

node address, and a TTL (time-to-live) that this entry will expire. In AODV,

HELLO messages are periodically sent in order to maintain a neighbor table and

keep link information up to date.

However, in a practical ad-hoc network, because of high mobility and random

distribution of nodes (e.g., viechles distributed along roads), and edge effect, some

factors casue AODV does not always find an optimal route. For example, nodes

geographically located in the center of a network may already have undertaken

excessive routing task; nodes that have big number of neighbors may potentially

have excessive routing traffic. Therefore, load balancing routing has attracted

researchers and some recent works can be found in (Lee & Gerla 2001, Hassanein

& Zhou 2001, Ganjali & Keshavarzian 2004, Bisnik, Abouzied & Busch 2006, Song,

Wong & Leung 2004).

In this chapter we propose a new scheme that simply utilizes AODV routing

parameters, including route table size, freshness of route entries, and neighor

table size, to achieve better throughput and QoS performance comparing with

original AODV. The scheme requires slight modification of AODV protocol, and

mobile nodes using our scheme can work together with those nodes using original

AODV. Simulations based on NS-2 (Fall & Varadhan 2003) show significant QoS

improvement.

The rest of the chapter is organized as follows. Section 10.2 explains the moti-

vation of our research and explores the related work. Section 10.3 depicts the

parameter control algorithm based on AODV. Section 10.4 presents simulation

environment, scenarios, and the results of comparison. Section 10.5 concludes the

discussion.

10.2 Motivation and Related Work

An example of wireless ad-hoc network is shown in Fig 10.1. In the network node

A wishes to establish a route to D. Two possible pathes exist (i.e., A-E-D and

A-B-C-D). According to the distance vector algorithm, AODV will pick the path
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Figure 10.1: An exmaple network

A-E-D. However, in case of another traffic may have been setup between F and

G, node E will have excessive routing load if A-E-D is selected. A more desirable

path in case is A-B-C-D. This is often referred to as “load balancing problem”.

Authors in (Lee & Gerla 2001) proposed a dynamic load-aware reactive routing

protocol for ad hoc networks. In this scheme, each intermediate node counts the

pending packets in its outgoing buffer and accumulates this information to the

re-broadcasted RREQ. The distination node compares the arrived RREQ packets

from different routes and selects the one with minimum path load. However,

this scheme only counts the outgoing buffer size at each node, and does not

consider potential traffic (e.g., when a network has just started operation, the

buffer is empty for all the nodes). Another disadvantage of such a scheme is that

a destination node has to wait for all the possible coming RREQs. In order to do

this, the destination node starts a waiting timer for RREQs. However, the timer

duration is dependent on the network size, which is usually unknown before the

network is deployed (scalability problem).

In (Song et al. 2004), a load-balance-oriented on-demand routing protocol is pro-

posed for wireless ad-hoc access networks (i.e., some nodes act as Internet gate-

ways and all other mobile nodes communicate with these nodes directly or in-

directly). The authors propose an grouping algorithm based on AODV so that

the routing load is balanced by evenly distributed source nodes into a number of

groups. Basically this is a load-balanced clustering algorithm. It requires that

the gateway nodes must have more radio/battery resources than other nodes.

The authors in (Hassanein & Zhou 2001) considerred the geographical informa-

tion into load-balancing routing. The authors propose a Load-Balanced Ad-hoc

Routing (LBAR) with which a route with minimum cost will be selected. The

cost of a route is an accumulated value summed by the number of active paths in
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each intermediate node and traffic interference (denoted as the number of active

paths of a neighboring node) given by the node’s neighbors. The traffic inter-

ference is the sum of all the active path of a node’s neighbors. The same, it is

the destination’s duty to select a route that comes with minimum accumulated

cost so the scalability problem exists. The protocol has to periodically exchange

traffic interference information between neighbors thus generates more network

overhead comparing to AODV and DSR.

Our work aims to design a load-balancing routing protocol without modification

of routing packet format of AODV, and the scheme should apply available infor-

mation that is present in AODV so that routing overhead will not be increased.

10.3 AODV with Parameter Control

In this section we illustrate our load-balanced AODV scheme. A source node here

performs the same as original AODV, i.e., it broadcasts a RREQ when it has some

data for an unknown destination. For each intermediate node that has recieved a

new RREQ (that is, the sequence number is greater), we control the route finding

procedure of AODV using following parameters:

1. Lrt: the size of routing table of this node.

2. ∆ti: the life time that the i-th entry of the routing table, denoted as ∆ti =

tie−t0, where tie is the expiration time of this route entry and t0 is the current

time that the node is processing the RREQ.

3. N : the size of neighbor table of this node (i.e., the number of neighbors).

4. p: a scaling factor, 0 ≤ p ≤ 1.

For each non-duplicated new RREQ, the node calculates the cost function using

following formula:

C = k

[

pN + (1− p)
Lrt∑

i=1

∆ti

]

(10.1)

The cost function is used as differ time to re-broadcast the RREQ. k is a constant

to scale the differ time in proper range. By this mechanism, the first copy of RREQ



Acta Wasaensia 129

that arrives the destination node has the minimum accumulated cost. Note that

in our scheme there is no need to change the format of AODV routing packets

(RREQ, RREP, RERR, and HELLO), thus giving possibility that in a network

nodes may use either original AODV and load-balanced AODV. This design gives

more flexibility.

As illustrated in Figure 10.1, node E is located at the center of network with the

largest number of neighbors (N = 4). A better route for A and D communication

is to avoid using E, in case of either a route F-E-G has been already established

or will be established in future.

A delayed re-broadcasting of RREQ seems to result in a longer route establish

time. However, the delay gives a diversity of radio channel occupation thus al-

leviates the routing storm effect(Tseng, Ni, Chen & Sheu 2002), which is caused

by simultaneous broadcasting of RREQ when a route-finding procedure is going

on. In (Trung & Kim 2002), the authors proposed delay of RREQ based on the

battery residual, in order to provide more energy-efficient routing.

The scaling factor p in equation (10.1) can be used to adapt traffic mode of

communications. For long-term traffic such as CBR or high volume TCP/FTP

communications, a route may be used up to the end of its life time. In this case p

should be small to let Lr and ∆ti as dominating factors. However, for burst-like

communications such as sensor data transmission and email delivery, p should

be large because an established route is used only for short time communication

even though the life time of the route is much longer. Actually, if changing RREQ

format is possible, we can let the source node specify p because it is aware of traffic

volumn of the incoming communication.

