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Abstract

Current flight reference systems rely heavily on the Global Positioning System

(GPS), causing susceptibility to GPS jamming. Additionally, an increasing number

of tests involve jamming the GPS signal. A need exists to develop a system capable of

GPS-level accuracy during these outages. One promising solution is a ground-based

pseudolite system capable of delivering sub-centimeter level accuracy, yet operating

at non-GPS frequencies. This thesis attempts to determine the unknown errors in the

Locata system, one such pseudolite-based system, to achieve the accuracy required.

The development of a measurement simulation tool along with a Kalman filter

algorithm provides confirmation of filter performance as well as the ability to pro-

cess real data measurements and evaluate simulated versus real data comparatively.

The simulation tool creates various types of measurements with induced noise, tro-

pospheric delays, pseudolite position errors, and tropospheric scale-factor errors. In

turn, the Kalman filter resolves these errors, along with position, velocity, and ac-

celeration for both simulated and real data measurements, enabling error analysis to

pinpoint both expected and unexpected error sources.

Simulated results confirmed the ability to render centimeter level solutions in

a noisy environment, proper pseudolite position error estimation, and suitable tropo-

spheric scale-factor estimation. Additionally, the simulation demonstrated the inabil-

ity to conduct simultaneous estimation of both the pseudolite position errors and the

tropospheric scale-factor.

Real data results indicate the algorithm renders a highly accurate (6cm) posi-

tion solution after applying the low elevation tropospheric delay model substantiated

in this thesis. Furthermore, the ability to resolve the pseudolite position errors and

tropospheric scale-factor provide mitigation of previously unmodeled errors, and high-

light the fact additional errors exist, which remain undetermined.
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ESTIMATION AND MITIGATION

OF UNMODELED ERRORS FOR A

PSEUDOLITE BASED REFERENCE SYSTEM

I. Introduction

1.1 Background

Pseudolite (or pseudo-satellite) applications have long been a background part-

ner in navigation systems providing augmentation or assistance when needed. Many

studies [8, 11, 14, 25] develop useful indoor and outdoor applications for pseudolites,

yet none have become the frontrunner in the navigation field filled with legacy systems

such as Very high frequency Omnidirectional Range (VOR) and LOng RAnge Naviga-

tion (LORAN-C), and dominated by the Global Positioning System (GPS). However,

severe limitations prevent a single system from achieving both accuracy and robust-

ness. Legacy systems linger on due to reliability and resistance to jamming, yet do

not provide the accuracy of GPS. In turn, GPS is easily jammed and may provide

poor quality solutions depending on location and geometry. An advanced navigation

system is needed to both verify and to supplant GPS when dependable accuracy is

required.

One of the most advanced navigation systems is the modern flight reference

system operated by the 746th Test Squadron, Holloman AFB, NM, which is used to

test and evaluate new flight navigation systems [6]. To be useful, a flight reference

system should have an order of magnitude greater accuracy than the system under

test, because the output from the reference system is regarded as the truth. Any

degradation in reference system performance will invalidate the evaluation of the

system under test. The flight reference system has evolved through the years from

radar tracking, ground-based camera and aircraft transponders, to the current system

1-1



of differential GPS (DGPS) integrated with an inertial unit, barometric altimeter, and

a ground transponder/interrogator system. The current reference system used by the

746th Test Squadron’s Central Inertial Guidance Test Facility (CIGTF) is called the

CIGTF Post-processing System (CPS) [6].

CPS currently faces two challenges: accuracy during periods of GPS jamming

and accuracy when a GPS signal is available. Operation in the presence of GPS signal

interference impedes CPS from using its most accurate sensor. When jamming denies

CPS from using GPS measurements, it must rely on its other sensors, primarily the

INS. INS accuracy degrades over time, causing the performance of CPS to suffer.

Although post-processing techniques are applied to reduce the impact of INS errors,

CPS cannot maintain centimeter level accuracy during periods of GPS jamming. The

second challenge facing CPS is accuracy when GPS is available. As new systems

become more accurate, CPS must also improve its accuracy to be a useful reference.

One technology potentially solving the challenges of reference system accuracy

is the use of LocataLites [3]. The LocataLite term signifies the common term used

throughout this research for pseudolites specifically created by the Locata Corpora-

tion. LocataLites are ground-based transmitters sending GPS-like signals which can

be received with GPS receivers adapted for LocataLite signals, called a Locata [3].

