256 research outputs found

    Controlled synchronization in networks of diffusively coupled dynamical systems

    Get PDF

    Synchronization in networks of diffusively coupled nonlinear systems:robustness against time-delays

    Get PDF
    In this manuscript, we study the problem of robust synchronization in networks of diffusively time-delayed coupled nonlinear systems. In particular, we prove that, under some mild conditions on the input-output dynamics of the systems and the network topology, there always exists a unimodal region in the parameter space (coupling strength versus time-delay), such that if they belong to this region, the systems synchronize. Moreover, we show how this unimodal region scales with the network topology, which, in turn, provides useful insights on how to design the network topology to maximize robustness against time-delays. The results are illustrated by extensive simulation experiments of time-delayed coupled Hindmarsh-Rose neural chaotic oscillators

    Synchronization and local convergence analysis of networks with dynamic diffusive coupling

    Get PDF
    In this paper, we address the problem of achieving synchronization in networks of nonlinear units coupled by dynamic diffusive terms. We present two types of couplings consisting of a static linear term, corresponding to the diffusive coupling, and a dynamic term which can be either the integral or the derivative of the sum of the mismatches between the states of neighbouring agents. The resulting dynamic coupling strategy is a distributed proportional-integral (PI) or a proportional-derivative (PD) law that is shown to be effective in improving the network synchronization performance, for example, when the dynamics at nodes are nonidentical. We assess the stability of the network by extending the classical Master Stability Function approach to the case where the links are dynamic ones of PI/PD type. We validate our approach via a set of representative examples including networks of chaotic Lorenz and networks of nonlinear mechanical systems

    Synchrony and bifurcations in coupled dynamical systems and effects of time delay

    Get PDF
    Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke hĂ€ngt von der FĂ€higkeit ab, die Elemente des Netzwerkes zu synchronisieren. Mit anderen Worten, die Existenz und die transversale StabilitĂ€t der synchronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruktur und den StabilitĂ€tseigenschaften synchroner ZustĂ€nde zu verstehen. Genau das ist das zentrale Thema dieser Arbeit. ZunĂ€chst prĂ€sentiere ich erste Ergebnisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezĂŒglich ihrer Bedeutung fĂŒr die StabilitĂ€t des synchronen Zustands. Folgend untersuche ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Netzwerk eine schwach gewichtete Kante hinzugefĂŒgt wird. Daraufhin untersuche ich synchrone ZustĂ€nde in Ringen von Phasenoszillatoren die mit Zeitverzögerung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und analysiere deren StabilitĂ€t und Verzweigungen. Weiter zeige ich, dass eine Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin fĂŒr beliebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten des Flusses sowie ihre StabilitĂ€t unter der Zeitverschiebung erhalten bleiben. DarĂŒber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die gebraucht werden, um das System Ă€quivalent zu beschreiben. Schließlich untersuche ich das auffĂ€llige PhĂ€nomen eines nichtstetigen Übergangs zu SynchronizitĂ€t in Klassen großer Zufallsnetzwerke indem ich einen kĂŒrzlich eingefĂŒhrten Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter Kopplungen verallgemeinere.Since a couple of decades, dynamics on networks is a rapidly growing branch of mathematics with applications in various disciplines such as physics, biology or sociology. The functioning of many networks heavily relies on the ability to synchronize the network’s nodes. More precisely, the existence and the transverse stability of the synchronous manifold are essential properties. It was only in the last few years that people tried to understand the entangled relation between the coupling structure of a network, given by a (di-)graph, and the stability properties of synchronous states. This is the central theme of this dissertation. I first present results towards a classification of the links in a directed, diffusive network according to their impact on the stability of synchronization. Then I investigate a complex bifurcation scenario observed in a directed ring of Stuart-Landau oscillators. I show that under the addition of a single weak link, this scenario is persistent. Subsequently, I investigate synchronous patterns in a directed ring of phase oscillators coupled with time delay. I discuss the coexistence of multiple of synchronous solutions and investigate their stability and bifurcations. I apply these results by showing that a certain time-shift transformation can be used in order to employ the ring as a pattern recognition device. Next, I investigate the same time-shift transformation for arbitrary coupling structures in a very general setting. I show that invariant manifolds of the flow together with their stability properties are conserved under the time-shift transformation. Furthermore, I determine the minimal number of delays needed to equivalently describe the system’s dynamics. Finally, I investigate a peculiar phenomenon of non-continuous transition to synchrony observed in certain classes of large random networks, generalizing a recently introduced approach for the description of large random networks to the case of delayed couplings

