66 research outputs found

    Indoor Positioning with GNSS-Like Local Signal Transmitters

    Get PDF
    Not all the techniques proposed have, of course, been based on radio techniques, but they are the most important ones for two main reasons: their level of development and maturity on the one hand and their ability to "cross" or to "get around" obstacles such as walls, furniture or people on the other hand. Optical based techniques, like laser based distance measurements or vision based (camera) scene analysis systems present some real advantages in terms of measurement accuracy (a few millimetres for the former) or orientation determination (very useful for any guidance system, available for the latter). Unfortunately, the foreseen use of positioning devices being mainly dedicated to pedestrians in urban environments, optical obstacles are numerous. These latter techniques are then considered as potential hybridisation candidates. Many types of sensors have also been studied for positioning, such as infrared or ultrasound. Once again, although accuracy can reach centimetre values, the environmental constraints are not compatible with the ubiquitous systems being sought. Another category is, of course, inertial systems which could be a valuable alternative to radio systems: time and distance associated position drifts are not yet sufficiently mastered and the given positioning is relative , which means the need for "something else" in order to provide the user with an absolute location. The object of this section is to focus on radio based approaches

    Estimation and Mitigation of Unmodeled Errors for a Pseudolite Based Reference System

    Get PDF
    Current flight reference systems rely heavily on the Global Positioning System (GPS), causing susceptibility to GPS jamming. Additionally, an increasing number of tests involve jamming the GPS signal. A need exists to develop a system capable of GPS-level accuracy during these outages. One promising solution is a ground-based pseudolite system capable of delivering sub-centimeter level accuracy, yet operating at non-GPS frequencies. This thesis attempts to determine the unknown errors in the Locata system, one such pseudolite-based system, to achieve the accuracy required. The development of a measurement simulation tool along with a Kalman filter algorithm provides confirmation of filter performance as well as the ability to process real data measurements and evaluate simulated versus real data comparatively. The simulation tool creates various types of measurements with induced noise, tropospheric delays, pseudolite position errors, and tropospheric scale-factor errors. In turn, the Kalman filter resolves these errors, along with position, velocity, and acceleration for both simulated and real data measurements, enabling error analysis to pinpoint both expected and unexpected error sources

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Pseudolite Architecture and Performance Analysis for the FAA\u27s NextGen Airspace

    Get PDF
    By 2025 the FAA plans to have fully implemented its NextGen Airspace design. NextGen takes advantage of modern positioning technologies as well as automation, data sharing, and display technologies that will allow more efficient use of our ever busier National Airspace (NAS). A key element of NextGen is the transition from surveillance RADAR providing aircraft separation and navigation to the use of the GPS and Automatic Dependent Surveillance Broadcast (ADS-B). ADS-B couples the precision of the GPS with networked ground and airborne receivers to provide precise situational awareness to pilots and controllers. The result is increased safety, capacity, and access with reduced reliance on an outdated and costly existing infrastructure. Reliance on the vulnerable GPS requires a backup system with higher positioning accuracy than those that are in place today. The USAF 746th Test Squadron at Holloman AFB, in partnership with Locata Corp., has demonstrated an Ultra High Accuracy Reference System (UHARS) over the Holloman Range composed of pseudolites (ground based satellites) transmitting GPS like signals. This study evaluates the suitability of the UHARS when applied on a national scale to meet Alternate Precision Navigation and Timing (APNT) requirements. From a systems architecture perspective UHARS is evaluated against APNT CONOPs stated Operational Improvements and Scenarios. From a signal architecture perspective the UHARS is evaluated against frequency and bandwidth constraints, service volume requirements and positioning accuracy determined by NextGen Airspace aircraft separation criteria

