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Abstract
Since a couple of decades, dynamics on networks is a rapidly growing

branch of mathematics with applications in various disciplines such as physics,
biology or sociology. The functioning of many networks heavily relies on the
ability to synchronize the network’s nodes. More precisely, the existence and
the transverse stability of the synchronous manifold are essential properties.
It was only in the last few years that people tried to understand the entangled
relation between the coupling structure of a network, given by a (di-)graph,
and the stability properties of synchronous states. This is the central theme
of this dissertation. I first present results towards a classification of the links
in a directed, diffusive network according to their impact on the stability of
synchronization. Then I investigate a complex bifurcation scenario observed
in a directed ring of Stuart-Landau oscillators. I show that under the addition
of a single weak link, this scenario is persistent. Subsequently, I investigate
synchronous patterns in a directed ring of phase oscillators coupled with time
delay. I discuss the coexistence of multiple of synchronous solutions and in-
vestigate their stability and bifurcations. I apply these results by showing that
a certain time-shift transformation can be used in order to employ the ring
as a pattern recognition device. Next, I investigate the same time-shift trans-
formation for arbitrary coupling structures in a very general setting. I show
that invariant manifolds of the flow together with their stability properties are
conserved under the time-shift transformation. Furthermore, I determine the
minimal number of delays needed to equivalently describe the system’s dynam-
ics. Finally, I investigate a peculiar phenomenon of non-continuous transition
to synchrony observed in certain classes of large random networks, generalizing
a recently introduced approach for the description of large random networks
to the case of delayed couplings.





Abstrakt
Dynamik auf Netzwerken ist ein mathematisches Feld, das in den letzten

Jahrzehnten schnell gewachsen ist und Anwendungen in zahlreichen Disziplinen
wie z.B. Physik, Biologie und Soziologie findet. Die Funktion vieler Netzwerke
hängt von der Fähigkeit ab, die Elemente des Netzwerkes zu synchronisieren.
Mit anderen Worten, die Existenz und die transversale Stabilität der syn-
chronen Mannigfaltigkeit sind zentrale Eigenschaften. Erst seit einigen Jahren
wird versucht, den verwickelten Zusammenhang zwischen der Kopplungsstruk-
tur und den Stabilitätseigenschaften synchroner Zustände zu verstehen. Genau
das ist das zentrale Thema dieser Arbeit. Zunächst präsentiere ich erste Ergeb-
nisse zur Klassifizierung der Kanten eines gerichteten Netzwerks bezüglich ihrer
Bedeutung für die Stabilität des synchronen Zustands. Folgend untersuche
ich ein komplexes Verzweigungsszenario in einem gerichteten Ring von Stuart-
Landau Oszillatoren und zeige, dass das Szenario persistent ist, wenn dem Net-
zwerk eine schwach gewichtete Kante hinzugefügt wird. Daraufhin untersuche
ich synchrone Zustände in Ringen von Phasenoszillatoren die mit Zeitverzöger-
ung gekoppelt sind. Ich bespreche die Koexistenz synchroner Lösungen und
analysiere deren Stabilität und Verzweigungen. Weiter zeige ich, dass eine
Zeitverschiebung genutzt werden kann, um Muster im Ring zu speichern und
wiederzuerkennen. Diese Zeitverschiebung untersuche ich daraufhin für be-
liebige Kopplungsstrukturen. Ich zeige, dass invariante Mannigfaltigkeiten
des Flusses sowie ihre Stabilität unter der Zeitverschiebung erhalten bleiben.
Darüber hinaus bestimme ich die minimale Anzahl von Zeitverzögerungen, die
gebraucht werden, um das System äquivalent zu beschreiben. Schließlich unter-
suche ich das auffällige Phänomen eines nichtstetigen Übergangs zu Synchron-
izität in Klassen großer Zufallsnetzwerke indem ich einen kürzlich eingeführten
Zugang zur Beschreibung großer Zufallsnetzwerke auf den Fall zeitverzögerter
Kopplungen verallgemeinere.
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CHAPTER 1

Introduction

“The real voyage of discovery consists
not in seeking new landscapes,
but in having new eyes.”
Marcel Proust, In search of lost time

In the introduction of my thesis I motivate central questions and quantities
from dynamical systems on networks. Along this first chapter we will encounter
all the problems I treat in my thesis. As soon as such a problem is mentioned
here I will refer to the corresponding chapter. I begin with a short introduction
in the history of dynamical systems on networks.

1.1. Dynamical systems on networks

Compared to classical mathematical disciplines such as algebra, complex
analysis or even differential equations, dynamical systems on networks is a
rather young discipline. It locates in the intersection of dynamical systems,
graph theory and probabilistic theory. In order to motivate the approach, I de-
scribe one of the first impulses which was given by Smale in 1976 [163]. Smale
took up an idea introduced by Turing [173] who modeled two biological cells
interacting via diffusion past a membrane. Each of these cells is supposed to
be “dead”, i.e. inactive when left alone. In mathematical terms, the individual
dynamics are modelled by a globally stable fixed point. However, Turing ob-
served that when these dead cells were coupled they began pulsing. In other
words, a globally stable periodic orbit emerged through a Hopf bifurcation.
When Smale took up this study, he investigated the simplest case of two cells
first. Only after having discussed this case, he asked under which general con-
ditions this phenomenon can be observed when coupling more than two cells.
To be more precisely, in [163] he investigated the following problem. Consider
the equations

(1.1.1) ẋi = f (xi) +
N∑
j=1

aijΓ (xj − xi) xi ∈ Rm, 1 ≤ i ≤ N

where the identical single cell dynamics is given by a vector field f : Rm → Rm,
admitting a globally stable fixed point. The network structure A = {aij} is
given by the aij ∈ {0, 1} where the cell j is coupled to cell i iff aij = 1.
The local coupling is given by a diagonal matrix Γ ∈ Rm×m. For which triples

1



2 1. INTRODUCTION

(A,f ,Γ) does the coupled system admit a globally stable periodic orbit? Even
for the case of two coupled cells Smale was not able to characterize the pairs
(f ,Γ) which do so, and to my knowledge the general problem is not solved
until today.

Smale’s article could be seen as the birth of dynamical systems on net-
works. Here, it serves as an illustration for the fact that looking at ordinary
differential equations from another point of view, i.e. treating the coupling as a
separate structure can lead to new problems and to new solutions of old prob-
lems. It highlights the fact that bifurcations due to the network structure can
be an important factor in applications: there are coupling schemes for which
the cells won’t oscillate, but will rather stay at the fixed points. By adding or
even deleting connections in the network, the system might undergo a (Hopf)
bifurcation which yields stable oscillations. This is where graph theory comes
into play, and again, this is what distinguishes dynamical systems from dy-
namical systems on networks: the point of view. Indeed, we could understand
Eq. (1.1.1) as a system of first order ordinary differential equations like sci-
entists have done for a long time. However, for many questions concerning
the existence and stability of special states such as equilibria, periodic orbits
or synchronous motions, it turns out that the coupling structure understood
as a graph plays a major role. More specifically, quantities associated to al-
gebraic properties of the graph will show up in the stability criteria. Or, to
put it in rather simple terms: in some cases we might be able to state results
by just looking at the graph, without any further specific knowledge of the
local dynamics. Technically, the theory of dynamical systems still delivers the
main tools. However, step by step, tools and notions from graph theory and
recently developed network measures [129] find their way into this interdiscip-
linary field of research. In the line of research initiated by Smale, the most
prominent contributions came from Ermentrout and Kopell who investigated
coupled oscillators with non-weak coupling [53, 6] and Golubitsky and Stewart
who founded a whole mathematical theory for the dynamics on networks with
symmetries [65, 66, 37, 36].

Another line of research was initiated by Wiener in 1958 [181]. He made
first attempts to mathematically describe self organization in networks and
investigate existence and stability of synchronous states, in which all the ele-
ments of a network behave in the same manner. These states were observed
in nature quite early, for instance in ensembles of south-east Asian fireflies
[25, 75], but their generating mechanism remained in the dark for a long
time. However, the description by Wiener, consisting of coupled nonlinear
limit-cycle oscillators, was far too complex to understand basic mechanisms of
synchronization. In 1967, Winfree took up this thread and made a huge step
forward by essentially reducing the underlying describing differential equations
[182]. Firstly, he considered states of limit cycle oscillators which were close
to the limit cycle. Secondly, he assumed that the interaction between elements
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was weak enough not to kick the individual oscillators away from the limit
cycle. Under these assumptions, the amplitude of each element could be neg-
lected and its state variable reduced to a scalar variable describing the phase
of the oscillator in the limit cycle - the birth of phase oscillators. The next
seminal step in this line of research was the introduction of the much acclaimed
Kuramoto model by Kuramoto in 1975 together with a thorough bifurcation
analysis [101]. The main simplification consisted in a reduction to sinusoidal
coupling and a neglect of higher harmonics, resulting in the tractable equations

ϕ̇i = ωi +
K

N

N∑
j=1

sin (ϕj − ϕi)

for the oscillator’s phases ϕi. The introduction of this model in the scientific
community was followed by a sustained research activity on exhibited dynam-
ics of the model and derived models in various fields ranging from Biology and
Physics to Mathematics. Two of the most important contributors were cer-
tainly S. Strogatz and R. Mirollo who were first capable of proving a conjecture
made by Kuramoto about the stability of the incoherent state [168]. By now,
a countless number of publications on probably any imaginable variant of the
Kuramoto exists: Systems with non-global coupling, with stochastic terms,
with time delays, continuum limits and many more [3, 167, 20]. However,
I remark that even for the rather simple case of global coupling, a stability
analysis of partially synchronized states was only done in 2005 [123]. Fur-
thermore, a conjecture by Kuramoto about the persistence of the bifurcation
scenario when the number of oscillators N goes to infinity was only proved
in 2010, using elaborate function analytic techniques [32, 33]. Therefore, it
should be no surprise that oscillators coupled in a non-global fashion are still
heavily investigated. Unfortunately, unless the network admits some kind of
symmetry, these systems are much more complicated to study and new tools
are still being developed. In this thesis all the questions are related to non-
global coupling in general. From the applied point of view it is crucial to
understand the dynamical behaviour of non-globally coupled systems. Our
everyday lives are dominated by networks many of which do neither have a
global nor a constant coupling topology. For instance social networks, the in-
ternet and economic networks are under constant evolution [79, 135, 119].
The connections between nerve cells are changing due to synaptic plasticity
[77, 1], and our power-grid is not only under constant evolution, but right
now subject to a considerable change due to the inclusion of renewable energy
sources [57]. I remark that in many cases the evolution of the network is on a
slower time scale than the node dynamics, so it can be neglected in dynamical
models. In these cases, it is desirable to develop a theory which can predict
stability changes induced by network modifications. I investigate questions
related to this problem in Chapters 2 and 3.
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1.2. Synchrony in networks of coupled elements

As in the line of research initiated by Wiener, I will mainly be inter-
ested in the existence and stability of particular states such as equilibria
and synchronous states1. Here, in general the term synchronization refers
to the state where all the nodes of a network behave identically. However, it
can refer to different phenomena. For instance, when oscillators synchronize
their frequencies, whereas the phases are not identical, one would speak about
frequency-synchronization [88], or in the opposite case, where the phases are
synchronized while the amplitudes differ, one speaks about phase synchron-
ization [141, 151]. Motivated by the observation that the function of many
real world networks heavily relies on their synchronization properties, the last
few years have shown a steep increase in publications investigating (stability)
properties of synchronous states in networks [141, 136, 12]. Examples for the
importance of network synchronization in our everyday lives stem from various
applications. In power grids, power stations must keep a proper synchroniz-
ation to avoid energy supply disturbances and blackouts [125, 47]. Sensor
networks rely on synchronization among sensors to transmit information [134].
In the brain, epileptic seizures and motor diseases such as Dystonia and Par-
kinson are a strong manifestation of synchronization of subcortical brain areas
[122, 165, 73]. On the other hand, it is strongly hypothesized that synchron-
ization is the main mechanism through which distant brain areas connect, even
in such complex tasks as human cognition [97, 62]. Further examples can be
found in consensus formation [146, 31] where different parties try to reach a
common state.

Here, I will consider systems for which the set of synchronous motions is
invariant. in other words, if the network’s nodes move in synchrony and are not
perturbed, they will stay synchronized for all times. Now in general, invariant
sets of dynamical systems can be very complicated and must not be smooth
at all, even for very simple dynamical rules. A famous example is Smale’s
horseshoe, an invariant set which contains a dense set of periodic orbits and
a dense orbit and which since it’s discovery in 1967 serves as a paradigmatic
structure for chaotic dynamics [162]. However, under mild assumptions some
of the invariant sets turn out to be submanifolds of the phase space, such as the
synchronous manifold, the set given by all the solution curves of synchronous
motion. In mathematical terms, most of the problems connected to synchrony
in networks deal in one way or another with the transverse stability of in-
variant manifolds in dynamical systems. Once an invariant manifold is shown
to be stable one can investigate the dynamics restricted to the manifold and
thereby essentially reduce the dimension of the dynamical system. In general,
invariant manifolds together with their stability properties have been studied

1Here, synchronous states includes synchronization where the individual node dynamics are
chaotic.
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in various systems, ranging from difference equations to ordinary differential
equations [58] up to abstract dynamical systems in Banach spaces [35, 171].
Although sharp criteria for the transverse stability of the synchronous mani-
fold have been found, it was only in the last few decades that these have been
connected to properties of the underlying coupling structure. One way to do so
is the Master-Stability formalism [136]. This approach relies on a decoupling
of the linearised system which enables one to study the long-term behaviour
of perturbations transverse to the synchronization manifold. The transverse
directions in turn are exclusively determined by the coupling structure. A dis-
advantage of this approach is that it uses Maximal Lyapunov Exponents (MLE)
in order to infer stability properties for the linearised system. However, it is
known that for non-autonomous system, in general, a negative maximal MLE
does not induce stability of the nonlinear system, nor does a positive MLE
induce instability of the nonlinear system [110]. One of the reasons for the
success of the Master-Stability formalism is that it can simply be implemented
for numerical calculations and allows for a broad range of coupling functions.
So for (relative) equilibria it is well suited. We will employ this formalism in
chapter 3. Another approach which was recently introduced relies on the use
of exponential dichotomies for non-autonomous systems [137, 38]. This ap-
proach delivers conditions for exponential contraction towards the synchronous
manifold in the nonlinear system.

1.3. Time delays in networks

A quantity which does not appear in the above examples, but which is an
important factor in many of the above mentioned real life networks is time
delay. More precisely, the connections between the nodes can be delayed, that
is the input of a node i at time t is the state of a node j at time t − τ for
some τ > 0. From the point of view of modelling, there are several motivations
for including time delay in the network’s connections. In neuronal dynamics,
delays incorporate the time a neuronal spike needs to travel along an axon to
the next neuron [27]. In laser dynamics, delays correspond to the propagation
time of the light [188, 177], and in population models, delays incorporate
times needed for maturing and gesturing [100]. Now, in order to solve a given
delay differential equation (DDE) uniquely, it is not sufficient to impose an
initial condition from some Rn, but one has to supply an initial function on
the whole interval [−τ, 0] (in the case of a single delay). In other words, the
phase space is infinite dimensional. Here, I remark that DDEs can be seen as a
special case of hyperbolic partial differential equations (see Appendix C) where
one can think of the solution operator as a transport of the initial function
segment on the interval [−τ, 0]. A consequence is, that in general, results
or techniques from ordinary differential equations cannot be applied to this
class of equations. So mathematically, the incorporation of delays poses new
problems and asks for new tools. Not only will delays ask for new methods,
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but also the qualitative behaviour can be very different from the associated
ordinary differential equation which is obtained by setting the delays to zero.
To see this, consider for instance the following example from [100] (p.11)

ẋ (t) + 2ẋ (t− τ) = −x (t) .

For τ = 0 it is easy to see that the origin is a stable equilibrium. However, for
any τ > 0 it becomes unstable (See [100] for further examples). Fortunately
though, generically, small delays will have small effects for the class of non-
neutral delay equations ([34]), that is equations which do not involve delays
in the highest order derivative.

A rather unexplored task within the theory of delay equations consists in
the investigation of equations with multiple delays. This is in contrast to the
fact that in many applications one is confronted with a large number of dif-
ferent delays. In mesoscale brain models the transmission delays depend on
the distance between distant connected brain areas [42, 69] . Even in net-
work models of single cells it is known that due to myelination of the axons
transmission times can vary independently of the axon’s length[27, 28]. In
gene regulatory networks time delays model the duration of biochemical reac-
tion chains [40, 111]. When treated as system parameters, this multitude of
delays makes analytic approaches harder in many senses. It is known that the
dimension as well as the number of attractors increase linearly with the delay
[189, 48, 18]. In numerical studies every additional delay drastically increases
the computational costs. So independent of the approach, it is desirable to re-
duce the number of different delays, a task which was only addressed for some
examples so far [9, 117, 138, 142]. In chapter 5 I treat this problem and
related stability questions in a very general setting.

Despite the problems multiple delays can cause in investigations, they
might be a main ingredient in the functioning of complex networks such as the
brain [42, 69]. Indeed, delays can be a used as a tool for constructing complex
dynamics in relatively simple models. In [142, 190] it was shown that tuning
the delays in a ring of delay coupled oscillators, one can produce almost arbit-
rary patterns. I use this idea in chapter 4 to construct a pattern recognition
device from a ring of delay coupled oscillators. But even with a scalar equation
with a single delay, one can construct a pattern recognition device as shown in
[107]. Other ideas to construct pattern recognition devices using time delays
with pulse-coupled elements can be found in [81, 115]. Finally, I want to men-
tion that by introducing a time delayed control term in ordinary differential
equations, one can stabilize unstable (periodic) orbits [144, 94, 60, 59] in a
non-invasive fashion, which means the control vanishes once the desired state
is attained.
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1.4. Large random networks

Another challenge in many applications is the mere size of the networks.
The human brain consists of around 8 · 1010 neurons [78], social networks ex-
pand over the whole globe and food-webs can include thousands of species. In
some cases it is useful to approximate a large system with an appropriate in-
finite dimensional system. For instance, in the case of phase oscillators subject
to external noise, when increasing the number of oscillators, the system can
be described by a partial differential equation called Fokker-Planck equation
[176, 155]. Motivated by terminology from statistical physics, the limit pro-
cess of increasing the dimension of the system to infinity is also called taking
the thermodynamic limit. A similar case of a thermodynamic limit is treated
in chapter 6. Here, the distribution of the phases θk of a large ensemble of
oscillators is described by a smooth density function f (θ, t) which again ful-
fils a partial differential equation. Although at first glance it might appear
that the infinite dimensional problem is harder to solve, which in general is
true, in many cases it allows for more insight. The reason is that, as in an
asymptotic analysis, the finite size irregularities are smoothed out in the ther-
modynamic limit. For illustration consider the sum

∑N
k=1

√
k. It is not clear

how to calculate this sum other than with the help of a computer. However, if
we suppose N is large, we can use the approximation with an upper integral
to write

∫ 1
0

√
xdx ≈ 1

N

∑N
k=1

√
k
N . Now the integral can easily be computed

by hand and we obtain
∑N

k=1

√
k ≈ 2

3N
3/2. I remark that infinite dimensional

systems can in general be approximated by finite dimensional systems. In con-
trast, the other way around is not always possible as for instance in chapter
3 where I consider a unidirectional ring of oscillators which can not be under-
stood as discretization of a spatially extended system. Surprisingly enough,
the phenomenon observed in this finite size network is similar to one observed
in a spatially extended system, namely the Eckhaus instability in reaction-
diffusion systems [172, 85]. And even more, a finite dimensional network can
exhibit very different dynamics from its infinite dimensional counterpart. Such
a case was observed in [128] where the authors investigate a discretization of
a reaction-diffusion equation. The discrete and the continuous equation both
exhibit a destabilization of the homogeneous state through a Turing instability.
However, the bifurcation scenario observed in the finite dimensional system,
given by a network of diffusively coupled nodes (such as in chapter 2) is very
different from the classical Turing instability in spatially extended systems.
Partly, this relies on the special coupling topology that was chosen for the net-
work, namely a scale-free topology. Roughly speaking, such random networks
consist of few nodes with many links and many nodes with few links. I will
go into more detail in chapter 6 where I investigate the dynamics of phase
oscillators in this class of networks. Since the early 2000s they have been dis-
covered to be an important structure in applications such as the world-wide
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web or social networks [4, 112]. It is remarkable that, although the theory of
dynamics on networks has been a growing field in the last decades, it has only
been in the beginning of this millennium that the importance of special topo-
logies like scale-free networks was discovered and dynamics on these structures
were studied extensively [20]. Another important class of random networks I
want to mention here are small-world networks. These networks became fam-
ous after the American scientist S. Milgram claimed in the late 1960s that the
human society is a small-world network . This claim was supported by an
experiment which showed that an American citizen was acquainted with any
other American citizen through at most five people. The coupling topology of
a small-world network is given by a graph in which every node is coupled to
its k nearest neighbours and additionally a few random connections are added.
Since then, small-world networks were discovered in various disciplines such
as sociology, biology and neuroscience [4, 124, 158]. I will investigate the
dynamics of limit-cycle oscillators on such a network in chapter 3. Although
they won’t appear in this thesis, for the sake of completeness I want to men-
tion another important class of random networks given by Erdös-Renyi graphs.
These graphs can be constructed by taking N unconnected nodes, browsing
through all possible connections and setting a link with (independent) probab-
ility p. Thus, the number of Erdös-Renyi graphs with N nodes and k links is

pk (1− p)

 N
2

−k
. An important question is how the dynamics exhibited by

networks with these different types of coupling structures differ qualitatively or
even quantitatively [167]. This problem was often investigated regarding the
stability of synchronous states. Unfortunately, there is no easy takehome mes-
sage, but there are partial results. It was shown for a large class of systems that
heterogeneity in the coupling structure yields better synchronizability than a
regular coupling structure such as lattices [93, 63]. Indeed, heterogeneity de-
creases the average path length in the graph, so the network becomes “smaller”
and can be expected to be easier to synchronize. However, to make matters
more complicated, it was shown shortly after that within a certain class of
scale-free networks, higher heterogeneity leads to worse synchronization prop-
erties [127, 126]. And to make things even more complicated, it was shown in
[7] that it is by far not enough to consider given degree distributions in order to
infer stability properties of the synchronous state. More precisely, for a given
degree distribution corresponding to one of the above mentioned random graph
classes one is able to construct a network which is arbitrarily close to desyn-
chronization. The reason for this variety of behaviours is that the stability of
synchronization really depends on a fine interplay between three ingredients:
the coupling topology, the coupling function and the individual node dynamics.
In chapter 2 I show how these three interact for a large class of dynamics and
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arbitrary coupling topologies. Summarizing, the relation between the dynam-
ics of a network and its coupling topology is very entangled and corresponding
statements should be made with great care.

1.5. Basic definitions, notations and results

Here, we give some basic definitions and results which will be used through-
out the thesis. If not stated otherwise we will consider the euclidean norm on
RN , so

‖x‖ :=
√
x2

1 + . . .+ x2
N , x ∈ RN .

The corresponding scalar product (x,y) =
∑N

k=1 xkyk will simply be denoted
by xy. For vectors and matrices we will use bold face symbols, for instance
x ∈ RN and A ∈ RN×N . For the identity mapping of a space RN we write
IN . If no confusion can arise we just write I. We will also use notions from
both, the theory of dynamical systems and graph theory.

1.5.1. Dynamics. Let us consider the equation

(1.5.1) ẋ (t) = f (x (t))

where we assume either x ∈ RN or x ∈ TN = S1×S1× . . .×S1. I mentioned
in the introduction that there are different notions of synchronization. Here,
we define as follows

Definition 1. We say a solution x (t) of (1.5.1) is synchronous, if xi (t) =
xj (t) for all i, j ≤ N and for all t > 0. The solution x (t) synchronizes if we
have

‖xi (t)− xj (t)‖ → 0

for t→∞ and all i, j ≤ N .

For systems of coupled phase oscillators, the degree of synchrony can be
measured with a real variable r between zero and one.

Definition 2. For x ∈ TN we define the order parameter r as

r (x) =
1

N

∣∣∣∣∣∣
N∑
j=1

eixj

∣∣∣∣∣∣ .
Suppose x (t) ∈ TN is a solution of Eq. (1.5.1). Then we call x the

incoherent state if r (x) = 0. This corresponds to a solution for which the
oscillator’s phases are equally distributed along the circle. In contrast, in the
synchronous state all the phases coincide, so xj = xs for some xs (t) ∈ S1 and
all j, and we have r (x) =

∣∣eixs∣∣ = 1.

1.5.2. Graph Theory and Algebra.

Definition 3. A digraph G = (N , E) is a set of nodes N ⊂ N together
with links ` ∈ E given as a set of ordered pairs of nodes. A weighted digraph



10 1. INTRODUCTION

G = (N , E , c) is a triple of nodes and links together with a map c : E → R
called weights.

For undirected graphs, the concept of connectedness is very natural. How-
ever, directed graphs can have a more complicated structure. We differentiate
between different types of connectedness [10]

Definition 4. A digraph G = (N , E) is strongly connected if every node
is reachable from every other node through a directed path. That is

∀i, j ∈ N ∃lk ∈ E k = 1, 2, . . . r : l1 (2) = j, lr (1) = i, lk (1) = lk+1 (2) .

The digraph is weakly connected if it is not strongly connected and the under-
lying graph which is obtained by ignoring the links’ directions is connected. A
strongly connected subdigraph of a weakly connected digraph is called strongly
connected component, or short strong component. A set of links which con-
nects two strong components is called cutset.

Obviously, for undirected graphs, the two notions of connectedness are
equivalent. Furthermore, with these new notions it is clear that any link in a
digraph G belongs either to a strong component, or to a cutset.

When analysing the dynamics on networks, algebraic properties of graphs
will play an essential role. The following definition introduces a natural con-
nection between graphs and algebra

Definition 5. Let G = (N , E) be an unweighted digraph. Set Wij = 1 if
there is a link ` ∈ E such that ` (1) = j and ` (2) = i and Wij = 0 otherwise.
Then we call W = {Wij} the adjacency matrix of G. Equivalently, for a
weighted digraph G = (N , E , c) set Wij = c (`) if there is a link ` ∈ E such that
` (1) = j and ` (2) = i and Wij = 0 otherwise.

Closely related to the adjacency matrix is the so called graph Laplacian.

Definition 6. Let G be a weighted digraph with adjaceny matrix W .
Then we call

L = DW −W
the graph Laplacian. Here, we defined the diagonal matrix DW as

(DW )ij =

{ ∑n
k=1Wik j = i

0 else .

This definition generalizes the notions of adjacency matrix and graph Lapla-
cian which are usually used in the context of simple graphs without weights.
In the context of synchronization, an important property of the Laplacian is
that by definition its row sums vanish as will turn out later. Now, we can
define the term network properly.

Definition 7. A networkM = (G,f ,H) is a triple consisting of a digraph
G, local dynamics f = (f1, f2, . . . , fN ) with fk : Rm → Rm and a coupling
function H : Rm → Rm.
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I emphasize that if no confusion can arise about the dynamics f and the
coupling function H, we will identify the terms network and graph. However,
one should always keep in mind this definition as most of the difficulties in
dynamics on networks arise from the close entanglement of these three objects.
The next result by Gershgorin is of purely algebraic nature and concerns the
location of the eigenvalues of a matrix [106].