    Synchronous behavior in networks of coupled systems : with applications to neuronal dynamics

    Get PDF
    Synchronization in networks of interacting dynamical systems is an interesting phenomenon that arises in nature, science and engineering. Examples include the simultaneous flashing of thousands of fireflies, the synchronous firing of action potentials by groups of neurons, cooperative behavior of robots and synchronization of chaotic systems with applications to secure communication. How is it possible that systems in a network synchronize? A key ingredient is that the systems in the network "communicate" information about their state to the systems they are connected to. This exchange of information ultimately results in synchronization of the systems in the network. The question is how the systems in the network should be connected and respond to the received information to achieve synchronization. In other words, which network structures and what kind of coupling functions lead to synchronization of the systems? In addition, since the exchange of information is likely to take some time, can systems in networks show synchronous behavior in presence of time-delays? The first part of this thesis focusses on synchronization of identical systems that interact via diffusive coupling, that is a coupling defined through the weighted difference of the output signals of the systems. The coupling might contain timedelays. In particular, two types of diffusive time-delay coupling are considered: coupling type I is diffusive coupling in which only the transmitted signals contain a time-delay, and coupling type II is diffusive coupling in which every signal is timedelayed. It is proven that networks of diffusive time-delay coupled systems that satisfy a strict semipassivity property have solutions that are ultimately bounded. This means that the solutions of the interconnected systems always enter some compact set in finite time and remain in that set ever after. Moreover, it is proven that nonlinear minimum-phase strictly semipassive systems that interact via diffusive coupling always synchronize provided the interaction is sufficiently strong. If the coupling functions contain time-delays, then these systems synchronize if, in addition to the sufficiently strong interaction, the product of the time-delay and the coupling strength is sufficiently small. Next, the specific role of the topology of the network in relation to synchronization is discussed. First, using symmetries in the network, linear invariant manifolds for networks of the diffusively time-delayed coupled systems are identified. If such a linear invariant manifold is also attracting, then the network possibly shows partial synchronization. Partial synchronization is the phenomenon that some, at least two, systems in the network synchronize with each other but not with every system in the network. It is proven that a linear invariant manifold defined by a symmetry in a network of strictly semipassive systems is attracting if the coupling strength is sufficiently large and the product of the coupling strength and the time-delay is sufficiently small. The network shows partial synchronization if the values of the coupling strength and time-delay for which this manifold is attracting differ from those for which all systems in the network synchronize. Next, for systems that interact via symmetric coupling type II, it is shown that the values of the coupling strength and time-delay for which any network synchronizes can be determined from the structure of that network and the values of the coupling strength and time-delay for which two systems synchronize. In the second part of the thesis the theory presented in the first part is used to explain synchronization in networks of neurons that interact via electrical synapses. In particular, it is proven that four important models for neuronal activity, namely the Hodgkin-Huxley model, the Morris-Lecar model, the Hindmarsh-Rose model and the FitzHugh-Nagumo model, all have the semipassivity property. Since electrical synapses can be modeled by diffusive coupling, and all these neuronal models are nonlinear minimum-phase, synchronization in networks of these neurons happens if the interaction is sufficiently strong and the product of the time-delay and the coupling strength is sufficiently small. Numerical simulations with various networks of Hindmarsh-Rose neurons support this result. In addition to the results of numerical simulations, synchronization and partial synchronization is witnessed in an experimental setup with type II coupled electronic realizations of Hindmarsh-Rose neurons. These experimental results can be fully explained by the theoretical findings that are presented in the first part of the thesis. The thesis continues with a study of a network of pancreatic -cells. There is evidence that these beta-cells are diffusively coupled and that the synchronous bursting activity of the network is related to the secretion of insulin. However, if the network consists of active (oscillatory) beta-cells and inactive (dead) beta-cells, it might happen that, due to the interaction between the active and inactive cells, the activity of the network dies out which results in a inhibition of the insulin secretion. This problem is related to Diabetes Mellitus type 1. Whether the activity dies out or not depends on the number of cells that are active relative to the number of inactive cells. A bifurcation analysis gives estimates of the number of active cells relative to the number of inactive cells for which the network remains active. At last the controlled synchronization problem for all-to-all coupled strictly semipassive systems is considered. In particular, a systematic design procedure is presented which gives (nonlinear) coupling functions that guarantee synchronization of the systems. The coupling functions have the form of a definite integral of a scalar weight function on a interval defined by the outputs of the systems. The advantage of these coupling functions over linear diffusive coupling is that they provide high gain only when necessary, i.e. at those parts of the state space of the network where nonlinearities need to be suppressed. Numerical simulations in networks of Hindmarsh-Rose neurons support the theoretical results