LocataLites differ from standard pseudolites due to the inclusion of sophisticated

transmission algorithms. LocataLites possess the flexibility of operating at various

frequencies, allowing them to avoid GPS jamming signals.

Aiding with LocataLites potentially increases the accuracy of CPS or other flight

reference systems when GPS jamming signals are present, and also during periods of

normal GPS operation. More importantly, LocataLites potentially can provide CPS

with a navigation source that maintains centimeter-level positioning accuracies dur-

ing periods of GPS jamming. The increase in accuracy during normal (non-jamming)

GPS operation is the result of CPS having access to two highly accurate sensors, as

compared to just one when LocataLites are not used. A system that uses two sensors
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with roughly the same accuracy can expect to see a 1/
√

2 factor improvement in ac-

curacy over just using one sensor. That is nearly a 30 percent improvement, assuming

that both sensors are independent. The errors between GPS and LocataLite signals

are not completely independent, but a practical system would still show substantial

improvement over DGPS only navigation.

1.2 Problem Definition

The primary goal of this thesis is to estimate previously unmodeled errors in

a ground based LocataLite system, specifically targeting low elevation tropospheric

conditions and LocataLite position errors in order to obtain a position accuracy equiv-

alent to or better than current DGPS accuracy. The primary application is to improve

both the accuracy and robustness to jamming of a flight reference system with the

inclusion of a LocataLite network, called a LocataNet.

1.3 Related Research

1.3.1 Pseudolite History. Stone et al. [26] discusses the origins of the pseu-

dolite and the many variations falling under the term pseudolite. One of the first

projects known as the Integrity Beacon Landing System (IBLS) utilized two pseu-

dolites to resolve carrier-phase DGPS integers for auto-landing aircraft. The project

introduced many terms including: integrity beacons, Doppler marker, and simple

pseudolite. The project also tested a pseudolite transceiver dubbed the synchrolite

(originally known as the omni-marker). Further development led to the Local Area

Augmentation System (LAAS) and pseudolites positioned at airports became Airport

Pseudolites or APLs (commonly referred to as “apples”). The author also discusses

potential uses for pseudolites such as open pit mining, Mars exploration, and forma-

tion flying spacecraft.

The term pseudolite originally referred to any device transmitting GPS satellite-

like signals. However with the advent of new coding methods, pulsing schemes, and

frequency plans, pseudolite signals become less like satellite signals everyday. For
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navigation purposes the pseudolite signal intentionally differs from the GPS signal to

prevent jamming and cross-correlation.

1.3.2 Pseudolite Navigation. Raquet et al. [25] conducted an early test of

a pseudolite only flight reference system. This work was accomplished at Holloman

AFB under the partnership of the 746th Test Squadron, NovAtel Communications,

Stanford Telecom, and the University of Calgary. It involved an “inverted” mode of

operation in which the position of the pseudolite is solved in relation to an array of five

stationary Novatel receivers placed at known locations (via GPS) and one stationary

Novatel PC card receiver with a laptop computer. The Stanford Telecom pseudolite

transmitters comprised the fixed and mobile pseudolites transmitting on L1 using

PRN 10 and PRN 8 Gold codes. The testing utilized two methods of testing known

as pseudolite positioning with satellite reference (PPSR) and pseudolite positioning

with pseudolite reference (PPPR). PPSR positioning comprises double differencing

between two transmitters, the mobile pseudolite and a GPS satellite as the reference

transmitter (analogous to the reference receiver in a typical case of relative positioning

between two receivers). PPPR uses the same format, except the reference transmitter

is a fixed pseudolite instead of a GPS satellite. Both methods utilized the same set of

data collected in calculating solutions. This particular testing marked the first time

the pseudolite itself was positioned using carrier-phase data in a double-differenced

mode. Ambiguities were resolved to floating point with attempts at integer ambiguity

resolution resulting in poorer solutions. A more thorough explanation of floating-

point versus integer amiguities is in Section 2.4.7. This proof-of-concept addressed

the many facets of pseudolite navigation in a novel new approach. The overall results

showed double-differenced carrier-phase measurements with floating point ambiguity

provided a position solution with accuracies on the order of 10-30cm [25].