Theorem 8. (Gershgorin) Let A ∈ CN×N and

di =
N∑
k=1

|aik| ,

then every eigenvalue of A lies in at least one of the disks

{z| |z − ajj | ≤ dj} , j = 1, 2, . . . , N

Finally, we will need a very useful theorem concerning the spectrum of
a special class of matrices, namely the Perron-Frobenius theorem [17]. In
order to state the theorem we first need to introduce the notion of reducibility
of a matrix. We call a matrix A ∈ RN×N reducible if there is an N × N
permutation matrix P (i.e. a matrix which is obtained by an interchange of
rows and columns of the identity matrix) such that

P tAP =

(
A B
0 C

)
for square matrices A and B. If no such P exists A is irreducible [106]. It is
worth mentioning that the adjacency matrix A of a digraph G is irreducible if
and only if G is strongly connected. Now we can state the theorem.

Theorem 9. Let A ∈ RN×N be a nonnegative matrix, i.e. aij ≥ 0 for all
i, j ≤ N . Assume further that A is irreducible. Then A possesses a maximal,
positive, real and simple eigenvalue and there exist corresponding nonnegative
left and right eigenvectors.





CHAPTER 2

Synchronization Loss in Directed Networks with
Diffusive Coupling

“The Paradox of Choice has a simple
yet profoundly life-altering message
for all Americans.”
Philip G. Zimbardo

2.1. Introduction

In this chapter we investigate a network of identical elements which are
coupled in a diffusive manner, by which we mean that the dynamics of a node
does not depend on its mere input but rather on the difference between its
own state and the input1. This class of equations is used to model a mul-
titude of applications such as the voltage of cell membranes in neuronal cell
dynamics [90], the phase of generators in power-grids [47] and the state in
consensus formation [146]. Also, we will repeatedly encounter this class in
this thesis. As mentioned in the main introduction, in all these applications
the existence and stability properties of synchronous states play a major role
for their proper functioning. Here, our main concern is the change of stabil-
ity when the network’s coupling structure is modified. For spatially extended
diffusive systems such as the heat equation it is easy to see that increasing
the diffusion coefficient makes the system more stable in terms of relaxation
rates towards the homogeneous state2. In networks, the homogeneous state
corresponds to the synchronous state and increasing the connection density or
the link’s weights corresponds to increasing the diffusion coefficient. Now sur-
prisingly enough, this property is still present in certain networks even though
in general, the coupling structure does not represent a simple discretization
of some continuum. It was previously shown for certain classes of undirected
networks with diffusive coupling that increasing the homogeneity or the num-
ber of connections can enhance synchronization [86, 92, 126]. Here, we show

1The term diffusion is indeed inherited by spatially extended systems. Technically, it relies
on the fact that a discretization of the Laplace operator yields diffusive coupling in the
network sense.
2This can be seen for instance by looking at the fundamental solution of the homogeneous
heat equation.

13
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in a very general setting that adding links or increasing weights in diffusively
coupled networks yields better synchronizability.

However, networks found in nature are often directed and weighted. For
example, electrical synapses in neuron networks have asymmetric conduct-
ance [95], which makes the underlying network directed. Recent work has
provided sufficient conditions to guarantee the stability of synchronization in
directed networks in terms of the network structure and nature of the inter-
action [16, 137, 130]. Nonetheless, understanding the impact of structural
modifications, such as changing weights and adding or deleting links on syn-
chronization remains an open problem.

Here, we show that in contrast to undirected networks, improving the net-
work connectivity structure in directed networks can lead to a synchronization
loss. We show that the spectrum of the network Laplacian plays a crucial role
in this desynchronization mechanism and use eigenvalue perturbation meth-
ods in order to relate the stability changes to the coupling structure. This will
allow us to identify a class of links in directed networks for which increasing
the weights enhances synchronization, namely the cutset. This constitutes a
first step in classifying the links of a network according to their dynamical
importance.

2.2. Stability of synchronization in networks with diffusive coupling

We consider directed networks of identical elements with diffusive inter-
action. The theory we develop here can include networks of non-identical
elements with minor modifications [137]. The network dynamics is described
by

(2.2.1) ẋi = f(xi) + α
N∑
j=1

WijH(xj − xi) i = 1, 2, . . . , N,

where f : Rm → Rm describes the local node dynamics, α ≥ 0 is the overall
coupling strength, and the matrix W describes the network structure, i.e.,
Wij ≥ 0 measures the strength of interaction from node j to node i. Further-
more, let L be the graph Laplacian associated to the adjacency matrixW (see
Def. 6). As described in the introduction, we are interested in the stability
of the synchronization subspace γ(t) = x1(t) = x2(t) = · · · = xN (t), with
γ̇(t) = f(γ(t)) which exists under the assumption H (0) = 0. Although this
type of equations is heavily used in the context of network synchronization,
it was only very recently that a stability result was established [137] for the
general case of time-dependent solutions. In order to prove the main result,
Pereira et al. make the following
Assumptions
A1: f : Rm → Rm is continuous and there exists a bounded, positively invari-
ant open set U ⊂ Rm such that f is continuously differentiable in U and there
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exists a % > 0 such that

‖df (x)‖ ≤ % ∀x ∈ U.
A2: The local coupling function H is smooth satisfying H(0) = 0 and the
eigenvalues βj of dH (0) are real.
A3: The eigenvalues λi of L and βj of dH (0) fulfil

γ := min
2 ≤ i ≤ N
1 ≤ j ≤ m

< (λiβj) > 0.

Let us shortly discuss these assumptions to see that they are somehow
natural. The first assumption guarantees that the node dynamics admit an in-
variant compact set, for instance an equilibrium, a periodic orbit or a chaotic
synchronous orbit. The second condition guarantees that the synchronous
state x1 (t) = x2 (t) = · · · = xN (t) is a solution of the coupled equations
for all values of the overall coupling strength α: when starting with identical
initial conditions the coupling term vanishes and all the nodes behave in the
same manner. In order to prove the theorem (10) we do not need the as-
sumption that the eigenvalues βj are real. However, it will make subsequent
considerations clearer. Also, we remark that in many applications, this is the
case (for instance in the Smale case [163] discussed in the introduction, where
H is a real diagonal matrix). The last condition is a little more involved, at
least for the general case of complex βi. Assume for illustrational purposes
the special case in which all the βj are one. Then this assumption reduces to
min2≤i≤N < (λi) > 0. Now, for undirected graphs it can be shown that the
zero eigenvalue of a Laplacian is non-simple iff the underlying graph is discon-
nected [24]. In this case the stability condition would be violated, and indeed,
in order to observe synchronization it is clear that one should consider at least
weakly connected networks. Having made these assumptions one can prove
the following theorem [137].

Theorem 10. Consider the network of diffusively coupled equation (2.2.1)
satisfying assumptions A1-A3. Then there exists a ρ = ρ (f , dH (0)) such
that for all coupling strengths

(2.2.2) α >
ρ

γ

the network is locally uniformly synchronized. This means that there exists a
δ > 0 and a constant C = C (L, dH (0)) > 0 such that if xi (t0) ∈ U and
‖xi (t0)− xj (t0)‖ ≤ δ for any 1 ≤ i, j ≤ N , then

‖xi (t)− xj (t)‖ ≤ Ce−(αγ−ρ)(t−t0) ‖xi (t0)− xj (t0)‖ ∀t ≥ t0.

So the constant γ which represents the coupling structure is directly related
to the contraction rate towards the synchronous manifold. Let us define this
as a measure of synchronizability.
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Definition 11. We say a system is synchronizable when it admits an ex-
ponential estimate as in Theorem 10. Furthermore, by higher synchronizability
we mean a larger contraction rate towards the synchronous manifold.

One of the steps in the proof is to show that the linearisation of Eq. (2.2.1)
along γ(t) can be decomposed into n blocks of the form

(2.2.3) ξ̇i = [Df(γ(t))− αλidH (0)] ξi i = 1, . . . , N

independently of L being diagonalizable or not. This has the main advantage
that these are decoupled m-dimensional equations which only differ by the
Laplacian eigenvalues λi. So next we have a closer look at these eigenvalues.

Theorem 12. Let W ∈ RN×N be a nonnegative matrix. Then, the eigen-
values λi of the corresponding Laplacian L = DW −W have nonnegative real
parts, i.e. they can be ordered according to their real parts

0 = λ1 ≤ < (λ2) ≤ . . . ≤ < (λN ) .

An eigenvector of the zero eigenvalue is given by 1.

Proof. This is a simple consequence of the Gershgorin theorem (see Thm.
8) which implies that each eigenvalue lies in a disk of the form

{z| |z − ljj | ≤ ljj}

with ljj =
∑N

k=1wjk ≥ 0. The second statement is clear because a Laplacian
has zero row sum. �

Hence, the eigenvector of the zero eigenvalue corresponds to motion in the
synchronous manifold, whereas the eigenvectors of eigenvalues with non-zero
real parts correspond to motion transverse to the synchronization manifold.
Therefore, if we assume that γ is time independent and the corresponding
equations (2.2.3) for i > 1 have stable trivial solutions, synchronization in
Eq. (2.2.1) is stable. This observation led to the introduction of the so called
Master Stability Function (MSF) in 1998 [136], which maps a complex num-
ber z to the maximal Lyapunov exponent of the time dependent operator
Df(γ(t))−zdH (0). By definition, the region of stability is the domain where
the MSF has negative real part. Clearly, the MSF approach is well suited for
computational investigations and covers a broad range of coupling functions.
For autonomous systems it also yields contraction rates towards the (relative)
equilibria. However, in the non-autonomous case we consider here, the stabil-
ity of the nonlinear system can in general not be deduced by the location of
the Maximal Lyapunov Exponent of the linearised system due to Perron effects
[110]. In this case, the use of exponential dichotomies is preferable as it yields
exponential estimates for the nonlinear flow as in Thm. 10. Furthermore, it has
the advantage that structural stability follows naturally, and under stronger
assumptions one even obtains estimates for the size of the basin of attraction
[137].
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Figure 2.2.1. In a schematic representation we illustrate the
motion of the spectral gap λ2 under structural modifications in
case λ2(ε) is real. The network on the right has a spectral gap
such that αλ2 > αc. Adding a link as indicated decreases the
gap to λ2(ε), which violates the stability condition (2.2.4).

Now, as we mentioned above, the theorem is still valid if we do not assume
that the βj are real. However, this assumption simplifies condition (2.2.2)
essentially. By using the structure of the Laplacian spectrum the condition
(2.2.2) for stable synchronous motion writes as

(2.2.4) α< (λ2) min
1≤j≤m

βj > ρ.

More involved stability conditions can be tackled, but the analysis becomes
more technical without providing new insight into the phenomenon. Condition
(2.2.4) shows that the spectral gap λ2 plays a central role for synchronization
properties of the network. Structural changes which decrease the real part
of λ2 can destabilize the synchronous state, see Fig. 2.2.1. This establishes a
strong connection between the coupling topology of a network and the stability
of synchronous states in the network. In the case of directed graphs, very few
is known about the connection between the coupling structure and the spectral
gap. However, for undirected graphs there is a well developed theory.

2.3. Motion of the spectral gap and stability in undirected
networks

One of the first who investigated the spectral gap of Laplacians of graphs
was M. Fiedler [61]. He established the following result

Lemma 13. Let G and G′ be unweighted and undirected graphs such that
G ⊂ G′. Then we have

λ2 (G) ≤ λ2

(
G′
)
.

As a simple consequence we have
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Corollary 14. In the setting of the main theorem for an unweighted
graph, increasing the connection density in the graph yields higher synchroniz-
ability.

However, to establish a similar result for weighted and directed graphs we
have to employ a different approach [84].

Lemma 15. Let λ be a simple eigenvalue of L ∈ RN×N with corresponding
left and right eigenvectors u,v and let L̃ ∈ Rn×n. Then, for ε small enough
there exists a smooth family λ (ε) of simple eigenvalues of L+εL̃ with λ (0) = λ
and

(2.3.1) λ′ (0) =
uL̃v

uv
.

Proof. First, we remark that for the eigenvectors u,v of a simple eigen-
value we have uv 6= 0 (see Lemma 6.3.10 in [84]). The existence of a family
of simple eigenvalues follows from the smooth dependence of eigenvalues on
matrix entries. For the second statement, let x (ε) and y (ε) be left and right
eigenvectors of L+εL̃ corresponding to λ (ε). Then, we differentiate the eigen-
value equation λ (ε)x (ε)y (ε) = x (ε)

[
L+ εL̃

]
y (ε) and omit the dependence

on ε for simplicity to obtain

λ′xy + λ
[
x′y + xy′

]
= x′

[
L+ εL̃

]
y + x

[
Ly′ + L̃y + εL̃y′

]
.

Evaluating this expression in ε = 0 and using that x (0) and y (0) are eigen-
vectors of L we have

λ′ (0)x (0)y (0) = x (0) L̃y (0)

which is the desired representation. �

Before we proceed to the analysis of a directed network, we mention that
by using Lemma 15 we can generalize Lemma 13 to weighted undirected graphs

Corollary 16. Let G be a weighted graph with Laplacian L and simple
spectral gap λ2. Let Lp = L + εL̃ be a perturbed Laplacian with a positive
(semi-) definite perturbation L̃ and associated spectral gap λ2(ε). Then we
have λ′2 (0) > 0 (λ′2 (0) ≥ 0 resp.).

Proof. First, we remark that L is symmetric. Consequently, the left and
right eigenvectors u and v are dual, i.e. v = u. Let L̃ be positive semi-definite,
so we have by Lemma 15 λ′2 (0) = uL̃u

uu ≥ 0. Analogously λ′2 (0) > 0 if L̃ is
positive definite. �

In other words, this Corollary states that increasing weights or adding links
with positive weights will generically increase the spectral gap and therefore
the synchronizability.
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Remark 17. In the corollary, we do not assume that the perturbation is
symmetric. However, if it is we can apply the result repeatedly as long as the
spectral gap is simple.

To conclude this section, we have seen that in undirected networks, im-
proving the connection structure in the sense of making it denser and stronger,
indeed yields higher synchronizability. Of course, the natural question arises,
if we have similar results for the case of directed networks. Before investigating
the general case we want to motivate it with some numerical examples.

2.4. Two case studies

Here, we present results of numerical simulations which show that adding
links or increasing weights can destabilize the synchronous state in directed
networks. The underlying digraph for the first two examples is shown on the
top left of Fig. (2.4.1). It consists of two components which are strongly con-
nected, visualized by the grey dotted lines. Again, this means every node is
reachable from every other node through a directed path inside these compon-
ents. Here, the smaller component does not influence the larger component,
as there are no links from the smaller to the larger component. Nonetheless,
the network still supports stable synchronous dynamics. Now, introducing a
new link pointing from node 4 to node 1 improves the connection structure
significantly in the sense that the whole network is now strongly connected:
any two nodes in the network are connected by a directed path. However, this
structural improvement has a surprising consequence for the dynamics: the
synchronous state becomes unstable.

In Fig. (2.4.1) a) the local dynamics is given by the Hindmarsh-Rose model,
a three dimensional ordinary differential equation which models the membrane
potential of a neuron. Neurons are known to exhibit a wide range of dynamical
behaviour, such as subthreshold oscillations, regular and chaotic spiking and
bursting. Depending on the parameter settings, the Hindmarsh-Rose model
exhibits spiking and bursting behaviour [89]. The local dynamics f is given
by

ẋ = y + a1x
2 − x3 − z + I

ẏ = 1− 5x2 − y
ż = a2(s(x− xR)− z).

Here, I is a constant input current. We choose the parameters as follows:
a1 = 3.01, a2 = 0.006, s = 4, I = 3.2 and xR = −1.6. As can be seen in the
inset of Fig. 2.4.1 a), in this regime each node exhibits chaotic bursting [13].
We consider the electrical synaptic interaction between neurons given by

H =

 1 0 0
0 0 0
0 0 0

 ,
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Figure 2.4.1. The figures show simulation results for the net-
works on top. All links in blue have weight one. In the main
plots we show the difference of the first component of x1 and
the first component of x5. In a) the node dynamics is given by
Hindmarsh-Rose (HR) neurons, and in b) by Rössler dynamics.
The global coupling α is chosen such that the nodes synchron-
ize chaotically for the original network. This can be seen in
the main plots for times until t = 2000 in blue. The introduc-
tion of the new link 4 → 1 with weight 0.4 at time t = 2000
leads to a destabilization, displayed in red. The insets show the
time series of a single node. For the HR neurons we consider a
chaotic bursting mode and for the Rössler dynamics a chaotic
state.

so the local coupling is only in the x-component, known as membrane potential.
In this case, the assumption A3 for Theorem 10 is not satisfied. However, the
stability condition α<(λ2) > αc can be verified via a master stability function
approach [136]. All nonzero weights Wij in the network on top left are set to
one and in order to achieve stable synchronized motion for the whole network
we fixed α = 0.96. In the main plot of Fig. 2.4.1 a) we show the difference
of the first component of nodes 1 and 5. We observe synchronous dynamics
for times t < 2000 (in blue). At time t = 2000 we add the new link 4 → 1
with a weight of W14 = 0.4, which leads to the strongly connected network on
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the top right. As can be seen for times t > 2000 (in red) this destabilizes the
synchronous state.

In the second example we consider the same network topology, now en-
dowed with Rössler oscillators as local dynamics [153]

ẋ = −y − z
ẏ = x+ a1y

ż = a2 + z(x− a3).

Here we chose a1 = 0.2, a2 = 0.2 and a3 = 9. For these parameters, the
isolated nodes exhibit chaotic dynamics, as can be seen in the inset of Fig.
2.4.1 b). We consider the interaction in all variables

H =

 1 0 0
0 1 0
0 0 1

 .

In this case, we can apply Theorem 10 and we obtain the stability condition
α<(λ2) > αc as in the previous case. Again, all nonzero weights Wij in the
network are set to one and in order to achieve stable synchronization we fixed
α = 0.092. As in the previous example, we observe synchronization for times
t < 2000, see Fig. 2.4.1 b). The introduction of a new link at time t = 2000,
however, leads to a desynchronized state.

We remark that these findings are not restricted to networks consisting
of strong components connected by a cutset, which corresponds to a so-called
master-slave configuration. To illustrate this, we carried out simulations on a
strongly connected network with Rössler systems as local dynamics as shown
in Fig. 2.4.2. Here, we use the interaction

H =

 1 0 0
0 0 0
0 0 0


which corresponds to a resistive coupling in the first variable between the
oscillators. We remark that taking the identity as interaction function yields
similar results though. In a) we choose the global coupling α such that the
nodes synchronize chaotically for the network shown on the right. Here again,
all weights are set to one. At time t = 2000 we increase the weight on the
link 2 → 3 shown in red. This decreases the spectral gap, which in turn
destabilizes the synchronous state. In b), the global coupling is chosen slightly
smaller, such that the nodes do not synchronize. Now, introducing the new
link 1 → 2, shown as a dotted line, increases the spectral gap. And this in
turn stabilizes the synchronous state, as can be seen for times t > 2000 (in
blue). We emphasize that there are different possibilities which stabilize the
synchronous state. For instance, increasing the weights on either of the links
2→ 1, 2→ 4 or 3→ 1 yields a similar result.
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property is “very small”. For the case of a non-continuous distribution of the
matrix entries this means its (Lebesgue) measure tends to zero when the graph
size increases. This was conjectured by Babai in the eighties and only proved
in the end of 2014 [170]. As a consequence, it is also valid for the much used
class of Erdös-Rényi random graphs [52]. For a continuous distribution it is
easier to see that independent of the dimension, the set of matrices with non-
simple eigenvalues has zero (Lebesgue) measure. First, we remark that the set
of square matrices with pairwise distinct eigenvalues is open and dense as a
subset of all square matrices. This is easy to see when looking at a matrix in its
Schur triangular form with the eigenvalues on the diagonal [84]. However, it
does not necessarily mean that this set has full measure. To see it does, consider
the discriminant function f (A) =

∏
i<j (λi − λj) which maps a square matrix

on the product of all possible differences of eigenvalues λi. Then the set of
matrices with non-simple eigenvalues is precisely the preimage of zero under
f . By showing that the set of zeros of a nonzero polynomial is a nullset one
obtains the result.

Now, in this situation the Laplacian can be written in block form

(2.5.1) L =

(
L1 0
−C L2 +DC

)
,

where L1 ∈ RN×N and L2 ∈ Rm×m are the respective Laplacians of the strong
components. C ∈ Rm×N is the adjacency matrix of the cutset pointing from
one strong component to the other and DC is again a diagonal matrix with
the row sums of C on its diagonal. As a consequence of the block structure,
eigenvalues of L are either eigenvalues of L1 or eigenvalues of L2 +Dc. Now,
our aim is to apply Lemma 15 in order to track the motion of the spectral gap
when we perturb the network and therefore the Laplacian. To do so, we first
gather some information about the eigenvectors of L.

Lemma 18. Let λ2 be a simple eigenvalue of L located in the second com-
ponent, i.e. det (λ2I − (L2 +DC)) = 0. Then the corresponding left and right
eigenvectors of L have the form(

wC (L1 − λ2I)−1 ,w
)

, (0,y)

where w and y are left and right eigenvectors of L2 +DC .

Proof. Let (v,w) and (x,y) be left and right eigenvectors of L corres-
ponding to λ2. For the left eigenvector we have

0 = (v,w)L− λ (v,w)

= (v (L1 − λ2I)−wC,w (L2 +DC)− λw) .

The second component of this equation yields that w is a left eigenvector of
(L2 +DC). By assumption λ2 is simple and consequently not an eigenvalue



24 2. SYNCHRONIZATION LOSS IN DIRECTED NETWORKS

of L1, so the first component yields

v = wC (L1 − λ2I)−1 .

The equation for the right eigenvector is

0 = L

(
x
y

)
− λ2

(
x
y

)
=

(
(L1 − λ2I)x

−Cx+ (L2 +DC)y − λ2y

)
.

As L1−λ2I is regular we have x = 0. The second component then yields that
y is a right eigenvector of L2 +DC . �

Remark 19. We remark that the example from Fig. 2.4.1 is enclosed
in this case. Also, the case where the smallest eigenvalue is located in the
first component is not interesting for perturbations on the cutset. This can
be seen in Eq. (2.5.1). Suppose λ2 is located in the first component and
introduce a perturbation C + εC̃ where C̃ is a nonnegative matrix. Then
by continuous dependence of the eigenvalues on the matrix entries for ε small
enough λ2 will still be in the first component. But the perturbed Laplacian

writes L =

(
L1 0

−C − ε∆ L2 +DC+ε∆

)
so λ2 remains unchanged.

Now observe that the matrix L2 +DC is nonnegative diagonally dominant
[17, 84]. This property enables us to find a Perron-Frobenius like result.

Lemma 20. L2 +DC has a minimal real positive eigenvalue with corres-
ponding nonnegative left and right eigenvectors.

Proof. Let s = maxi

{
di +

∑
j 6=i aij

}
, then N = sI − (L2 +DC) is a

nonnegative matrix by definition of s. Furthermore it is irreducible as we
assumed that the component associated to L2 is strongly connected. Then, by
the Perron-Frobenius theorem (Thm. 9), N has a maximal real eigenvalue Λ
with corresponding nonnegative left and right eigenvectors ω and η. That is

Nη = Λη

⇐⇒ (L2 +DC)η = (s− Λ)η.

As Λ is the maximal eigenvalue and all the eigenvalues of L2+DC are obtained
by eigenvectors µ of N through s−µ, we must have that s−Λ is the minimal
real eigenvalue of L2 + DC . Furthermore, the eigenvectors are the same, so
the left and right eigenvectors corresponding to s − Λ are nonnegative. That
the eigenvalue is positive can be seen by looking at the Gershgorin circles. �

This shows that the spectral gap is real in this case. So when changing the
coupling structure, the motion of λ2 will be along the real axis by Lemma 15.
Now we can state the first main result of this section



2.5. STABILITY OF SYNCHRONIZATION IN DIRECTED NETWORKS 25

Theorem 21. Let a network consist of two strong components with the
Laplacian

L =

(
L1 0
−C L2 +DC

)
.

Let the smallest nonzero eigenvalue λ2 be simple and located in the second
component, that is det (λ2 − (L2 +DC)) = 0. Then, increasing the weights
on the cutset never decreases the spectral gap. That is, for ε small enough and
a nonnegative perturbation C + ε∆ we will have λ2 (ε) ≥ λ2 (0).

Proof. Let ε∆ be a perturbation in direction of the cutset, so the per-
turbed Laplacian L̃ can be written as

L̃ =

(
L1 0

−C − ε∆ L2 +DC+ε∆

)
= L+

(
0 0
−ε∆ Dε∆

)
= L+ ε

(
0 0
−∆ D∆

)
.

Using Lemma 15 we have for the spectral gap of the perturbed system

λ′2 (0) =
w (D∆y −∆x)

(v,w)

(
x
y

)
for left and right eigenvectors (v,w) and (x,y) of L. Now, plugging in the
representation from Lemma 18 we obtain

λ′2 (0) =
wD∆y

wy
.

By assumption ∆ and therefore D∆ is nonnegative. Furthermore, Lemma 20
shows that w and y are nonnegative, which concludes the proof. �

The next question is what happens when we introduce a perturbation ∆
opposite to the cutset. In this case, the Laplacian writes as

Lp =

(
L1 +D∆ −∆
−C L2 +Dc

)
,

where ∆ is the matrix describing the coupling in opposite direction to the
cutset. Using Lemma 15 and 18 again yields

(2.5.2) λ′2 = −wMy

wy
,

where
M = C(L1 − λ2I)−1∆

takes into account the structural changes ∆. Now again, such a modification
will weaken the stability or even lead to instabilities if λ′2 < 0. Determin-
ing the modifications that yield a decrease of the spectral gap is an involved
problem, and we shall tackle it elsewhere. Here, we will focus on the example
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of Fig. 2.4.1, as it contains the central concepts without technical intrica-
cies. In the example from Fig. 2.4.1, L2 + Dc is symmetric and we have

v = w = − 1√
2
(1, 1). Moreover, M = 1

2

(
0 1
0 1

)
and v and w are eigen-

vectors ofM with eigenvalue 1/2. Because v is a common eigenvector of both
L2 +Dc and M corresponding to a positive eigenvalue we obtain a decrease
of the spectral gap with a rate λ′2 = −1

2 . This is a main mechanism that
generates instabilities: the eigenvectors of L2 +Dc lie in the space spanned by
the eigenvectors of M with positive eigenvalues.

Formally, we can obtain all the structural changes capable for destabiliz-
ation as a function of the eigenvectors v,w of L1 and L2 +Dc. In contrast
to undirected networks where there is a well developed theory relating eigen-
vectors to the underlying graph structure [19], for directed graphs the theory
is underdeveloped. Therefore, further analytical insights remain a challenge.
From a computational point of view though, we can solve this problem for any
given network.

2.6. Discussion

In this chapter we have investigated the effect of the addition of a link and
an increase of a link’s weight on the transverse stability of the synchronous
manifold in diffusively coupled networks. The results reveal that in a broad
class of dynamics, directed and undirected networks behave essentially distinct
under these structural changes. Namely, assuming the stability condition Eq.
(2.2.4), synchronization loss caused by structural improvements is a property
inherent to directed networks exclusively. If α<(λ2) min1≤j≤m βj � ρ, the
network modification may not destroy synchronization. However, it worsens
the quality in the sense that the transient towards synchronization becomes
larger. Also, we remark that under additional conditions on the local dynamics
f , one can establish estimates for the size of the basin of attraction linearly
depending on the quantity α<(λ2). Hence, with these assumptions our stability
considerations also relate to the newly introduced basin stability [120].