    Scale-free avalanches in arrays of FitzHugh-Nagumo oscillators

    Full text link
    The activity in the brain cortex remarkably shows a simultaneous presence of robust collective oscillations and neuronal avalanches, where intermittent bursts of pseudo-synchronous spiking are interspersed with long periods of quiescence. The mechanisms allowing for such a coexistence are still a matter of an intensive debate. Here, we demonstrate that avalanche activity patterns can emerge in a rather simple model of an array of diffusively coupled neural oscillators with multiple timescale local dynamics in vicinity of a canard transition. The avalanches coexist with the fully synchronous state where the units perform relaxation oscillations. We show that the mechanism behind the avalanches is based on an inhibitory effect of interactions, which may quench the spiking of units due to an interplay with the maximal canard. The avalanche activity bears certain heralds of criticality, including scale-invariant distributions of event sizes. Furthermore, the system shows an increased sensitivity to perturbations, manifested as critical slowing down and a reduced resilience.Comment: 9 figure

    Computational Methods for Cognitive and Cooperative Robotics

    Get PDF
    In the last decades design methods in control engineering made substantial progress in the areas of robotics and computer animation. Nowadays these methods incorporate the newest developments in machine learning and artificial intelligence. But the problems of flexible and online-adaptive combinations of motor behaviors remain challenging for human-like animations and for humanoid robotics. In this context, biologically-motivated methods for the analysis and re-synthesis of human motor programs provide new insights in and models for the anticipatory motion synthesis. This thesis presents the author’s achievements in the areas of cognitive and developmental robotics, cooperative and humanoid robotics and intelligent and machine learning methods in computer graphics. The first part of the thesis in the chapter “Goal-directed Imitation for Robots” considers imitation learning in cognitive and developmental robotics. The work presented here details the author’s progress in the development of hierarchical motion recognition and planning inspired by recent discoveries of the functions of mirror-neuron cortical circuits in primates. The overall architecture is capable of ‘learning for imitation’ and ‘learning by imitation’. The complete system includes a low-level real-time capable path planning subsystem for obstacle avoidance during arm reaching. The learning-based path planning subsystem is universal for all types of anthropomorphic robot arms, and is capable of knowledge transfer at the level of individual motor acts. Next, the problems of learning and synthesis of motor synergies, the spatial and spatio-temporal combinations of motor features in sequential multi-action behavior, and the problems of task-related action transitions are considered in the second part of the thesis “Kinematic Motion Synthesis for Computer Graphics and Robotics”. In this part, a new approach of modeling complex full-body human actions by mixtures of time-shift invariant motor primitives in presented. The online-capable full-body motion generation architecture based on dynamic movement primitives driving the time-shift invariant motor synergies was implemented as an online-reactive adaptive motion synthesis for computer graphics and robotics applications. The last chapter of the thesis entitled “Contraction Theory and Self-organized Scenarios in Computer Graphics and Robotics” is dedicated to optimal control strategies in multi-agent scenarios of large crowds of agents expressing highly nonlinear behaviors. This last part presents new mathematical tools for stability analysis and synthesis of multi-agent cooperative scenarios.In den letzten Jahrzehnten hat die Forschung in den Bereichen der Steuerung und