NovAtel Communications and Stanford Telecom continued work with pseudolite

navigation by conducting a follow-on test to duplicate some of the results from the
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Holloman proof-of-concept test. They prototyped a GPS/pseudolite system allowing

coverage during times of reduced GPS availability [6].

Henzler [15] proposed a pseudolite-only flight landing system very similar to the

current Locata system discussed later in this document. Concepts such as the near-far

problem of transmission power and time synchronization between pseudolites were

addressed and configured in the system. However this initial system foregoes any

tropospheric corrections or multipath error correction. In addition, the pseudolites

were arranged near ground level parallel to the runway, unable to take advantage

of better geometry formations by positioning. Unfortunately, the group could not

conduct actual testing during landing and restricted themselves to flyovers.

Hung Kyu Lee, et al. [16] investigated pseudolite augmentation for GPS air-

borne applications and identified significant improvements in geometry which yielded

increased accuracy in the vertical component. These simulations explore the opti-

mal placement of the pseudolites and the improvements expected depending on the

number of pseudolites used for augmentation.

NAVSYS [7] intended to go one step further and create a GPS/pseudolite preci-

sion approach and landing system capable of achieving Category II/III landing capa-

bility. In this system, the pseudolite broadcasts differential carrier ranging corrections

as well as serving as a measurement source. Their tests included actual flight testing

using a 737 flown by the NASA Langley Research Facility at Wallops Island, VA. They

concluded that the pseudolite significantly improved geometry and yielded precision

sufficient to meet CAT II/III accuracy requirements. Additionally, their findings in-

dicated ground-based observations of temperature, pressure, and humidity were not

sufficient to model the differential tropospheric group delay due to boundary layer

effects during testing.

Monda et al. [20] experimented with an indoor pseudolite positioning system

at the Navigation Systems Testing Laboratory at NASA’s Johnson Space Center.

They focused on real-time solutions using an extended Kalman filter to gain sub-
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meter accuracies. Cycle slip detection and mitigation became the central theme in

their testing. To mitigate this problem, a change in the reference pseudolite based

on signal-to-noise ratio (SNR) values was instituted in which the pseudolite with

the highest SNR may become the reference depending on a “trigger” value. They

concluded real-time kinematic positioning would be possible if successfully detecting

cycle slips in double-differenced measurements were resolved. Unfortunately, their

experiments did not resolve this problem.

Bouska [6] simulated a pseudolite based reference system attempting to ac-

count for all facets of the problem including tropospheric modeling and pseudolite

position errors. He also incorporated carrier-phase integer ambiguity resolution via

the Fast Ambiguity Search Filter (FASF) developed by Chen and Lapachelle [9] and

Least squares AMbiguity Decorrelation Adjustment (LAMBDA) developed by Teu-

nissen [27]. His use of the extended Kalman filter [5] to estimate states consisting

of position, velocity, acceleration, and double-differenced ambiguity, provided Monte-

Carlo analysis of various pseudolite placement schemes and tropospheric models. He

suggested centimeter level accuracies could be obtained with a pseudolite only system.

Additionally, he integrated optimal smoothing techniques [5] and a weighted measure-

ment covariance matrix to improve solutions. His research provides valuable insight

into the concepts found later in this document, especially the error modeling aspects

due to the requirement of finding the true errors for real data and the similarities to

simulated data.

Although pseudolite signals are very similar to GPS signals, many assumptions

made for GPS navigation cannot be applied to pseudolite operations. Section 2.6.1

details the differences between GPS and pseudolite systems. Dai et al. [11] addressed

some of the challenges that pseudolites present by developing unique modeling strate-

gies to deal with pseudolite error sources. They also analyzed the impact of pseudolite

user geometry on differential pseudolite navigation.
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Barnes, Rizos, and Wang [3] conducted indoor testing of the first prototype of

the LocataNet in corporate offices and a steel manufacturing plant [2] to illustrate the

effectiveness of LocataNet positioning through occlusions and high multipath environ-

ments. These initial tests solidified the carrier-phase positioning accuracy needed to

proceed with further development and refinement of the system available today.