Recently, interconnected networks have attracted much attention [26, 145],
as they can exhibit catastrophic cascades of failures when connections are un-
directed. Our results suggest that interconnected networks in which intercon-
nections are represented by directed cutsets behave qualitatively different. In
game theory, such catastrophic effects of structural improvements on the net-
work function are well known under the name of “Braess’s paradox” [21, 22].
However, here the effect is due to the fact that the players take rational de-
cisions to optimise their strategies. In the case of complex networks of dy-
namical systems considered here, the effect is purely dynamical and is a con-
sequence of the motion of eigenvalues of the network Laplacian. Furthermore,
our results shed light on how to plan and design network modifications without
destroying the network performance, as for instance discussed for power-grids
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in [183, 125]. And indeed, this phenomenon can be observed experimentally.
In [74] we consider directed networks of four coupled optoelectronic delay-
coupled devices which upon the addition of a link exhibit synchronization loss
for periodic and chaotic synchronization. So as a next step, it is desirable to ex-
tend our approach to networks with transmission delays. Finally, as mentioned
in the main text, there is a rich body of work about the relation between the
spectrum of a graph Laplacian and the underlying graph topology, developed
in the last century in algebraic graph theory [61]. However, there are few at-
tempts to extend these approaches to directed graphs. As shown here, related
results would essentially improve our understanding of the dynamical impact
of a link in directed networks.





CHAPTER 3

Shortcuts in Rings of Stuart-Landau Oscillators

“Short cuts make long delays.”
J.R.R. Tolkien, The fellowship of the ring

3.1. Introduction

In the last chapter we have seen that the addition of a single link can have
drastic consequences for the exhibited dynamics if the underlying network is
directed. In this chapter, we study the same modification in a special class
of networks belonging to the class of small-world networks [20]. Namely, we
consider unidirectional rings which are perturbed by the insertion of a single
non-local link (Fig. 3.1.1). One reason for the interest in ring structures is that
they emerge in many natural systems [98, 149, 169]. Also, rings can be seen
as motifs of larger and more complex networks [121]. A lot of research has
been done for bidirectional rings in the last few years [2, 39, 148, 179, 194].
In contrary, less is known about dynamics in unidirectional rings [83, 82,
139, 191, 142, 138], although these structures play an important role in
various applications [23, 36, 166, 169, 178, 175]. As a simple, paradigmatic
model, we consider unidirectional rings ofN identical Stuart-Landau oscillators
with an additional shortcut from node ` to node N , to which we refer as a
perturbation of the homogeneous system. The dynamics on the perturbed
ring are then described by the following equations:

żj (t) =
(
µ− |zj (t)|2

)
zj + zj+1 (t) , j = 1, ..., N − 1,

żN (t) =
(
µ− |zN (t)|2

)
zN + z1 (t) + sz` (t) ,(3.1.1)

where µ = α + iβ, β > 0 and α is the bifurcation parameter. s > 0 is the
shortcut strength and zj (t) ∈ C. We remark that here, the coupling is additive,
in contrast to the previous chapter where we considered a diffusive coupling.
However, introducing polar coordinates zj = |zj |eiφj in Eqs. (3.1.1) one can see
that the coupling in the phase variables φj is diffusive as well. The difference
is that here, we also consider variations in the oscillator’s amplitudes.

For an unperturbed ring (s = 0), the system is highly symmetric. The
coupling topology is invariant under the rotational group γz = γ (z1, z2, . . . , zN ) =
(z2, z3, . . . , zN , z1) which constitutes a spatial symmetry. Furthermore, the
system possesses a spatiotemporal symmetry which consists of a phase shift

29
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Figure 3.1.1. Coupling scheme of a unidirectional ring with
a shortcut.

z → eiϕz and which can be identified with the symmetry group S1. So equa-
tions (3.1.1) with s = 0 constitute an example for a system with spatial and
spatiotemporal symmetries. Bifurcations from equilibria and periodic orbits
which can occur in these systems were investigated in very general settings in
[104, 105, 44]. Therein it was shown that due to the symmetry, a certain class
of periodic solutions can be transformed into equilibria in rotating coordinates,
therefore termed relative equilibria. This essentially simplifies the bifurcation
analysis of these solutions and we will use this fact in chapters 4 and 6. The
same mechanism was also used in [191] where the bifurcations from the zero
equilibrium in (3.1.1) are described in much more detail. In particular, when
the parameter α = � (μ) in (3.1.1) is increased, the zero equilibrium

(3.1.2) z1 = ... = zN = 0

loses stability and undergoes a sequence of Hopf bifurcations. The first half
of the emerging branches of periodic solutions stabilizes at appropriate values
of α (see section 3.2.2). Remarkably, this phenomenon resembles the Eckhaus
scenario in spatially extended diffusive systems [50, 172] although there is
no apparent way to to interpret the network as a discretization of some con-
tinuum. The aim of this chapter is to investigate the transformation of this
scenario under non-local perturbations which destroy the rotational symmetry
of the system. We investigate two different asymptotic cases of small and large
perturbation size s. For small s, the Eckhaus scenario persists qualitatively
with a modulated Eckhaus line, while for large s, there is a qualitative differ-
ence to the unperturbed case that reflects the new network topology, i.e. the
existence of a new loop.

The chapter is structured as follows. In section 3.2 we discuss the stability
of the zero solution (3.1.2), its spectrum and its bifurcations. In section 3.3
we find asymptotic expressions for the emerging periodic solutions in the case
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of small perturbation size s. We also reduce the case of asymptotically large s
to the analysis of an inhomogeneous ring. Section 3.4 deals with the stability
analysis of the periodic solutions and the results are compared to numerical
simulations. Finally, we discuss our findings and give an outlook on possible
extensions and applications of the results in section 3.5.

3.2. Stability of the zero solution

To study the stability of system (3.1.1) it is convenient to identify each
variable zj (t) ∈ C with a two-dimensional real variable

zj (t) = (zj,1 (t) , zj,2 (t))>

= (< (zj (t)) ,= (zj (t)))> ∈ R2

. Then, system (3.1.1) is equivalent to the real system

żj (t) =
(
Mµ −

(
z2
j,1 + z2

j,2

))
zj + zj+1,

żN (t) =
(
Mµ −

(
z2
N,1 + z2

N,2

))
zN + z1 + sz`,(3.2.1)

where Mµ =

[
α −β
β α

]
is the representation of the multiplication with µ ∈

R2×2.

3.2.1. Spectrum of the equilibrium. We linearize system (3.1.1) in
z1 = .. = zN ≡ 0 and obtain the variational equation

d

dt
δzj (t) = Mµδzj + δzj+1 (t) , j = 1, ..., N − 1,

d

dt
δzN (t) = MµδzN + δz1 (t) + sδz` (t) ,

which can be written as

(3.2.2)
d

dt
δZ (t) = [IN ⊗Mµ +Gs ⊗ I2] δZ (t) ,

where δZ = (δz1, ..., δzN )>, IN ∈ RN×N is the N -dimensional identity matrix,

(3.2.3) Gs =


0 1 0
...

. . . . . .

0
. . . 1

1 0 s 0


is the coupling matrix of the perturbed ring, A⊗B denotes the tensor product
of the two matrices A and B. Eq. (3.2.2) is a simple example of a system,
which is treatable by a master stability function (MSF) approach [136]. In
our case the MSF M : C −→ R simply reads M (λ) = α+< (λ), where λ is an
eigenvalue of the coupling matrix Gs. Indeed, the spectrum of (3.2.2) is

(3.2.4) σ (IN ⊗Mµ +Gs ⊗ I2) = σ (Mµ) + σ (Gs) = {µ, µ̄}+ σ (Gs) .
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Taking the real part, we obtain M (λ) = α + < (λ). The spectrum of the
coupling matrix Gs equals the set of solutions of the characteristic equation

(3.2.5) χGs (λ) = λN − sλ`−1 − 1 = 0.

For s = 0, σ (G0) consists of the N roots of unity

γN,k = ei
2πk
N , k = 0, ..., N − 1.

For small s 6= 0, the roots λk, k = 1, ..., N , of Eq. (3.2.5) are given (asymptot-
ically) as

(3.2.6) λk (s) = γN,k +
s

N
γ`N,k +O

(
s2
)
,

as one can readily compute by applying the implicit function theorem to (3.2.5)
with base points (s0, λ0) = (0, γN,k). Hence, the spectrum of Gs is a weak
modulation of the spectrum of the circulant matrix G0 (see Fig. 3.2.1 (a),
(b)). For large s, σ (Gs) can be computed in a similar manner. In Appendix
B we show that in this case the spectrum of Gs splits into two parts: there
are `− 1 roots

(3.2.7) λ1,k (s) ≈ s−1/`−1γ`−1,k, k = 0, ..., `− 2,

located close to an inner circle of amplitude ∼ s−1/`−1 and N − `+ 1 roots

(3.2.8) λ2,k (s) ≈ s1/N−`+1γN−`+1,k, k = 0, ..., N − `,

which are close to an outer circle of amplitude ∼ s1/N−`+1 (see Fig.3.2.1).

3.2.2. Bifurcations of the equilibrium. From the formula (3.2.4) for
the spectrum of the equilibrium z1 = .. = zN ≡ 0, it follows that it is asymp-
totically stable iff

(3.2.9) < (λ) < −α, for all λ ∈ σ (Gs) .

When the parameter α is increased starting from a value which satisfies (3.2.9),
a bifurcation takes place whenever for some λ ∈ σ (Gs):

(3.2.10) α = −< (λ) .

Note that there is always one purely real eigenvalue λ1 (s) = 1 + s
N + O

(
s2
)

of Gs which has maximal real part among all eigenvalues of Gs by a Perron-
Frobenius argument (Thm.9). Therefore, for small s ≥ 0 the equilibrium
switches stability at

α1 (s) ≈ −
(

1 +
s

N

)
.

Since we assume β 6= 0, this bifurcation is a Hopf bifurcation and the emerging
periodic orbit has frequency β at onset. As for s = 0, the bifurcation is
supercritical for small s > 0, because the cubic term of the corresponding
normal form depends continuously on s. Therefore, a branch of stable periodic
solutions emerges and exists for α > α1 (s). A further increase of α leads to
a sequence of Hopf bifurcations which give rise to N − 1 branches of periodic
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Figure 3.2.1. Spectra of the coupling matrix Gs (3.2.3) for
N = 20 oscillators, a shortcut at node l = 6 and for different
coupling strengths s: a) s = 0.1, b) s = 0.6, c) s = 1, d) s = 5.

solutions. As in the case s = 0, all bifurcations are supercritical if s > 0 is small
(by continuity). The same is true if s > 0 is large, as we show in Appendix B.
The latter N − 1 periodic solutions are initially unstable, inheriting instability
from the steady state. The initial frequency ω of the emerging periodic solution
equals the imaginary part of the crossing eigenvalue, that is ω = β + = (λ)
for the corresponding λ ∈ Gs. For the unperturbed ring (s = 0) the first
b(N − 1)/2c (bxc := max {n ∈ N : n ≤ x}) branches stabilize when they cross
the Eckhaus stabilization line [191]

(3.2.11)
1

N
|Z|2 =

3α

4
+

√(α
4

)2
+

1

2
,

where |Z|2 is the (constant) amplitude of a periodic solutionZ (t) = (z1 (t) , ..., zN (t))T .
This observation is in striking analogy with the well known Eckhaus destabil-
ization in diffusive systems [50, 172]. Remarkably, it is also found in this
unidirectional system which does not extend to a spatially extended system
in a natural manner. In section 3.4 we investigate how the added shortcut
changes this scenario.



34 3. SHORTCUTS IN RINGS OF STUART-LANDAU OSCILLATORS

3.3. Emergent periodic orbits

Let Z (t) be a periodic solution of (3.1.1), which emerges from a Hopf
bifurcation at

(3.3.1) α (s) = −< (λ (s)) ,

and which is associated to the eigenvalue λ (s) of the coupling matrix Gs, see
(3.2.6)–(3.2.8). Because of the S1-symmetry of the system, we employ the
Ansatz

(3.3.2) Z (t) =
√
εeiω(ε,s)tV (ε, s) ,

where

(3.3.3) ε := α− α (s) ≥ 0

is the parameter distance from the bifurcation point,

(3.3.4) V (ε, s) = (v1 (ε, s) , ..., vN (ε, s))T ∈ CN ,

is the profile vector and the frequency ω (ε, s) of Z (t) is

(3.3.5) ω (ε, s) = β + = (λ (s)) +O (ε) .

The emerging periodic orbit is ε-close to the complex plane spanned by the
eigenvector b (s) of Gs corresponding to λ (s) and tangential at the bifurcation
point itself [103]. This means, V (0, s) = b (s) with

(3.3.6) b (s) = a (s) ·
(
1, λ (s) , λ2 (s) , ..., λN−1 (s)

)T
,

where one may assume a (s) ∈ R due to the S1-symmetry of the system. Fig.
3.3.1 shows several examples of the profile shapes for different s and λ. For
|λ| > 1 the emerging solutions become stronger localized at the N -th node zN
with increasing s since it scales as zN ∼ λN−1. For |λ| < 1, the localization
takes place at z1 (t) for the same reason.

3.3.1. Case I: small perturbation. In this section we consider s to
be small. Our aim is to determine a formal asymptotic expansion for the
frequencies (3.3.5) and the profiles (3.3.4) of the periodic solutions and to
derive evaluable approximate conditions for their stability. In particular, we
are interested in the deformation of the Eckhaus stabilization line (3.2.11). In
order to obtain asymptotic expressions for the profiles in case that s, ε > 0,
we linearize the vector field in ε = s = 0. For a periodic solution (3.3.2), we
introduce rescaled, rotating coordinates uj (t) ∈ C, j = 1, ..., N according to

(3.3.7) zj =
√
εeiωtvjuj ,
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Figure 3.3.1. Moduli of the components of the initial profiles
V (0, s) = b (s) of emerging periodic solutions (see 3.3.4) and
(3.3.6) for different wave numbers k (i.e., different eigenvalues
λk (s) ofGs) and coupling strengths s as indicated in the figure.
For all panels: N = 100 and ` = 26.

with ω = ω (ε, s) and vj = vj (ε, s). Then (3.1.1) becomes

u̇j =
(
α+ i (β − ω)− ε |vjuj |2

)
uj +

vj+1

vj
uj+1,(3.3.8)

u̇N =
(
α+ i (β − ω)− ε |vNuN |2

)
uN +

v1

vN
u1 + s

v`
vN

u`,(3.3.9)

In rotating coordinates, the equilibrium solution

(3.3.10) uj ≡ 1, j = 1, ..., N,

corresponds to the periodic solution (3.3.2) of (3.1.1) and the stability of (3.3.2)
and (3.3.10) is the same. In Appendix B we show that for each eigenvalue
λk (s) = γN,k + s

N γ
`
N,k + O

(
s2
)
of Gs, the corresponding branch of periodic

solutions has frequencies

(3.3.11) ωk (ε, s) = β + = (γN,k) +
s

N
=
(
γ`N,k

)
+O

(
(|ε|+ |s|)2

)
,

and profiles

(3.3.12) vj (ε, s) = γj−1
N,k

(
1 + s

j − 1

N
γ`−1
N,k

)
+O

(
(|ε|+ |s|)2

)
.

3.3.2. Case II: large perturbation. In this section we consider s to be
large. To treat (3.1.1) as a weakly perturbed system we perform a change of
variables

(3.3.13) yj (t) = ςjzj
(
ς2N t

)
,

with a small parameter ς = s−1/N−`+1, which is the inverse radius of the outer
spectral circle of eigenvalues (3.2.8). This transformation normalizes the emer-
ging profiles (3.3.6) corresponding to the eigenvalues (3.2.8). The transformed
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variables (3.3.13) satisfy

ẏj (t) =
(
ς2Nµ− ς2(N−j) |yj (t)|2

)
yj (t)(3.3.14)

+ς2N−1yj (t) , j = 1, ..., N − 1,

ẏN (t) =
(
ς2Nµ− |yN (t)|2

)
yN (t) + ς3N−1y1 + ς2N−1y` (t) .

Since ς3N−1y1 = ςN
(
ς2N−1y1

)
and ςN is small, we consider system (3.3.14) as

a small perturbation of

ẏj (t) =
(
ς2Nµ− ς2(N−j) |yj (t)|2

)
yj (t)(3.3.15)

+ς2N−1yj (t) , j = 1, ..., N − 1,

ẏN (t) =
(
ς2Nµ− |yN (t)|2

)
yN (t) + ς2N−1y` (t) .

Although we cannot show that results for the persistence of hyperbolic invari-
ant manifolds [58] apply and assure that (3.3.15) possesses the same hyperbolic
invariant manifolds as does (3.3.14), the truncated system (3.3.15) is a natural
approximation to (3.3.14). Note that in (3.3.15) the components y1, ..., y`−1

do not couple back to the rest of the system since the weak link from y1 to
yN was taken out. Therefore, the dynamics of the subsystem y`, ..., yN is in-
dependent and, apart from the zero solution, acts as a periodic force on the
attached subsystem y1, ..., y`−1. In original variables (3.3.15) reads

żj (t) =
(
µ− |zj (t)|2

)
zj + zj+1 (t) , j = 1, ..., N − 1,(3.3.16)

żN (t) =
(
µ− |zN (t)|2

)
zN + sz` (t) .

The linearization of (3.3.16) at the zero solution has eigenvalues

µ+ ν, and µ̄+ ν

where ν is a root of the characteristic equation(
νN−`+1 − s

)
ν`−1 = 0

of the reduced coupling matrix Hs, which is obtained by erasing the link from
z1 to zN from Gs. It has eigenvalues

(3.3.17) ν = 0 and ν = s
1/N−`+1γN−`+1,k, k = 1, ..., N − `+ 1.

Periodic orbits which correspond to the algebraically (`− 1)-fold eigenvalue
ν = 0 are localized on the nodes z1, ..., z`−1.

3.4. Stability of the periodic orbits

3.4.1. Case I: small perturbation. The variational equation for system
(3.3.8)–(3.3.9) at the stationary solution (3.3.10) is
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u̇j =
(
α+ ε+ i (β − ω)− 2ε |vj |2

)
uj +

vj+1

vj
uj+1,

u̇N =
(
α+ ε+ i (β − ω)− 2ε |vN |2

)
uN +

v1

vN
u1 + s

v`
vN

u`.

We transform the system into R2N (xj = (<(uj),=(uj))
T ) and insert the

expansions (3.3.11) and (3.3.12) to obtain

ẋj = −
[
Mλ̃ + 2εδ11

]
xj +Mλ̃xj+1 +O

(
(|ε|+ |s|)2

)
(3.4.1)

ẋN = −
[
Mλ̃ + 2εδ11

]
ẋN +Mλ̃ẋ1

+sMλ`0
[ẋ` − ẋ1] +O

(
(|ε|+ |s|)2

)
with λ0 = γN,k, λ̃ (s) = λ0 + s

N λ
`
0, the matrix representation M : C → R2×2

(as in (3.2.1)) and δmn = (δjmδkn)j,k is the matrix which has the entry 1 at
position (j, k) and zeros everywhere else. We drop the higher order terms in
(3.4.1) and write the system in the form
(3.4.2)
Ẋ = A (ε, s)X =

[
−IN ⊗

(
Mλ̃ + 2εδ11

)
+G0 ⊗Mλ̃ + (δN1 − δN`)⊗ sMλ`0

]
X.

Clearly, an MSF approach as in section 3.2 is not feasible any more. However,
we have reduced the dynamical problem to an algebraic one. The eigenvalues
of system (3.4.2) can be computed by standard numerical procedures to de-
termine approximately the stability of the periodic solutions in the vicinity of
a bifurcation point. The eigenvalues of (3.4.2) approximate the eigenvalues of
the exact system (3.3.8)–(3.3.9) at the steady state (3.3.10) up to first order
in ε and s. Anyway, this first order approximation leads to good predictions
even for moderate values of the parameters, in particular for ε (see Fig. 3.4.1).

3.4.2. Resonances. An important observation for the perturbed system
is that in comparison to the unperturbed case s = 0, for small s > 0 the point
of stabilization of a periodic solution may be altered or not. It remains nearly
the same if the corresponding eigenvalue λk = γN,k +O (s) fulfils

(3.4.3) arg (γN,k) ≈ arg
(
γ`N,k

)
,

or equivalently, k(l−1)
N ∈ Z. This corresponds to a situation where both com-

ponents of the input z1 (t) + sz` (t) to node zN (t) possess approximately the
same phase. At the same time it is a condition for maximizing the modulus
|λk| ≈

∣∣∣γN,k + s
N γ

`
N,k

∣∣∣ and for γN,k to span an eigenmode of both, the unper-
turbed cycle of length N and of a cycle which has the same length N − `− 1
as the newly created cycle ` → N → (N − 1) → ... → `, i.e. to be an N -th
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Figure 3.4.1. Bifurcation diagrams for different strengths s
of the shortcut in a ring of N = 100 oscillators with a short-
cut from node ` = 26 to node N = 100; β = 2.5. Dashed
lines indicate unstable periodic orbits and solid lines stable peri-
odic orbits. The stabilization line for s = 0 is shown in black.
The frequency of the solutions is plotted against the bifurcation
parameter α. The perturbation strength s increases from left to
right: a), d) s = 0.05; b), e) s = 0.1; c), f) s = 0.2. The upper
panels a), b), c) show the approximated diagram obtained from
(3.4.2). The lower panels d), e), f) show results of numerical
bifurcation analysis of the full system for comparison. These
calculations were carried out with the program AUTO [46].

and an (N − `+ 1)-th root of unity. On the contrary, the antiphase condition

(3.4.4) arg (γN,k) ≈ arg
(
γ`N,k

)
+ π

causes the point of stabilization to grow rapidly with increasing s, i.e., it
destabilizes the corresponding periodic orbit. The more precisely the equality
(3.4.4) holds, the more pronounced is the destabilizing effect of the additional
link (see Fig. 3.4.1).

3.4.3. Case II: Large s. For large s both systems, the original (3.1.1)
and the truncated (3.3.16), admit two types of periodic solutions emerging
in bifurcations corresponding to eigenvalues of scale |λ| ≈ 0 or |λ| ≈ s1/N−`+1,
respectively (see Eq. (3.2.7), (3.2.8), and (3.3.17)). In case of system (3.1.1) all
these periodic solutions emerge in form of rotating eigenvectors (3.3.2)–(3.3.6)
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of the coupling matrix Gs which leads to a locally pronounced activity in z1 (t)

for a corresponding eigenvalue |λ| ≈ 0, and in zN (t) for |λ| ≈ s1/N−`+1 (see fig.
3.3.1). The same picture applies for bifurcations of (3.3.16) corresponding to
the simple eigenvalues (|ν| ≈ s1/N−`+1) of Hs, while the `−1-fold bifurcation at
α = 0 corresponding to ν = 0 simultaneously creates several solutions which
are completely localized in the attached subsystem (z1, ..., z`−1) where only the
oscillators z1, ..., zk, k = 1, ..., `−1, are active and all others silent. For each of
these solutions the first active element zk (t) =

√
αeiβt is located on the limit

cycle of an isolated Stuart-Landau oscillator and all other zj , j < k, lock either
in phase or antiphase to their input signal zj+1. However, these solutions can
never stabilize, since the zero solution of the subsystem z`, ..., zN is unstable
after the first bifurcation corresponding to |ν| ≈ s1/n. Therefore, it suffices to
study the inhomogeneous ring

żj (t) =
(
µ− |zj (t)|2

)
zj + zj+1 (t) , j = 1, ..., n− 1,

żn (t) =
(
µ− |zn (t)|2

)
zn + sz1 (t) , n = N − `+ 1,(3.4.5)

to understand the possibly stable dynamics of (3.3.16). To approximate the
stability of the emerging periodic solutions one can proceed as for the case of
small s: write the system in scaled rotating coordinates (3.3.7), linearize around
the equilibrium solution (3.3.10), expand the variational equations in powers
of ε and truncate terms of order higher than O (ε).We obtain the following
approximate variational equation (see Appendix B):

ẋj = −
[
s

1
nMγn,k + ε

(∣∣v0
j (s)

∣∣2( 3 0
0 1

)
−
(

1 0
0 1

))]
xj

+

[
s

1
nMγn,k + ε

(∣∣v0
j (s)

∣∣2 − 1
)( 1 0

0 1

)]
xj+1,(3.4.6)

where
∣∣∣v0
j (s)

∣∣∣2 = ns
2(j−1)
n

s
2
n−1
s2−1

. Although the loss of symmetry prevents us
from applying an MSF approach, (3.4.6) enables us to approximate the Floquet
exponents by solving numerically the characteristic equation of (3.4.6).

3.5. Discussion

We have investigated how the introduction of a shortcut alters the dy-
namics in a unidirectional ring of Stuart-Landau oscillators. In absence of a
shortcut, the system exhibits a bifurcation scenario similar to the Eckhaus in-
stability observed in dissipative media. For small shortcut strengths s we have
found that the Eckhaus stabilization line is modulated in the following man-
ner: The destabilizing impact on periodic solutions is stronger for non-resonant
modes than for resonant ones. The latter correspond to wavenumbers that are
compatible with the lengths of both cycles which exist in the perturbed system,
i.e. for the cycle of length N − `+ 1 which contains the shortcut, as well as for
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the full cycle of length N . In contrary to the non-resonant solutions, the sta-
bilization of the resonant periodic solutions occurs for similar parameter values
as in the case without shortcut. As a result, one can control the destabilization
of a specific set of wavenumbers via the link position ` and its strength s. In
the case of a large shortcut strength s we have provided an argument that the
cycle of length N − `+ 1 dominates the dynamics and stable solutions can be
treated as solutions of a single unidirectional inhomogeneous ring which has
coupling strength s at only one link.

Further investigations will be dedicated to how small perturbations may be
used to select solutions with a specific wavenumber by adding a corresponding
set of resonant links. More generally, our findings may help to understand
how perturbations with a more complicated structure, consisting of several
shortcuts, can influence the dynamics of a unidirectional ring. Moreover, our
observations might even help to locate an unknown shortcut when one is only
allowed to vary a bifurcation parameter and observe the dynamics, since the
modulated Eckhaus line can be used to identify the shortcut. A strong shortcut
can be used in arbitrary networks in order to localize the activity on the cycles
in which they are contained and amplify the activity in particular on their
targets.

Another point which was not investigated here but deserves a closer study
is the development of profiles far from the bifurcation point. The simplest,
most important phenomenon is that, for increasing α, the exponential tails
of the profiles develop into plateaus, where the profile amplitude is locally
constant as a function of the component index. By taking the limit N → ∞
one can argue that solutions may consist of several, sharply separated plateaus
where each plateau can possess a different wavenumber. This complies with
numerical observations, although all observed solutions with more than one
plateau lie on the unstable branches which correspond to the inner spectral
circle for large s. For sufficiently large values of s, those branches begin to curl
with increasing α and seem to be unstable for arbitrary large values of α (see
Fig. 3.5.1).
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Figure 3.5.1. Bifurcation diagram for intermediate strength
s = 5 of the shortcut. Fixed parameters are N = 100, ` = 26,
β = 2.5. Branches of unstable periodic orbits are indicated by
dashed lines and stable branches by solid lines. Along the black
line (3.2.11) the stabilization takes place for s = 0. The fre-
quency of the solutions is plotted against the bifurcation para-
meter α. The calculations were carried out with the program
AUTO [46].