10.4 Simulation and Analysis

We simulate our scheme using ns-2 with both static and mobile scenarios: a

5 × 5 grid static network and a 50-node mobile network in 1000 × 1000m2. We

establish 10 CBR connections and randomly select source-destination pairs in

both scenarios. The details of simulation settings can be seen in Table. 10.1. The

packet rate of CBR varies from 1 to 11 packets per second to emulate light to

heavy traffic environments, respectively. All the links are generated in first 10

seconds and the total simulation time is 250 seconds.
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Table 10.1: Load-Balanced AODV Simulation Settings

Simulation time 250 sec.
No. of nodes 25 (grid), 50 (mobile)
macType IEEE 802.11
ifqType Queue/DropTail/PriQueue
ifqLen variable (50 default)
antType Antenna/OmniAntenna
propType Propagation/TwoRayGround
channel Channel/WirelessChannel
Traffic type CBR
No. of CBR links 10
CBR generate rate variable (1-11pkt/sec)
Packet size 512 bytes
scaling factor p 0.5

We inspect following metrics and compare them with original AODV:

1. Delivery ratio R = nr

ns
, where nr and ns are the numbers of received and

transmitted (traffic) packets, respectively.

2. Average end-to-end delay D =
∑

nr
τi

nr
, where τi is the end-to-end delivery

delay of packet i.

3. Average jitter J =
∑

nr
|τi+1−τi|
nr

.

4. Energy efficiency, in terms of mean energy consumption and its standard

deviation.

In the following plots our scheme is indicated as L-AODV (denoted as Load-

balanced AODV).

Figure 10.2 shows the comparison of packet delivery ratio at different CBR packet

rates. When the network traffic is light (≤2 packets/second), AODV and our

scheme perform identically. However, when the traffic becomes heavier, our

scheme outperforms AODV with approximately 10% increment. Especially at

CBR rate of 4pkt/sec, the difference hits the highest point at 18%. In Figure 10.3

one can see the improvement of end-to-end delivery delay of data packets. At a

medium traffic volume (4 packet/second), our scheme outperforms AODV most

significantly. As the traffic grows, both schemes converge their end-to-end delay.

Figure 10.4 shows the arrival jitter of the two schemes. Once again, at light traf-
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fic volume (≤ 2 packets/second) both schemes exhibit low jitter, and our scheme

gives less jitter than that of AODV when traffic becomes heavier.

We can see from the comparisons of packet delivery ratio, end-to-end delay, and

jitter, our scheme has significant performance improvement at 4pkt/sec CBR

rate. The reason can be explained as follow: when the traffic is light, the radio

channel is not crowded even AODV establishes most routes through the center

of network, therefore both AODV and AODVM perform very good; when the

traffic increases, the relaying nodes at center of the network becomes congested in

AODV but our scheme tries to balance the load using detoured routes thus gives

the most significant improvement; when the traffic becomes excessive, the whole

network becomes congested thus the difference of between AODVM and AODV

is less significant.

Figure 10.5 illustrates amount of routing overhead packets (i.e., RREQ, RREP,

RRER, and HEllO). There is not a big difference between these two schemes.
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(b) Mobile network at CBR=4pkt/sec

Figure 10.2: Comparsion of packet delivery ratio

Because the network traffic load is balanced in L-AODV, communications between

each individual pair gain more fairness in term of end-to-end delay. Figure 10.6(a)

shows the comparison of average end-to-end delay of each individual source/des-

tination pair at traffic load of 4pkt/sec in the grid network simulation.

With L-AODV, nodes in a network are involved into network activity with an more

evenly-distributed manner. This gives fairness in term of energy consumption.

Figure 10.6(b) shows the energy residue and standard deviation of AODV and

L-AODV at different interface queue lengths after 250 seconds of simulation in

the grid network simulation.
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(b) Mobile network at CBR=8pkt/sec

Figure 10.3: Average end-to-end delay of data packets
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(b) Mobile network (up: Jitters per source
destination pair statistics; down: Jitters at
different mobility)

Figure 10.4: CBR jitter comparison

10.5 Concluding Remarks & Future Work

In this chapter we proposed a modified AODV routing protocol (L-AODV) that

can improve packet delivery ratio, end-to-end delay, packet arrival jitter by balanc-

ing the routing load at route establishment phase. The proposed scheme utilizes

some routing parameters that are already available in AODV to establish routes

which can balance the load throughout the whole network. NS-2 simulation re-

sults proved the advantages of our scheme by comparing with original AODV. In a

low traffic load network, L-AODV does not exhibit advantages over AODV; when

the network traffic increases, AODV puts excessive load on the nodes located at

the center of network thus the QoS performance is significantly worse than that

of L-AODV, because L-AODV tries to find a route with less traffic between the

source and destination.
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(b) Mobile network

Figure 10.5: Normalized routing overhead comparsion
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Figure 10.6: Fairness and Energy Efficiency

We are still working on this scheme. There are a number of issues pending:

1. We are going to implement traffic volumn of each link and this will affect

the scaling factor p as discussed in the paper.

2. An alternative solution to improve the performance of delivery is to balance

the load using multipath routing. Since AODV by nature will send multiple

RREP back to the source node. It is possible to use all the established paths

and send packets depending on the load of each path.



 



11 LOCALIZED MULTIPLE NEXT-HOP

ROUTING PROTOCOL (LMNR)

11.1 Introduction

Wireless packet-switching network routing protocol has been an intensive research

topic in recent years. Basically there are two types of routing protocols in aspect

of the number of paths selected: single-path routing and multi-path routing.

Multipath routing is considered to be more able to tolerate link failures, especially

when the mobility of network nodes is relatively high.

Using multipath to deliver the packets has advantages in energy efficiency: Baek

& de Veciana (2007) claimed that the network lifetime is prolonged by balancing

the traffic using multipath proactive routing; Popa, Raiciu, Stoica & Rosenblum

(2006a) demonstrated that energy could be saved by reducing the congestion ef-

fects; energy can be also saved by reducing the communication overheads because

a multipath routing scheme is usually more robust in link failure.

Most of the multi-path routing schemes presented are either targeted to find a

number of disjoint routes or energy efficient routes (Ganesan, Govindan, Shenker

& Estrin 2001, Li & Cuthbert 2004, Popa, Raiciu, Stoica & Rosenblum 2006b).

In these schemes, traffic load is either distributed or sent on the best (e.g., most

energy-efficient, best in QoS, etc.) path. In the first case, i.e., distributing load on

multiple paths, the destination node has to cope with synchronization of arrival

packets. Choosing the best path could avoid synchronization issues, but the

process could easily drain out battery in the participating nodes because the

source node continuesly uses the path until the link breaks (due to the node

mobility or death).