1.3.3 Tropospheric Modeling. Fukushima et al. [12] calculated the tropo-

spheric delay for airport pseudolites (APLs) using double-differenced carrier-phase

measurements from GPS and the APL. These measurements were compared with the

theoretical tropospheric delay (Hopfield) [12] and radiosonde measurements obtained

from the records of the Japan Meteorological Agency for the past year. The com-

parisons showed good agreement between the double-differencing technique and the

theoretical calculations. The theoretical and radiosonde analysis showed larger devi-

ations attributed to the distance between the APL and the radiosonde measurement

locations, but they did not exceed 50cm at 10NM from the APL. This testing shows

promise for tropospheric modeling at low elevation angles, especially for pseudolites.

Most tropospheric models simply map the calculated vertical tropospheric delay to

the slant range needed, disregarding anything with elevations less than 15 degrees.

Zhang [29] conducted tests to predict the residual tropospheric delays on GPS

carrier phase observables using redundant measurements from a network of GPS ref-

erence receivers. He provides an extensive overview of current models and mapping

functions in use today and the benefits and drawbacks of each. Additionally, he

shows that double-differenced tropospheric delays are reasonably modeled as first-

order Gauss-Markov processes. Although his testing uses elevations above 10 degrees,

the results show accurate and stable results worth experimenting with elevations be-

low 10 degrees.

Van Dierendonck [28] specifically postulates a formula for low-elevation tropo-

spheric corrections for pseudolites used at airports. His method develops the differ-

ential tropospheric delay as a function of range, differential altitude, temperature,
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pressure, and surface refractivity. Bouska used this formulation in creating and esti-

mating the tropospheric delay for a pseudolite only network. The Van Dierendonck

model is expressed as

τAPL,u(Ru, ∆hu) =
∆τv,dry + ∆τv,wet

sin(elu)
=

(∆τv,dry + ∆τv,wet)

∆hu

Ru

=
77.6Ps × (42700− hs)× 10−6

5Ts∆hu

[(
1− ∆hAPL

42700− hs

)5

−
(

1− ∆hAPL + ∆hu

42700− hs

)5
]

Ru

+
Ns × (13000− hs)× 10−6

5∆hu

[(
1− ∆hAPL

13000− hs

)5

−
(

1− ∆hAPL + ∆hu

13000− hs

)5
]

Ru

(1.1)

where

Ns = 2.277(10−6)
RH

T 2
s

(
10

7.4475(Ts−273K)
Ts−38.3K

)
(1.2)

and

τAPL,u = tropospheric delay for mobile receiver (meters)

Ru = slant range between the pseudolite and user (meters)

∆hu = the height of the user above the pseudolite (meters)

∆τv,dry = differential vertical dry delay (meters)

∆τv,wet = differential vertical wet delay (meters)

elu = elevation angle in radians

∆hAPL = difference in height between pseudolites and reference receiver

hs = height of reference receiver

Ps = surface pressure (millibars)

Ts = surface temperature (Kelvins)

RH = relative humidity (percent)

Ns = surface refractivity
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Bouska and Raquet [4] discuss the effects of tropospheric reduction efforts re-

lating to DGPS and differential pseudolite techniques. They offered two methods

enhancing reduction of the residual tropospheric effects after applying differential

techniques. The first, a weighted measurement covariance matrix, theorizes the errors

in the tropospheric model will generally be proportional to the modeled tropospheric

delay. The filter enhancement includes weighting the measurement covariance matrix

R selectively, based on the predicted tropospheric delay for each measurement gener-

ated by the tropospheric model. In simulations, this simple method produced good

results and significantly improved the carrier-phase ambiguity resolution capability.

The second method estimates the tropospheric model error as an additional state in

the Kalman filter. The error, expressed as a scale factor, is modeled as a first order

Gauss-Markov process. This implementation improved simulated position accuracy

by over 30 percent and assisted ambiguity resolution ability.

1.4 Scope

The development of an extended Kalman filter (EKF) to produce the floating

point estimates of sub-centimeter level accuracy carrier-phase solutions is the focus

of this research. These solutions will use real data captured from the LocataNet

and compared to DGPS solutions taken simultaneously. The scope of this thesis

includes verifying consistent accuracy of the LocataNet and improving the solution

via modeling of the residual tropospheric error and eradication of biases.

All software development utilized the Matlab 7 environment. Implementation

of derived models for the tropospheric errors via the EKF provide reduction of the

dominant error sources in the LocataNet. This thesis does not address the design and

implementation of pseudolite transmitters and receivers, nor does it attempt integer

ambiguity resolution.