CHAPTER 4

Synchronous Motion in Rings of Delay Coupled
Phase Oscillators and Applications to Pattern

Recognition

“The wheel is come full circle.”
W. Shakespeare, King Lear

4.1. Introduction

In the previous chapter we have investigated the effect of a simple modi-
fication of a ring network, i.e. the introduction of an additional link. Here,
we consider phase oscillators coupled in a ring scheme as well, but this time
with a different type of modification. Namely, we add time delays in the coup-
lings. This has fundamental consequences for the exhibited dynamics, amongst
others increasing multistability of synchronous states for higher values of the
delays. Provided with a global coupling structure coupled phase oscillators are
well known as Kuramoto model [102]. A lot of research has been done on the
synchronization properties of Kuramoto oscillators with instantaneous coup-
ling and related bifurcation scenarios since the 1980s [3]. Similarly, Kuramoto
oscillators with delayed couplings are well investigated [193, 109], whereas
there are fewer results on networks of phase oscillators with a local coupling
structure [150]. The first stability criterion for systems with delayed couplings
was given in [49], however, it does not contain a description of the multista-
bility and corresponding bifurcations. Here, we will investigate the existence,
stability and bifurcations of synchronous states in a ring. Furthermore, we will
show how to use these states in order to store and recognize patterns. For the
reader not familiar with pattern recognition we give a short introduction.

The ability to recognize encoded patterns is a very general and omnipresent
skill in humans and animals. Here, the term pattern can refer to a structure of
any nature activating a sensory perception. Developing artificial pattern recog-
nition systems as well as investigating actual natural mechanisms of pattern
recognition in humans and animals has been a scientific challenge for decades.
Until a couple of years ago, the state of the art was a model developed by
Hopfield in 1982 [80]. It is a recurrent artificial neural network consisting of
coupled discrete elements. In contrast to feedforward networks the underlying

43
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graph might have loops leading to more complex dynamics and multistability,
which in turn is used to store several patterns at once in the network.

Up to now, the Hopfield model and its variations have been extensively
studied. The majority of the work was focused on stability analysis of the
underlying dynamical system. For some recent results, see [160, 186, 184]
and references therein. However, from the point of view of pattern recognition,
all these models still share the idea of the original Hopfield model, i.e, storing
patterns in stable fixed points of dynamical systems. On the other hand,
experimental evidence strongly suggests that patterns are stored as objects
with time resolution, i.e. as periodic orbits. For instance, experiments of the
group of W.J. Freeman showed complex behaviour in the EEG tracings of
olfactory bulbs in rabbits [161]. The spatial activity patterns indicated by
EEG potentials differ for different odours, indicating that a partial pattern of
receptor activity may result in a spatial pattern of neural activity in the bulb,
which might in turn transmit odour-specific information to the olfactory cortex.
Limit cycle activities occur for perceptible odors and chaotic activities occur
for novel odors. These factors indicate that it is necessary to develop neural
network models which use periodic solutions as memory. Up to now, there are
few results in this direction. One approach developed in [5] constructs a piece-
wise linear map with a stable periodic solution for each stored pattern. Since
each pattern is stored in only one map (one neuron), it loses the distributive and
parallel processing property presented in both biological and artificial neural
networks. Another approach developed in [180] studies the existence and
stability of stable periodic solutions in discrete-time bidirectional associative
memory neural networks. However, it does not show how the periodic solutions
can be used as associative memory. In this chapter, we close this gap by
presenting a system of coupled phase oscillators with time delay as associative
memory, where the patterns are stored as stable periodic orbits. In this way,
the model possesses distributive and parallel processing in the space of coupled
neurons, as well as preserving the natural order of the elements in each pattern
by the time order of each periodic orbit. Indeed, there is an increasing evidence
that the brain’s memory and retrieval functions are closely connected to spike
timing [76].

To be more precise, we employ an idea developed in [142, 190] where it
is shown how the tuning of delays in a ring of phase oscillators can transform
stable synchronous spiking patterns into arbitrary stable spiking patterns. We
will use these spiking patterns to represent encoded patterns. The recognition
consists then in simulating the system with an initial condition associated to
the pattern in question. The higher the convergence rate to the encoded pat-
tern, the more probable is a recognition. Although this idea can be generalized
to delayed networks with arbitrary coupling topology, as shown in chapter 5,
the simple structure makes the ring accessible to analytic investigations.



4.2. SYNCHRONOUS MOTIONS IN RINGS OF PHASE OSCILLATORS 45

The chapter is structured as follows. In section 4.2 we analyse the model
equations with homogeneous delays. In particular, we study coexisting periodic
solutions in such a system together with their number and stability. Section
4.3 introduces the pattern recognition mechanism. In section 4.4 we apply
the model to various signals ranging from simple artificial ones to speech and
present numerical results. Section 4.5 concludes this chapter.

4.2. Synchronous motions in rings of phase oscillators

In this section we introduce the dynamical system used as a pattern re-
cognition device, determine the number of coexisting solutions and present a
detailed bifurcation analysis.

4.2.1. The model equations. In the previous chapter we have invest-
igated a unidirectional ring of elements where the local dynamics were given
by Stuart-Landau oscillators. These are two-dimensional limit cycle oscillators
characterized by a phase and an amplitude. However, when such elements are
weakly coupled, the phases evolve on a slower timescale than the amplitudes
and one can restrict to an equation for the phases only [90]. In this spirit we
consider the delayed, unidirectional ring of phase oscillators.

(4.2.1) ẋj (t) = ω + κ sin (xj+1 (t− τ)− xj (t)) 1 ≤ j ≤ N.
Here xj ∈ 2πR/Z and all the oscillators have the same individual frequency
ω. The coupling between the oscillators is of strength κ > 0 and delayed
by a time delay τ > 0. As our aim is to construct/memorize and recognize
patterns by means of synchronous states, we first assure the existence of the
synchronous solutions. We remark that by introducing new variables yj =
xj − ω and rescaling the time t 7→ κt system (4.2.1) transforms to ẏj (t) =
sin (yj+1 (t− τ̃)− yj (t)). However, we will consider (4.2.1), since it does not
make the analysis more complicated and still keeps the coupling strength and
frequency explicitly.

4.2.2. Existence of synchronous periodic solutions . Synchronous
periodic solutions of (4.2.1) are of the form

(4.2.2) xj (t) = xs(t) = Ωt

for some mean frequency Ω ∈ R. Substituting this solution in system (4.2.1)
yields the transcendental equation for Ω

(4.2.3) Ω = ω − κ sin (Ωτ) .

Now, introducing the variable z = Ωτ Eq. (4.2.3) transforms to

(4.2.4)
z

κτ
=
ω

κ
− sin(z).

That is, we look for intersections of a straight line through the origin with
slope 1

κτ and a shifted sine, see Fig. 4.2.1(a).
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Figure 4.2.1. (a) Graphical representation of solutions to Eq.
(4.2.4). The intersection points determine frequencies of syn-
chronous solutions Ω, z = Ωτ . Parameters: ω = 0, τ = 10, and
κ = 3. (b) Frequency of synchronous solutions versus delay τ ,
given by Eq. (4.2.5). Parameters: ω = 2 and κ = 1.

In order to visualize how multiple synchronous solutions (4.2.2) with differ-
ent frequencies appear for different delay times τ , let us represent the solutions
of (4.2.3) in the following parametric form

(4.2.5) τ (s) =
s

ω + κ sin (−s)
, Ω (s) =

s

τ (s)
.

So the same branch of periodic solutions reappears slightly inclined for larger
values of τ , see Fig. 4.2.1 (b). Both figures show that indeed, either increasing
τ or κ leads to an increase of solutions of the form (4.2.2). Actually, it is known
that the number of coexisting periodic solutions in systems with time delay
τ grows at least linearly with τ [189]. In our case, using simple geometrical
arguments, one can show that the number of such solutions is approximately
2κτ/π. A proof together with the stability analysis is given in the following
section.

4.2.3. Stability of synchronous solutions. The main result of this
section is, that half of the above mentioned 2κτ/π synchronous solutions are
linearly stable, whereas the other half is unstable. To determine the linear
stability consider the linearization of Eq. (4.2.1) along a synchronous solution
of the form (4.2.2)

ξ̇ (t) = −Kξ (t) +KGξ (t− τ) ,

where

K = κ cos (Ωτ)(4.2.6)

and G = {gij} is the adjacency matrix of the unidirectional ring coupling, i.e.
gij = 1 if j = i + 1modN and gij = 0 otherwise. Here N is the number of
oscillators in the ring. Thus the linear stability is given by the distribution of
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zeros µ ∈ C of the following characteristic equation

F (µ) = det
(
−µIN −KIN +Ke−µτG

)
= − (µ+K)N +KNe−Nµτ .

The solutions µ of this equation are the characteristic exponents (eigenvalues)
whose real parts determine the stability. The obtained characteristic equation
can be factorized to the set of N simpler equations:

(4.2.7) 0 = µ+K −Ke−µτen, n = 0, . . . , N − 1,

where en = exp [i2πn/N ] are N -th roots of unity. Now we can prove the
following lemma.

Lemma 22. Let x (t) = Ωt1N be a synchronous solution of (4.2.1). The
solution is linearly stable iff the following condition holds

cos (Ωτ) > 0.

Furthermore, if cos (Ωτ) < 0, the following upper bound for the real parts of
the characteristic exponents µ holds true

< (µ) ≤ −2κ cos (Ωτ) .

Proof. Splitting Eq. (4.2.7) into real and imaginary parts (µ = α + iβ)
yields

0 = α+K

(
1− e−ατ cos

(
2πn

N
− βτ

))
,(4.2.8)

0 = β −Ke−ατ sin

(
2πn

N
− βτ

)
.

Consider the two cases K > 0 and K < 0
i) Case K > 0. For α > 0 we have α+K

(
1− e−ατ cos

(
2πn
N − βτ

))
> 0 which

contradicts Eq. (4.2.8). Consequently, Eq. (4.2.8) can only be fulfilled for
α < 0. It is shown in [49] that K > 0 is also a necessary condition for stability
which concludes the proof of the first part of the lemma.
ii) Case K < 0. If we have α ≤ 0 the upper bound is automatically valid. So
suppose we have a solution (α, β) with α > 0. Then, Eq. (4.2.8) implies

0 < −K
(

1− e−ατ cos

(
2πn

N
− βτ

))
< −2K,

so for α > −2K we would have α + K
(
1− e−ατ cos

(
2πn
N − βτ

))
> 0 which

means that indeed, the real part α of µ can be bounded as follows

α ≤ −2K = −2κ cos (Ωτ) .

�

Using the condition for stability from lemma 22 we obtain estimations for
the number of coexistent stable and unstable periodic orbits.
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Lemma 23. Let 2τκ > π. Then there are at least κτπ −
1
2 stable and unstable

periodic synchronous solutions of Eq. (4.2.1), respectively.

Proof. Finding periodic solutions is equivalent to finding zeros of the
function f (Ω) = Ω − ω + κ sin (Ωτ). We have seen in the last lemma, that
a solution with frequency Ω is stable if cos (Ωτ) > 0. This is the case for
Ωτ ∈

(
−π

2 ,
π
2

)
+ 2πl. Motivated by this we define the disjoint intervals

Il =
(
− π

2τ
,
π

2τ

)
+

2πl

τ
l ∈ Z,

Jl =

(
π

2τ
,
3π

2τ

)
+

2πl

τ
l ∈ Z,

for which cos (Ωτ) > 0 and cos (Ωτ) < 0, respectively. We first remark that
we have to fulfil Ω ∈ (ω − κ, ω + κ) (see Eq. (4.2.3)). A straightforward
calculation shows that the number M of intervals Il lying in (ω − κ, ω + κ)
satisfies

κτ

π
− 1

2
≤M ≤ κτ

π
+

1

2
.

Now in Il we have
f ′ (Ω) = 1 + κτ cos (Ωτ) > 0

and further f
(
− π

2τ + 2πl
τ

)
≤ 0 ≤ f

(
π
2τ + 2πl

τ

)
for all Il ⊂ (ω − κ, ω + κ). So

f has exactly one zero in each Il by the strict monotonicity. By the same
argument there has to be an odd number of zeros in each Jl. By the shape of
f we conclude that it has one zero in each Jl as well. So the total number of
zeros m in intervals Jl has the same bounds as M . �

4.2.4. Bifurcations of synchronous solutions. In subsection 4.2.2 we
have seen that synchronous solutions undergo bifurcations as either the delay
time τ or the coupling strength κ is varied. In this section we give some
insight into these bifurcations. A solution (4.2.2) can change its stability when
one of its characteristic exponents crosses the imaginary axis µ = iβ, β ∈ R.
Substituting µ = iβ into (4.2.7) and splitting the obtained equation into real
and imaginary parts yields

(4.2.9)
0 = K

(
1− cos

(
2πn

N
− βτ

))
,

0 = β −K sin

(
2πn

N
− βτ

)
.

The first equation in (4.2.9) is fulfilled if either K = 0 or 2πn
N − βτ = 2πl for

some l ∈ Z. Plugged into the second equation both conditions yield β = 0.
Thus, Hopf bifurcations with β 6= 0 cannot occur in the model. The only
possible destabilization corresponds to eigenvalues crossing the imaginary axis
with vanishing imaginary part β. On the other hand, every periodic solution
has a trivial characteristic exponent µ = 0 corresponding to perturbations
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in the direction of the periodic motion. So in order to look for a change of
stability we have to find non-simple zeros of the characteristic function. Such
non-simple zeros are possible if F ′ (0) = −NKN−1 (Kτ + 1) = 0. This is
fulfilled if either one of the following conditions holds

(4.2.10) K = 0 , τK = −1.

The following lemma describes the type of bifurcations taking place if the
conditions (4.2.10) hold, see also Fig. 4.2.2. We remind that K = κ cos(Ωτ).

Lemma 24. Let xτ (t) = Ω (τ) t1N be a branch of synchronous solutions of
Eq. (4.2.1) with κ 6= 0. Varying τ it undergoes a transcritical bifurcation at
K = 0 with K from Eq. (4.2.6). If ω 6= πlκ for any l ∈ 2Z + 1 it undergoes a
saddle-node bifurcation at K = −1/τ with K defined as above.

Proof. As it was mentioned above, under conditions (4.2.10) an eigen-
value crosses the imaginary axis with vanishing imaginary part. So the ob-
served bifurcations can either be transcritical or fold. In a saddle-node bifurc-
ation two new solutions emerge. This happens exactly when the right hand
side in (4.2.3) crosses the identity (see Fig. 4.2.1 (a)), which is equivalent to

1 =
∂

∂Ω
[ω − κ sin (Ωτ)]

= −τκ cos (Ωτ) = −τK.
This condition also shows that at K = 0 no other solution emerges. Therefore,
the bifurcation at K = 0 is transcritical. A straightforward calculation shows
that the eigenvalues cross the imaginary axis with nonzero speed indeed. �

Fig. 4.2.2 shows the obtained bifurcation diagram for synchronous solu-
tions, including the stability of the corresponding solutions. Here we used that
for τ = 0 we have K = κ > 0, so the synchronous state is stable. For the
other solutions on the branch the stability can then be inferred by the order
of the bifurcations. A remarkable feature is that with increasing τ , the two
bifurcations, transcritical and fold, are converging towards each other.
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Figure 4.2.2. Bifurcation diagram for synchronous solutions
(4.2.2). The frequency Ω is plotted versus the time delay τ .
Dotted lines represent unstable and plain lines stable solutions.
The parameters are ω = 2 and κ = 1.

4.3. Pattern recognition

In this section we present the idea of how pattern recognition can be real-
ized with the ring of delay coupled oscillators. We have seen in the previous sec-
tion that system (4.2.1) admits coexisting synchronous solutions xij (t) = Ωit

with frequencies {Ωi}i∈I ⊂ (ω − κ, ω + κ) given by Eq. (4.2.3). In analogy
with the firing times of neuronal systems [64, 30] we pay special attention to
the moments when an oscillator xij (t) reaches the boundary of the periodic
domain [0, 2π], i.e. xj (tj) = 2π. This choice of phase is arbitrary, and any
other phase ϕ∗ instead of 2π can be chosen [143]. In what follows, we will use
the obtained crossing time sequences tj to represent patterns. In section 4.3.1
we explain how a given pattern can be encoded in a ring of phase oscillators,
see Fig. 4.3.1. Afterwards, in section 4.3.2 we explain the dynamic recognition
process.

4.3.1. Encoding. The idea for encoding a pattern in a ring of delay
coupled oscillators is based on a time shift transformation [190, 142]. We
shortly describe it here and refer to chapter 5 for a detailed description.
We assume that a pattern P is represented by some N -dimensional vector
P = (p1, p2, ..., pN ) ∈ RN . First, let us choose an Ωi that corresponds to a
stable synchronous solution of (4.2.1). The timeshift transformation

(4.3.1) yj (t) = xj (t− pj)
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Figure 4.3.1. The process chart visualizes the encoding mech-
anism. Step one is the recording and digitalization of a given
stimulus. The second step is not mandatory for pattern encod-
ing. However, we employ it in this section as it yields better
results. It consists of a fast Fourier transformation (FFT) of the
recorded stimulus. Then, a firing sequence P is associated to
the Fourier transform such that each value of the FFT’s square
modulus is identified with the firing time of an element of the
ring. The last step is calculating the coupling delays in the ring
according to (4.3.3), so the resulting dynamical system admits
the firing sequence P as a stable solution.

converts (4.2.1) to the system

(4.3.2) ẏj (t) = ω + κ sin (yj+1 (t− τj)− yj (t)) ,

which has the same form as (4.2.1) except that the new delays

(4.3.3) τj := τ − (pj+1 − pj)
are non-identical. Here we assume that τj ≥ 0, which is always possible by
taking τ sufficiently large. Under the transformation (4.3.1), the synchronous
state xj (t) = Ωit transforms into the solution

yj (t) = Ωi · (t− pj)
of system (4.3.2). The stability properties of this solution are also preserved
as will be shown in chapter 5. Thus, in the system with non-homogeneous
delays (4.3.2), an oscillator j crosses the phase 2π at times pj , pj + 2π

Ωi
, ....

Consequently, changing the delays τ 7→ τj yields the new system (4.3.2) which
exhibits exactly the required crossing sequence P as a stable periodic solution.
In particular, the encoding is not a dynamic process but simply consists of the
calculation of the N delays τj .

4.3.2. Recognition. Now suppose P is encoded as described above. Let

Q = P + (δ1, δ2, ..., δN )
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be a perturbed version of pattern P that is to be recognized. We associate an
initial function for system (4.3.2) in a natural manner

y0 (t) = Ωi · (t− q1, t− q2, ...., t− qN ) .

So for δi = 0 it corresponds to the synchronous state Ωit itself in transformed
coordinates. Then, the recognition task consists of deciding whether Q is
recognized as the previously encoded pattern P . In order to do so we start
system (4.3.2) with the initial function y0 associated to Q and stop after a
fixed time T . Then some measure of similarity between ΦT (Q), which is Q
evolved under the flow of (4.3.2), and P is considered to decide whether Q
should be recognized as P . To specify the measure of similarity employed
here, consider the following straightforward calculation. Transformed back in
original coordinates the initial function y0 reads

x0
j (t) = y0

j (t+ pj)

= Ωi (t+ pj − qj)
= Ωi (t− δj) .

This means that solving system (4.3.2) with initial function y0 (corresponding
to Q) is equivalent to solving the original system (4.2.1) with initial function
x0
j (t) (corresponding to ∆ = (δ1, δ2, ..., δN )). In other words, pattern Q is

recognized as version of P if the orbit with initial function x0
j (t) corresponding

to Q converges fast enough to the synchronous state with frequency Ωi (where
“fast enough” has to be quantified in a specific situation). Consequently, we
can use the order parameter r (t) =

∑N
j=1

∣∣∣eiΦt(x0)∣∣∣ as measure of similarity
(see Def.2).

The computation of the delays as described above is comparable to the
computation of the weights in the learning phase of the Hopfield model. It
constitutes the main step of the learning phase. Furthermore, the time T after
which we stop simulation of the differential equations and a threshold for the
order parameter that lets us decide whether the flow after time T is close
enough to the synchronous state, that is whether the pattern is recognized or
not are important parameters which can be chosen in the learning phase as
well. They compare to the number of iterations and the threshold θ in the
Hopfield model. We remark that the capacity of this method is of order O(N),
in comparison to the order O(N/ log(N)) of the Hopfield’s model. Another
advantage is that, unlike in the Hopfield model, patterns which are not cor-
rupted by noise are recognized immediately, because synchronous motions in
Eq. (4.2.1) and their transformed counterparts in (4.3.2) are invariant.

4.4. Numerical results

In this section we present numerical results for pattern recognition. An
important quantity for the mechanism is the size and shape of the basin of
attraction of the stable periodic solution representing the encoded pattern,
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Figure 4.4.1. (a) Encoded pattern (2, 1, ..., 1). Initial values
are P +Qj with Qj = (0, ..., 0, ε, 0, ..., 0), where j determines
the location and ε the size of the perturbation. Colour codes
the order parameter measured after time T = 900. Paramet-
ers are τ = 3, ω = 1, κ = 1. (b) Visualization of attractor
basins for two oscillators. The axis correspond to initial func-
tions (Ω1t1,Ω2t1). Colour codes the frequency of synchronous
motion at time T = 50000. Parameters are ω = 2, κ = 1
and τ = 20. For this value of τ we observe thirteen coexisting
synchronous states of which seven are stable (see Fig. 4.2.2).

as the basin contains initial conditions (patterns) that are possibly identified
with the encoded pattern (see Fig. 4.4.1 (b)). Obviously, we can not present a
complete picture of the basins of attraction as the phase space of Eq. (4.2.1)
is infinite dimensional. However, we will address some aspects of this ques-
tion numerically in the following section. All simulations in this section are
performed using an Euler method with step width 0.001 to solve the delay
differential equations.

4.4.1. Recognition of artificial patterns. We start with a simple pat-
tern P = (2, 1, ..., 1). Fig. 4.4.1 shows the order parameter after time T = 90
for initial values P + Qj , where Qj = (0, ..., 0, ε, 0, ..., 0). Here j determines
the location and ε the size of the perturbation. We observe that, from a certain
index j on, initial values P +Qj converge to the pattern with the same speed.

As a preparation for more complex audio signals we next investigate re-
cognition of simple sine waves. The task is the following: Suppose two sine
waves of different frequencies are encoded as two patterns P1 and P2. It is
to decide whether a given third wave Q is recognized as either one of the two
encoded sines. Here, we proceed as described in the flow chart Fig. 4.3.1.
According to our scheme, the corresponding (fast) Fourier transforms P1 and
P2 are the patterns associated with the signals. The use of Fourier transform
has the following advantages: one can cut off the transformed signal above
a certain frequency which can be seen as a simple denoising process and at
the same time it accelerates the recognition process. Furthermore, for short



54 4. RINGS OF PHASE OSCILLATORS AND PATTERN RECOGNITION

0 5 10 15 20

0,85

0,9

0,95

1

O
rd

er
 P

ar
am

et
er

440 450 460 470

0,7

0,8

0,9

1

0 5 10 15 20
Frequency

-1

-0,5

0

0,5

1

D
ec

is
io

n

440 450 460 470
Frequency

-1

-0,5

0

0,5

1

(a) (b)

Figure 4.4.2. Pattern recognition with two encoded sine
waves of frequencies 5Hz and 15Hz (a) and 440Hz and 466Hz
(b). A third wave which is to be recognized is used as initial
value for the system transformed according to the 5Hz and 15Hz
patterns respectively (see flow chart 4.3.1). Upper plots show
order parameters after time T = 50 for the different recognition
processes. Parameters are τ = 3, ω = 1, κ = 1. Lower plots
show decision of the PR device. −1 stands for “Pattern 1 is
chosen”, 1 for “Pattern 2 is chosen” and 0 for none.

enough time windows the time course of the signal is not important and the
Fourier transform contains the main information independent of the signal’s
exact timing. The pattern associated to a sine wave of a fixed frequency f is
a delta peak δf (in an ideal case without noise). It is evident that the error
tolerance does not depend on the absolute value of the frequency f but rather
on the frequency difference of the perturbation and the pattern to be identified.

Fig. 4.4.2 shows the results of two different recognition processes. In the
first recognition (a) two sine waves of 5Hz and 15Hz are encoded. Again,
the recognition process consists of deciding whether a third given sine wave
is recognized as either one. It can be seen in the lower left plot that the 5Hz
and the 15Hz wave are recognized with an error tolerance of ±0.1Hz. The
same results hold for recognition of the standard pitch A (440Hz) and one
semitone higher (∼466Hz) (Fig. 4.4.2 (b)). In both cases the order parameter
is measured after time T = 50 which corresponds to ∼17 times the delay time
τ = 3. So the recognition is still relatively fast.

4.4.2. Speech Recognition. In this section, we use the model for speech
recognition. As in the previous section for sine waves, the original audio re-
cording is first transformed with the fast Fourier transform (This is done to
circumvent that two identical signals with different timing are not recognized
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as the same). The modulus vector is then taken as pattern which can be en-
coded by computing the delays as described in section 4.3. The original audio
signals are the numbers from one to ten, recorded in German and spoken by
two different voices (male and female), each in three takes. So in total, it is a
set of 60 audio tracks. We emphasize that the audio tracks are recorded with
a simple audio interface. Consequently, they are corrupted with noise yielding
a SNR around 20dB. In the training phase we calculated the delays and set
the parameters to ω = 1, κ = 1, τ = 3, and T = 25. In this setting, the
system admits one stable synchronous orbit. This means all initial conditions
eventually converge to this solution, so the recognition process depends on the
rate of convergence towards the synchronous orbit: the faster the converge is,
the more probable it is, that it is recognized as being this pattern. After the
training phase we performed random recognition runs in the following way.
First we encoded two recordings of two randomly chosen different numbers
between one and ten. For the recognition we randomly chose one of the four
remaining recordings that coincide with one of the two encoded numbers. Of
these random runs we performed one thousand with a success rate of around
75\%. The relatively low success rate partially has its origin in the very similar
frequency spectrum of the German numbers 1,2 and 3. Excluding two of these
yields success rates of around 85\%.

4.5. Discussion

In this chapter, we have presented a detailed analysis of the synchron-
ous solutions in a ring of coupled phase oscillators. We have shown that the
introduction of time delays in the coupling leads to coexistence of multiple
periodic synchronous solutions with different frequencies. Particularly, the
number of stable periodic orbits can be controlled and chosen arbitrarily high
by increasing the delay. Their frequencies, bounded from below and above by
ω − κ and ω + κ respectively, can be easily determined numerically by solving
the transcendent Eq. (4.2.3). Furthermore, we have found a simple stabil-
ity criterion and described the bifurcations when increasing the delay. More
precisely, we have seen that a branch of synchronous solutions alternately un-
dergoes transcritical and saddle-node bifurcations. For future investigations it
would certainly be interesting to look for modulated wave solutions which are
known to bifurcate from rotating waves in systems with rotational symmetry
[156, 157].

The subsequent sections were dedicated to give an evidence that a ring
of delay coupled oscillators can be used for information processing purposes.
Here, in contrast to other models, the encoding of patterns is computationally
efficient. For a signal of length N it just consists of N point operations, the
calculation of the new delays, in contrast to the Hopfield model which requires
the computation of N2 coupling weights. This results in the higher capacity
N in comparison to a capacity of order O(N/ log(N)) in the Hopfield model.
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Furthermore, not only boolean patterns but arbitrary patterns can be encoded.
Using the results from section 4.2, the model can be controlled easily and
parameters can be tuned suited to the application on hand.

Results from section 4.4 show that the model can be used as a reliable
device for simple artificial pattern recognition as well as for single word speech
recognition. We remark that a downside of the model consists in the infinite
dimensional phase space which makes both, analytic investigations and nu-
merical simulations more demanding than for iterations in finite dimensional
spaces as in the case of the Hopfield model.

