440 research outputs found

    Decoding of Convolutional Codes over the Erasure Channel

    Full text link
    In this paper we study the decoding capabilities of convolutional codes over the erasure channel. Of special interest will be maximum distance profile (MDP) convolutional codes. These are codes which have a maximum possible column distance increase. We show how this strong minimum distance condition of MDP convolutional codes help us to solve error situations that maximum distance separable (MDS) block codes fail to solve. Towards this goal, we define two subclasses of MDP codes: reverse-MDP convolutional codes and complete-MDP convolutional codes. Reverse-MDP codes have the capability to recover a maximum number of erasures using an algorithm which runs backward in time. Complete-MDP convolutional codes are both MDP and reverse-MDP codes. They are capable to recover the state of the decoder under the mildest condition. We show that complete-MDP convolutional codes perform in certain sense better than MDS block codes of the same rate over the erasure channel.Comment: 18 pages, 3 figures, to appear on IEEE Transactions on Information Theor

    Complete j-MDP convolutional codes

    Get PDF
    Maximum distance profile (MDP) convolutional codes have been proven to be very suitable for transmission over an erasure channel. In addition, the subclass of complete MDP convolutional codes has the ability to restart decoding after a burst of erasures. However, there is a lack of constructions of these codes over fields of small size. In this paper, we introduce the notion of complete j-MDP convolutional codes, which are a generalization of complete MDP convolutional codes, and describe their decoding properties. In particular, we present a decoding algorithm for decoding erasures within a given time delay T and show that complete T-MDP convolutional codes are optimal for this algorithm. Moreover, using a computer search with the MAPLE software, we determine the minimal binary and non-binary field size for the existence of (2,1,2) complete j-MDP convolutional codes and provide corresponding constructions. We give a description of all (2,1,2) complete MDP convolutional codes over the smallest possible fields, namely F_13 and F_16 and we also give constructions for (2,1,3) complete 4-MDP convolutional codes over F_128 obtained by a randomized computer search.Comment: 2

    Weighted Reed-Solomon convolutional codes

    Full text link
    In this paper we present a concrete algebraic construction of a novel class of convolutional codes. These codes are built upon generalized Vandermonde matrices and therefore can be seen as a natural extension of Reed-Solomon block codes to the context of convolutional codes. For this reason we call them weighted Reed-Solomon (WRS) convolutional codes. We show that under some constraints on the defining parameters these codes are Maximum Distance Profile (MDP), which means that they have the maximal possible growth in their column distance profile. We study the size of the field needed to obtain WRS convolutional codes which are MDP and compare it with the existing general constructions of MDP convolutional codes in the literature, showing that in many cases WRS convolutional codes require significantly smaller fields.Comment: 30 page

    Parallel concatenated convolutional codes from linear systems theory viewpoint

    Get PDF
    The aim of this work is to characterize two models of concatenated convolutional codes based on the theory of linear systems. The problem we consider can be viewed as the study of composite linear system from the classical control theory or as the interconnection from the behavioral system viewpoint. In this paper we provide an input–state–output representation of both models and introduce some conditions for such representations to be both controllable and observable. We also introduce a lower bound on their free distances and the column distances

    Descodificação através de Machine Learning

    Get PDF
    In recent years, machine learning has become one of the most rapidly expanding technologies in a variety of technological fields. In general, it allows a computer to learn from data without being expressly designed for a particular purpose. This thesis investigates the application of decoding methods inspired by machine learning to linear block codes, such as Reed-Muller (RM) codes.Recentemente, o Machine Learning tornou-se uma das tecnologias em mais rápida expansão numa variedade de campos tecnológicos. Em geral, permite que um computador aprenda com os dados sem ser expressamente concebido para um fim específico. Esta dissertação investiga a aplicação de métodos de descodificação inspirados no Machine Learning a códigos de blocos lineares, tais como os códigos de Reed-Muller

    Machine learning algorithms for structured decision making

    Get PDF
    corecore