1.5 Assumptions

The following assumptions are made in this thesis:
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a) Real-time integer ambiguity resolution is not required or possible because

the current LocataLite system utilizes a frequency lock loop and the focus is the

augmentation of a post-processed flight reference system.

b) The extended Kalman filter is not dependent upon a specific LocataNet sys-

tem implementation.

c) All calculations use the Earth-Centered Earth-Fixed (ECEF) or East-North-

Up (ENU) frame and World Geodetic Systems 1984 (WGS-84) coordinates.

d) No jamming analysis is required, because the LocataLites operate in the

2.4GHz industrial, scientific, and medical (ISM) band. The LocataNet can utilize

transmitters and receivers operating at non-GPS frequencies and at much greater

power levels than GPS, providing better resistance to jamming.

e) The sources of error present in the code and carrier-phase LocataLite measure-

ments are assumed to be of similar characteristics to those available with high-quality

GPS receivers.

f) The timing discrepancy between LocataLites is resolved via TimeLoc, which

synchronizes timing for transmission between all LocataLites in the LocataNet [3].

1.6 Thesis Overview

Chapter 2 presents the background theory for this research through an in-depth

review of Kalman filter methods, GPS fundamentals, pseudolite navigation, and Lo-

cataLites. The section on Kalman filtering includes the derivation of an extended

Kalman filter. The section on LocataLites covers how LocataLites differ from conven-

tional pseudolites, TimeLoc, and the LocataNet. Chapter 3 details LocataLite filter

models, the modeling of tropospheric errors, and unknown system biases. Chapter

4 describes analysis of the effects of the implemented models for tropospheric errors

and resolution of position errors. Chapter 5 summarizes the results and provides

recommendations for future research for a LocataLite-based reference system.
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II. Background

2.1 Overview

This chapter begins by providing a basic overview of Kalman filter theory, in-

cluding the extension to extended Kalman filter (EKF) applications. The next section

describes GPS operation and DGPS techniques. This is followed by a description of

the challenges of pseudolite navigation. The last section provides the necessary back-

ground and differences in LocataLites versus conventional pseudolites. These sections

closely follow the work of Bouska [6], since this thesis represents a continuation of his

work using real measurements instead of simulation.

2.2 Kalman Filters

Deterministic analysis has been successfully applied to many systems, but it

lacks adequacy when applied to particular problems of interest. The linear Kalman

filter embodies an optimal recursive data processing algorithm [17], commonly applied

when deterministic analysis proves insufficient. The optimality stems from the ba-

sic assumptions for the Kalman filter, including an adequate model of the real-world

application in the form of a linear dynamics model driven by white Gaussian noise

of known statistics. Then, linear measurements corrupted by white Gaussian noises

of known statistics can be used for the basis of the optimal estimate by the Kalman

filter [17]. The Kalman filter may produce sub-optimal results if either the dynam-

ics or measurement model yields an inadequate representation of the real world [6].

The Kalman filter also constitutes the optimal estimator because it incorporates all

available measurements, regardless of their accuracy, to compute the estimates of

the variables of interest based on the system dynamics and measurement models,

the statistical description of the system noises, measurement errors, and the model

uncertainties [17].

When processing discrete-time measurements, a Kalman filter includes both

a time propagation cycle and a measurement update cycle. The propagation cycle

2-1



computes an estimate of the system state based on its previous system state and

its (imperfect) dynamics model. The update cycle then uses the noise-corrupted

measurements to refine the system state estimates at the sample time. A complete

derivation can be found in [17].

2.2.1 State and Measurement Model Equations. The following development

is similar to those found in [6,17]. The system dynamics assumptions require modeling

as a linear system with a state equation of the form

.
x(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.1)

where

x(t) = the n-dimensional system state vector

F(t) = the n-by-n state dynamics matrix

B(t) = the n-by-r control input matrix

u(t) = the r-dimensional control input

G(t) = the n-by-s noise input matrix

w(t) = the s-dimensional dynamics driving noise vector

and

E{w(t)} = 0 (2.2)