The aim of sections 4.3 and 4.4 was to introduce the main ideas for a new
approach to pattern recognition to show the model’s potential capability for
information processing. Consequently, there are still open questions and paths
for future research. For example, in section 4.2 it was shown that for larger
values of the delay τ the model possesses a large number of coexisting stable
periodic orbits. This fact could possibly be exploited further. Furthermore,
one could even think of coupling different rings representing different classes to
yield a single object representing a composite of classes. Also, as in standard
recognition models such as the Hopfield model, the basins of attractions play
an essential role for the functioning of the method. We have explored the
basins of synchronous solutions in the DDE numerically. We believe that it
is not only a mathematically interesting problem, but also the model would
greatly benefit from a more detailed description of the basins of attraction.



CHAPTER 5

Parameter Space Reduction in Networks of Delay
Coupled Elements

“Delay is preferable to error.”
T. Jefferson

5.1. Introduction

In the previous chapter we introduced a transformation which shifts the
time individually for each node of a network with delayed couplings. Here, we
will investigate properties and invariants of this transformation in a very gen-
eral setting. In general, differential equations with time delays have been sub-
ject of intensive mathematical research in the last decades. Recently, major im-
pulses for theoretical investigations came from the challenge of understanding
and modelling the human brain [91, 69, 42]. Here, time delays appear due to
the finite speed of action potentials propagating through axons [118, 185, 27].
It was observed that the qualitative behaviour of brain networks is closely re-
lated to their heterogeneous delay distributions. These were shown to play
important roles in phenomena such as coherence in the resting state activity
[42, 69], nonstationary bifurcations of equilibria [8] and enhanced synchron-
izability [55, 43]. Further examples of delay-coupled systems are interacting
lasers where delays appear due to the finite speed of light travelling through
optical fibres [187, 54, 164]. In population dynamics, delays correspond to
maturing and gesturing times [100], and in gene regulatory networks, delays
represent the time the system needs to produce a protein [111, 40]. Thus,
delays are often included in order to account for the time a signal needs to
propagate from one node of the network to another or for the processing time
that it takes to emit a response to some input. An inevitable property of real
networks of interacting systems with delays is that, generically, each delay time
is different from any other.

Nevertheless, there exist comparatively few attempts to study systems with
several different delays analytically. An important reason for this is that their
analysis is usually much harder than for identical delays and techniques avail-
able for systems with one delay are in general not applicable in the case of
multiple delays. In particular, the analysis of spectra of solutions becomes
more complicated since the characteristic quasi-polynomials involve several

57
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exponential terms [15, 72]. At least for coupled systems with two different
delays some analytical results are available. For instance, Nussbaum [131]
proved the existence of periodic solutions in a system with two commensur-
able delays. Moreover some detailed studies on bifurcations in coupled systems
with two different delay times were conducted [14, 29, 159, 28, 71]. In partic-
ular, we mention Shayer et al. [159], where the investigation initially assumes
three different delays. In the course of the investigation, the authors discover
that the stability of a steady state depends only on two values combined from
these delays. This finding is a special case of the more general result that
we present in this chapter. Higher order scalar systems with two delays are
considered, e.g., by Gu et al. [70], who study stability crossing curves for this
system. For the same system, Ruan and Wei [154] refine techniques for the
determination of the roots of characteristic quasi-polynomials of single delay
equations to treat the case of two delays. Yanchuk and Giacomelli [188] con-
sider a scalar system with two large delays and show that this system can be
described by a complex Ginzburg-Landau equation in the neighbourhood of an
equilibrium. Finally, we want to mention studies of Hopfield neural networks
with delayed connections where many different delays are taken into account
[68, 192, 174, 113]. Here, the primary object of investigation is sufficient
conditions for global convergence of the system towards a single steady state
in order to obtain a well-defined method of input classification.

In this chapter, the focus of our interest is a componentwise timeshift
transformation (CTT) which allows to change the interaction delays while the
dynamical properties of the system remain the same. Apart of providing an
intuition about the functionality of delays, the transformation proves to be
particularly useful in cases where it is possible to achieve a smaller or in some
sense preferable set of delays in the transformed system. This is especially
apparent for the case when the nodes are coupled in a single unidirectional
ring as in the previous chapter. The corresponding special case of the CTT
was also utilized more or less explicitly in [9, 117, 138, 142]. Therefore,
let us illustrate the CTT for this example. In a general form, a ring of N
unidirectionally delay-coupled systems can be written as

(5.1.1)
d

dt
xj(t) = fj (xj(t), xj−1(t− τj−1)) , j = 1, ..., N,

where j is considered modulo N and τj ≥ 0 are N possibly different delays.
Given a solution xj(t), j = 1, ..., N , we introduce new variables

(5.1.2) yj (t) := xj (t+ ηj) ,

by shifting the nodes independently in time by certain amounts ηj ≥ 0. Form-
ally, we find that the dynamics of the variables yj(t) obey

(5.1.3)
d

dt
yj(t) = fj (yj(t), yj−1(t− τ̃j−1)) , j = 1, ..., N,
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Figure 5.1.1. Two simple examples of CT-Transformations
for a ring of two delay-coupled systems. The transformation T1

reduces the number of delays from two to one and T2 reveals a
hidden symmetry in the system by adjusting the two delays to
the same value τ = (τ1 + τ2)/2.

with new delays τ̃j = τj + ηj − ηj+1. In other words, finding timeshifts ηj for
given delays τ̃j is equivalent to solving a system of linear equations.

For the case of a ring with only two nodes, which is depicted in Fig. 5.1.1,
we illustrate the possible effect of the timeshift (5.1.2) in Fig. 5.1.2. The plots
(a)–(c) show an initial piece of a solution and its change under the CTT (two
delay-coupled Mackey-Glass systems [116] were used to create this example).
The process of transformation is indicated by the symbols T and T̃ , which
are given a precise meaning in section 5.4. Each transformation corresponds
to a particular choice of the timeshifts in (5.1.2). Here, T converts (5.1.1) to
(5.1.3) and T̃ describes the reverse transformation from (5.1.3) to (5.1.1). In
(a) and (c), the arrows between the timetraces of both components indicate
the delayed dependence of ẋ1(t) on x2(t−τ2) and ẋ1(t) on x2(t−τ2), similar in
(b) for y1 and y2 for the transformed delays τ̃1 and τ̃2. From (5.1.2) it follows
that the timetraces of the single components have exactly the same form in
both systems. Both solutions only differ in the relative timeshifts between
their components.

Baldi and Atiya [9] discovered that by choosing timeshifts ηj =
∑j−1

k=1 τk
one obtains the transformed delays

τ̃j =

{
0, for 1 ≤ j ≤ N − 1,∑N

k=1 τk, for j = N.
(5.1.4)

They used this simplified form to predict oscillatory behaviour and bifurca-
tions for a neural circuit exhibiting delayed excitatory and inhibitory connec-
tions. Mallet-Paret [117] utilized the same transformation to prove a Poincaré-
Bendixson Theorem for monotone cyclic feedback systems with delays. A
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Figure 5.1.2. CT-Transformation for a pair of bidirection-
ally coupled Mackey-Glass systems [116], cf. Fig.5.1.1. Plot
(a) shows the original solution x(t) = (x1(t), x2(t)) of (5.2.1).
Plot (b) shows the transformed solution y(t) = (y1(t), y2(t)) of
(5.2.2}), which is shifted to the left by amounts η1 = 0 and
η2 = 10. Plot (c) shows the solution x(t+ η1) obtained after a
reverse transformation of y(t) (see section 5.4 for details).

slightly different set of timeshifts can be found in [138] and [142], where the
choice ηj = (N − j)τ̄ +

∑j
k=1 τk, with the mean delay τ̄ = 1

N

∑
k τk, was

proposed. This leads to identical transformed delays

(5.1.5) τ̃j ≡ τ̄ .
For a ring of identical nodes, i.e. fj ≡ f for all j, it turns out that the obtained
system is much more tractable due to its rotational symmetry. One may say
that this hitherto hidden symmetry was revealed by the CTT. See also Fig.5.1.1
for an illustration of the two above mentioned timeshifts in a ring of two nodes.

For both variants, (5.1.4) and (5.1.5), it is evident that if one is interested
in the changes of dynamic behaviour with respect to the different delays τj it
suffices to vary a single parameter, i.e. the mean delay τ̄ = 1

N

∑
k τk, instead

of the N different parameters τj , j = 1, ..., N . In other words, the parameter
space dimension is much smaller than it might have appeared at first glance.
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Similar as for a ring, the CTT allows to identify a canonical set of delay
parameters in a general network as we explain in section 5.5.

Before doing so let us pose a question. What does the knowledge about
dynamical features of the transformed system (5.1.3) really tell us about the
dynamical features of the original system (5.1.1)? It might seem intuitive
that they are the same since the timeshift yj (t) 7→ yj (t− ηj) inverses (5.1.2).
This is true for the particular solution (5.1.2) but, in general, the expres-
sion yj (t− ηj) (with ηj > 0) may not be defined at all. This is because, in
general, solutions of delay differential equations (DDEs) cannot be continued
backwards. Another subtlety arises if one considers timeshifts ηj leading to
anticipating arguments, that is negative delays. In this case (5.1.3) has funda-
mentally different properties from an ordinary DDE with positive delays. For
instance, initial value problems are ill-posed in general [72]. Even though we
will restrict ourselves to the situation where transformed delays are positive,
a proper treatment of the above question should introduce state spaces and
flows to formulate and compare the dynamical properties of the original and
the transformed system. Such a rigorous treatment of the CTT was not given
in any of the above mentioned works [9, 117, 138, 142]. We will do this in a
quite general setting using semidynamical systems in section5.4 where we also
give a rigorous definition of the CTT. In particular, the structural similarity of
the state spaces and the stability of invariant sets is studied. In section 5.2 we
introduce notations to describe general networks of delay coupled dynamical
systems and in section 5.3 we study the special cases of equilibria and periodic
orbits of DDEs in which case the equivalence of the dynamics of the original
and the transformed system is relatively easy to show.

5.2. Networks of delay coupled dynamical systems

To describe a general network of N coupled systems we choose a framework
which enables us to account for multiple links between two nodes holding
different delays. That is, the coupling structure of the network is assumed
to be represented by a multidigraph. This is a set of node indices, N =
{1, ..., N}, and a set E of directed links. Throughout the whole chapter we
assume that (N , E) is weakly connected (see 4). We recall that this means
that each node can be reached from any other node by traversing a sequence
of links, where each link may be traversed in arbitrary direction. For networks
with several connected components our results can be applied separately to
each component. For each link ` ∈ E the functions s, t : E → N assign its
source s(`) and its target t(`). This means that the link ` connects the node
xs(`) to the node xt(`). The delay time of ` is denoted by τ(`). Note that there
may indeed exist two links `1 and `2 in E with s(`1) = s(`2) and t(`1) = t(`2)
but τ(`1) 6= τ(`2). For node xj , we introduce the set of its incoming links as

Ij = {` ∈ E : t (`) = j} .
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Then, the dynamics of xj can be written as

(5.2.1)
d

dt
xj(t) = fj

((
xs(`) (t− τ (`))

)
`∈Ij

)
∈ R, j = 1, ..., N,

where we assume xj(t) ∈ R without loss of generality. This notation allows to
include a self-dependency of xj(t) via a link ` with s(`) = t(`) = j. It is also
possible to have an instantaneous dependence by setting τ(`) = 0. For (5.2.1),
the introduction of new variables yj(t) as in (5.1.2) leads to the transformed
system

(5.2.2)
d

dt
yj(t) = fj

((
ys(`) (t− τ̃ (`))

)
`∈Ij

)
, j = 1, ..., N,

with modified delays

(5.2.3) τ̃ (`) = τ (`)− ηt(`) + ηs(`).

5.3. Spectrum of equilibria and periodic orbits

An equilibrium point x̄ = (x̄1, ..., x̄N ) ∈ RN of (5.2.1) is a point which
satisfies

(5.3.1) fj

((
x̄s(`)

)
`∈Ij

)
= 0, j = 1, ..., N.

Obviously x̄ is also an equilibrium of (5.2.2). In the following we assume that
fj ∈ C1. Then a characteristic exponent λ of x̄ in (5.2.1) corresponds to an
exponential solution ξ (t) = eλtξ0 ∈ CN of the variational equation

(5.3.2)
d

dt
ξj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′)

)
`′∈Ij

)
ξs(`) (t− τ (`)) .

If all of the characteristic exponents of x̄ possess negative real parts this assures
that x̄ is stable, if at least one has positive real part then x̄ is unstable [72].
In the transformed system (5.2.2) the timeshifted variation χ (t), given by
χj (t) = ξj (t+ ηj), is a solution of the corresponding variational equation of x̄

(5.3.3)
d

dt
χj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′)

)
`′∈Ij

)
χs(`) (t− τ̃ (`)) .

Hence, the characteristic exponents of x̄ are the same in (5.2.1) and (5.2.2).
Similarly, the stability of a periodic solution x̄ (t) = x̄ (t+ T ) is determ-

ined by its Floquet exponents if their real parts are different from zero. Each
exponent λ corresponds to a solution ξ (t) of the variational equation

(5.3.4)
d

dt
ξj (t) =

∑
`∈Ij

∂s(`)fj

((
x̄s(`′)

(
t− τ

(
`′
)))

`′∈Ij

)
ξs(`) (t− τ (`))
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which has the form ξ (t) = eλtp (t) with a periodic function p (t) = p (t+ T ).
Again, the timeshifted solution χ (t) with χj (t) = ξj (t+ ηj) fulfils the vari-
ational equation

(5.3.5)
d

dt
χj (t) =

∑
`∈Ij

∂s(`)fj

((
ȳs(`′)

(
t− τ̃

(
`′
)))

`′∈Ij

)
χs(`) (t− τ̃ (`))

of the corresponding periodic solution ȳj (t) = x̄j (t+ ηj) in the transformed
system. Let us summarize this section in a theorem:

Theorem 25. The following statements hold true:
(i) A fixed point x̄ possesses the same characteristic exponents in Eq. (5.2.1)
and Eq. (5.2.2).
(ii) A periodic solution x̄ (t) possesses the same Floquet exponents in Eq.
(5.2.1) as the corresponding transformed solution ȳ (t) of Eq. (5.2.2).

5.4. The componentwise timeshift transformation

5.4.1. Definitions. In this section we introduce a rigorous formulation of
the idea which underlies the change of variables (5.1.2). We define the CTT in
terms of the underlying infinite dimensional phase spaces of (5.2.1) and (5.2.2).

First recall that a semidynamical system (or a semiflow) is a mapping

Φ : [0,∞)×X → X,

(t,x) 7→ Φt (x) ,

on a Banach space X which fulfils:

(i) Φ0 = Id
(ii) Φt+s = Φt ◦ Φs, ∀t, s ≥ 0
(iii) Φt : X → X is continuous for all t ≥ 0.

The state spaces for DDEs contain segments of functions, which represent the
history of the solution curve x (t). For instance, in Fig.5.1.2 the shaded part of
the timetrace in (a) corresponds to the initial segment of the depicted solution.
For the original system (5.2.1), we choose the state space to be

C =

N∏
j=1

C ([−rj , 0] ; R) , rj = max
`∈Oj

τ (`) ,

where Oj = {` ∈ E : s (`) = j} is the set of all outgoing links from the j-th
node. Hence, the value rj is the largest delay time on outgoing links of the
node j. This definition ensures, that the history for the j-th component is
available for all delayed arguments appearing on the right hand side of (5.2.1).
Similarly, we choose

C̃ =

N∏
j=1

C ([−r̃j , 0] ; R) , r̃j = max
`∈Oj

τ̃ (`)
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as state space for the transformed system (5.2.2). Assuming that solutions exist
for all future times (e.g. if fj are Lipschitz continuous), there exist semiflows

Φ : [0,∞)× C → C, (t,x) 7→ Φt (x) ,

Ψ : [0,∞)× C̃ → C̃, (t,y) 7→ Ψt (y) ,

for (5.2.1) and (5.2.2). Now let us formulate (5.1.2) as a state space transform-
ation T : C → C̃. We define T componentwise for j = 1, ..., N , and pointwise
for x0 ∈ C and t ∈ [−r̃j , 0], as

(5.4.1) Tj [x0] (t) =

{
[x0 (t+ ηj)]j , for t ∈ [−r̃j ,−ηj ] ,[
Φt+ηj (x0)

]
j

(0) , for t ∈ [−min {ηj , r̃j} , 0] .

For illustration see Fig.5.1.2(b), where the shading marks the segment y0 =
T [x0] for the initial segment x0 indicated in (a). The lighter shading indicates
the part defined by the second case of (5.4.1). Let us show that (5.4.1) is well-
defined. For this we need to assure that y0 = T [x0] ∈ C̃. This only requires
that the term [x0(t − ηj)]j appearing in (5.4.1) is defined for all t + ηj with
t ∈ [−r̃j ,−ηj ]. For the case in which [−r̃j ,−ηj ] is non-empty, this is equivalent
to t+ηj ≥ −rj for all t ∈ [−r̃j ,−ηj ]. In order to show this, choose a link ` ∈ Oj
with maximal delay τ̃(`) = r̃j . Then,

rj − r̃j ≥ τ (`)− τ̃ (`) = τ
(
`′
)
−
(
τ
(
`′
)
− ηt(`′) + ηj

)
≥ −ηj .

Therefore, t+ηj ≥ −r̃j+ηj ≥ −rj for t ∈ [−r̃j ,−ηj ] and (5.4.1) is well-defined.
Furthermore, one easily checks that

(5.4.2) T ◦ Φt = Ψt ◦ T, for all t ≥ 0.

That is, T transforms solutions of (5.2.1) into solutions of (5.2.2). As inherited
from the semiflow Φ, the transformation T is neither injective nor surjective
in general. Therefore, one cannot expect a dynamical equivalence of (5.2.1)
and (5.2.2) in the strict form of topological conjugacy, i.e. Ψ = h ◦ Φ ◦ h−1

for some homeomorphism h. Moreover, since T is not surjective, (5.4.2) does
not even signify that Ψ is properly semiconjugate to Φ. However, this "weak
semiconjugacy" is mutual as we show in the following, and this fact implies a
strong equivalence as well.

5.4.2. CT-equivalence. Let us find a reverse transformation from (5.2.2)
to (5.2.1). It should transform τ̃ (`) back to τ (`) which leads to the natural
definition of reverse timeshifts

η̃j = η̄ − ηj ≥ 0, with η̄ = max
1≤j≤N

ηj .

Then, the reverse transformation T̃ : C̃ → C is given as

(5.4.3) T̃j [y0] (t) =

{(
Ψt+η̃j (y0)

)
j

(0) , t ∈ [−min {η̃j , rj} , 0] ,

(y0 (t+ η̃j))j (0) , t ∈ [−rj ,−η̃j ] .
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Analogously to (5.4.2), we have

(5.4.4) T̃ ◦Ψ = Φ ◦ T̃ ,

and additionally T and T̃ are reverse in the sense that

(5.4.5) T̃ ◦ T = Φη̄ and T ◦ T̃ = Ψη̄.

See, for example, Fig.5.1.2(c), where the shaded region indicates the initial
segment (T̃ ◦ T )[x0] of the solution (T̃ ◦ T )[x](t) = x(t+ η̄), with η̄ = 10. The
lighter shaded region indicates where the second case of (5.4.3) takes effect.

The equations (5.4.2), (5.4.4) and (5.4.5) constitute a notion of equival-
ence which can be applied not only to semidynamical systems which stem
from systems of DDEs, but as well to systems such as delay coupled PDEs or
more generally to abstract evolution equations. Therefore we define in a more
abstract fashion:

Definition 26. Two semidynamical systems Φ : [0,∞)×X → X and Ψ :
[0,∞)× Y → Y are called CT-equivalent if there exist mappings T : X → Y ,
T̃ : Y → X and η̄ ≥ 0 such that

T ◦ T̃ = Ψη̄, T ◦ Φt = Ψt ◦ T,

T̃ ◦ T = Φη̄, T̃ ◦Ψt = Φt ◦ T̃ .

In the following, the analysis is carried out in the general setting on Banach
spaces X and Y but we keep in mind that the results apply to the case of DDEs
on the spaces X = C and Y = C̃ as introduced above. We still use the term
CT-equivalence for the general formulation though, since most probably the
equivalent systems Φ and Ψ will in practice be connected by a transformation,
which resembles (5.4.1).

5.4.3. Dynamical invariants of CT-equivalent semidynamical sys-
tems. In this section, we derive some properties of CT-equivalent systems in
the sense of Definition 26. We show that their state spaces hold a structure of
corresponding strongly invariant sets. Then, assuming that the CTTs T and
T̃ are Lipschitz continuous, we prove that stability properties are preserved
as well. For the DDE systems (5.2.1) and (5.2.2) this is the case if all fj
are Lipschitz continuous. Throughout, we assume that X and Y are Banach
spaces. Before stating the main results of this section (Theorems 27 and 29),
we give some definitions:

A set A ⊆ X is called positively invariant under Φ if for any t ≥ 0:

Φt (A) ⊆ A.
A ⊆ X is called invariant under Φ if for any t ≥ 0:

Φt (A) = A.

For any set A ⊆ X, we define its strongly invariant hull HΦ (A) as the set

HΦ (A) := {x ∈ X | ∃t1, t2 ≥ 0, x̂ ∈ A : Φt1 (x̂) = Φt2 (x)} .
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A strongly invariant set A ⊆ X is a set that coincides with its strongly invariant
hull, i.e.

HΦ (A) = A.

The class of strongly invariant sets is denoted by

sis (Φ) = {A ⊆ X | A = HΦ (A)} .
Note that positive invariance is implied by both, invariance and strong invari-
ance. But between invariance and strong invariance there holds no implication.
Of course a strongly invariant set always contains a maximal invariant set which
might be empty.

Theorem 27. Let Φ : [0,∞) ×X → X and Ψ : [0,∞) × Y → Y be CT-
equivalent. Then,
(i) for each (positively) Φ-invariant set A ∈ X, the set T [A] ∈ Y is (positively)
Ψ-invariant,
(ii) there is a one-to-one correspondence between (strongly) invariant sets of Φ
and Ψ.

Proof. Ad (i): Let A be positively invariant, x ∈ A and y = T [x]. Then,
Ψt (y) = T [Φt (x)] ∈ T [A]. Hence T [A] is positively invariant.
If A is invariant, then for each x ∈ A and each t ∈ [0,∞) there is an x−t ∈ A
such that Φt (x−t) = x and correspondingly for each y = T [x] ∈ T [A] there
is y−t = T [x−t] with

Ψt (y−t) = T [Φt (x−t)] = T [x] = y.

Ad (ii): Let A ∈ sis (Φ). We define a corresponding set Ã = HΨ (T [A]) ∈
sis (Ψ). Correspondence for strongly invariant sets is proven via

(HΦ ◦ T̃ ) ◦ (HΨ ◦ T ) = idsis(Φ) and (HΨ ◦ T ) ◦ (HΦ ◦ T̃ ) = idsis(Ψ),

where, by symmetry, it suffices to show only one equality. Let y ∈ Ã, then
there exist t1, t2 ≥ 0 and ŷ = T [x̂] ∈ T [A] such that Ψt2 (y) = Ψt1 (ŷ) ∈ Ã.
Thus,

Φt2

(
T̃ [y]

)
= T̃ [Ψt2 (y)] = T̃ [Ψt1 (ŷ)]

= T̃ [Ψt1 (T [x̂])] = T̃ [T [Φt1 (x̂)]]

= Φt1+η̄ (x̂) ∈ HΦ (A) = A.

Hence, T̃ [y] ∈ A. That is, T̃
[
Ã
]
⊆ A and HΦ

(
T̃
[
Ã
])
⊆ A. We have also

shown that for x̂ ∈ A, Φt1+η̄ (x̂) ∈ T̃
[
Ã
]
and therefore x̂ ∈ HΦ

(
T̃
[
Ã
])

. This

yields A ⊆ HΦ

(
T̃
[
Ã
])
⊆ A, i.e. A = HΦ

(
T̃
[
Ã
])

and
(
HΦ ◦ T̃

)
◦(HΨ ◦ T ) =

idsis(Φ).
For invariant sets, the one-to-one correspondence is mediated directly via T
and T̃ . �
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Definition 28. The maximal Lyapunov exponent (MLE) of a point x ∈ X
with respect to a semidynamical system Φ : [0,∞)×X → X on a Banach space
X is defined as

λ (x) := lim sup
t→∞

lim sup
|ξ|↘0

1

t
ln

(
|Φt (x+ ξ)− Φt (x)|

|ξ|

)
∈ [−∞,∞] .

The MLE of x ∈ A ⊆ X with respect to the set A is defined as

λ (x,A) := lim sup
t→∞

lim sup
|ξ|↘0

min
a∈A

1

t
ln

(
|Φt (x+ ξ)− a|

|ξ|

)
= lim sup

t→∞
lim sup
|ξ|↘0

1

t
ln

(
dist (Φt (x+ ξ) , A)

|ξ|

)
.

The MLE of a set A ∈ X is defined as λ (A) = supx∈A λ (x, A) .

Theorem 29. Let the CT-transformations T and T̃ be Lipschitz-continuous
and let X, Y be Banach spaces. Then,
(i) corresponding (strongly) invariant sets of Φ and Ψ possess the same max-
imal Lyapunov exponents (MLEs),
(ii) for each positively invariant set A ∈ X, the set T [A] ∈ Y has the same
type of stability.

Claim (i) is a direct consequence of the following Lemma.

Lemma 30. Let X, Y be Banach spaces and let T and T̃ be Lipschitz-
continuous with constants LT and LT̃ . Then, we have λ (x) ≤ λ (T [x]) ≤
λ (Φη̄ (x)) for all x ∈ X.

Proof. For each x,χ ∈ C, t ≥ η̄:
1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)

=
1

t
ln


∣∣∣Φt−η̄

(
T̃ ◦ T [x]

)
− Φt−η̄

(
T̃ ◦ T [x+ χ]

)∣∣∣
|χ|


=

1

t
ln


∣∣∣T̃ ◦Ψt−η̄ (T [x])− T̃ ◦Ψt−η̄ (T [x] + ξ)

∣∣∣
|χ|

 ,

with |ξ| = |T [x+ χ]− T [x]| ≤ LT |χ|,

... ≤ 1

t
ln

(
LT̃ |Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

(|ξ| /LT )

)
=

1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
+

1

t
ln
(
LTLT̃

)
Therefore,

1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)
≤ 1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
,
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and, thus,
λ (x) ≤ λ (T [x]) .

The same reasoning for y = T [x] gives

λ (x) ≤ λ (T [x]) ≤ λ (Φη̄ (x)) .

�

Now we can prove Theorem 29

Proof. Lemma 30 implies claim (i). To see that consider two correspond-
ing sets A ∈ sis (Φ) and Ã ∈ sis (Ψ). Then it is impossible that λ (A) > λ(Ã)

since for any x ∈ A there exists y = T [x] ∈ Ã such that λ (x) ≤ λ (y). The
same holds vice versa and therefore λ (A) = λ(Ã). Similarly, one shows this
for the case of invariant sets.
Ad (ii): Let A ∈ C be an (asymptotically) stable positively invariant set. We
show that if A is (asymptotically) stable so is T [A]. Let ε > 0, y0 = T [x0] ∈
T [A] and ξ0 ∈ C̃ a small initial perturbation, i.e. |ξ0| ≤ δ with δ = δ (ε) > 0
to be specified later. Define the perturbed solution

ỹt = Ψt (y0 + ξ0) = yt + ξt,

where yt = Ψt (y0) is the unperturbed solution. Consider

x̃t : = T̃ [ỹt] = T̃ [Ψt (y0 + ξ0)]

= Φt

(
T̃ [y0 + ξ0]

)
= Φt

(
T̃ ◦ T [x0] +

(
T̃ [y0 + ξ0]− T̃ [y0]

))
= Φt (xη̄ + χη̄) ,

with

|χη̄| =
∣∣∣T [y0 + ξ0]− T̃ [y0]

∣∣∣
≤ LT̃ · δ,

where LT̃ is the Lipschitz constant of T̃ . Since xη̄ ∈ A and A is (asymptotic-
ally) stable, we can find a δ = δ (ε) such that

d (x̃t, A) ≤ ε

LT
,

and, in case of asymptotic stability, such that

x̃t → A.