In this chapter we propose a new multipath routing scheme. We classify all the

paths between a source-destination pair in to two types: I) node disjoint paths,

and II) local paths (to the next hop). Instead of sending packets parallely using

type-I paths, we use single route between source and destination, but can be
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adjusted locally by type-II paths. The novelty of our scheme is that the source

and intermediate nodes are given liberty to choose from multiple local paths to

the destination based on a cost function. This will reduce delay caused by global

re-routing procedure and increase the network performance. We demonstrate

our scheme by extending Ad-hoc On-demand Distance Vector (AODV)(Perkins

& Royer 2001) routing protocol, exploring the HELLO messages in AODV to

update cost of each indivisual node. Based on this idea, hereafter we call our

protocol Localized Multiple Nexthop Routing Protocol (LMNR).

11.2 Description of LMNR

11.2.1 Modified AODV Scheme - Reverse Routing

As AODV retricts intermediate nodes to have single route to the destination1,

this will decrease the link stability and thus the delivery performance is degraded.

We modify the route discovery process to incorporate multiple routes: when an

intermediate node j receives another copy of RREQ from the same source, it will

check the hop count to the source2. If the new RREQ has a smaller hop count

(i.e., shorter distance to the source node), it updates the route entry as original

AODV does; if it has equal hop count as the one(s) in route table, node j simply

adds a new route (multipath to source). The algorithm is given in details in

Listing 11.1.

Listing 11.1: RREQ Processing at Intermediate Node(s)

Receive RREQ(hc, sn, prc, src, dst)

hc: hop count to source

sn: sequence number

prc: Predecessor who sends this RREQ

src: Source addr

dst: Destination addr

BEGIN

1In a reactive routing procedure such as AODV, a Route REQuest (RREQ) packet is broad-
cast by a source node which does not know a path to a destination node. Upon receiving a
RREQ, an intermediate node establishes a temporal route entry in its routing table. Duplicated
RREQ from the same source node will be ignored. The temporal route entry will be either con-
firmed when the node receives a Route REPly (RREP) from the destination, or expired when
time out.

2In a RREQ message a hop count field is initialized as 0 by the source and incremented by
each intermediate node.
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Disjoint Multipath Route

DS

LMNR Route

Figure 11.1: An example of local-multipath routing result in 5× 5 grid network

IF(exist RouteEntry to src in RouteTable)

IF(hc > RouteEntry.hc)

Drop RREQ;

ELSE IF(hc == RouteEntry.hc)

IF(prc != RouteEntry.prc)

Add a new entry;

ELSE

Drop RREQ;

ELSE

Replace RouteEntry with new one;

Forward the RREQ;

ELSE

Add a new entry;

END

The destination node follows the same principle as intermediate nodes: it sends

out RREP to all RREQ’s it receives except the ones coming with larger hop count.

An intermidiate nodes upon receiving a RREP multicasts it to all its predecessors

(established during the RREQ processing phase) in its route table.

By this mechanism, alternate (and equal hop count) paths at each intermediate

nodes for one source-destination communication pair will be found. With the

knowledge of the routes each intermediate node can now avoid using (next-hop)

nodes which have higher cost function, without increasing the number of hops to

the destination. An example of LMNR result is given in Figure 11.1.
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11.3 Local Path Selection by Periodic Updates

Once the route-establishment procedure is completed, source-destination pair and

the intermediate nodes involved will select a single path amongst all the available

(local) multipaths. However, dynamic adjustment should be considered so that

the intermediate nodes either shall not drain out all their energy, or alleviate and

balance the routing load. For this purpose we modify the AODV neighbor table,

and introduce a new metric Node Cost (NC), which is put into neighbor table.

Actually the node cost function can be choosen from the following metrics (or

a combination of them). First it can be a congestion measurement which is

proportional to the MAC layer contention (backoff) window (CW) size, if IEEE

802.11(IEEE 1999) CSMA/CA is applied. It is denoted as

NCi = CWi/CWmax. (11.1)

NC can also be a measure of network layer information, for example, the outgoing

queue buffer occupation ratio:

NCi = Qi/Qmax, (11.2)

or simply the packet leaving rate at the network layer queue:

NCi = 1/µi. (11.3)

If AODV routing protocol is applied, NC can be a measure of routing table size

and freshness of route entries:

NCi =

Ki∑

k=1

∆tk, ∆tk = tke − t0 (11.4)

where Ki is the size of routing table (number of entries) of node i, tke is the k-th

entry’s expiration time, and t0 is the current time.

Using AODV HELLO message, which is periodically sent by all the nodes, NC

can be exchanged so that a predecessor can dynamically select its next-hop node

which has the least cost function.

It is possible that for a given intermediate node all of its next-hop nodes may



Acta Wasaensia 139

h DS
k

ji

Figure 11.2: Back-propagation of LMNR

have very high cost. To cope with this problem, a back-propagation mechanism

is introduced. The back-propagation logic can be described as: if node i sees that

all its next hop nodes’ cost function (NC) are greater than a threshold, say ψ,

node i will back propagates this status to its predecessor so that its predecessor

is able to give up using this path. In Figure 11.2, node i will inform node h if

both nodes k and j have cost function greater than the threshold.

11.4 Simulation: Parameters & Results

We simulate our scheme by modifying AODV routing protocol in ns-2 (Fall &

Varadhan 2003). We compare LMNR with original AODV in end-to-end delay,

jitter, packet delivery ratio, and network overhead ratio. 10 Constant Bit Rate

(CBR) traffic flows are generated and sources and destinations are randomly se-

lected. Packet generating rate starts from 1 packet/sec to 15 packet/sec to sim-

ulate different traffic loads. Equation (11.4) is applied. Aother settings are the

same as those in Table.10.1.

Fig. 11.3 shows a routing example of the two protocols we have compared. In the

figure the dotted blue path is the result of AODV, and dotted magenta lines are

the links utlized by LMNR.
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Figure 11.3: Routing result of LMNR and AODV

11.4.1 Throughput Performance

Figure 11.4(a) shows the comparison of end-to-end delivery delay between ADOV

and LMNR. It can be seen that at low traffic load (i.e., 1-2 packet/second CBR),

AODV and LMNR perform very similar, because such a traffic load does not jam

the radio channel and links are stable. As the taffic volumn increases, LMNR

outperforms AODV significantly, because selecting a local next-hop candidate

takes much less time than that of re-establish a new end-to-end route. When the

traffic volumn becomes overwhelmning, the delay in LMNR also increase because

all the links are jammed.

