13 research outputs found

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Contact aware robust semi-autonomous teleoperation of mobile manipulators

    Get PDF
    In the context of human-robot collaboration, cooperation and teaming, the use of mobile manipulators is widespread on applications involving unpredictable or hazardous environments for humans operators, like space operations, waste management and search and rescue on disaster scenarios. Applications where the manipulator's motion is controlled remotely by specialized operators. Teleoperation of manipulators is not a straightforward task, and in many practical cases represent a common source of failures. Common issues during the remote control of manipulators are: increasing control complexity with respect the mechanical degrees of freedom; inadequate or incomplete feedback to the user (i.e. limited visualization or knowledge of the environment); predefined motion directives may be incompatible with constraints or obstacles imposed by the environment. In the latter case, part of the manipulator may get trapped or blocked by some obstacle in the environment, failure that cannot be easily detected, isolated nor counteracted remotely. While control complexity can be reduced by the introduction of motion directives or by abstraction of the robot motion, the real-time constraint of the teleoperation task requires the transfer of the least possible amount of data over the system's network, thus limiting the number of physical sensors that can be used to model the environment. Therefore, it is of fundamental to define alternative perceptive strategies to accurately characterize different interaction with the environment without relying on specific sensory technologies. In this work, we present a novel approach for safe teleoperation, that takes advantage of model based proprioceptive measurement of the robot dynamics to robustly identify unexpected collisions or contact events with the environment. Each identified collision is translated on-the-fly into a set of local motion constraints, allowing the exploitation of the system redundancies for the computation of intelligent control laws for automatic reaction, without requiring human intervention and minimizing the disturbance of the task execution (or, equivalently, the operator efforts). More precisely, the described system consist in two different building blocks. The first, for detecting unexpected interactions with the environment (perceptive block). The second, for intelligent and autonomous reaction after the stimulus (control block). The perceptive block is responsible of the contact event identification. In short, the approach is based on the claim that a sensorless collision detection method for robot manipulators can be extended to the field of mobile manipulators, by embedding it within a statistical learning framework. The control deals with the intelligent and autonomous reaction after the contact or impact with the environment occurs, and consist on an motion abstraction controller with a prioritized set of constrains, where the highest priority correspond to the robot reconfiguration after a collision is detected; when all related dynamical effects have been compensated, the controller switch again to the basic control mode

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version

    Comparison of the vocabularies of the Gregg shorthand dictionary and Horn-Peterson's basic vocabulary of business letters

    Get PDF
    This study is a comparative analysis of the vocabularies of Horn and Peterson's The Basic Vocabulary of Business Letters1 and the Gregg Shorthand Dictionary.2 Both books purport to present a list of words most frequently encountered by stenographers and students of shorthand. The, Basic Vocabulary of Business Letters, published "in answer to repeated requests for data on the words appearing most frequently in business letters,"3 is a frequency list specific to business writing. Although the book carries the copyright date of 1943, the vocabulary was compiled much earlier. The listings constitute a part of the data used in the preparation of the 10,000 words making up the ranked frequency list compiled by Ernest Horn and staff and published in 1926 under the title of A Basic Writing Vocabulary: 10,000 Words Lost Commonly Used in Writing. The introduction to that publication gives credit to Miss Cora Crowder for the contribution of her Master's study at the University of Minnesota concerning words found in business writing. With additional data from supplementary sources, the complete listing represents twenty-six classes of business, as follows 1. Miscellaneous 2. Florists 3. Automobile manufacturers and sales companie

    CEPC Technical Design Report -- Accelerator (v2)

    Full text link
    The Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s.Comment: 1106 page

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    The Putin Paradox

    Get PDF
    The Putin phenomenon is a response to the challenges facing Russia, but it is also the outcome of the complex reaction between the man and the system. Putin reflects the contradictions and paradoxes of contemporary Russia, but he is also a unique leader who is both more and less than the country that he rules. He is more, because of the extraordinary powers vested in the presidency by the December 1993 constitution. The president is designated as the ‘guarantor of the constitution’ (Art. 80.2), suggesting that they stand outside of the constitution in order to protect it, a paradox of power that cuts through the whole system. This helps explain the emergence from the very early days of a self-designated power system focused on the presidency but not limited to it, which effectively claimed supervisory or tutelary rights over the management of public affairs. The administrative regime derives its power and legitimacy from the constitution, but it is not effectively constrained by it. A ‘dual state’ emerged in which administrative and democratic rationality are entwined. This is why it is misleading to call Russia an ‘autocracy’. The authoritarian features are rooted in a non-democratic technocratic appeal to the pursuit of the public good. The priority under Boris Yeltsin in the 1990s was economic and political reform, and then under Putin from 2000 as economic development, state sovereignty, national unity and international status. Putin’s ability to articulate an agenda of progress, although in contrast to the Soviet years no longer embedded in a coherent vision of the future, helps explain his extraordinary and enduring popularity, which with some ups and downs has been maintained at levels far exceeding those normally found in liberal democracies
    corecore