Regelung komplexer Systeme erhebliche Fortschritte gemacht, insbesondere in den Bereichen Robotik und Computeranimation. Die Entwicklung solcher Systeme verwendet heutzutage neueste Methoden und Entwicklungen im Bereich des maschinellen Lernens und der kĂŒnstlichen Intelligenz. Die flexible und echtzeitfĂ€hige Kombination von motorischen Verhaltensweisen ist eine wesentliche Herausforderung fĂŒr die Generierung menschenĂ€hnlicher Animationen und in der humanoiden Robotik. In diesem Zusammenhang liefern biologisch motivierte Methoden zur Analyse und Resynthese menschlicher motorischer Programme neue Erkenntnisse und Modelle fĂŒr die antizipatorische Bewegungssynthese. Diese Dissertation prĂ€sentiert die Ergebnisse der Arbeiten des Autors im Gebiet der kognitiven und Entwicklungsrobotik, kooperativer und humanoider Robotersysteme sowie intelligenter und maschineller Lernmethoden in der Computergrafik. Der erste Teil der Dissertation im Kapitel “Zielgerichtete Nachahmung fĂŒr Roboter” behandelt das Imitationslernen in der kognitiven und Entwicklungsrobotik. Die vorgestellten Arbeiten beschreiben neue Methoden fĂŒr die hierarchische Bewegungserkennung und -planung, die durch Erkenntnisse zur Funktion der kortikalen Spiegelneuronen-Schaltkreise bei Primaten inspiriert wurden. Die entwickelte Architektur ist in der Lage, ‘durch Imitation zu lernen’ und ‘zu lernen zu imitieren’. Das komplette entwickelte System enthĂ€lt ein echtzeitfĂ€higes Pfadplanungssubsystem zur Hindernisvermeidung wĂ€hrend der DurchfĂŒhrung von Armbewegungen. Das lernbasierte Pfadplanungssubsystem ist universell und fĂŒr alle Arten von anthropomorphen Roboterarmen in der Lage, Wissen auf der Ebene einzelner motorischer Handlungen zu ĂŒbertragen. Im zweiten Teil der Arbeit “Kinematische Bewegungssynthese fĂŒr Computergrafik und Robotik” werden die Probleme des Lernens und der Synthese motorischer Synergien, d.h. von rĂ€umlichen und rĂ€umlich-zeitlichen Kombinationen motorischer Bewegungselemente bei Bewegungssequenzen und bei aufgabenbezogenen Handlungs ĂŒbergĂ€ngen behandelt. Es wird ein neuer Ansatz zur Modellierung komplexer menschlicher Ganzkörperaktionen durch Mischungen von zeitverschiebungsinvarianten Motorprimitiven vorgestellt. Zudem wurde ein online-fĂ€higer Synthesealgorithmus fĂŒr Ganzköperbewegungen entwickelt, der auf dynamischen Bewegungsprimitiven basiert, die wiederum auf der Basis der gelernten verschiebungsinvarianten Primitive konstruiert werden. Dieser Algorithmus wurde fĂŒr verschiedene Probleme der Bewegungssynthese fĂŒr die Computergrafik- und Roboteranwendungen implementiert. Das letzte Kapitel der Dissertation mit dem Titel “Kontraktionstheorie und selbstorganisierte Szenarien in der Computergrafik und Robotik” widmet sich optimalen Kontrollstrategien in Multi-Agenten-Szenarien, wobei die Agenten durch eine hochgradig nichtlineare Kinematik gekennzeichnet sind. Dieser letzte Teil prĂ€sentiert neue mathematische Werkzeuge fĂŒr die StabilitĂ€tsanalyse und Synthese von kooperativen Multi-Agenten-Szenarien

    Symmetries, Stability, and Control in Nonlinear Systems and Networks

    Full text link
    This paper discusses the interplay of symmetries and stability in the analysis and control of nonlinear dynamical systems and networks. Specifically, it combines standard results on symmetries and equivariance with recent convergence analysis tools based on nonlinear contraction theory and virtual dynamical systems. This synergy between structural properties (symmetries) and convergence properties (contraction) is illustrated in the contexts of network motifs arising e.g. in genetic networks, of invariance to environmental symmetries, and of imposing different patterns of synchrony in a network.Comment: 16 pages, second versio

    Complex partial synchronization patterns in networks of delay-coupled neurons

    Get PDF
    We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh–Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept
    • 

    corecore