Figure 11.4(b) shows the packet delivery ratio of LMNR and AODV. The same

as the end-to-end delivery delay, LMNR performs better at moderate CBR rate.

At both low and high traffic volumn AODV does not exhibit performance disad-

vantage.

Figure 11.4(c) gives the jitter measurement of CBR. There is a clear reduction

of jitter in LMNR comparing to AODV. A small jitter is important in real-time

wireless sensor/actuator networks because in which most control algorithms are

based on a synchronous arrival of sensed data.
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(d) Routing Overhead Comparison

Figure 11.4: LMNR Simulation Results

In Figure 11.4(d) we can see the routing overhead ratio of LMNR and AODV. At

moderate traffic volumn, the routing overhead generated by LMNR is only 60%

of that by AODV. This is caused by local next-hop selection does not require

any extra routing overhead. It is also observed that at this traffic range LMNR

reaches its lowest overhead ratio. At low traffic, periodical next-hop updating of

LMNR does merely give more overhead but not any benefit to packet delivery. At

high traffic, since the whole network is jammed and LMNR local selection fails.

This will turn the nodes to use original AODV route re-establishment eventually.

11.4.2 Energy Efficiency Performance

Fig. 11.5 shows the average node battery residual after each simulation. It can

be seen that at low traffic volumne, LMNR outperforms AODV definitely. As the

traffic load increases, the whole network is more engaged in communications and

battery residual drops, and LMNR trends to have no further energy efficiency
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Figure 11.5: Battery Residual after all communications

versus AODV. However, due to the routing traffic distribution feature of LMNR,

the variance of battery residual is much smaller than that of AODV in all the

cases as the errorbars indicated in the figure. This means LMNR network will

have longer life time than that of AODV even the average battery residuals are

identical.

11.5 Conclusion

In this chapter we proposed a multipath routing protocol (LMNR) which estab-

lishes a end-to-end route by dynamically selecting optimal local paths. The NS-2

simulation results show that the proposed protocol gives more robustness to wire-

less packet networks. From the simulation results we can conclude that LMNR

is suitable for the wireless networks that have moderate traffic volumn in term of

packet delivery goodput and energy efficiency.



12 SELF-ORGANIZATION IN WIRELESS

CELLULAR NETWORKS – TWO-HOP

TWO-SLOT CDMA UPLINK

MULTI-CELL CONSIDERATIONS

12.1 Introduction

In broadband CDMA cellular networks, a critical problem is cell planning, i.e., to

find suitable location for base stations so that the inter-cell interference can be

minimized. At a starting stage, as the network is supposed to support few users,

base stations are scattered and cell planning problem is trivial. As the number of

users increases, so does the demand for network capacity. Cell splitting is applied

to increase the network capacity when initially the base stations are sparsely

distributed. However, 1) the cost of infrastructure increases when more base

stations are deployed; 2) base station placement becomes more difficult as the cell

radius is getting smaller; and 3) splitting cells introduces more frequent handovers

and will eventually surpass the network processing capability. Multihop cellular

system is desirable when these problems emerge (Lin & Hsu 2000, Wu, Qiao, De

& Tonguz 2001, 3GPP 1999, Zadeh & Jabbari 2001a). A multihop cellular system

has advantages in terms of energy reduction and capacity enhancement.

In (Yamamoto & Yoshida 2004), a two-hop uplink model using Frequency Division

(FD) is proposed for CDMA cellular system. A mobile node may send data to

an intermediate node, which acts as a repeater, instead of communicating to the

base station directly. A repeater can transmit and receive simultaneously using

two sets of antennas (as well as two frequency bands). The authors analyse the

capacity of such a network and assert that the inter-cell interference is reduced

and thus the network capacity can be increased. However, duel-mode terminals

working at different frequencies are required in such a network.

Authors of (Zadeh & Jabbari 2001b) inspect the performance of a multihop CDMA
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cellular system with cellular overlay (which is done by deploying wireless routers

in a large cell). The characteristic function of interference has been analyzed using

moment expansion. They conclude that power consumption is highly decreased

when more routers are deployed.

A proposal of integrated Cellular and Ad-hoc Relay (iCAR) network is presented

in (Wu et al. 2001). In such a network a number of relaying nodes working in

ad hoc mode are deployed by the cellular operator to relay the traffic to the base

stations. Each node, including user terminals and relays, has two interfaces for

directly cellular communication and relay communication respectively. Authors

proof that the network capacity is increased in term of reducing the call block

rate.

In (Radwan & Hassanein 2006) a numerical analysis is given for multihop CDMA

uplink. The authors claim a increase of capacity both in simultaneous calls and

overall data rate at base station when multi-hop is deployed. However, the analysis

is focused in a single cell and inter-cell interference is ignored. Also, the way of

implementing power control, especially between mobile nodes, is not mentioned

in the paper.

In this chapter we propose a simple multihop scheme for uplink communications

of packet-switch CDMA cellular networks. In such a cellular network each cell

is concentrically divided into two areas: the inner area that is close to the base

station and the outer area to the boundary of the cell. Mobile nodes far away

from the base station will deliver their packets to those are in the inner area,

and the inner area nodes will relay the packets for the outside nodes and, of

course, transmit their own packets to the base station. Besides the simplicity of

implementation, the advantage of this scheme is that the mobile nodes need only

one aerial interface, whereas in most previous discussions two individual antennas

are required for relaying mobiles/nodes.

The novelty of our proposal comparing with other multi-hop solutions can be

listed as

1. Less Overhead: the proposed scheme doesn’t require any extra radio band

for relaying data, and no routing protocol is needed;

2. Less Infrastructure: no fixed relaying nodes are required, the relaying func-

tion is performed autonomously and automatically by the mobile nodes in
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the network;

3. Simplicity: since no extra routing protocol and infrastructure are needed in

this scheme, there is no need for mobiles to bear a heavy, complex protocol

stack.

It is worth noting that this scheme can be extended, i.e., the hop number can be

more than two. However, the analysis of capacity and details of implementation

for more hop numbers is not covered in this paper. In order to keep the analysis

and implementation simple, we consider only two-hop scheme here.

The rest of this chapter is arranged as follow: Section 12.2 describes the modeling

of our scheme. We give analysis of the throughput of the proposed scheme and

compare it to single-hop CDMA system in Section 12.3 for the case that mobile

nodes use constant transmit power, and similar comparison is given in Section

12.5 for the case that power control is applied. Sections 12.4 and 12.6 present the

simulation settings and results for the constant transmit power case and power

control case, respectively. Section 12.8 concludes the work.