E{w(t)wT (t + τ)} = Q(t)δ(τ) (2.3)

where τ has units of time. Upper case bold letters indicate matrices, lower case bold

letters indicate vectors, and normal or italics represent scalar variables. Random

vectors are denoted by boldface sans serif type. For the purposes of this research

no control inputs exist, so the B and u terms will be dropped from any subsequent

equations.
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At discrete times the solution to Equation (2.1) can be written as:

x(ti+1) = Φ(ti+1, ti)x(ti) +

[∫ ti+1

ti

Φ(ti+1, τ)G(τ)dβ(τ)

]
(2.4)

where β represents a vector valued Brownian motion process of diffusion Q(t) [17],

and Φ(ti+1, ti) denotes the state transition matrix from ti to ti+1 and yields

Φ(ti+1, ti) = Φ(∆t) = eF∆t where ∆t ≡ ti+1 − ti (2.5)

which assumes a time-invariant F matrix. The equivalent discrete-time model is

expressed by the following stochastic difference equation as

x(ti+1) = Φ(ti+1, ti)x(ti) + wd(ti) (2.6)

where

wd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)dβ(τ) (2.7)

The discrete-time white Gaussian dynamics driving noise has the statistics:

E{wd(ti)} = 0 (2.8)

E{wd(ti)w
T
d (ti)} = Qd(ti) =

∫ ti+1

ti

Φ(ti+1, τ)G(τ)Q(τ)GT (τ)ΦT (ti+1, τ)dτ (2.9)

E{wd(ti)w
T
d (tj)} = 0, ti 6= tj (2.10)

Typical problems of interest defined by a continuous-time dynamics process generate

sampled-data (or discrete-time) measurements produced by sensors. Assuming the

measurement model can be given as a linear, discrete-time system of the form

z(ti) = H(ti)x(ti) + v(ti) (2.11)
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The statistics of the measurement corruption noise are described by

E{v(ti)} = 0 (2.12)

E{v(ti)v
T (tj)} =





R(ti) for ti = tj

0 for ti 6= tj
(2.13)

The dynamics driving noise wd(ti) and the measurement corruption noise v(ti) as-

sumed to be independent, yielding

E{wd(ti)v
T (tj)} = 0 for all ti and tj (2.14)

2.2.2 Kalman Filter Equations. The Kalman filter propagates forward in

time from t+i−1 to t−i , starting from the last update cycle state and covariance estimates.

The superscripts “+” and “−” denote the time after a measurement update and before

a measurement update respectively. Propagating the filter from ti to ti+1 is equivalent

to propagating from ti−1 to ti simply by incrementing the index. The initial conditions

x̂(t0) and P(t0) are used in the first propagation cycle. The propagation cycle is given

by

x̂(t−i ) = Φ(ti, ti−1)x̂(t+i−1) (2.15)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti,ti−1) + Gd(ti−1)Qd(ti−1)G

T
d (ti−1) (2.16)

When measurements are available, the Kalman filter is updated by

A(ti) = H(ti)P(t−i )HT (ti) + R(ti) (2.17)

K(ti) = P(t−i )HT (ti)A(ti)
−1 (2.18)

r(ti) = zi −H(ti)x̂(t−i ) (2.19)

x̂(t+i ) = x̂(t−i ) + K(ti)r(ti) (2.20)

P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (2.21)
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A properly designed filter has a zero-mean residual vector r(ti) with the filter-computed

covariance A(ti) [6]. The outputs of the Kalman filter update cycle are x̂(t+i ) and

P(t+i ), which are then used in the next propagation cycle.

2.3 Extended Kalman Filters

The linear Kalman filter may become inadequate when either the state dynam-

ics or measurement model contains nonlinearities. Methods choosing to ignore old

data due to cumulative errors, or decreasing the filter’s confidence in the adequacy of

the filter model attempt to address the problem of nonlinearities. However, lineariza-

tion of the measurement or dynamics model demonstrates a better way to deal with

nonlinearities, thus enabling linearized estimation techniques.

A linearized Kalman filter consists of a first order Taylor series approximation

to the nonlinear models, linearizing about a nominal trajectory that is normally pre-

computed. The EKF differs from the linearized Kalman filter by re-linearizing about

each state estimate as it progresses. This enables the EKF to handle larger degrees of

nonlinearities more adequately. A complete derivation of EKFs can be found in [18].