This means, we can represent x̃t as x̃t = at + χt with at ∈ A, |χt| ≤ ε
LT

and,
in case of asymptotic stability, |χt| → 0, for t→∞. Note that t 7→ at has not
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to be a solution. Define bt = T [at] ∈ T [A]. Then,

|ỹt+η̄ − bt| =
∣∣∣T ◦ T̃ [ỹt]− T [at]

∣∣∣
= |T [at + χt]− T [at]|
≤ LT |χt| ≤ ε

and |ỹt+η̄ − bt| → 0, if A is asymptotically stable. This completes the proof.
�

5.5. Reduction of delay-parameters

The Theorems 27 and 29 show that CT-equivalence is indeed a very strong
equivalence. For virtually all cases one is best advised to study the system
which possesses the most convenient distribution of delays within the concerned
equivalence class. However, it is difficult give a general identification of the
appropriate distribution, since it strongly depends on the problem at hand.
We can acknowledge two possible guiding principles, which correspond to the
transformations of delays in a ring that were mentioned in the introduction
(cf. (5.1.4) and (5.1.5)). Firstly, a homogenization of delays can sometimes
lead to a higher degree of symmetry and thereby allow for simplifications. In
other cases a "concentration" of the delays on selected links may be useful.

In section 5.5.1 we show, that it is always possible to find timeshifts ηj ,
j = 1, ..., N , such that the number of different delays in system (5.2.1) reduces
to the cycle space dimension C = L − N + 1 of the network, where L = #E
is the number of links and N = #N is the number of nodes in the network.
Effectively, this means that no more than C delay-parameters have to be taken
into account during investigation (see Fig. 5.1.1). For a connected network
this number cannot be reduced further as we show in section 5.5.2.

5.5.1. Construction of an instantaneous spanning tree. In this sec-
tion we construct a set of links, called a "spanning tree" (see Def. 32), on which
all connection delays can be eliminated by componentwise timeshifts. Let us
firstly introduce the necessary notions:

Definition 31. A semicycle c = (`1, ..., `k) is a closed path in the undir-
ected graph which is obtained by dropping the orientation from all links from
the multigraph (N , E).

Now we define a spanning tree

Definition 32. A spanning tree of (N , E) is a set of links S ⊆ E which
contains no semicycles but all nodes, that is {s(`), t(`)}`∈S = N .

A spanning tree can be thought of as a "skeleton" of the graph. Following
its links one can visit each node in the graph exactly once. For instance,
the solid, red links in Figs. 5.5.2(c) form spanning trees. A spanning tree
can also be characterized as a maximal cycle-free set of links. Consequently,
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adding another link which is not contained in the spanning tree creates a
semicycle. For instance, if in Figs. 5.5.2(a) the link with delay τ1 is added to
the spanning tree the semicycle c1 is created. A spanning tree of a connected
network necessarily contains N − 1 links, therefore the cycle space dimension
C coincides with the number of links not contained in a spanning tree. In the
context of the CTT, an important quantity for a semicycle is its delay sum.

Definition 33. The delay sum of a semicycle c = (`1, ..., `k) with respect
to a delay distribution and an orienting link `1 is

Σ (c) :=

k∑
j=1

σjτ (`j) ,

where σj ∈ {±1} indicates whether the link `j points in the same direction as
`1 (σj = 1) or not (σj = −1). The roundtrip of c is the modulus of its delay
sum

(5.5.1) rt (c) := |Σ (c)| .

The following Lemma gives a characterization of timeshift-transformed
delay distributions and describes their relation to the underlying graph struc-
ture. More specifically, it shows that the delay sums of semicycles are invariant
under timeshifts.

Lemma 34. Let τ, τ̃ : E → [0,∞) be two delay distributions in a connected
network. Then, the following statements are equivalent:
(i) There exist ηj ≥ 0, j = 1, ..., N , such that τ̃ (`) = τ (`)− ηt(`) + ηs(`).
(ii) For all semicycles c of the network holds:

Στ (c) = Στ̃ (c) .

Proof. (i)⇒ (ii) Indeed, for any cycle c = (`1, ..., `k) we have

Στ̃ (c) =
k∑
j=1

σj τ̃ (`j) =
k∑
j=1

σj

(
τ (`j)− ηt(`j) + ηs(`j)

)

= Στ (c) +
k∑
j=1

σj

(
ηs(`j) − ηt(`j)

)
= Στ (c) .

(ii) ⇒ (i) Select an arbitrary spanning tree S = (`1, ..., `N−1). Select ξ =
(ξ1, ..., ξN ) and χ = (χ1, ..., χN ) such that τ (`j) = ξt(`j) − ξs(`j) and τ̃ (`j) =

χt(`j)−χs(`j) for j = 1, ..., N−1. (Note that both defining sets of equations are
inhomogeneous linear systems of type RN×(N−1) and of rank N −1. Therefore
they possess solutions.) The shifts ξ and χ define distributions (with possibly
negative values)

τ̂1 (`) = τ (`)− ξt(`) + ξs(`),

τ̂2 (`) = τ̃ (`)− χt(`) + χs(`).
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Both, τ̂1 and τ̂2, are instantaneous along S, i.e., τ̂1 (`) = τ̂2 (`) = 0 for ` ∈ S.
Each link ` which is not in S corresponds to a unique fundamental semicycle
c = c(S, `) which is created by adding ` to S. It is the only link in c which
may hold a non-zero value τ̂1 (`) or τ̂2 (`), respectively. By the part (i) ⇒ (ii)
we have

τ̂1 (`) = Στ (c) = Στ̃ (c) = τ̂2 (`) .

Hence τ̂1 = τ̂2. With ηj := ξj − χj this gives
τ̃ (`) = τ (`)− ηt(`) + ηs(`).

Note that ηj can always be chosen to be non-negative since a simultaneous shift
ηj 7→ ηj + η̄ by some amount η̄ ∈ R does not change the resulting transformed
distribution τ̃ . �

Often, this lemma makes it straightforward to determine possible trans-
formations, since it circumvents the explicit determination of timeshifts. For
instance, in the case of the two coupled systems depicted in Fig. 5.1.1, it
follows immediately that τ = (τ1 + τ2)/2.

Now we can state the main result of this section, which is the construction
of a transformation (5.1.2) such that the number of delays is minimized.

Theorem 35. For every connected network with dynamics given by Eq.
(5.2.1), there exists a spanning tree S and timeshifts ηj such that in the trans-
formed system (5.2.2) all links ` ∈ S are instantaneous,

τ̃ (`) = 0, for ` ∈ S,
and for each link ` outside the spanning tree the delay τ̃ (`) equals the roundtrip
rt (c (`)) (Eq. (5.5.1)) along the corresponding fundamental cycle c (`),

τ̃ (`) = T (c (`)) , for ` /∈ S.

Proof. The following algorithm describes the general procedure to find
a reduced set of delays. For a more definite example see Fig. 5.5.2 and its
description following this proof. The main idea of the algorithm is as follows.
We construct spanning trees and timeshifts iteratively such that after each step
the number of non-zero delays on the spanning tree has decreased by at least
one. Therefore the algorithm finishes after at most N−1 iterations. Each step
consists of two stages.
Stage (i). Construction of a spanning tree:
Select a spanning tree S = {`1, ...., `N−1} in the following way. First, pick
a link `1 with minimal delay, i.e. τ (`1) = min`∈L {τ (`)} ∈ [0,∞). Proceed
picking links `2, ..., `j with minimal delays (under all links except the ones
already picked) as long as the set Sj = {`1, ..., `j} contains no semicycles. If
at the j-th step the chosen link would create a semicycle when added to Sj−1,
do not add it but ignore it for the rest of this stage. Following this procedure,
called Kruskal’s algorithm [99], yields a spanning tree S = {`1, ..., `N−1}.
Stage (ii). Construction of timeshifts:
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Figure 5.5.1. Illustration of the fundamental cut correspond-
ing to the link `∗ in the spanning tree S (solid red links), s(`∗)
and t(`∗) denote the source and target of `∗. Links which are
not contained in S are indicated by dashed lines.

Now consider the link `∗ ∈ S with minimal positive delay (in the very first step
of the construction it equals `1 if τ (`1) > 0). The link induces a fundamental
cut [45], i.e. it partitions the spanning tree S in two connected components:
the source component V of `∗ and the target component W of `∗, see Fig.
5.5.1.

Since S is spanning, this is a partition of all nodes. Now let us define the
timeshifts by ηj = 0 for j ∈ V and ηj = τ (`∗) for all j ∈W .
From the shifts ηj we obtain the new delay distribution τ̃ (`) = τ (`) + ηs(`) −
ηt(`). For a link ` 6= `∗ which connects nodes within one set of the partition,
i.e. s(`), t(`) ∈ V or s(`), t(`) ∈ W , we have ηs(`) = ηt(`). This implies
τ̃ (`) = τ (`). In particular this is the case for all links in S \{`∗} and therefore
τ(`) = 0 = τ̃(`) for all instantaneous links in S. For `∗ we have τ̃ (`∗) = 0
because s (`∗) ∈ V and t (`∗) ∈W , which means ηs(`∗) − ηt(`∗) = −τ (`∗).
Hence, the delay distribution τ̃ reduced the number of delays on the spanning
tree S by one compared to the distribution τ . We remind that τ (`∗) is the
smallest positive delay not only on the spanning tree but over all the links
which connect V and W . Therefore, τ(`) ≥ 0 for all ` ∈ L. Indeed, if there
were a link between V and W with a smaller delay we must have included it
in the spanning tree in step (i)

If a link ` exists in S with τ̃ (`) 6= 0 we repeat stage (i) starting from an
initial set Sj which contains all j instantaneous links from the spanning tree
constructed in the previous step. Then stage (ii) yields a spanning tree with
a strictly larger number of instantaneous links. In this way we arrive at an
instantaneous spanning tree S in at most N−1 iterations. The statement that
τ̃ (`) = T (c (`)) for ` /∈ S follows from Lemma 34. �

Fig. 5.5.2 illustrates how the algorithm described in the proof of Theorem
35 determines a delay reduction in the depicted network of N = 7 coupled
systems with cycle space dimension C = 3. We assume an initial delay-
distribution as given in the first row of the table in Fig. 5.5.2(b). Then, the
spanning tree in (a), indicated by solid, red links, is selected by the algorithm
as a successive cycle-free collection of links with smallest delays. Let us denote
the links of the example by `j with τj = τ(`j), j = 1, ..., 7. Note that in (a) `1
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(b)
stage τ1 τ2 τ3 τ4 τ5 τ6 τ7

(i)
4 3 10 8 9 2 5

(ii)
4 [3] 10 8 [9] [2] [5]

(i)
2 [3] 12 8 [9] [0] [5]

(ii)
[2] 3 12 8 [9] [0] [5]

(i)
[0] 5 12 8 [9] [0] [5]

(ii)
[0] 5 12 8 [9] [0] [5]

(i)
[0] 5 7 13 [9] [0] [0]

(ii)
[0] 5 [7] 13 9 [0] [0]

[0] 5 [0] 13 16 [0] [0]

Figure 5.5.2. Illustration of the delay reduction in a network
of N = 7 delay-coupled systems with cycle space dimension
C = 3 (cf. proof of Theorem. 35). In (a) the initially selected
spanning tree with original delays τj , j = 1, ..., 7, is indicated
by red, solid links, Three semicycles c1, c2, and c3 are indicated
by the grey curves following the contained links; in (c) the final
spanning tree with transformed delays τ̃j is indicated. The
table (b) shows the steps taken by the reduction algorithm.
Bracketed, red values indicate the delay times on the currently
selected spanning tree at each step.

is not contained in the spanning tree although τ1 < τ5 and τ1 < τ7, and `5 and
`7 are both contained. This is because if the links `2 and `6 with τ2, τ6 < τ1

are already selected, then an addition of `1 would lead to the inclusion of the
semicycle c1, which is not allowed. Each row of table (b) corresponds to a step
of the algorithm, where the bracketed, red values correspond to the delay times
of the currently selected spanning tree. Two stages are repeated alternately:
In stage (i) a spanning tree with minimal delay sum is determined and in stage
(ii) the minimal delay in this spanning tree is eliminated by a componentwise
timeshift. In (c) the spanning tree is shown which is selected at the final stage.
It contains only instantaneous links when the algorithm is completed. The re-
maining delays on links not contained in the final spanning tree, correspond to
the delay sums of the corresponding semicycles (c1, c2, c3), oriented as indic-
ated in the figure, i.e., τ̃2 = Σ(c1) = τ1 + τ2− τ6; τ̃5 = Σ(c2) = τ3 + τ5 + τ6− τ7;
and τ̃4 = Σ(c3) = τ4 + τ7.

5.5.2. Genericity of the dimension of the delay parameter space.
We call C the essential number of delays since it is the minimal number to
which the number of different delays in a network can be reduced generically.
Here “generically” means that the conditions which allow for further reduction
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of delays form a null set in the parameter space of delays RL≥0 = {(τ (`))`∈E :

τ (`) ≥ 0} of the original system. The reducibility condition to m different
delays is described by the L linear equations

(5.5.2) ηt(`) − ηs(`) + τ̃ (`) = τ (`) , ` ∈ Ij ,
with the restriction for τ̃ (`) to take one of m different values {θ1, ..., θm}.
System (5.5.2) can be equivalently written in the vector form Gqv = τ , where
v is the (N + m)-dimensional vector of unknowns v = (η1, . . . , ηN , θ1, . . . θm)
and τ is the L-dimensional vector of delays τ (`). For any fixed assignment
τ̃ (`) = θq(`), ` ∈ Ij , with q : Ij → {0, ...,m}, and θ0 := 0, one obtains a
different matrix Gq ∈ RL×(N+m). It can further be shown that the rank of the
matrix Gq is smaller than N − 1 +m. This implies for m < C = L− (N − 1)
that N − 1 +m < L. Hence, the number of equations in (5.5.2) is larger than
the number of unknowns. Such equation cannot be solved generically, unless
the given delays τ (`) satisfy some special condition of positive codimension.

5.6. Discussion

In this chapter we have studied a componentwise timeshift transformation
(CTT) for a general class of coupled differential equations with constant coup-
ling delays. We have defined appropriate phase spaces such that the CTT
conveys an equivalence for the semiflows of the original and the transformed
system which is reminiscent to, but weaker than topological conjugacy. We
have shown several dynamical invariants for the equivalent flows. Firstly, for
delay differential equations, the characteristic exponents of equilibria and the
Floquet exponents of periodic orbits are invariant under the CTT. More gener-
ally, for CT-equivalent semidynamical systems, we have shown that there ex-
ists a one-to-one correspondence between invariant and strongly invariant sets,
respectively. As a main stability result we have shown that corresponding pos-
itively invariant sets have the same kind of stability, and invariant and strongly
invariant corresponding sets possess the same maximal Lyapunov exponents.
To sum up, the observable dynamics of the coupled units might change its rel-
ative timing in the transformed system, but qualitatively it remains the same.
In particular attractors and their stability are invariant.

We have presented a constructive proof that there is always a CTT which
reduces the delays to at most C = L−N + 1 different delays, where L is the
number of links in the network and N is the number of nodes. The number of
different delays C coincides with the cycle space dimension of the underlying
graph. Furthermore, we have shown that the sum of delays along semicycles
in the network is invariant under CTTs. This reveals a strong link between a
coupled delay differential equation and the topology of the underlying graph.
Although a CTT which reduces the number of different delays to a minimum
is usually not unique, we have shown that the minimal number of different
delays itself cannot be reduced in general.
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We believe that our results have a relevance for several applied areas (see
also [114]). For example, in theoretical neuroscience it is an accepted fact that
in the case of two mutually delay coupled units [133] (as in Fig. 5.1.1) or
more generally, in unidirectionally coupled rings [138], the delays can always
be chosen identical for theoretical investigations. Moreover, in view of our
results, the observations about the role of the greatest common divisor of
loop-lengths in networks of delay coupled excitable systems with homogeneous
delays [96, 152] can be formulated more generally in terms of the delay sums
along the network’s cycles. The CTT is an important tool for investigators
working with delayed dynamical systems since it clarifies one aspect of the
way in which different interaction delays in a coupled system work together.

Furthermore, the CTT can speed up the numerical simulation of a system
by reducing the number of different delays or by reducing the maximal delay
time. The computational advantages of the transformed system might be of
interest especially in the field of delayed neural networks, where large scale
simulations of networks with many different delay times are conducted.





CHAPTER 6

Routes to Synchrony in Large Networks with
Delayed Coupling

“It is all that introduces order,
all that gives unity, that permits us
to see clearly and to comprehend
at once both the ensemble and the details.”
Henri Poincare

6.1. Introduction

So far, we have considered networks with a deterministic coupling struc-
ture. However, many networks in applications are known to form their struc-
ture in a random fashion. A broad class of these random networks is given
by the so called scale-free networks which were (re-)discovered1 in 1999 [11].
Since then, large networks such as the world-wide-web, populations of brain
cells or citation networks have been found to have this property [56]. Here,
the term scale-free refers to the distribution of node degrees which follows
a power-law. To put it in simple terms, many nodes have low degrees and
very few nodes have high degrees. Subsequently to their discovery, the dy-
namics on these structures have attracted much attention [108]. However, it
turned out that the dynamics on scale-free networks are qualitatively close
to the dynamics in globally coupled networks, at least when restricted to the
investigation of synchronicity. More precisely, for phase oscillators, scale-free
networks exhibit a second-order transition to synchrony as in the Kuramoto
system of globally coupled oscillators, i.e. increasing the global coupling yields
a gradual increase of the order parameter (see Definition 2) [67]. A couple
of years ago, a model was introduced where the individual phase oscillator’s
frequencies are positively correlated to their respective degrees. In [67] the
case of a linear correlation was discussed where nodes with higher degree have
a higher frequency. A surprising effect of this correlation is the so-called ex-
plosive synchronization: increasing the global coupling strength does not lead
to a gradual increase of the order parameter, but one can observe a sudden

1In fact, it was discovered by D. de Solla Price as early as 1965 that the network of citations
between scientific articles is scale-free even though he did not use this term [41]. It is
remarkable that the number of citations of this article exploded in the last ten years.

77
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jump in the order parameter corresponding to a first order transition from an
incoherent state to an almost synchronous state. Thereafter, T.K. Peron and
F.A. Rodrigues [140] investigated the same system with transmission delays in
the couplings. Based on numerical simulations of scale-free networks and ana-
lytic results for simple star graphs they hypothesized that delay can improve
the synchronization properties in the case of explosive synchronization. Fur-
thermore, they numerically found two distinct routes to synchrony, depending
on the size of the coupling delay: For certain values, the transition is of second
order, i.e. the order parameter increases gradually when increasing the global
coupling. Whereas for other delay values the transition seems to be of first
order with a characteristic jump in the order parameter and the emergence of
hysteresis. The specific mechanism of bifurcation of the incoherent solution
and the nature of the different routes to synchrony remained in the dark. So
far, most of the results are of numerical origin and there exist few attempts to
understand this phenomenon analytically. One attempt to simplify the analysis
of dynamics in large random networks was introduced in 2008 by E. Ott and
T.M. Antonsen [132] and was extended last year [147]. The authors were able
to characterize the synchronization manifold analytically and thereby reduce
the dimension of the associated problem.

In this chapter, we generalize these ideas to the case of delayed couplings in
order to investigate the effect of delay on explosive synchronization. We obtain
an infinite system of delay differential equations which describes the dynamics
on a random network of phase oscillators in the limit of a large number of
elements. Using these equations, we reduce the problem of finding (partially)
synchronous states to a complex algebraic equation. We show that for these
states, the bifurcations are all of first order, independent of the value of the time
delay. Also, we can confirm the hypothesis that the transitions occur through
saddle-node bifurcations. Consequently, we believe that the solutions found in
[140] which constitute the second order transitions are more complex than the
solutions we investigate here, i.e. rotating wave solutions. Furthermore, we
show that larger delays yield better synchronizability for this class of solutions.

We remark that we will not state rigorous results about the possible con-
vergence of solutions of the finite network model towards those of the infinite
dimensional system here. Obtaining such results proved to be a very hard
problem. For instance, in the rather simple case of global undelayed coupling
a first proof of the bifurcations in the thermodynamic limit and its relation
to the finite dimensional dynamics was only done a few years ago (forty years
after the formulation of the hypothesis by Kuramoto) and involved deep func-
tional analytic theorems [33, 32]. However, we show that our findings are in
good agreement with numerical simulations. Furthermore we remark, that as
in [147], the reasoning can be done for directed networks similarly and the
choice of undirected networks is for the sake of clarity.
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This chapter is structured as follows. In section 6.2 we introduce the main
equations for a network of finite size N with arbitrary random coupling topo-
logy and deduce an infinite system of delay differential equations for the case
N →∞. In section 6.3 we apply the obtained results to the case of scale-free
networks with frequency-degree correlations and state the resulting equations.
In the subsequent section 6.4 we investigate the existence of incoherent and
partially synchronized solutions. Then follows an investigation of bifurcations
for both, the finite network model and its thermodynamic limit in section 6.5.
We conclude with a discussion of the results and an outlook on open questions
in section 6.6.

6.2. Phase oscillators with delayed coupling in the thermodynamic
limit

Consider the following model of phase oscillators coupled with delay

(6.2.1) θ̇i (t) = ωi + λ

N∑
j=1

aij sin (θj (t− τ)− θi (t))

We assume that the global coupling λ and the delay τ are nonnegative real
numbers. Let the adjacency matrix A = {aij} with aij ∈ {0, 1} be symmetric,
so the network is undirected. With zero global coupling λ, oscillator i rotates
with frequency ωi and the oscillators will not synchronize unless all the ωi are
identical. However, increasing the coupling strength, the nodes will begin to
interact and might end up being synchronized for large enough couplings, al-
though their individual speeds are different. Indeed, in [67] it was shown that
for τ = 0 and unimodal distributions of the frequencies ωi the system under-
goes a second order bifurcation, i.e. the coherence increases gradually and the
whole network ends up synchronized when increasing the coupling strength.
However, if the frequencies are chosen to be positively correlated to the node’s
degrees, say for simplicity ωi =

∑
j aij , the bifurcation scenario changes qual-

itatively. A sudden jump in the coherence, leading from an incoherent state to
an almost synchronous state, can be observed for a critical coupling strength.
Subsequently, in [140] a numerical analysis was carried out which led to the
hypothesis that for certain values of τ there is a first order transition from an
incoherent state to a coherent state. For the other values of τ the transition
seems to be of second order, i.e. the order parameter increases gradually when
increasing the coupling strength. In this chapter, using a new approach intro-
duced in [147] we want to investigate the kinds and locations of bifurcation
from the incoherent state in dependence of the delay value τ . The approach is
based on choosing an appropriate thermodynamic limit for Eq. (6.2.1). Once
these equations are obtained we can restrict the dynamics to the synchronous
manifold. On the synchronous manifold we use a characterization introduced
by Ott and Antonsen [132]. We remark that a system similar to (6.2.1) was
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investigated in [49], only that here the coupling strength is scaled by the in-
degree of the respective node and the individual frequencies are assumed to be
identical, so

φ̇i (t) = ω +
λ∑N

j=1 aij

N∑
j=1

aij sin (φj (t− τ)− φi (t)) .

An important consequence of this scaling is the existence of globally synchron-
ized solutions φ (t) = Ωt, obtained by solving the equation Ω = ω−λ sin (Ωτ).
Equations of this kind often arise when dealing with this type of equation. We
remind that we encountered the same equation in chapter 4 when investigat-
ing synchronous motions in rings of phase oscillators. For these solutions, the
simple stability criterion cos (Ωτ) > 0 can be shown ([49] and Lemma 22). For
Eq. (6.2.1) these solutions do not exist in general, which makes matters more
complicated.

6.2.1. The local order parameter and its thermodynamic limit.
In order to perform a thermodynamic limit of system (6.2.1) let us present
some preparatory thoughts. The main step will be the derivation of a quantity
which represents the thermodynamic limit of the local order parameter ri as
defined below in Eq. (6.2.4). Let us first rewrite the velocity fields vi on the
right hand side as

(6.2.2) vi (t) = ωi + λ=

e−iθi(t) N∑
j=1

aije
iθj(t−τ)

 .

Suppose we are given a finite random network with a degree distribution P (d)
where d is the node degree. Let a (d→ k) be the probability that there is a
link from a node of degree d to a node of degree k. Then the number of links
from any node of degree d to a given node of degree k is given by

P (d) a (d→ k) .

Equivalently, the number of links between all nodes of degree d and all nodes
of degree k is given by

P (d) a (d→ k)P (k) .

Summing over all d, k we must get the total number of expected links in the
network. Now, let 〈k〉 denote the average degree in the network. Then the
expected value for the total number of links in the network is N 〈k〉. So we
have the following condition for a

(6.2.3)
∑
d

∑
k

P (d) a (d→ k)P (k) = N 〈k〉 .
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Equivalently to the order parameter in globally coupled phase oscillators we
define the local order parameter ri for solutions of Eq. (6.2.1) as

(6.2.4) rl (t) =

N∑
j=1

alje
iθj(t)

and which can be thought of the net input of node l. Now we want to
find a quantity that represents this variable for N → ∞. First, we assume
that in the limit, there is a smooth density function f (θ, ω|d, t), such that
1

2πf (θ′, ω′|d, t) dθ′dω′ is the probability that a node with degree d at time t
has its phase and its frequency in the interval [θ′, θ′ + dθ′] and [ω′, ω′ + dω′]
respectively. Then, the number of nodes with these properties is given by
P (d) 1

2πf (θ′, ω′|d, t) dθ′dω′. Let us call L{d}→k the set of links from all nodes
of degree d with these properties to a given node of degree k. The number of
links in this set is given by multiplying with the connection probability a. So

#L{d}→k = P (d) a (d→ k)
1

2π
f
(
θ′, ω′|d, t

)
dθ′dω′.

Consequently, the number of links from all nodes of degree d to all nodes of
degree k is obtained by multiplying with the number P (d) of nodes of degree
k. Calling this set of links L{d}→{k} we have

#L{d}→{k} = P (d) a (d→ k)P (k)
1

2π
f
(
θ′, ω′|d, t

)
dθ′dω′.

Summing up over all (incoming) degrees 1 ≤ d < ∞ and integrating over θ′

and ω′ we finally get the net input into a node of degree k
(6.2.5)

R (k, t) =
∑
d

P (d) a (d→ k)

(
1

2π

∫ 2π

0
eiθ
′
∫ ∞

0
f
(
θ′, ω′|d, t

)
dω′dθ′

)
.

6.2.2. The continuity equation. Using the quantity R we now deduce
the thermodynamic limit of Eq. (6.2.1). First, rewriting the velocity field
(6.2.2) as

vi (t) = ωi + λ=
(
e−iθi(t)ri (t− τ)

)
and using the results from the previous section we can define the equivalent
for the thermodynamic limit by

v (ω|k, t) = ω + λ=
(
e−iθR (k, t− τ)

)
.

Using that the total mass must be conserved, we have the continuity equation
∂
∂tf = − ∂

∂θ (vf) and thus we obtain the following delay differential equation
for the density f

(6.2.6)
∂

∂t
f (θ, ω|k, t) = − ∂

∂θ

([
ω + λ=

(
e−iθR (k, t− τ)

)]
f (θ, ω|k, t)

)
.
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Now, following Ott and Restrepo [147], we make the following Ansatz for the
density f

f (θ, ω|k, t) =

[
1 +

( ∞∑
n=1

b (ω, k, t)n e−inθ + c.c.