12.2 System Model

We assume a packet-switching variable spreading factor direct sequence CDMA

(VSF-DS-CDMA) cellular system in which the mobile nodes are aware of the

distance to the base station1. All the cells are the same in size with radius R.

A cell A in such a system is divided into two concentric areas: the outer area

from which the distance to the base station is larger than aR and the inner area

from which the distance is less than and equal to aR (denoted as AO and AI ,

respectively and AO +AI = A), where a ∈ (0, 1) is called 2-hop splitting factor.

We normalize the cell radius R = 1 for simplicity. In the first stage of analysis, we

assume that all the mobile nodes use a fixed transmission power P . We consider

an interference-limit system. Consequently, an arbitrarily located receiver sees

constant interference power I which depends only on the node density ρ and P ,

i.e., I ∝ ρP .

The system is supposed to be synchronized, i.e., communications are divided into

1In practice, this can be achieved by measuring the Received Signal Strength Indication
(RSSI) of a downlink pilot channel.
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time slots. The synchronization can be simply achieved by listening to periodic

broadcasting of synchronous pilot beacon from base stations. We propose a “Two-

Hop Two-Slot” (2H2S) uplink scheme as following:

1. All the mobile nodes in AO transmit packets at odd-numbered slots; and all

the mobiles nodes in AI transmit packets at even-numbered slots;

2. A node in AO sends its packets to a certain nearby node in AI . The nodes

in AI act as relays for the outer nodes.

BS

R=1

a

Figure 12.1: A cell of 2H2S CDMA cellular system

Figure 12.1 illustrates the mechanism of 2H2S.

12.3 Capacity Analysis – Fixed Power Trans-

mitters

Due to the symmetry of cellular pattern, we consider the uplink capacity of one

cell according to the co-channel interference from its first tier neighboring cells.

The capacity of one uplink communication i can be expressed as

ri(xi) =
WP

γ(
∑

j 6=i Ij + ν)
x−α
i (12.1)
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where xi is the distance between the mobile node i to its base station, α denotes

the path loss factor, W is the chip rate (bandwidth), P is the transmission power,

γ is the required SINR ratio for correct reception, and Ij denotes the co-channel

interference, which consists of both intra- and inter-cell interference, ν denotes

the noise, which in an interference-limit system can be negligible.

We assume all the mobile terminals are uniformly and independently distributed

(i.i.d.) in the geographical area, and the node density is denoted as ρ. Based on

this assumption, we treat the intra- and inter-cell interference as two statistical

constants.

12.3.1 Single-hop (i.e., Conventional CDMA)

In a single-hop CDMA cellular system, all the mobile nodes send packets to

the base station directly. Modulation and coding are kept constant and data

rate is controlled simply by varying the spreading factor. A node in position

0 < x ≤ R ≡ 1 achieves uplink data rate:

r(x) =

{
WP

γ(Ia+Ib)
x−α 1 ≥ x ≥ xm

rm 0 < x < xm
(12.2)

where xm =
(

WP
γ(Ia+Ib)rm

)1/α

which indicates the distance boundary that a node

can achieve maximum data rate rm, and rm is the maximum rate restricted by

modulation and coding at the radio interface, Ia and Ib are intra- and inter-

cell interference, respectively. Due to the orthogonality of CDMA, Ia and Ib are

considered as statistical constants, denoted as

Ia =

∫∫

A

Pρp(d)d−αdA (12.3)

Ib = 6

∫∫

B

Pρp′(d)d−αdB (12.4)

where A is the cell we are concerning, B is one of the 6 first tier co-channel cells

of A, p and p′ are the probability distribution of mobile nodes to the base station

of A in cell A and cell B, respectively. For the first-order approximation, we treat

the cells as perfect circles with R = 1, and the distance between two neighboring

base stations is therefore
√
3 (suppose the reuse factor K=1 in CDMA), thus we
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have

Ia = ρP

∫ 2π

0

∫ 1

0

2πr1−αdrdφ,

Ib = 6ρP

∫ 2π

0

∫ 1

0

2πr(r2 + 3− 2
√
3r cos(π − φ))−

α
2 drdφ

where p(r) = 2πr is the expected node number at distance of r within the cell A,

and p′(r) =
√

r2 + 3− 2
√
3r cos(π − φ) is the expected node number at distance

of r within the cell B, respectively. Fig. 12.2 shows the idea of the upper equation.

base station

mobile station
R=1

x =
√

r2 + 3− 2
√
3 cos(π − φ)

D=
√
3

r φ

Figure 12.2: Uplink co-channel interference (suppose reuse factor N = 1 in CDMA).

According to Equ. (12.2), the overall capacity of single-hop CDMA is then

Γcdma =
1

A

∫∫

A

p(x)r(x)dx (12.5)

Here we treat the path loss factor α as an integer for integral simplicity.

12.3.2 2-hop 2-slot

Since in 2H2S scheme, the throughput of uplink communication at the base sta-

tion happens every two time slots, Thus the overall uplink throughput of 2H2S

observed at base station is the even-number slot throughput Γe divided by 2. We

have

Γ2h2s = Γe/2 (12.6)
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In an even-numbered time slot, only the mobile nodes in AI transmit to the base

station, thus the interference that a receiver sees becomes I ′ < I. I ′ = I ′a + I ′b is

related to the splitting factor a, denoted as

I ′a = a2Ia (12.7)

I ′b = 6

∫∫

B′

Pρp′(d)d−αdB′ (12.8)

where B′ is the inner circle area AI of a neighboring cell B.

The achievable data rate becomes

r̃(x) =

{
WP

γ(I′a+I′
b
)
x−α x ≥ x̃m

rm x < x̃m
(12.9)

where x̃m =
(

WP
γI′rm

)1/α

.

Consider the case a > x̃m, i.e., cell size is big or equivalently I is large (xm <

x̃m ≪ 1), an interference-dominating system, Γe is derived as

Γe =
1

AI

∫∫

AI

p(x)r̃(x)dx (12.10)

12.3.3 Numerical Analysis

First we demonstrate that the throughput of 2H2S is greater than that of single-

hop CDMA with a suitable splitting factor a ∈ (0, 1).

