11,191 research outputs found

    Coordination approaches and systems - part I : a strategic perspective

    Get PDF
    This is the first part of a two-part paper presenting a fundamental review and summary of research of design coordination and cooperation technologies. The theme of this review is aimed at the research conducted within the decision management aspect of design coordination. The focus is therefore on the strategies involved in making decisions and how these strategies are used to satisfy design requirements. The paper reviews research within collaborative and coordinated design, project and workflow management, and, task and organization models. The research reviewed has attempted to identify fundamental coordination mechanisms from different domains, however it is concluded that domain independent mechanisms need to be augmented with domain specific mechanisms to facilitate coordination. Part II is a review of design coordination from an operational perspective

    Adaptive scheduling based on self-organized holonic swarm of schedulers

    Get PDF
    Scheduling plays an important role in the companies’ competiveness, dealing with complex combinatorial problems subject to uncertainty and emergence. In particular, in the ramp-up phase of small lot-sizes of complex products, scheduling is more demanding, e.g. due to late requests and immature technology products and processes. This paper presents the principles of a distributed scheduling architecture based on holonic and swarm principles and implemented using multi-agent system technology. In particular, it is described the coordination among the network of the swarm of schedulers and analysed the impact of embedded self-organization mechanisms.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7 ARUM project, under grant agreement n° 314056.info:eu-repo/semantics/publishedVersio

    Background, Systematic Review, Challenges and Outlook

    Get PDF
    Publisher Copyright: © 2013 IEEE. This research is supported by the Digital Manufacturing and Design Training Network (DiManD) project funded by the European Union through the Marie Skłodowska-Curie Innovative Training Networks (H2020-MSCA-ITN-2018) under grant agreement no. 814078The concept of smart manufacturing has attracted huge attention in the last years as an answer to the increasing complexity, heterogeneity, and dynamism of manufacturing ecosystems. This vision embraces the notion of autonomous and self-organized elements, capable of self-management and self-decision-making under a context-aware and intelligent infrastructure. While dealing with dynamic and uncertain environments, these solutions are also contributing to generating social impact and introducing sustainability into the industrial equation thanks to the development of task-specific resources that can be easily adapted, re-used, and shared. A lot of research under the context of self-organization in smart manufacturing has been produced in the last decade considering different methodologies and developed under different contexts. Most of these works are still in the conceptual or experimental stage and have been developed under different application scenarios. Thus, it is necessary to evaluate their design principles and potentiate their results. The objective of this paper is threefold. First, to introduce the main ideas behind self-organization in smart manufacturing. Then, through a systematic literature review, describe the current status in terms of technological and implementation details, mechanisms used, and some of the potential future research directions. Finally, the presentation of an outlook that summarizes the main results of this work and their interrelation to facilitate the development of self-organized manufacturing solutions. By providing a holistic overview of the field, we expect that this work can be used by academics and practitioners as a guide to generate awareness of possible requirements, industrial challenges, and opportunities that future self-organizing solutions can have towards a smart manufacturing transition.publishersversionpublishe

    A new model for solution of complex distributed constrained problems

    Full text link
    In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems

    Multi-agent systems negotiation to deal with dynamic scheduling in disturbed industrial context

    Get PDF
    International audienceIt is now accepted that using multi-agent systems (MAS) improve the reactivity to treat perturbation(s) within flexible manufacturing system. Intelligent algorithms shall be used to address these perturbation(s) and all smart decision entities within their environment have to continuously negotiate until their common and final goal is achieved. This paper proposes a negotiation-based control approach to deal with variability on a manufacturing system. It has initially formulated and modeled an environment in which all contributing entities or agents operate, communicate, and interact with each other productively. Then after, simulation and applicability implementation experiments on the basis of full-sized academic experimental platform have been conducted to validate the proposed control approach. Product and resource entities negotiate considering different key performance measures in order to set best priority-based product sequencing. This has been done with expectations that the applicability of the negotiation-based decision-making will be more adaptable to deal with perturbation(s) than another alternative decision-making approach called pure reactive control approach. The result showed that negotiation among the decisional entities has brought significant improvement in reducing makespan and hence conveyed better global performance of a manufacturing system

    Local flexibility market design for aggregators providing multiple flexibility services at distribution network level