)]
g (ω|k) .(6.2.7)

Remarkably, this Ansatz describes the whole synchronization manifold [132].
It is crucial for the following analysis as it reduces the dimension of the problem.
More precisely, instead of infinitely many equations for the Fourier coefficients
for each k, we will be left with only one equation for each k. And indeed,
plugging this Ansatz into Eq. (6.2.6) yields the infinite system of integral
delay differential equations (see Appendix A)

∂b

∂t
(k, t) = iωb (k, t)− λ

2

(
R∗ (k, t− τ) b2 (k, t)−R (k, t− τ)

)
(6.2.8)

R (k, t) =
∑
d

P (d) a (d→ k)
1

2π

∫ 2π

0
eiθ
′
∫ ∞

0
f
(
θ′, ω′|d, t

)
dω′dθ′.(6.2.9)

Admittedly, these equations do not look much simpler than the finite network
(6.2.1), and in a certain sense they aren’t. However, a huge advantage is that
we got rid of the randomness of the couplings aij , which are now incorporated
in the probability a. This will enable us to infer results valid for any realization
of a large scale-free random network. Before we go on investigating scale-free
structures, let us define the order parameter for this system.

Definition 36. We define the global order parameter for solutions of Eq.
(6.2.8) as

r =

∣∣∣∣∣∑
d

P̃ (d)
1

2π

∫ ∞
0

∫ 2π

0
f
(
θ′, ω′|d, t

)
eiθ
′
dθ′dω′

∣∣∣∣∣ .
6.3. Scale-free networks with frequency-degree correlations

The previous approach is a generalization of the ideas introduced in [147]
and reduces to the case considered therein for τ = 0. Let us now assume that
we have a scale-free network, that is the degrees are distributed according to
a power-law with degree probability

P̃ (d) =
1

ζγ
d−γ γ > 2

where

ζγ =

∞∑
d=1

d−γ

is the normalization and the associated degree distribution P is given by P =
nP̃ . Let us furthermore assume that the natural frequencies ωi are positively
correlated to the node degrees di in the simplest way, that is ωi = di. In other
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words, the (conditional) frequency distribution g is given by

(6.3.1) g (ω|d) = δ (ω − d)

where δ (x) =

{
1 x = 0
0 else is the Dirac delta function. The main result of this

section is the deduction of the main equations in the thermodynamic limit.

Theorem 37. For a scale-free network with the above degree and frequency
distributions, the thermodynamic limit of Eq. (6.2.1) is given by the following
infinite system of delay differential equations

1

k

∂b

∂t
(k, t) = ib (k, t)− λ

2

(
R̃∗ (t− τ) b2 (k, t)− R̃ (t− τ)

)
(6.3.2)

R̃ (t) =
1

ζγ−1

∑
d

d1−γb (d, t) .

Proof. Let us first compute the quantity R given by Eq. (6.2.9). Plugging
the Ansatz from Eq. (6.2.7) in the integral, all the terms with einθ′ and n 6= 0
chancel out and we obtain∫ ∞

0

∫ 2π

0
f
(
θ′, ω′|d, t

)
eiθ
′
dθ′dω′

=

∫ ∞
0

∫ 2π

0

[
1 +

( ∞∑
n=1

b
(
ω′, d, t

)n
e−inθ

′
+ c.c.

)]
g
(
ω′|d

)
eiθ
′
dθ′dω′

= 2π

∫ ∞
0

g
(
ω′|d

)
b
(
ω′, d, t

)
dω′.

Now, using the form (6.3.1) of the distribution for the natural frequencies, we
get

1

2π

∫ ∞
0

∫ 2π

0
f
(
θ′, ω′|k, t

)
eiθ
′
dθ′dω′

=

∫ ∞
0

g
(
ω′|d

)
b
(
ω′, d, t

)
dω′

=

∫ ∞
0

δ
(
ω′ − d

)
b
(
ω′, d, t

)
dω′

= b (d, t) .

At this step, evaluating the expression (6.2.5) for R we obtain

(6.3.3) R (k, t) =
∑
d

P (d) a (d→ k) b (d, t) .

Now, the probability a (d→ k) that two nodes of degree d and k are connected
by a link is proportional to their respective degrees and thus, respecting the
normalization given by 6.2.3, we obtain

a (d→ k) =
dk

N 〈k〉
.
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Let us further simplify by using

〈k〉 = =
∑
d

dP̃ (d) =
ζγ−1

ζγ

so we get

R (k, t) =
k

ζγ−1

∑
d

d1−γb (d, t)

which is just scaled by k. Consequently, we define

R̃ (t) :=
1

ζγ−1

∑
d

d1−γbd (t) .(6.3.4)

and obtain the above system of DDEs. �

We remind that once we solve the Eqs. (6.3.2) the b (k, t) yield the density
function for the oscillator’s phases by Eq. (6.2.7), in our case

(6.3.5) f (θ, k, t) = 1 +

( ∞∑
n=1

b (k, t)n e−inθ +
∞∑
n=1

(b (k, t)n)∗ einθ

)
.

As in [132] for the non-delayed case we can show the following

Lemma 38. Let b be a solution of Eq. (6.3.2) with initial functions b0 (k, t)
satisfying supt∈[−τ,0] |b0 (k, t)| ≤ 1 for all k ∈ N. Then we have |b (k, t)| ≤ 1
for all t ≥ 0.

Proof. Let us write b (k, t) = |b (k, t)| e−iψ(k,t). Then the delay differential
equation writes as

1

k

(
∂

∂t
|b|
)
e−iψ − i

k
|b| ψ̇e−iψ = ik |b| e−iψ − λ

2

(
R̃∗ |b|2 e−2iψ − R̃

)
where we omit the variables (k, t) for the sake of clarity and remind that only
R̃ involves time delay. Now, multiplying with eiψ we obtain

1

k

∂

∂t
|b| − i

k
|b| ψ̇ = ik |b| − λ

2

(
|b|2 R̃∗e−iψ − R̃eiψ

)
and finally taking the real part yields

1

k

∂

∂t
|b (t)| = −λ

2
<
(
R̃∗ (t− τ) e−iψ(t)

)(
|b (t)|2 − 1

)
.

As ∂
∂t |b| vanishes for |b| = 1, solutions with initial conditions in the unit circle

must stay in the unit circle.
�

This lemma guarantees that the global order parameter r is reasonably
defined. Indeed, using the above results we have

(6.3.6) r =

∣∣∣∣∣∑
d

P̃ (d) b (d, t)

∣∣∣∣∣ .
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Hence, the solution with b (k, t) = 0 ∀k corresponds to the incoherent solution
and the solution with b (k, t) = 1 ∀k corresponds to the completely synchron-
ous state.

6.4. Existence of rotating waves in scale-free networks

Let us begin to look for the simplest class of solutions, that is solutions
which do not depend on time.

Theorem 39. The only stationary solution Eq. (6.3.2) admits is the in-
coherent state.

Proof. For a stationary solution we have ∂
∂tb (k, t) = 0. As b (k, t) is then

time independent let us write b (k, t) = bk ∈ C. Furthermore R̃ is also time
independent, so DDE (6.2.8) becomes

bk =
λ

2i

(
b2kR̃

∗ − R̃
)
.

As R̃ is a constant independent of k, these are simple quadratic equations

0 = b2k −
2i

λR̃∗
bk −

R̃

R̃∗

with solutions

bk =
1

λR̃∗

[
i±
√(

λ
∣∣∣R̃∣∣∣)2

− 1

]
.

Plugging these back into the equation for R̃, we obtain a self-consistency rela-
tion

R̃ =
1

ζγ−1

∑
d

d1−γbd

⇐⇒ ζγ−1λ
∣∣∣R̃∣∣∣2 =

∑
d

d1−γ

[
i±
√(

λ
∣∣∣R̃∣∣∣)2

− 1

]

⇐⇒ λ
∣∣∣R̃∣∣∣2 = i±

√(
λ
∣∣∣R̃∣∣∣)2

− 1.

As the left hand side is real, in order to fulfil this equation we must have∣∣∣R̃∣∣∣ = 0

and choose the solution βk with negative sign. But then bk = 0 which corres-
ponds to the incoherent state. �

After having seen that there is only the trivial stationary solution, we in-
vestigate simple nonstationary solutions in the model Eqs. (6.3.2). Motivated
by the S1-symmetry of these equations, we make the following Ansatz for
rotating waves

bk (t) = eiΩtβk
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where the βk do not depend on time. This corresponds to a density function
f of the form f (θ, t, k) = f̃ (Ωt− θ, k) which is a travelling wave with wave
speed Ω. Especially, the waves have the same speed for all degrees k, so we
consider phase-locked solutions, that is solutions for which the phase difference
between nodes is constant. As in the finite network case, different degrees of
coherence can be observed. Here, the size of |βk| determines the amount of
coherence among the nodes of degree k whereas the argument of βk determines
their location on the unit sphere. To see this we compute the series from the
Ansatz (6.3.5). As in [132] we obtain

f (θ, t, k) =
(1− |βk|) (1 + |βk|)

(1− |βk|)2 + 2 |βk| (1− cos (θ − arg (βk)))
.

It is easy to check that f has a single maximum at θ = arg (βk). Furthermore,
the curvature in this point is given by

f ′′ (arg (βk) , t, k) = −2 |βk|
1 + |βk|

(1− |βk|)3

and we have f (arg (βk)) = 1
1−|βk| . Hence, for |βk| → 1 both, the density and

its curvature are unbounded. On the other hand, the integral over f is inde-
pendent of |βk| and thus, f must approach a delta distribution concentrated
in arg (βk). Now we show that rotating wave solutions can be found by finding
the roots of a complex nonlinear function.

Theorem 40. bk (t) = eiΩtβk is a solution of Eq. (6.3.2) if

λζγ−1e
iΩτ |M |2 = i [ζγ−1 − Ωζγ ]

−
∑
d

s

(
1− Ω

d

)
d1−γ

√
λ2 |M |2 −

(
1− Ω

d

)2

(6.4.1)

where

M =
e−iΩτ

ζγ−1

∑
d

d1−γβd

and s (x) designates the sign of the real number x.

Proof. First, for the quantity R̃ we obtain

R̃ (k, t) =
1

ζγ−1
eiΩt

∑
d

d1−γβd.

Plugging this into the DDE (6.3.2) yields

iΩ

k
βk = iβk −

λ

2

(
β2
k

eiΩτ

ζγ−1

∑
d

d1−γβ∗d −
e−iΩτ

ζγ−1

∑
d

d1−γβd

)
(6.4.2)

Next set

M =
e−iΩτ

ζγ−1

∑
d

d1−γβd(6.4.3)
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to rewrite the last equation as

(6.4.4)
iΩ

k
βk = iβk −

λ

2

(
β2
kM

∗ −M
)
.

This is the quadratic equation

0 = β2
k +

2i

λM∗

(
Ω

k
− 1

)
βk −

M

M∗
.

As M is independent of k we can solve this equation to obtain

βk = − i

λM∗

(
Ω

k
− 1

)
±

√
M

M∗
− 1

λ2 (M∗)2

(
1− Ω

k

)2

=
1

λM∗

i(1− Ω

k

)
±

√
λ2 |M |2 −

(
1− Ω

k

)2
 .(6.4.5)

Now we have to decide which solution to choose. Formally, functions b (k, t) =
eiΩtβk with arbitrary combinations of βk constitute a solution of Eq. (6.3.5).
However, suppose λ = 0. Then, by Eq. (6.4.4) we should have βk = 0, which
makes sense as this corresponds to the incoherent solution, which is to be
expected in the case of uncoupled oscillators. So we reject the solution βk of
the quadratic equation which goes to infinity as λ goes to zero. Let us see
to which branch this corresponds in Eq. (6.4.5). For λ = 0, multiplying the
equation with λ it writes as

0 = i

(
1− Ω

k

)
± i
∣∣∣∣1− Ω

k

∣∣∣∣ .
So we take the solution with sign −s

(
1− Ω

k

)
in order to fulfil this equation,

i.e.

(6.4.6) βk =
1

λM∗

i(1− Ω

k

)
− s

(
1− Ω

k

)√
λ2 |M |2 −

(
1− Ω

k

)2
 .

Now, plugging these solutions for the βk back into the Eq. (6.4.3) for M we
obtain

λζγ−1e
iΩτ |M |2 =

∑
d

d1−γ

i(1− Ω

d

)
− s

(
1− Ω

d

)√
λ2 |M |2 −

(
1− Ω

d

)2


= i [ζγ−1 − Ωζγ ]−
∑
d

s

(
1− Ω

d

)
d1−γ

√
λ2 |M |2 −

(
1− Ω

d

)2

.

�

The price one has to pay for the non-global coupling is that the equation for
(Ω, |M |2) is rather involved as it is not possible to explicitly split the complex
equation into real and imaginary parts. Even numerically it is very demanding
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to solve this equation. However, instead of solving infinitely many DDEs we
reduced the problem to finding the roots of a complex function. Also, using
the representation for the βk we can infer the following

Lemma 41. Let bk (t) = eiΩtβk be a solution of the system (6.3.2). If we
have

λ2 |M |2 ≥
(

1− Ω

d

)2

for some d ∈ N, then the nodes of degree d are synchronized.

Proof. Under this assumption, the square root is real and we can calculate
the modulus of βd as

|βd|2 =
1

|λM∗|2

[(
1− Ω

d

)2

+ λ2 |M |2 −
(

1− Ω

d

)2
]

= 1.

As mentioned above in the classification of partially synchronized states, this
corresponds to the case where all the nodes of degree d are synchronized. �

A consequence of the last lemma is that for certain rotating wave solutions,
there is a simple synchronization hierarchy.

Corollary 42. Let bk (t) = eiΩtβk be a solution of the system (6.3.2) with
Ω < 1. Then, if the nodes of degree d are synchronized for some d ∈ N, all the
nodes of degree k < d are synchronized as well. If the nodes of degree d are
synchronized for all d ∈ N we must have λ ≥ 1.

Proof. For the first statement, by assumption the nodes of degree d are
synchronized, so λ2 |M |2 ≥

(
1− Ω

d

)2 by the previous lemma. By the assump-
tion Ω < 1 the function

(
1− Ω

d

)2 is strictly monotonous in d, so we must have
λ2 |M |2 ≥

(
1− Ω

d

)2
>
(
1− Ω

k

)2 for any k < d and we are done by the previous
lemma again. For the second statement remark that by assumption we must
have

λ |M | ≥ 1− Ω

k
for all k. As |M | ≤ 1 the statement follows. �

We remark that indeed, in the numerical results obtained in [140], the
onset of desynchronization is at values λ > 1 for all values of the delay τ .
Also, as can be seen in the next section, in our numerical results the branches
of solutions with highest coherence, i.e. largest order parameter indeed fulfil
the condition Ω < 1. Hence, led by these observations we hypothesize that
the nodes synchronize hierarchically, beginning with degree-one nodes. This
can also be observed in simulations of the finite network, as shown in the next
section. The case Ω ≥ 1 is much more involved and will be treated in future
investigations.
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6.5. Bifurcations of rotating wave solutions

Having shown the existence of rotating waves in the previous section, we
will now investigate their bifurcations numerically by solving Eq. (6.4.1) for(

Ω, |M |2
)
. However, before we investigate the existence of rotating wave solu-

tions in the infinite dimensional approximation, let us have a closer look at the
dynamics in a finite scale-free network with a positive correlation between the
node’s degree and their individual frequency. These were investigated in [140],
however, we want to shed light on the dynamics from a slightly different angle
in order to compare the results to the dynamics in the infinite dimensional
model.

6.5.1. Bifurcations of rotating wave solutions in finite scale-free
networks. As pointed out in the first section, there is no easy way to find
coherent solutions in Eq. (6.2.1) analytically, so we investigate the bifurca-
tions numerically. We remark that the displayed bifurcation diagrams are for
a fixed coupling structure. However, if the number of oscillators is large the
variations between the dynamics for different realizations of the random coup-
ling structure are only quantitative and of very small amount. We simulate
Eq. (6.2.1) with a realization of an adjacency matrix A of the size N = 1000
representing a scale-free network with the parameter γ = 2.5. The delay time
is chosen as τ = 0.5 and the frequency ωi equals the degree of node i. In Fig.
6.5.1 a) we plot the global coupling λ against the order parameter r after a
transient time T = 10000. We observe a seemingly continuous transition from
the incoherent to the synchronous state where no hysteresis is observed, i.e.
independently of increasing or decreasing the parameter λ the same bifurcation
diagrams are obtained. However, looking at it more detailed we see that there
is another transition to synchrony.In Fig. 6.5.1 b)-d) we show the distribution
of frequencies of the individual oscillators after a transient time together with
their respective degrees. For a coupling λ = 1.02 all the oscillators rotate with
the same speed Ω ≈ 1.7178 (Fig. 6.5.1 b) and inset). We can write these
solutions as

(6.5.1) θi (t) = Ωt+ ϕi

and remark that, despite the fact that all the oscillators have the same fre-
quency, the order parameter r is not equal to one. Consequently, the state
must consist of at least two different clusters with constant phase difference
ϕj 6= ϕk. Decreasing the coupling by 0.02 to λ = 1 yields a different picture
(Fig. 6.5.1 c)). Oscillators with higher degrees and therefore highest individual
frequencies separate from the phase locked cluster. They are not synchronized
to the remaining oscillators any more, but they rather rotate with what is
almost their individual frequency (see Corollary 42 and remark thereafter).
Furthermore, the frequencies of nodes with smaller degrees are now spread
around a mean frequency (see inset in Fig. 6.5.1 c)). Hence, what we observe
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Figure 6.5.1. Bifurcations in Eq. (6.2.1) with τ = 0.5 and
network size N = 1000. In a) the order parameter r is plot-
ted against the global coupling strength λ. The inset shows a
magnification. Plots b), c) and d) show frequencies and cor-
responding degrees of the oscillators for λ = 1.02 (a), λ = 1
(b) and λ = 0.1 (c) after time T = 10000. The insets are
magnifications of the frequencies.

here is a destabilization of a many-cluster state with constant rotation fre-
quency Ω. Decreasing the coupling further from λ = 1 increases the variance
of the oscillator’s frequencies. Beginning with oscillators with higher degrees,
more and more oscillators desynchronize until all of them regain their indi-
vidual frequencies eventually for zero coupling, see Fig. 6.5.1 d) for λ = 0.1.
What is important here is that the range of coupling strengths λ for which
all the oscillators are phase-locked at the same frequency is rather small. Or
in other words, only taking into account solutions which can be written as in
equation (6.5.1) the bifurcation from Fig. 6.5.1 is of first order.

As observed in [140], the bifurcation for τ = 1 is qualitatively different. In
Fig. 6.5.2 we show the bifurcation scenario for the same setting as before, so
the size of the network is N = 1000 and the scaling of the network structure
is γ = 2.5. In a) we plot the global coupling λ against the order parameter
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Figure 6.5.2. Bifurcations in Eq. (6.2.1) with τ = 1 and net-
work size N = 1000. In a) the order parameter r is plotted
against the global coupling strength λ. The black stars corres-
pond to values obtained by decreasing λ from 2 to 0 and the red
circles to values obtained by increasing λ from 0 to 2. The inset
shows a magnification. Plots b), c) and d) show frequencies and
corresponding degrees (in c) of the oscillators for λ = 2.05 (a),
λ = 2.05 (b) and λ = 0.05 (c) after time T = 10000.

r as in the previous figure. We see that in contrast to the previous case, the
transition to synchrony does not occur through a gradual increase of the order
parameter, but rather through a sudden jump from an incoherent state to an
almost synchronous state. Furthermore, the system is now hysteretic: when
we decrease the global coupling from λ = 2 (black stars), a synchronization
loss is observed at λ = 1.02. However, increasing the coupling from λ = 0, the
transition to synchrony appears only at λ = 1.4. A closer look on the frequen-
cies of these solutions shows that this is indeed a hysteretic loop. Although
the order parameters for λ = 2.05 are almost identical, the frequencies of the
corresponding solutions differ essentially (see Fig. 6.5.2 b) and d)). While in
b) all the oscillators seem to have the same rotation frequency Ω < 1, the
solution in d) has five clusters of considerably higher frequencies, all grouped
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Figure 6.5.3. Bifurcation diagram for rotating wave solutions
for different values of the time delay τ .

between Ω = 6.34 and Ω = 6.38. Hence, this solution will not be observed
in our analysis of the infinite dimensional model in the next section. Another
remarkable difference to the previous case is that for a rather small coupling
strength of λ = 0.05, we do not observe the state in which all the oscillat-
ors rotate with their own frequency, but certain groups of intermediate-degree
nodes are already synchronized.

6.5.2. Bifurcations of rotating waves in the thermodynamic limit.
Rotating wave solutions in the thermodynamic limit model (6.3.2) are given
by bk (t) = eiΩtβk where Ω and |M |2 are solutions of the complex Eq. (6.4.1).
In order to determine the βk we would have to solve the full system 6.4.2
which consists of an infinite number of equations. Even if we only take into
consideration a finite number of degrees, this is still a large computational
amount. However, we can easily obtain the moduli |βk| through the obtained
solution (Ω, |M |2) from Eq. (6.4.1). In the following, we present solutions of
Eq. (6.3.2) for degrees up to k = 2000. In Fig. 6.5.3 we show bifurcations
of rotating waves for different values of the delay τ . First we remark that for
delay values τ = 0 and τ = 1 first order transitions to synchrony are observed
in the finite network model (see Fig. 6.5.2 and [140]). In Fig. 6.5.3 we can
observe a large gap in the order parameter at λ ≈ 1.1 for τ = 1 and at λ ≈ 1.6
for τ = 0 and these are in very good agreement with the finite network case.
Next we remark that for all four values of time delay τ , the upper branches
with order parameter r ≥ 0.85 correspond to solutions with |βk| = 1 for all k.
Hence, these are solutions where all the nodes of the same degree are phase
synchronized, whereas the synchronized clusters of different degrees can have
a constant phase difference, resulting in an order parameter r < 1. We remark
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Figure 6.5.4. Bifurcations of rotating wave solutions for τ =
0.5. In a) the order parameter r is plotted against the global
coupling λ and b) shows a magnification. Plot c) shows the
|βk| for different coupling strengths close to the saddle-node
bifurcation from b). Plot d) shows the |βk| for a solution at
λ = 0.05.

that the prediction from corollary 42 that λ > 1 for these states is confirmed
by these examples. A striking feature of the bifurcation diagram is that the
larger the delay τ , the earlier these solutions appear when increasing λ, and
the higher their order parameter is. In other words, increasing the delay yields
higher coherence in the dynamics. Of course, this statement does not refer to
the stability of the corresponding states.

In Fig. 6.5.4 we show in more detail the bifurcation mechanism for τ =
0.5. The first remarkable feature is that the synchronous state disappears
through a saddle-node bifurcation at around λ = 1.18. As just described, the
upper branch consists of solutions in which all nodes with the same degree are
synchronized. In the lower branch, one can see that this state transforms into
a state in which nodes with higher degrees desynchronize at around λ = 1.185.
In Fig. 6.5.4 c) we show the values of |βk| for the solutions from Fig.6.5.4
b). At λ = 1.186 nodes up to degrees k = 623 are synchronized, resulting
in |βk| = 1 whereas the modulus of the βk for nodes with higher degrees
decreases gradually (black dashed line). The same picture is obtained for the
values λ = 1.188 (red dash-dotted line) and λ = 1.19 (blue thick line), where
the number of synchronized degrees decreases with λ. In Fig. 6.5.4 d) we
show that when λ is decreased down to 0.05, only nodes with degree k = 1
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Figure 6.5.5. Bifurcations of rotating wave solutions for τ =
6. The different shapes/colours correspond to different
branches.

are synchronized, whereas all the other degrees have a |βk| close to zero (see
magnification in the inset of d)).

As a last example we shortly want to discuss the case of larger delay times.
In Fig. 6.5.5 we show a bifurcation diagram for τ = 6. Again, for the solution
of highest coherence we observe a characteristic jump in the order parameter
for a coupling λ close to one. A new feature is the appearance of two more
branches of high coherence. It is known that periodic solutions reappear when
increasing the delay time. More precisely, if a system with delay τ admits
a periodic solution of period T , the same solution will exist for τ̃ = τ + T
[189]. Now the observed branch could be a branch of reappearing solutions.
The filled circles designate solutions where all the βk have modulus one. So
apart from the appearance of new branches, it is remarkable that these lead to
solutions with relatively low order parameter, while all the degree-groups are
synchronized. In other words, these correspond to solutions bk (t) = eiΩteiϕk

where the ϕk are the phase differences between the synchronized clusters.

6.5.3. Existence of saddle-node bifurcations. Motivated by the ob-
servation of the various saddles in the bifurcation diagrams, we now investigate
the occurrence of saddles analytically. In a saddle point (λ, |M |) given as solu-
tion of Eq. (6.4.1) we must have that ∂|M |

∂λ is unbounded. In order to see when
this happens, we first rewrite equation (6.4.1) as

<F (λ,Ω,m) = 0

=F (λ,Ω,m) = 0
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with m = |M |2 and

F (λ,Ω,m) = λmζγ−1e
iΩτ − i [ζγ−1 − Ωζγ ]

+
∑
d

s

(
1− Ω

d

)
d1−γ

√
λ2m−

(
1− Ω

d

)2

.

This function is differentiable for Ω /∈ N. In this case, by the implicit function
theorem we have

∂ (Ω,m)

∂λ
= − ∂F

∂ (Ω,m)

−1∂F

∂λ

for regular points (λ,Ω,m). In other words, a saddle appears when the main
condition for the implicit function theorem is violated, i.e. det

(
∂F

∂(Ω,m)

)
= 0.

Indeed, We obtain the slope of m as

m′ (λ) = det

(
∂F

∂ (Ω,m)

)−1 [
<
(
∂F

∂Ω

)
=
(
∂F

∂λ

)
−=

(
∂F

∂Ω

)
<
(
∂F

∂λ

)]
.

So we compute

∂F

∂m
= λζγ−1e

iΩτ +
λ2

2

∑
d

s
(
1− Ω

d

)
d1−γ√

λ2m−
(
1− Ω

d

)2
∂F

∂Ω
= iλmτζγ−1e

iΩτ + iζγ

−
∑
d

∣∣1− Ω
d

∣∣ d−γ√
λ2m−

(
1− Ω

d

)2 .
As the resulting condition is very involved, let us first restrict to a saddle-node
bifurcation of states for which the nodes of degree d are synchronized for all d.
Then we have λ2m ≥

(
1− Ω

d

)2, so
det

(
∂F

∂ (Ω,m)

)
= <

(
∂F

∂Ω

)
=
(
∂F

∂m

)
−=

(
∂F

∂Ω

)
<
(
∂F

∂m

)

=

−λmτζγ−1 sin (Ωτ)−
∑
d

∣∣1− Ω
d

∣∣ d−γ√
λ2m−

(
1− Ω

d

)2
 ·

· [λζγ−1 sin (Ωτ)]

− [λmτζγ−1 cos (Ωτ) + ζγ ] ·

·

λζγ−1 cos (Ωτ) +
λ2

2

∑
d

s
(
1− Ω

d

)
d1−γ√

λ2m−
(
1− Ω

d

)2
 .
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If we further restrict to τ = 0 the condition for a saddle becomes

0 =
∑
d

d1−γ +
λ

2

∑
d

s
(
1− Ω

d

)
d1−γ√

λ2m−
(
1− Ω

d

)2
=

∑
d

d1−γ

1 +
λs
(
1− Ω

d

)
2

√
λ2m−

(
1− Ω

d

)2
 .