When the cells are geographically divided into two transmission areas, both intra-

and inter-cell interference are reduced. The intra-cell interference is reduced due

to the reduction of number of transmitters because only inner-area mobiles are

involved in interference counting; the inter-cell interference is reduced due to 1)

the reduction of the number of transmitters in the co-channel cells, and 2) the

transmitters are located in AI of co-channel cells thus giving less interference than

the case that there are transmitters located in both AI and AO. Figure 12.3 gives

a numerical comparison according to equations (12.5) and (12.10). One can see

from the figure that when the splitting factor a ∈ (0.15, 0.4), the 2H2S scheme

outperforms single-hop CDMA.
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Figure 12.3: Comparison between Γcdma and Γe/2. Parameters are chosen as W =
1.25MHz, rm=5Mbps, α = 3, ρ = 100, P = 0.1W.

12.3.4 Relay Selection

A mobile node in AO can estimate the distance to the mobiles that are in AI

in even-numbered time slots (when the inner nodes are transmitting to the base

station). A triangular relay selection scheme is implemented to let a mobile in

AO to select a relaying node in AI as follows: Let R denotes the set of mobiles

in AI as relay candidates and the distance from each relay to the base station

is di, (i ∈ R). For a transmitting node j in AO, it has distance to each relaying

node denoted as dij. We choose the relay node based on

argmin
i

= min{qdi + (1− q)dij} i ∈ R (12.11)

where q ∈ [0, 1] is a scaling factor.

This relay selection scheme requires the knowledge of inner-cell terminal locations.

There are several ways to obtain it: 1) Once again, this can be obtained from the

estimation of RSSI when the inner-cell terminals are communicating with the base

station in odd-numbered slots. 2) All the nodes are equipped with a GPS device

so that they can give out their geographical location in each outgoing frame to

base station, other nodes can get this data by overhearing the packets.
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Table 12.1: Simulation Settings (*p0 = 0.7, p1 = 0.1, p2 = 0.05, refer to Figure 12.5)

Simulation time 300(sec.)
Cell radius R 1000(m)
Path loss factor α 4
Slot duration τ 10(ms)
P 0.1(W)
Bandwidth W 1.25(MHz)
Noise N0 10−12(W)
Packet size L 10(bit)
Minimum rate rmin 1(kbps)
a varying
q 0.5
No. of nodes N 20, 50
Mobility mode directional random walk*
Average node speed varying

12.3.5 Fairness

If we assume that each node in the cell generates the same amount of traffic

as other nodes, one constrain given here is that Γe should carry the traffic for

both the nodes in AO (denoted as Γo) and themselves. Since nodes are uniformly

distributed, the traffic generated from AI and AO are proportional to a and 1−a,
respectively. This gives the constrain that

Γe ≥
1

1− a
Γo (12.12)

12.4 Simulation of Fixed Power Transmitters

A MATLAB simulator is deployed and settings of simulation are given in Ta-

ble. 12.1. In the simulator, 7 cells consist of a multiell environment as shown in

Figure 12.4, in which the inner-area nodes are represented by a red circle and

outer-area ones are represented by a blue one. We consider the throughput of

the central cell due to the symmetry of the network. The nodes in other cells act

only in interference calculations. We compare the throughput of 2H2S with pure

CDMA by inspecting the time span of delivering 5000 packets from each of N

mobiles to the base station.

For each time slot, the number of packets ηij that can be delivered from node i



152 Acta Wasaensia

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

time=8 sec

sf=0.5

1,d=2

2,d=2 3,d=4

4,d=5
5,d=3

6,d=4

7,d=5

8,d=6
9,d=5

10,d=1

 

 

Figure 12.4: Simulation environment. The nodes in AI are marked in red color. In
the central cell, the nodes are marked by their (ID,direction) couple.

to j is dependent on 1) the maximum data rate rm, if it can be reached, or 2) the

instantaneous C = W log2(1 + SINRij), if the outgoing queue is long enough, or

3) all the outgoing packets in the transmitter’s queue if the instantaneous capacity

can carry all of them, denoted as

ηij = min

{
rmτ

L
,

⌊
W log2(1 + SINRij)

rmin

⌋

, qi

}

(12.13)

where rmτ
L

is the number of packets can be delivered using maximum rate, ⌊.⌋ de-
notes floor operation, rmin is the minimum data rate, i.e., one packet transmitted

in one slot, qi is the queue size of transmitter i. SINRij is defined as

SINRij =
gijP

∑

k,k 6=i

gkjP + ν
, with gij = d−α

ij (12.14)

The directional random walk mobility scheme (Cai et al. 2003) with border wrap-
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p0

p1 p1

Figure 12.5: Directional random walk mobility scheme

around (i.e., a torus area) is shown in Figure 12.5. A node at each moment has 5

possible directions to move, with each direction a different probability. We have
∑

i pi = p0 + 2p1 + 2p2 = 1, where p0 = max{pi} denotes the moving direction

that is randomly selected when the simulation starts. And other possibilities give

fluctuation of the movement. Each cell is a torus area so that a node moves out

from its cell will appear (move in) from the opposite side of the same cell.

Figure 12.6 shows the comparison of 2H2S with single-hop CDMA at different N

and average node speeds (with splitting factor a = 0.3). Our scheme outperforms

the single-hop CDMA with 50% of delivery time under different mobility circum-

stances. One can also see that the delivery time shrinks as the mobility increases.

This is a well proof of the conclusion of “mobility increases the capacity of ad hoc

networks” in (Grossglauser & Tse 2002).

Different values of a results to different delivery performances, as shown in Fig-

ure 12.7. If we consider the system throughput as the inverse of delivery time, this

figure matches well with the numerical result shown in Figure 12.3. When a is too

small, it is becomes difficult for the mobiles in Ao to find a relay; when a becomes

large, then most mobiles are acting as relays but there is not much traffic coming

from the outside area Ao for relaying, thus resulting in a waste of bandwidth.

Indeed, when a = 1, the performance of 2H2S become 50% of single-hop CDMA

system.

In single-hop CDMA with out power control, a major problem is fairness, i.e.,

the nodes close to base station take advantage in communication. Figure 12.8

illustrates that our scheme produces better fairness of communication than that of
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single-hop CDMA. The figure shows the cumulative distribution function (CDF)

of average delay of delivering 5000 packets from each node to the base station.

12.5 2H2S—Power Control

In the previous sections we focus on the assumption that all the mobile nodes use

a fixed transmit power. However, especially in the inner area AI , power control is

necessarily desirable for the fairness of communications. The fairness problem is

described as that the mobile nodes close to the base station will take more radio

resources than those are far away from the base station, if all the mobile nodes

use a fixed transmit power when communicating with base station.