2.3.1 State and Measurement Model Equations. Following the Kalman filter

development in references [6, 18], a nonlinear system dynamics model takes the form

ẋ(t) = f [x(t), t] + G(t)w(t) (2.22)

The state dynamics vector definition becomes a possibly nonlinear function of the

n-dimensional state vector x(t), and of the continuous time, t. The definitions of the

n-dimensional state dynamics vector x(t) and the n-by-s noise distribution matrix

G(t) remain unchanged from those seen in association with Equation (2.1). The

dynamics driving noise vector w(t) also remains unchanged, given by Equations (2.2)

and (2.3).
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The nonlinear discrete-time measurement equation takes the form

z(ti) = h[x(ti), ti] + v(ti) (2.23)

The m-dimensional measurement vector z(ti) represents a linear or nonlinear func-

tion of the state vector and time (h[x(ti), ti]), corrupted by the linearly additive

m-dimensional discrete-time noise input vector v(ti). The discrete-time noise vector

does not differ from that of the linear Kalman filter.

2.3.2 State and Measurement Model Linearization: the Linearized Kalman Fil-

ter. If either the system or measurement model Equations (2.22) and (2.23) exhibit

nonlinearities, linearization must occur in order to produce an optimal state estimate,

to first order. Reference [18] demonstrates a perturbation technique of the state about

a nominal or reference trajectory. Although the dynamics model remains linear for

this research, the linearization of the dynamics model and measurement model are

presented for completeness.

The nominal state trajectory generated from the initial condition appears as

xn(t0) = xn0 and the differential equation

ẋn(t) = f [xn(t), t] (2.24)

which differs from the nonlinear state equation by being deterministic. The nominal

measurements defined in a similar fashion by

zn(ti) = h[xn(ti), ti] (2.25)

which is also deterministic by removing the last term in Equation (2.22). The per-

turbation state derivative δẋ(t) formed by the subtraction of the nominal trajectory
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(2.24) from the system model (2.22)

δẋ(t) ≡ [ẋ(t)− ẋn(t)] = f [x(t), t]− f [xn(t), t] + G(t)w(t) (2.26)

A Taylor series expansion of f [x(t), t] about xn(t) yields

f [x(t), t] = f [xn, t] +
∂f [x(t), t]

∂x

∣∣∣∣
x=xn(t)

[x(t)− xn(t)] + h.o.t. (2.27)

where “h.o.t.” represents the higher order terms in powers of [x(t) − xn(t)] greater

than one [18]. Substituting Equation (2.27) into Equation (2.26), the f [xn(t), t] term

cancels to produce the perturbation equation. The first order approximation ignores

the higher order terms, yielding

δ̇x(t) = F[t;xn(t)]δx(t) + G(t)w(t) (2.28)

This linearized dynamics equation can be implemented in a linearized Kalman fil-

ter with the n-by-n partial derivative matrix F[t;xn(t)] evaluated along a nominal

trajectory and defined as

F[t;xn(t)] =
∂f [x(t), t]

∂x

∣∣∣∣
x=xn(t)

(2.29)

If higher order terms of the Taylor series expansion prove negligible, the approximation

remains valid.

The development of the measurement perturbation equation is formed in a sim-

ilar way. The measurement perturbation δz(t) is formed by the subtraction of the

nominal measurement Equation (2.25) from the measurement model Equation (2.23)

to give

δz(ti) ≡ [z(ti)− zn(ti)] = h[x(ti), ti]− h[xn(ti), ti] + v(ti) (2.30)

2-7



A Taylor series expansion of h[x(ti), ti] about xn(t) yields

h[x(ti), ti] = h[xn(ti), ti] +
∂h[x, ti]

∂x

∣∣∣∣
x=xn(ti)

[x(ti)− xn(ti)] + h.o.t. (2.31)

When Equation (2.31) is substituted into Equation (2.30), the h[xn(ti), ti] term is

cancelled to produce the perturbation equation. The first order approximation ignores

the higher order terms which yields

δz(ti) ≡ H[ti;xn(ti)]δx(ti) + v(ti) (2.32)

This linearized measurement equation can be implemented in the linearized Kalman

filter with the m-by-n partial derivative matrix H[ti;xn(ti)] evaluated along a nominal

trajectory and defined as:

H[ti;xn(ti)] =
∂h[x, ti]

∂x

∣∣∣∣
x=xn(ti)

(2.33)

This approximation is valid as long as the higher order terms of the Taylor series

expansion in Equation (2.31) are negligible. The state and measurement perturbation

equations are error state representations which must be added to the nominal state

values to produce the total state estimate.