    Closely-coupled integration of Locata and GPS for engineering applications

    Get PDF
    GPS has become an almost indispensable part of our infrastructure and modern life. Yet because its accuracy, reliability, and integrity depend on the number and geometric distribution of the visible satellites, it is not reliable enough for the safety of life, environmental or economically critical applications. Traditionally, this has been addressed by augmentation from dedicated support systems, or integration with other sensors. However, from an engineering perspective only expensive inertial systems or pseudolites offer the accuracy required. In the case of pseudolites, the equivalent of ground based satellites, geometry constraints, fading multipath, imprecise clocks, the near-far effect, tropospheric delay and legislative obstructions make them difficult to implement. This thesis takes a step forward, by proposing a loosely coupled integration with Locata, a novel, terrestrial positioning technology, based on the pseudolite concept. It avoids the above pitfalls by utilising frequency and spatially separated antennas and a license-free frequency band, though this comes at the cost of in-bound interference. Its ability to provide stand-alone position and network synchronisation at nanosecond level is used commercially in open-cast mining and in military aviation. Discussion of Locata and GPS technology has identified their shortcomings and main limiting factors as well as the advantages of the proposed integration. During the course of this research, tropospheric delay, planar solution and known point initialisation ambiguity resolution methods have been identified as the main limiting factors for Locata. These are analysed in various static and kinematic scenarios. Discussion also includes ambiguity resolution, noise and interference detection and system performance in indoor and outdoor scenarios. The proposed navigation engine uses a closely coupled integration at the measurement level and LAMBDA as the ambiguity resolution method for Locata and GPS. A combined solution is demonstrated to offer a geometrical improvement, especially in the respect of height determination, with centimetre to decimetre accuracy and a minimum requirement of two signals from any component. This study identifies that proper separation and de-correlation of Locata and GPS ambiguities and better tropospheric models are essential to reach centimetre level accuracy. The thesis concludes with examples of system implementation including: seamless navigation, city-wide network deployment, urban canyons, a long term-monitoring scenario and indoor positioning. This demonstrates how the proposed navigation engine can be an advantage in areas such as: civil engineering, GIS, mobile mapping, deformation, machine navigation and control

    Carrier-phase multipath in satellite-based positioning

    Get PDF
    [no abstract

    Closely-coupled integration of Locata and GPS for engineering applications

    Get PDF
    GPS has become an almost indispensable part of our infrastructure and modern life. Yet because its accuracy, reliability, and integrity depend on the number and geometric distribution of the visible satellites, it is not reliable enough for the safety of life, environmental or economically critical applications. Traditionally, this has been addressed by augmentation from dedicated support systems, or integration with other sensors. However, from an engineering perspective only expensive inertial systems or pseudolites offer the accuracy required. In the case of pseudolites, the equivalent of ground based satellites, geometry constraints, fading multipath, imprecise clocks, the near-far effect, tropospheric delay and legislative obstructions make them difficult to implement. This thesis takes a step forward, by proposing a loosely coupled integration with Locata, a novel, terrestrial positioning technology, based on the pseudolite concept. It avoids the above pitfalls by utilising frequency and spatially separated antennas and a license-free frequency band, though this comes at the cost of in-bound interference. Its ability to provide stand-alone position and network synchronisation at nanosecond level is used commercially in open-cast mining and in military aviation. Discussion of Locata and GPS technology has identified their shortcomings and main limiting factors as well as the advantages of the proposed integration. During the course of this research, tropospheric delay, planar solution and known point initialisation ambiguity resolution methods have been identified as the main limiting factors for Locata. These are analysed in various static and kinematic scenarios. Discussion also includes ambiguity resolution, noise and interference detection and system performance in indoor and outdoor scenarios. The proposed navigation engine uses a closely coupled integration at the measurement level and LAMBDA as the ambiguity resolution method for Locata and GPS. A combined solution is demonstrated to offer a geometrical improvement, especially in the respect of height determination, with centimetre to decimetre accuracy and a minimum requirement of two signals from any component. This study identifies that proper separation and de-correlation of Locata and GPS ambiguities and better tropospheric models are essential to reach centimetre level accuracy. The thesis concludes with examples of system implementation including: seamless navigation, city-wide network deployment, urban canyons, a long term-monitoring scenario and indoor positioning. This demonstrates how the proposed navigation engine can be an advantage in areas such as: civil engineering, GIS, mobile mapping, deformation, machine navigation and control

    Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    Get PDF
    With much of the military and civilian communities becoming dependent on GPS technology to navigate it has become imperative that the navigation systems be tested in situations in which GPS does not work. This testing is especially necessary for precise tasks such as landing an aircraft. Currently, research is being conducted into using a pseudolite-based reference system to use as a truth model for the GPS jamming test. Pseudolite systems have been proven to provide sub-centimeter level accuracy in the horizontal plane; however in the vertical plane the position error is still in the decimeter to meter level range. This is largely due to the fact that the geometry of a ground based pseudolite system provides poor slant angles in the vertical plane, which contributes to large positioning errors. The goal of this research is to study the effects of system geometry on the vertical plane solution. The results of this effort show that elevation angles of greater than 20°-30° are necessary to attain reasonably good positioning solutions. Multiple pseudolite deployments, while effective at reducing the geometry errors, are very cost ineffective and the geometries pose significant risks to a landing aircraft. The best geometry involved using an orbiting aircraft, with a pseudolite transmitter and receiver attached, as an elevated pseudolite to create better slant angles and thus better positioning solutions