In this section we consider the power control issue. For practical reasons, we pro-

pose that power control is applied only in the inner area AI , i.e., when the mobile

nodes need to transmit to the base station. The outer area power control (i.e.,

for mobile-to-relay communication) is possible, but leading a way too complex to

be implemented: due to the deployment of power control of inner-area nodes, it

becomes difficult for the outer area nodes to estimated transmit power, and fast

power control (frequent pilot broadcasting from the inner-area nodes) will take

too much radio resource. So, we assume that all nodes in AO transmit at a con-

stant power P . Power control is deployed only in AI . As a result, the throughput

of AO-to-AI communication is unchanged.
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The single-hop CDMA capacity using power control has been explicitly illustrated

by (Viterbi & Viterbi 1993) and a large number of related works. Here we apply

the similar way to analyse the capacity.

The capacity is measured as the number of accepted mobiles, denoted as K.

Considering the inter-cell interference from the first tier, and the accepted user

data rate is ra, we have

ra =
WPr

γ(Iak + Ibk + ν)
(12.15)

where Pr is the signal power at the receiver, Iak, Ibk are intra- and inter-cell inter-

ference in power control mode, respectively. For a mobile node having a distance

to its own base station r1, its transmit power is given as Pt(r1) = Prr
α
1 , and it

gives interference to a neighboring base station with distance r0 as

I∗(r0, r1) = Pr

(
r1
r0

)α

(12.16)

Iak is given as Iak = (K − 1)Pr, in case that all the users are accepted (satisfied),

K = πR2ρ = πρ. Note that R = 1. Ibk is given by

Ibk = 6

∫∫

B

ρPr

(
r1
r0

)α

dB(x, y)

where B is one of the six neighboring cells, r1, r0 are the distances depicted in

eq. (12.16), respectively.

The capacity of single-hop CDMA with power control can be obtained as

Γcdma−pc = Kra = πρra (12.17)

In the case of 2H2S, the cells are split into two concentric areas. We apply the

same mobile density ρ. For the inner area AI , the accepted user data rate becomes

to be

r′a =
WPr

γ(I ′ak + I ′bk + ν)
(12.18)
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The intra-cell interference becomes to be

I ′ak = (πρa2 − 1)Pr

The inter-cell interference is

I ′bk = 6

∫∫

B′

ρPr

(
r1
r0

)α

dB′(x, y)

where B′ is the one inner area of six neighboring cells.

And the capacity of 2H2S becomes to be

Γ2h2s−pc = K ′r′a/2 = πρa2r′a/2 (12.19)

A numerical result comparing Γcdma−pc and Γ2h2s−pc can be seen in Figure 12.9.

12.6 Simulation of Power Control Scheme

The same settings as Sec.10.4 are given in the simulations of power control case.

We compare the uplink throughput by initializing 5000 packets to all the nodes
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Figure 12.10: Throughput comparison of 2H2S and single-hop CDMA in power control
mode

and measure the delivery time. Figure 12.10 shows the simulation results of power

control mode with 20 and 50 nodes per cell, respectively. The figure also shows the

simulation results of single-hop CDMA using power control in both populations.

From the figure one can see that the 2H2S scheme outperforms single-hop CDMA

when the splitting factor a ∈ (0.2, 0.8).

12.7 Outter- and Inner-cell Capacity Estimation

In Section 4.2 we proposed a relay selection scheme. Base on this scheme, the

capacity between the outer area AO and inner area AI can be estimated.

Assume that the node density is high enough so that an outer tier node can always

find a relay which has shorter distance than from the tier node to the base station.

We consider the situation shown in Figure 12.11. Nodes are uniformly distributed

in a half disc of radius a:

pI(d, φ) =
2

πa2
d, 0 ≤ d ≤ a, −π

2
≤ φ ≤ π

2

Distance between an outer tier and an inner tier node is

X2 = d2I + d2O + 2dIdO cos(φI − φO),
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X

R=1a

(do, φo)

(dI , φI)

Figure 12.11: Relay selection scheme

then the cummulative density function (CDF) of distance X for di = DI , φi = ΦI

is given as (12.20). For the uniform distribution of the relay node at (do, φo), the

distribution follows (12.21).

Pr(X ≤ x) = Pr(D2
I + d2o − 2DIdo cos(ΦI − φo) ≤ x2), x ≥ 0 (12.20)

Pr(X ≤ x |do, φo ) = Pr{max{0, (do cos(φI − φo)−
√

d2o cos
2(φI − φo)− 4z2)}

≤ dI ≤
1

2
(do cos(ΦI − φo) +

√

d2o cos
2(ΦI − φo)− 4x2)}

(12.21)

The distribution of distance x can be found as

p(x |di, φi ) =
d

dx
Pr(X ≤ x |do, φo ) (12.22)

Thus the overall capacity of AO-to-AI can be derived as

ΓO−I =

∫ R

do=aR

∫∫

AI

p(x |di, φi )d
−α
i d(AI)d(do) (12.23)
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12.8 Concluding Remarks

In this chapter we proposed a 2-hop 2-slot scheme for the uplink throughput

enhancement of packet-switched CDMA cellular networks. By dividing the trans-

mission of mobiles and relays into different time slots, we can greatly reduce the

co-channel interference. The scheme is easy to be implemented and the analytical

and simulation results indicate that the scheme improves the capacity capacity

significantly comparing with a single-hop CDMA network.



13 CONCLUSION

In Chapter 3, we inspected the energy consumption properties of typical radio

transceivers in different states, including transmitting, receiving, and sleeping

modes. An important energy feature of multihop ad hoc networks is that breaking

a long communication path into shorter distance multi-hops will not always be

energy-efficient. A protocol that can organize nodes in sleeping mode is more

preferable in saving energy.

In Chapter 4, analysis of the probability of finding least-hop route using reactive

routing protocols is given. With the assumption that the channel congestion

probability is p when a route-finding procedure is progressed, the expected time

that the route-finding packet arrives the destination is proportional to p
1−p

. We

also found that when the size and scale of network increase, the probability that

the least-hop route will be selected decreases.

In Chapter 5 we inspected the energy efficiency of ad hoc/sensor network when

topology control by variant transmit power is available. We define the energy

capacity of ad hoc network as the number of bits that can be transmitted by unit

power. When the transmit power varies, the network topology is changed as well.

An optimal power level is desirable so that end-to-end transportation energy cost

is minimized. We found that in a typical local area ad hoc network, the optimal

transmit power should keep the expected hop count to be 2 or 3.

Chapter 6 presents an energy-efficient reactive routing protocol based on AODV.