Under the above assumptions we can follow from the imaginary part of Eq.
(6.4.1) that Ω =

ζγ−1

ζγ
≈ 1.91. In the general case τ 6= 0 the condition

det
(

∂F
∂(Ω,m)

)
can be used to numerically determine the saddle-node bifurca-

tions.

6.6. Discussion

In this chapter, we have extended a new approach to study large random
networks to the case of delayed couplings. This enabled us to study in more
detail the dynamics exhibited by a network of phase oscillators with a scale-
free coupling topology endowed with a positive correlation between the node
degree and the oscillator’s individual frequencies. More precisely, we studied
the phenomenon of explosive synchronization which was recently discovered in
these networks. Introducing a time delay τ , we have observed higher coherence
for larger delays in two different meanings. Solutions for which all groups of
identical degrees are synchronized appear for smaller coupling strengths λ, and
these solutions have higher order parameters. We have shown that independ-
ent of the delay τ , the synchronous state disappears through a saddle-node
bifurcation. Due to these bifurcations, all the transitions to synchrony are
discontinuous when restricted to the class of rotating wave solutions. Con-
sequently, this approach does not explain the second order transitions observed
in simulations of the finite networks for certain values of the delay τ . How-
ever, it allows us to eliminate the possibility that in these cases, the solutions
leading to synchrony are rotating waves. My supervisor S. Yanchuk brought
my attention to the appearance of modulated waves, which could be a possible
explanation for the second order transition. These are known to appear in sys-
tems with rotational symmetry and bifurcate in a scenario much like a Hopf
bifurcation from rotating waves. They were previously observed in lattices of
differential equations [87] and in certain classes of spatially extended reaction-
diffusion equations [156, 157]. It turned out that other phenomena inherent
to spatially extended reaction-diffusion equations such as Turing instabilities
can also be observed in their discrete counterparts [128]. Hence, it might be a
promising idea to look for bifurcations known from spatially extended systems
in this case as well.

In general, it is remarkable that even for this rather simple class of rotating
wave solutions, the transitions to synchrony seem to be very complex. This rich
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behaviour opens up many more questions than we were able to answer here. For
instance, the branch of coherent solutions does not undergo a simple saddle-
node bifurcation, but rather a sequence of consecutive saddle-node bifurcations,
eventually leading to a state of lower coherence. A further investigation of the
locations and number of these bifurcations should be done using the methods
introduced here. A main difficulty with the existence of rotating wave solutions
was posed by the complex equation which defines their parameters. We could
gain much more insight once this equation can be tackled in a more elegant way.
As mentioned in the introduction, it is important to treat the question whether
solutions of the finite network will converge to solutions of the thermodynamic
limit equation in some sense. However, this class of problem proved to be very
hard [32, 33] even for much simpler systems. Finally, we did not characterize
stability properties of the described solutions which will certainly be the subject
of future investigations.





CHAPTER 7

Conclusion and Outlook

All the problems I investigated in this thesis have one fundamental ques-
tion in common: What is the relation between a network’s coupling structure
and the exhibited dynamics? I have not answered this question for arbitrary
networks, and most probably there is not just one answer for the most general
setting1. However, I have shown that, restricting to certain classes of coupling
topologies and local dynamics, answers can indeed be found, leading to new
insights and perspectives in the theory and applications of coupled dynamical
systems. In chapters 2 and 5 I found fundamental structures in rather general
settings. By restricting to smaller classes of networks I was able to describe
in much detail the dynamics and bifurcations in these networks in chapters
3 and 4. Finally, chapter 6 constitutes an intermediate case which covers a
broad class of networks, but still allows for detailed insights in the existence
and bifurcations of special solutions.

In my opinion, one of the great challenges in this young and rapidly growing
field of research is its interdisciplinary character. Like any other challenge, this
can also be understood as an opportunity - an opportunity for inspiring scient-
ists from other disciplines, for opening up new horizons and for developing new
tools together. For instance, we have seen in chapter 2 that certain directed
networks can behave essentially different from their undirected counterparts.
We have also seen that this fact can be traced back to the spectrum of the
graph Laplacian. There is a lot of work from algebraic graph theory about the
relation between the spectrum of a symmetric Laplacian and the topology of
the underlying (undirected) graph. However, there are few results of this type
on directed graphs and even worse, as these communities are traditionally quite
far away from each other, there is almost no exchange. This example shows,
that a collaboration between algebraic graph theory and dynamical systems
could be very fruitful. Indeed, we showed this in chapter 5. In collaboration
with K. Knauer we determined equivalent classes of delay coupled dynamical
systems and unravelled the connection to the graph theoretical notion of the
cycle space of a graph. Furthermore, it turned out that our rough main idea
for the reduction algorithm was well known in graph theory. This cooperation
also demonstrated the need of a common language. Although it might sound
trivial, even the use of different words for the same thing, like link/edge or

1In a distant future a very powerful computer might find the answer 42 though.
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loop/cycle can be quite cumbersome. Following up directly on this we plan
another collaboration which includes yet another discipline, namely statist-
ical physics. It was recently brought to my attention by E. Garibaldi from
Campinas (Brazil) that there is a simple formula relating the spectral gap of a
symmetric Laplacian to a quantity called “entropy of a graph”. The entropy of
a graph in turn is closely related to the closed paths in the graph, and therefore
to its topology. To my knowledge this connection has never been investigated
in the theory of dynamics on networks.

The aforementioned issues were related to rather theoretical questions. In
chapter 4 we have seen that questions and ideas from applications such as
information processing can lead to equally interesting approaches. Here, such
a question led me to the detailed analysis of a system of DDEs. It turned
out that the pattern recognition device depends on the size of the basins of
attraction of certain synchronous solutions. This leads to another interesting
question, not only for this application but also from a theoretical point of
view and even for other applications. The term “basin stability” was recently
introduced for networks with instantaneous couplings, and relies on the analysis
of the size of the attractor basins. Although many networks in applications
involve delays, to my knowledge this approach was not extended to the case of
delayed couplings yet. Indeed, determining attractor basins turns out to be a
hard problem even for finite dimensional systems as it involves the analysis of
global invariant manifolds. So one can imagine that for the infinite dimensional
case of a DDE this problem is even more involved.

I want to mention another question which subtly resonates in many invest-
igations regarding the dynamics in large networks such as in chapter 6. Is there
a correspondence between a large network and some appropriately chosen con-
tinuum equation? And if so, can we exploit this relation? As mentioned in the
last chapter, it was recently shown by H. Chiba that the bifurcation structure
in a PDE, constituting the thermodynamic limit of the Kuramoto model, is the
same as in the finite dimensional Kuramoto model. Although the proof turned
out to be highly non-trivial, Kuramoto was able to make the right guess by
using his intuition from the finite dimensional model. In the other way around,
in chapter 3 I have investigated a finite dimensional system which was earlier
shown to exhibit a cascade of bifurcations similar to a well known bifurca-
tion structure in spatially extended reaction-diffusion systems called Eckhaus
scenario[191]. But even when the coupling structure is not regular, such cor-
respondences were discovered. For instance it was shown in [128] that Turing
instabilities, well known from spatially extended reaction-diffusion equations
as well, can be observed in large networks with a random coupling structure.
Amongst others, they were observed in scale-free networks, which brings me
again to chapter 6. Here, I hypothesized that the appearance of modulated
waves could explain the bifurcation scenario observed in the finite dimensional
model with a scale-free coupling structure. Once again, modulated waves can
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be observed in a very similar bifurcation scenario in reaction-diffusion equa-
tions [156]. So here, one might wonder whether there is a different approach
than the one we used here, in order to rigorously relate the scale-free network
structure to a reaction-diffusion equation on a properly chosen heterogeneous
medium.

I opened this thesis with the description of a problem raised by S. Smale
in 1976. Now let me close with a similar problem, raised almost 40 years
later by M. Golubitsky which was recently brought to my attention by M.
Wolfrum. Consider a network in the setting of chapter 2. We have seen that
the eigenvectors belonging to nonzero eigenvalues of the network Laplacian
correspond to transverse directions of the synchronous manifold. Now, the
question is whether for any given eigenvector of the Laplacian, the pair (f ,H)
can be chosen such that the synchronous manifold is stable in all eigendirections
except for the prescribed one. To my knowledge this problem is still unsolved
and indeed, appears to be nontrivial. Using ideas and methods developed in
this thesis I believe it is worth a try to tackle it. This problem and many
others, some of which I described in this thesis, still await for pioneering work
in the field of dynamics on networks. During my time as a PhD student I was
always fascinated by the diversity of problems and methods in this field, and
I hope that I will keep this fascination as long as possible.





Appendix A

Here, we derive the system of DDEs from the continuity equation by using
the Ansatz (6.2.7) in section 6.2. Omitting g which is a factor on both sides
of the equation and independent of θ and t, we have

∂tf =
∞∑
n=1

n (∂tb) b
n−1e−inθ +

∞∑
n=1

n (∂tb
∗) (b∗)n−1 einθ

and

∂θ (vf) =
[
λ=
(
−ie−iθR

)]
f +

[
k + λ=

(
e−iθR

)]
∂θf

=

[
−λ

2

(
e−iθR+ eiθR∗

)]
f +

[
ω +

λ

2i

(
e−iθR− eiθR∗

)]
∂θf

Furthermore,

e−iθf = e−iθ+
∞∑
n=1

b (ω, k, t)n e−i(n+1)θ +
∞∑
n=1

b∗ (ω, k, t)n ei(n−1)θ

eiθf = eiθ+

∞∑
n=1

b (ω, k, t)n e−i(n−1)θ +

∞∑
n=1

b∗ (ω, k, t)n ei(n+1)θ

and

∂θf = −i
∞∑
n=1

nb (ω, k, t)n e−inθ + i
∞∑
n=1

nb∗ (ω, k, t)n einθ

e−iθ∂θf = −i
∞∑
n=1

nb (ω, k, t)n e−i(n+1)θ + i
∞∑
n=1

nb∗ (ω, k, t)n ei(n−1)θ

eiθ∂θf = −i
∞∑
n=1

nb (ω, k, t)n e−i(n−1)θ + i

∞∑
n=1

nb∗ (ω, k, t)n ei(n+1)θ.

Comparing the coefficients of the term e−iθ in the equation ∂tf = −∂θ (vf)
finally yields

∂tb = −
[
−λ

2

(
b2R∗ +R

)
− iωb+

λ

2i

(
2ib2R∗

)]
=

λ

2

(
b2R∗ +R

)
− λ

2

(
2b2R∗

)
+ iωb

= −λ
2

(
b2R∗ −R

)
+ iωb.
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Doing the same for the coefficients of eiθ yields the conjugated equation. Sur-
prisingly enough this equation or its conjugation is obtained when comparing
the coefficients of any of the e±inθ.



Appendix B

Adjacency spectrum for large s

To apply the implicit function theorem and continue roots of the charac-
teristic equation (3.2.5) for the case of large s, we define

(7.0.1) F (λ, τ, ϑ) = τλN − λ`−1 − ϑ.
Then F

(
λ, 1

s ,
1
s

)
= 0 is equivalent to (3.2.5). We now apply the implicit

function theorem twice to find the two distinct families (3.2.7) and (3.2.8) of
small and large solutions of (3.2.5). Let us first compute

∂λF (λ, τ, ϑ) = τNλN−1 − (`− 1)λ`−2,

∂τF (λ, τ, ϑ) = λN , ∂ϑF (λ, τ, ϑ) = −1.(7.0.2)

Consider the equation

(7.0.3) F (λ, 0, ϑ) = −λ`−1 − ϑ = 0.

It possesses `− 1 solutions

λ1,k (0, ϑ) = ϑ
1
`−1 ei

π
`−1γ`−1,k,

k = 0, ..., ` − 2. Assuming (we show that below) that for (τ, ϑ) 6= 0 one can
extend these solutions to smooth functions (τ, ϑ) 7→ λ1,k (τ, ϑ) which solve
F (λ1,k (τ, ϑ) , τ, ϑ) = 0. These can be expanded in τ = 0 as

λ1,k (τ, ϑ) = λ1,k (0, ϑ)− ∂λF (λ1,k (0, ϑ) , 0, ϑ)−1 ∂τF (λ1,k (0, ϑ) , 0, ϑ) τ +O
(
τ2
)

= λ1,k (0, ϑ) +
(

(`− 1)λ`−2
1,k (0, ϑ)

)−1
λN1,k (0, ϑ) τ +O

(
τ2
)

= λ1,k (0, ϑ) +
λN−`+2

1,k (0, ϑ)

`− 1
τ +O

(
τ2
)

and for ϑ = τ ,

(7.0.4) λ1,k (τ, τ) = λ1,k (0, τ) +
λN−`+2

1,k (0, τ)

`− 1
τ +O

(
τ2
)
.

This gives a family of ` − 1 solutions of (3.2.5) situated near a small circle of
radius ∼ (1/s)

1
`−1 . For τ 6= 0 , the equation

(7.0.5) F (λ, τ, 0) = τλN − λ`−1 = 0
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has an (`− 1)-fold root at λ = 0 which corresponds to the solutions of (7.0.3)
and N − `+ 1 roots

(7.0.6) λ2,k (τ, 0) = |τ |−
1

N−`+1 γN−`+1,k

k = 0, ..., N − `. As before, we obtain an asymptotic representation

λ2,k (τ, τ) = λ2,k (τ, 0)− ∂λF (λ2,k (τ, 0) , τ, 0)−1 ∂ϑF (λ2,k (τ, 0) , τ, 0) τ +O
(
τ2
)

= λ2,k (τ, 0) + χ′Gs (λ2,k (τ, 0))−1 τ +O
(
τ2
)

(7.0.7)

This is the family of solutions which lie near a larger circle of radius ∼ s
1

N−`+1 .
Now let us show that the interval of existence of the implicit functions

τ 7→ λ1,k (τ, ϑ0) and ϑ 7→ λ2,k (τ0, ϑ), respectively, indeed contain the points
τ = ϑ0 and ϑ = τ0, respectively. Let us denote the implicit function in question
simply λ (τ, ϑ). If the implicit function theorem fails to provide an extension
of λ (τ, ϑ) in some point (τ∗, ϑ∗) > 0, we must have

(7.0.8) ∂λF (λ∗, τ∗, ϑ∗) = τ∗Nλ
N−1
∗ − (`− 1)λ`−2

∗ = 0

where λ∗ = λ (τ∗, ϑ∗). Since F (0, τ, ϑ) = 0 is equivalent to ϑ = 0, we may
assume λ∗ 6= 0. Thus, (7.0.8) is equivalent to

(7.0.9) λN−`+1
∗ =

`− 1

Nτ∗
.

Furthermore, from (7.0.1)= 0 we obtain τ∗ = λ`−1−N +ϑ∗λ
−N which we insert

into (7.0.8) to obtain

(7.0.10) λ`−1
∗ = − N

N − `+ 1
ϑ∗.

From (7.0.9) and (7.0.10), we obtain

τ∗ = Γ (ϑ∗) :=
`− 1

N

(
N − `+ 1

N

)N−`+1
`−1

ϑ
−N−`+1

`−1
∗ .

Since Γ : R>0 → R>0 is monotonic, we have

∂λF (λ (τ, ϑ∗) , τ, ϑ∗) 6= 0

for all τ < τ∗ = Γ (ϑ∗). Since Γ (τ) → ∞, for τ ↘ 0, there exists τ0 > 0 such
that τ < Γ (τ) and λ (τ, τ) is defined uniquely, for 0 < τ < τ0.

Supercriticality of the Hopf bifurcations

To show that the bifurcations at α = −< (λ) of system (3.2.1) are super-
critical for sufficiently large s ≥ 0, we use the projection method for center
manifolds [103]. In the following, we write the vector field of (3.2.1) as

fα (z) = Az +
1

6
C (z, z, z) ,
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where A = IN ⊗Mµ + Gs ⊗ I2 is the linearization of fα at z = 0 and the
trilinear function C contains all cubic terms. Furthermore, let v ∈ R2N be
an eigenvector of A corresponding to the eigenvalue µ + λ, λ ∈ σ(Gs). (The
case of an eigenvalue µ̄+ λ can be treated analogously.) Let w ∈ R2N be the
normalized adjoint eigenvector corresponding to v, i.e. ATw = (µ̄+ λ̄)w and
w · v = 1. We have

v =
(
1, λ, ..., λN−1

)T ⊗ (i, 1)T ,(7.0.11)

w =
1

κ̄

(
λ`−1, ..., λ, λ

N
, ..., λ

`
)T
⊗ (i, 1)T ,(7.0.12)

with κ = 2λ`−1((`− 1) + (N − `+ 1)λN ). A Hopf bifurcation at α is super-
critical for a negative and subcritical for a positive first Lyapunov coefficient

(7.0.13) l1 (0) =
1

2ω2
0

< (w ·C (v,v,v)) ,

where ω0 = β+= (λ) 6= 0. Writing C = (C1,1,C1,2, . . . ,CN,1,CN,2) we obtain
(7.0.14)
Cj,1 (v,v,v) = −6vj,1 |vj,1|2 − 2

(
2vj,1 |vj,2|2 + v2

j,2vj,1

)
= iCj,2 (v,v,v) ,

for 1 ≤ j ≤ N . Using this, we get

(7.0.15) 〈w,C (v,v,v)〉 = −8

(∑`−1
j=1 |λ|

2(j−1) + λN
∑N

j=` |λ|
2(j−1)

(`− 1) + (N − `+ 1)λN

)
.

For large s > 0 we distinguish two cases. For the case |λ| ∼ s1/N−`+1, we find
that

< (w ·C (v,v,v))→ −∞, as s→∞,
and for the case |λ| ∼ s−1/`−1,

< (w ·C (v,v,v))↗ 0, as s→∞.
This means that for sufficiently large s, we have l1 (0) < 0 for all eigenvalues.
Thus, all bifurcations are supercritical.

Supercriticality for an inhomogeneous ring. Consider the case ` = 1
and s arbitrary, i.e. a ring with inhomogeneous coupling strengths. Here, using
(7.0.15) and the characteristic equation, λN = 1 + s, we get

w ·C (v,v,v) = −
8
(

1− (1 + s)2
)

N
(

1− |1 + s|2/N
) .(7.0.16)

Thus, in the case of the inhomogeneous ring the bifurcation is supercritical for
arbitrary s.
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Expansion of the solution profiles for small perturbations

The linearization of (3.3.8)–(3.3.9) at (3.3.10) is

0 =
(
α+ i (β − ω)− ε |vj |2

)
+
vj+1

vj
,(7.0.17)

0 =
(
α+ i (β − ω)− ε |vN |2

)
+
v1

vN
+ s

v`
vN

.

From these equations we will now find expressions for the first terms of the
Taylor expansions of the unknown functions

ωk (ε, s) = ω00 + εω10 + sω11 +O
(

(|ε|+ |s|)2
)

and
vj (ε, s) = v00

j + εv10
j + sv01

j +O
(

(|ε|+ |s|)2
)
, j = 1, ..., N.

Terms at order O (1). Considering the terms in s = ε = 0 in (7.0.17)
yields the circular equations (let v00

N+1 := v00
1 )

0 = α0 + i(β − ω00) +
v00
j+1

v00
j

,(7.0.18)

with the shorthand α0 = αk (0) = − cos (2πk/N). This leads to(
−α0 − i (β − ω00)

)N
= 1

which contains no new information, since it only determines α0 = −< (λ0) and
ω00 = β + = (λ0) with an N -th root of unity

λ0 = λk (0) = ei
2πk
N .

For the profile, (7.0.18) yields

(7.0.19) v00
j+1 = λj0r0,

with a hitherto unknown scale factor r0 := v00
1 . Without loss of generality, one

may choose v1 (ε, s) ∈ R≥0, because of the phase shift invariance of (3.3.2). In
particular, we then have r0 ∈ R+.

Terms at order O (ε). At first order in ε we obtain another set of circular
equations (let again v10

N+1 = v10
1 )

0 = 1− iω10 − r2
0 +

λ0

r0

(
v10
j+1

λj0
−

v10
j

λj−1
0

)
which leads us to the following recursion

(7.0.20)
v10
j+1

λj0
=
(
r2

0 − (1− iω10)
) r0

λ0
+

v10
j

λj−1
0

Defining aj =
v10j

λj−1
0

and A =
(
r2

0 − (1− iω10)
)
r0
λ0
, Eq. (7.0.20) can be written

as aj+1 = A+ aj with the solution aj+1 = jA+ a1. Because of the circularity
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aN+1 = a1 we then have a1 = NA + a1 which determines A = 0. Therefore,
r2

0 = (1− iω10) and finally

(7.0.21) ω10 = 0 and r0 = 1

That means at first order the frequency of the oscillations does not depend on
ε. For the profiles v10

j it follows (as at order O (1))

(7.0.22) v10
j+1 = λj0r10,

with r10 := v10
1 ∈ R.

Terms at O (s). Due to the fact that s perturbs the network symmetry,
the equations at orderO (s) are more complex than those at orderO (ε). Again,
the linear terms in s of (7.0.17) give a recursive formula

v01
j+1

λj0
=

1

λ0

(
iω01 − α1

)
+

v01
j

λj−1
0

,

v01
1 =

1

λ0

(
iω01 − α1

)
− λ`−1

0 +
v01
N

λN−1
0

,(7.0.23)

where α1 = − d
ds< (λk (s)) |s=0. For j < N we have

v01j+1

λj0
= j

λ0

(
iω01 − α1

)
+v01

1 .

Inserting the resulting expression for v01
N in the second equation gives v01

1 =
N
λ0

(
iω01 − α1

)
− λ`−1

0 + v01
1 . Therefore, N

(
iω01 − α1

)
= λ`0 or equivalently

(7.0.24) ω01 =
1

N
=
(
λ`0

)
and α1 = − 1

N
<
(
λ`0

)
.

The perturbations v01
j+1 of the profile are then determined as

v01
j+1 =

(
j

N
λ`−1

0 + r01

)
λj0.(7.0.25)

up to a scaling r01 := v01
1 ∈ R as above.

Higher order terms. To determine the amplitudes r10 and r01 of the
perturbations v10

j and v01
j , j = 1, ..., N , we need to calculate the second order

terms O
(
ε2
)
, O

(
s2
)
, and O (ε · s) of (7.0.17) due to the nonlinear term. We

omit this here and just give the resulting values

(7.0.26) r10 = 0 and r01 = 0.

The vanishing r10 means that at first order the profiles do not depend on ε.

Expansion of the solution profiles for the inhomogeneous ring

A periodic solution of (3.4.5) corresponds to a fixed point in co-rotating co-
ordinates (3.3.7). The stability of this fixed point is governed by its variational
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equations

ẋj =

(
Mα+i(β−ω) − ε (s) |vj |2

[
3 0
0 1

])
ẋj +M vj+1

vj

ẋj+1,(7.0.27)

ẋn =

(
Mα+i(β−ω) − ε (s) |vn|2

[
3 0
0 1

])
ẋn + sM v1

vn
ẋ1,(7.0.28)

Higher order terms of ω = ω (ε, s) and vj = vj (ε, s) can be determined by the
equations

0 = (α+ i (β − ω))− ε |vj |2 +
vj+1

vj
,(7.0.29)

0 = (α+ i (β − ω))− ε |vn|2 + s
v1

vn
,(7.0.30)

which are obtained from inserting the solution Ansatz (3.3.2) into (3.4.5). Solv-
ing for real and imaginary parts yields the conditions

ω − β = =
(
vj+1

vj

)
= s=

(
v1

vn

)
,(7.0.31)

α = ε |vj |2 −<
(
vj+1

vj

)
= ε |vn|2 − s<

(
v1

vn

)
.(7.0.32)

Note that we expand the unknown functions only in ε, keeping s arbitrary.
Using (7.0.31) and (7.0.32) the variational equations (7.0.27)–(7.0.28) write

ẋj = −
[
M vj+1

vj

+ 2ε | vj |2
(

1 0
0 0

)]
xj +M vj+1

vj

xj+1,(7.0.33)

ẋn = −
[
sM v1

vn
+ 2ε | vn |2

(
1 0
0 0

)]
xn + sM v1

vn
x1.(7.0.34)

In the rest of this section, we find expressions for vj+1

vj
(0, s) and ∂

∂ε

[
vj+1

vj
(ε, s)

]
|ε=0

which can be inserted into (7.0.33)–(7.0.34) to obtain (3.4.6). Let

ω (ε, s) = ω0 (s) + εω1 (s) +O
(
ε2
)

and
vj (ε, s) = v0

j (s) + εv1
j (s) +O

(
ε2
)
, j = 1, ..., N.

For ε = 0, Eqs. (7.0.29)–(7.0.30) yield

v0
j+1 = (i (ω0 − β)− α0) v0

j = ... = (i(ω0 − β)− α0)j v0
1,

v0
1 =

1

s
(i (ω0 − β)− α0) v0

n,

where α0 = −< (λk (s)) = −s1/n cos (2πk/n) is the critical value at which the
periodic solution emerges, ω0 = β + = (λk) is the initial frequency, and the
initial profile is given by v0

j = λj−1
k v0

1.
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For terms of order O (ε) one obtains

ω1 = 0,
∣∣v0

1

∣∣2 = n
s

2
n − 1

s2 − 1
, and v1

j = v0
j

j−1∑
l=0

(
|v0
j−l|2 − 1

)
+ λjkv

1
1.

To approximate (7.0.33)–(7.0.34), we calculate the first order terms of the
quotients vj+1/vj , which gives at O(ε0)

v0
j+1

v0
j

= s
1/nγn,k,

and at O(ε) (
vj+1

vj

)1

=
∣∣v0
j

∣∣2 − 1.





Appendix C

Here, we show that indeed, a delay differential equation can be interpreted
as a hyperbolic PDE. In the general case which includes partial differential
equations with delay, we consider X = C ([−τ, 0] , Y ) as phase space where
Y is some Banach space. Furthermore, let L ∈ L (X,Y ) be a bounded linear
operator and (B,D (B)) be the generator of a strongly continuous semigroup
(S (t))t≥0 on Y . This operator can incorporate, for instance, spatial derivatives.
Now we consider the abstract delay differential equation (ADDE)

u̇ (t) = Bu (t) + Lut t ≥ 0

u0 = ϕ ∈ X(7.0.35)

where ut is defined as ut (s) = u (t+ s).

Remark. For Y = R and B = 0 we are left with a scalar linear neutral
DDE.

Example. For Y = C (Rn,R), B = 4, some D (B) ⊂ C (Rn,R) and
L = δ−τ the ADDE transforms to a heat equation with a time delayed term

u̇ (t) = 4u (t) + u (t− τ) t ≥ 0

u0 = ϕ ∈ X.
In [51] (section VI, chapter 6) it is shown that for an appropriate concept of
solution, this equation is equivalent to the following abstract Cauchy problem
(ACP)

ϕ̇ (t) = Aϕ(7.0.36)
ϕ (0) = ϕ0

where ϕ ∈ X and the generator A is defined as

Aϕ = ϕ′

D (A) =

{
ϕ ∈ C1 ([−τ, 0] , Y ) | ϕ (0) ∈ D (B)

ϕ′ (0) = Bϕ (0) + Lϕ

}
.

Now, to see that this is indeed a hyperbolic PDE we rewrite it once more. For
a solution ϕ of ACP set z (t, s) := ϕ (t) (s). Then the ACP can be written as

∂

∂t
z (t, s) =

∂

∂s
z (t, s)

z (0, s) = ϕ0 (s) .
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It is remarkable that the independent variable s now represents the space
variable. From this point of view, the delay interval [−τ, 0] constitutes the
space and the flow evolves the initial function on this interval. Hence, DDEs
constitute a very special class of hyperbolic PDEs in that they have only one
space dimension.
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