    A Portuguese Case Study

    Get PDF
    There is a high national dependency on Position, Navigation and Timing (PNT) Systems for several individuals, services and organisations that depend on this information on a daily basis. Those who rely on precise, accurate and continuous information need to have resilient systems in order to be highly efficient and reliable. A resilient structure and constantly available systems makes it easier to predict a threat or rapidly recover in a hazardous environment. One of these organisations is the Portuguese Navy, whose main purposes are to combat and maintain maritime safety. In combat, resilient PNT systems are needed for providing robustness in case of any threat or even a simple occasional system failure. In order to guarantee maritime safety, for example in Search and Rescue Missions, the need of PNT information is constant and indispensable for positioning control. The large diversity of PNT-dependent equipment, developed over the last two decades, is a valid showcase for the high GPS dependency that is seen nowadays – which is vulnerable to various factors like interference, jamming, spoofing and ionospheric conditions. The recent interest over integrated PNT system resolutions is related to the search for redundancy, accuracy, precision, availability, low cost, coverage, reliability and continuity. This study aimed to build a current PNT Portuguese picture based on Stakeholder Analysis and Interviews; assess the vulnerability of those who depend mainly on GPS for PNT information and, find out what the next steps should be in order to create a National PNT Strategy.Existe uma elevada dependência nacional em sistemas de Posição, Navegação e Tempo (PNT) por parte de diversos indivíduos, serviços e organizações que dependem desta informação no seu dia-a-dia. Todos os que dependem de informação precisa, exata e contínua, necessitam de ter sistemas resilientes para que sejam altamente eficientes e fiáveis. Uma estrutura resiliente e sistemas continuamente disponíveis facilitam a previsão de possíveis ameaças ou a expedita recuperação da funcionalidade, em ambientes hostis. Uma destas organizações é a Marinha Portuguesa cujas funções principais são o combate, a salvaguarda da vida humana no mar e a segurança marítima e da navegação. Para o combate, são necessários sistemas PNT, resilientes, que ofereçam robustez em caso de uma simples ameaça ou falha temporária dos sistemas. Por forma a ser possível cumprir a missão, a necessidade de ter informação PNT, fidedigna e atualizada, é constante e indispensável para o controlo preciso e exato da posição. Uma unidade naval, por forma a permanecer continuamente no mar, manter a sua prontidão, treinar a sua guarnição ou ser empenhada num cenário de guerra, necessita de saber, com confiança e sem erros, a sua posição e referência de tempo. A grande diversidade de sistemas dependentes de informação PNT, desenvolveu-se em larga escala nas últimas duas décadas e sustenta cada vez mais a alta dependência do GPS, que é vulnerável a diversas fontes de erro, tais como interferência, empastelamento, mistificação e condições ionosféricas. Atualmente, o elevado interesse na criação de sistemas PNT integrados está associado à procura da redundância, exatidão, precisão, disponibilidade, baixo custo, cobertura, fiabilidade e continuidade. Este estudo teve como objetivos construir o panorama atual, em Portugal, ao nível dos Sistemas PNT, baseando-se numa análise de Stakeholders e entrevistas; avaliar a vulnerabilidade de organizações e serviços que dependam exclusivamente do GPS como fonte de informação PNT; e propor um possível caminho para que seja possível criar uma Estratégia PNT Naciona

    Methods for Aiding Height Determination in Pseudolite-Based Reference Systems Using Batch Least-Squares Estimation

    Get PDF
    There are many situations in which GPS is either unable to provide the desired level of accuracy or is unavailable. Use of a pseudolite-based reference system for navigation can be a means for positioning during these times. While there are advantages in using a pseudolite-based reference system, there are still implementation issues and deficiencies that must be addressed. In many cases, a pseudolite system with ground-based transmitters has difficulty determining the height of the receiver accurately. This is due to the poor vertical observability inherent in the geometry of the system. A common approach in naval applications for solving the problem of poor vertical observability is to use a height constraint, which is well known when travelling on a surface of water. For a ground-based vehicle, knowledge of the surface topography can be obtained, but it cannot be readily used in the same manner as in marine cases, since the height is often a varying function of position. This research investigates and develops five methods of incorporating the known surface topography in a non-linear batch least squares estimation algorithm using carrier-phase measurements from pseudolites. The floating point carrier-phase ambiguities are estimated in this process. Real and simulated data sets are used to evaluate the performance of the five algorithms. In simulation, all methods performed equally well on a flat surface. When simulating a hill, constraining the solution to lie in a plane tangent to the surface topography appeared to aid the solution with the best knowledge of the terrain. Use of a pseudo-measurement, a commonly used approach, did not provide the best results, and indicates the inadequacy of using this method for pseudolite-based systems. Results using data from a real system on a ground-based vehicle demonstrated sub-decimeter level positioning accuracy in all three dimensions
    corecore