The protocol relies on the link state information when the route-finding packet

(RREQ) is being flood. This protocol is able to select a more energy-efficient

route is a distributed manner. Simulation shows that 20-30% of energy can be

saved comparing with original AODV protocol. Later in Chapter 7, this protocol

is modified to cope with the communication gray zone problem, because com-

munication gray zone is directly defined by the radio link quality. We obtained

significant reduction of packet drop rate and link breaks.
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Chapter 8 focuses on clustering issue of large scale ad hoc/sensor networks. A link-

state clustering algorithm is proposed. We inspected the routing and clustering

overhead of our algorithm and compared it with that of a flat reactive ad hoc

network. The simulation results show that the overhead energy consumption

of a flat ad hoc network is a dominating factor of overall energy drain. The

algorithm can applied to both homogeneous and heterogeneous networks. In

order to perform more efficient cluster, and also for deployment of sleep mode, as

global synchrnization scheme is proposed in Chapter 9.

Chapters 10 and 11 turn to investigate multi-path routing protocols. Multi-path

routing is desirable in the situation that a certain area of network is jammed, but

there are still viable routes existing. Multipath routing can greatly improve the

delivery performance in terms of packet delivery ratio, jitter, and delay.

In Chapter 12 the interest is to extend CDMA-based wireless cellular networks

into multihop hybrid networks. A synchronous 2-hop 2-slot uplink relaying scheme

is proposed for uplink time-elastic traffics. By dividing a cell into inner and outter

areas the throughput of uplink communication is greatly increased. 2H2S scheme

is simple and easy to be implemented.

In this thesis lower protocol layers wireless ad hoc/sensor networks is studied.

Different approaches to improve energy efficiency and performance of ad hoc net-

works, including energy efficient routing, hierarchical clustering, transmit power

controlling, and coping with communication gray zone to improve the link quality,

are proposed and from these approaches we can see that a cross-layer design is

necessary method.
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APPENDICES

Appendix for Least-hop Analysis

Probability of k collisions on a H -hop path

From (Ross 2006) we have such a proposition:

Proposition 1 There are
(
n+r−1
r−1

)
distinct nonnegative integer-value vectors de-

noted as (x1, . . . , xr) such that x1 + . . .+ xr = n

In reactive routing such as AODV and DSR, a Route REQuest (RREQ) packet

is flood through the whole network. Suppose that a path from source node to

destination node has H (H ≥ 1) hops, and the probability that the radio channel

is congested on a single hop is p. If there are k (k ≥ 0) congestions occur over the

path, for a single case of k congestions, the probability is pk(1− p)H . We have

Pr(H, k) =

(
H − 1 + k

H − 1

)

pk(1− p)H =

(
H − 1 + k

k

)

pk(1− p)H (1)

Expected Delay of the Least Hop Route

We have

E(TH) =
∞∑

i=0

TH,i Pr(H, i) =
∞∑

i=0

(iτc +Hτp)

(
H − 1 + i

i

)

pi(1− p)H

= (1− p)Hτc

∞∑

i=0

(
H − 1 + i

i

)

ipi + (1− p)HHτp

∞∑

i=0

(
H − 1 + i

i

)

pi
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The summation
∞∑

i=0

CH−1
H−1+ip

i in the second part can be seen by different H :

H = 1,
∞∑

i=0

C0
i p

i = 1 + p+ p2 + ...+ pi + ... =
1

1− p

H = 2,

∞∑

i=0

C1
i+1p

i = 1 + 2p+ 3p2 + ... + (k + 1)pi + ... =
1

(1− p)2

By these two observations, we assume that when H = k

∞∑

i=0

Ck−1
k−1+ip

i = 1 + kp+
(k + 1)k

2!
p2 + ... +

(k − 1 + i)!

i!(k − 1)!
pk + ... =

1

(1− p)k

then when H = k + 1, let

∞∑

i=0

Ck
i+kp

k+1 = 1 + (k + 1)p+
(k + 2)(k + 1)

2!
p2 + ...+

(k + i)!

k!i!
pk + ... = S

Let (2) subtract (2), we get

S −
∞∑

i=0

Ck−1
k−1+ip

i = 0 + p+
2(k + 1)

2!
p2 + ...+

(i+ k − 1)...(k + 1)k

k!
pk + ...

= p(1 + (k + 1)p+
(k + 2)(k + 1)

2!
p2 + ... +

(k + i)!

k!i!
pk + ...)

= pS

Thus we have ∞∑

i=0

Ck
i+kp

k+1 =
1

(1− p)k+1
for all k (2)

The summation
∞∑

i=0

CH−1
H−1+iip

i can be deduced by

∞∑

i=0

CH−1
H−1+iip

i =
∞∑

i=1

CH−1
H−1+iip

i

= p

∞∑

i=0

CH−1
H−1+iip

i−1 = p

∞∑

i=0

CH−1
H−1+i

∂

∂p
pi = p

∂

∂p

∞∑

i=0

CH−1
H−1+ip

i

= p
∂

∂p

1

(1− p)H

=
Hp

(1− p)H+1
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Therefore the expected delay is

E(TH) = Hτc
p

1− p
+Hτp (3)

Appendix for Energy-aware Capacity

The expected hop count in a grid topology network

We have

E{|x|} =
1

n

n−1∑

i=0

1

n− 1

n−1∑

j=0,j 6=i

|i− j| (4)

=
1

n(n− 1)

[

(1 + 2 + . . .+ n− 1)
︸ ︷︷ ︸

S is the 1st node

+ (1 + 1 + 2 + . . .+ n− 2)
︸ ︷︷ ︸

S is the 2nd node

+ . . .

+ (1 + 2 + . . .+ n− 1)
︸ ︷︷ ︸

S is the last node

]

=
1

n(n− 1)

[(
n(n− 1)

2
+ 0

)

+

(
(n− 1)(n− 2)

2
+ 1

)

+

. . .+

(

0 +
n(n− 1)

2

)]

=
1

n(n− 1)
2

n∑

i=0

(n− i)(n− 1− i)

2

=
1

n(n− 1)

n∑

i=0

(n− i)(n− 1− i)

=
n+ 1

3
(5)
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Here the summation
n∑

i=0

(n− i)(n− 1− i) can be derived by

n∑

i=0

(n− i)(n− 1− i) =
n∑

i=0

(
n2 − (2i+ 1)n+ i2 + i

)

= n2(n + 1)− n

n∑

i=0

(2i+ 1) +

n∑

i=0

(i2 + i)

= n2(n + 1)− n(n + 1)2 +
n(n+ 1)(2n+ 1)

6
+
n(n + 1)

2

=
n(n− 1)(n+ 1)

3
(6)
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