    Get PDF
    This paper presents a general description of local flexibility markets as a market-based management mechanism for aggregators. The high penetration of distributed energy resources introduces new flexibility services like prosumer or community self-balancing, congestion management and time-of-use optimization. This work is focused on the flexibility framework to enable multiple participants to compete for selling or buying flexibility. In this framework, the aggregator acts as a local market operator and supervises flexibility transactions of the local energy community. Local market participation is voluntary. Potential flexibility stakeholders are the distribution system operator, the balance responsible party and end-users themselves. Flexibility is sold by means of loads, generators, storage units and electric vehicles. Finally, this paper presents needed interactions between all local market stakeholders, the corresponding inputs and outputs of local market operation algorithms from participants and a case study to highlight the application of the local flexibility market in three scenarios. The local market framework could postpone grid upgrades, reduce energy costs and increase distribution grids’ hosting capacity.Postprint (published version

    New Prospects for Organizational Democracy? How the Joint Pursuit of Social and Financial Goals Challenges Traditional Organizational Designs

    Get PDF
    Some interesting exceptions notwithstanding, the traditional logic of economic efficiency has long favored hierarchical forms of organization and disfavored democracy in business. What does the balance of arguments look like, however, when values besides efficient revenue production are brought into the picture? The question is not hypothetical: In recent years, an ever increasing number of corporations have developed and adopted socially responsible behaviors, thereby hybridizing aspects of corporate businesses and social organizations. We argue that the joint pursuit of financial and social objectives warrants significant rethinking of organizational democracy’s merits compared both to hierarchy and to non-democratic alternatives to hierarchy. In making this argument, we draw on an extensive literature review to document the relative lack of substantive discussion of organizational democracy since 1960. And we draw lessons from political theory, suggesting that the success of political democracy in integrating diverse values offers some grounds for asserting parallel virtues in the business case

    A Review on Intelligent Agent Systems

    Get PDF
    Multi-agent system (MAS) is a common way of exploiting the potential power of agent by combining many agents in one system. Each agent in a multivalent system has incomplete information and is in capable of solving entire problem on its own. Multi-agent system offers modularity. If a problem domain is particularly complex, large and contain uncertainty, then the one way to address, it to develop a number of functional specific and modular agent that are specialized at solving various problems individually. It also consists of heterogeneous agents implemented by different tool and techniques. MAS can be defining as loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver. These problem solvers, often ailed agent are autonomous and can be heterogeneous in nature. MAS is followed by characteristics, Future application, What to be change, problem solving agent, tools and techniques used, various architecture, multi agent applications and finally future Direction and conclusion. Various Characteristics are limited viewpoint, effectively, decentralized; computation is asynchronous, use of genetic algorithms. It has some drawbacks which must be change to make MAS more effective. In the session of problem solving of MAS, the agent performance measure contains many factors to improve it like formulation of problems, task allocation, organizations. In planning of multivalent this paper cover self-interested multivalent interactions, modeling of other agents, managing communication, effective allocation of limited resources to multiple agents with managing resources. Using of tool, to make the agent more efficient in task that are often used. The architecture o MAS followed by three layers, explore, wander, avoid obstacles respectively. Further different and task decomposition can yield various architecture like BDI (Belief Desire Intension), RETSINA. Various applications of multi agent system exist today, to solve the real-life problems, new systems are being developed two distinct categories and also many others like process control, telecommunication, air traffic control, transportation systems, commercial management, electronic commerce, entertainment applications, medical applications. The future aspect of MAS to solve problems that are too large, to allow interconnection and interoperation of multiple existing legacy systems etc

    Conceptual multi-agent system design for distributed scheduling systems

    Get PDF
    With the progressive increase in the complexity of dynamic environments, systems require an evolutionary configuration and optimization to meet the increased demand. In this sense, any change in the conditions of systems or products may require distributed scheduling and resource allocation of more elementary services. Centralized approaches might fall into bottleneck issues, becoming complex to adapt, especially in case of unexpected events. Thus, Multi-agent systems (MAS) can extract their automatic and autonomous behaviour to enhance the task effort distribution and support the scheduling decision-making. On the other hand, MAS is able to obtain quick solutions, through cooperation and smart control by agents, empowered by their coordination and interoperability. By leveraging an architecture that benefits of a collaboration with distributed artificial intelligence, it is proposed an approach based on a conceptual MAS design that allows distributed and intelligent management to promote technological innovation in basic concepts of society for more sustainable in everyday applications for domains with emerging needs, such as, manufacturing and healthcare scheduling systems.This work has been supported by FCT - Fundação para a Ciência e a Tecnologia within the R&D Units Projects Scope: UIDB/00319/2020 and UIDB/05757/2020. Filipe Alves is supported by FCT Doctorate Grant Reference SFRH/BD/143745/2019.info:eu-repo/semantics/publishedVersio
    corecore