86 research outputs found

    Global Optimisation for Energy System

    Get PDF
    The goal of global optimisation is to find globally optimal solutions, avoiding local optima and other stationary points. The aim of this thesis is to provide more efficient global optimisation tools for energy systems planning and operation. Due to the ongoing increasing of complexity and decentralisation of power systems, the use of advanced mathematical techniques that produce reliable solutions becomes necessary. The task of developing such methods is complicated by the fact that most energy-related problems are nonconvex due to the nonlinear Alternating Current Power Flow equations and the existence of discrete elements. In some cases, the computational challenges arising from the presence of non-convexities can be tackled by relaxing the definition of convexity and identifying classes of problems that can be solved to global optimality by polynomial time algorithms. One such property is known as invexity and is defined by every stationary point of a problem being a global optimum. This thesis investigates how the relation between the objective function and the structure of the feasible set is connected to invexity and presents necessary conditions for invexity in the general case and necessary and sufficient conditions for problems with two degrees of freedom. However, nonconvex problems often do not possess any provable convenient properties, and specialised methods are necessary for providing global optimality guarantees. A widely used technique is solving convex relaxations in order to find a bound on the optimal solution. Semidefinite Programming relaxations can provide good quality bounds, but they suffer from a lack of scalability. We tackle this issue by proposing an algorithm that combines decomposition and linearisation approaches. In addition to continuous non-convexities, many problems in Energy Systems model discrete decisions and are expressed as mixed-integer nonlinear programs (MINLPs). The formulation of a MINLP is of significant importance since it affects the quality of dual bounds. In this thesis we investigate algebraic characterisations of on/off constraints and develop a strengthened version of the Quadratic Convex relaxation of the Optimal Transmission Switching problem. All presented methods were implemented in mathematical modelling and optimisation frameworks PowerTools and Gravity

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    Solution Techniques For Non-convex Optimization Problems

    Get PDF
    This thesis focuses on solution techniques for non-convex optimization problems. The first part of the dissertation presents a generalization of the completely positive reformulation of quadratically constrained quadratic programs (QCQPs) to polynomial optimization problems. We show that by explicitly handling the linear constraints in the formulation of the POP, one obtains a refinement of the condition introduced in Bai\u27s (2015) Thoerem on QCQPs, where the refined theorem only requires nonnegativity of polynomial constraints over the feasible set of the linear constraints. The second part of the thesis is concerned with globally solving non-convex quadratic programs (QPs) using integer programming techniques. More specifically, we reformulate non-convex QP as a mixed-integer linear problem (MILP) by incorporating the KKT condition of the QP to obtain a linear complementary problem, then use binary variables and big-M constraints to model the complementary constraints. We show how to impose bounds on the dual variables without eliminating all the (globally) optimal primal solutions; using some fundamental results on the solution of perturbed linear systems. The solution approach is implemented and labeled as quadprogIP, where computational results are presented in comparison with quadprogBB, BARON and CPLEX. The third part of the thesis involves the formulation and solution approach of a problem that arises from an on-demand aviation transportation network. A multi-commodity network flows (MCNF) model with side constraints is proposed to analyze and improve the efficiency of the on-demand aviation network, where the electric vertical-takeoff-and-landing (eVTOLs) transportation vehicles and passengers can be viewed as commodities, and routing them is equivalent to finding the optimal flow of each commodity through the network. The side constraints capture the decisions involved in the limited battery capacity for each eVTOL. We propose two heuristics that are efficient in generating integer feasible solutions that are feasible to the exponential number of battery side constraints. The last part of the thesis discusses a solution approach for copositive programs using linear semi-infinite optimization techniques. A copositive program can be reformulated as a linear semi-infinite program, which can be solved using the cutting plane approach, where each cutting plane is generated by solving a standard quadratic subproblem. Numerical results on QP-reformulated copositive programs are presented in comparison to the approximation hierarchy approach in Bundfuss (2009) and Yildirim (2012)

    Optimization and Applications

    Get PDF
    Proceedings of a workshop devoted to optimization problems, their theory and resolution, and above all applications of them. The topics covered existence and stability of solutions; design, analysis, development and implementation of algorithms; applications in mechanics, telecommunications, medicine, operations research

    Efficient Optimization Algorithms for Nonlinear Data Analysis

    Get PDF
    Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.Siirretty Doriast
    • …
    corecore