The equations developed in this section define the linearized Kalman filter. Real-

world measurements z(ti) are differenced with zn(ti) computed via Equation (2.25),

and then fed into a linearized Kalman filter based on Equations (2.28) and (2.32), to

generate estimates of δx(t). These can be added to xn(t), generated as solutions to

Equation (2.24), to estimate the total states. It is important to point out that the EKF

relinearizes the model about the new estimate x̂(t+i ) and the corresponding trajectory.

The relinearization process helps to validate the assumption that the deviations from

the nominal trajectory are sufficiently small to use first order methods.
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2.3.3 Extended Kalman Filter Equations. The EKF propagates forward

in time ti−1 to ti by integrating from the last update cycle, state and covariance

estimates. The initial conditions x̂(t0) and P(t0) generate the first propagation. The

EKF propagation equations are defined by:

˙̂x = f [x̂(t|ti−1), t] (2.34)

Ṗ(t|ti−1) = F[t; x̂(t|ti−1)]P(t|ti−1)+P(t|ti−1)F
T [t; x̂(t|ti−1)]+G(t)Q(t)GT (t) (2.35)

with t|ti−1 denoting the value of a given variable at time t, conditioned on all the

measurements up to and including time ti−1. The term F[t; x̂(t|ti−1)] is the n-by-n

partial derivative matrix:

F[t; x̂(t|ti−1)] =
∂f [x(t), t]

∂x

∣∣∣∣
x=x̂(t|ti−1)

(2.36)

The differential equation initial conditions are given by:

x̂(ti−1|ti−1) ≡ x̂(t+i−1) (2.37)

P(ti−1|ti−1) ≡ P(t+i−1) (2.38)

After integrating equations (2.34) and (2.35) to the next sample time, the state and

covariance estimates are defined as:

x̂(t−i ) ≡ x̂(ti|ti−1) (2.39)

P(t−i ) ≡ P(ti|ti−1) (2.40)
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The EKF incorporates the measurements in the following update equations:

K(ti) = P(t−i )HT [ti; x̂(t−i )]{H[ti; x̂(t−i )]P(t−i )HT [ti; x̂(t−i )] + R(ti)}−1 (2.41)

x̂(t+
i
) = x̂(t−

i
) + K(ti){zi − h[x̂(t−i ), ti]} (2.42)

P(t+
i
) = P(t−

i
)−K(ti)H[ti; x̂(t−i )]P(t−

i
) (2.43)

2.4 Global Positioning System

The following sections describe the Global Positioning System (GPS) with sig-

nificant portions taken from [6, 19, 23]. GPS consists of a constellation of medium

earth orbit satellites providing a continuous ranging source. The user calculates po-

sition, velocity, and time from the received signal. Differential GPS (DGPS) includes

many different methods and techniques resulting in greater accuracy than standalone

GPS.

2.4.1 GPS Signal. The GPS signal contains both a code and carrier-phase

component. The Coarse/Acquisition (C/A) code is available to civilian users and

the precision (P) code (called P(Y) after encryption) is for the military. The carrier

frequencies currently set at 1575.42 MHz and 1227.6 MHz are commonly known as

the L1 and L2 frequencies, respectively [19]. The P(Y) code gets transmitted on

both L1 and L2, yet C/A code is only available on the L1 frequency. The 1023-bit

sequence C/A code repeats every millisecond and the P(Y) code repeats every 7 days

per satellite. The chipping rates for the C/A and P(Y) codes are 1.023 MHz and 10.23

MHz, respectively. The code component of the GPS signal contains a pseudorandom

noise (PRN) code unique to each satellite.

Civilian receivers track the C/A code on the L1 frequency. Military dual-

frequency receivers track the P(Y) codes on both the L1 and L2 frequencies. Some

civilian receivers use semi-codeless techniques used to obtain range information from

the P(Y) code without actually decrypting it [23]. These high-precision civilian re-
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ceivers used in CPS render the L2 carrier-phase information without really tracking

the P(Y) code.

2.4.2 GPS Measurements. Typically, three raw measurements from a GPS

receiver include code, Doppler, and carrier-phase. The code measurement, often called

a “pseudorange,” comprises the actual range corrupted by measurement errors (pri-

marily the clock error). The Doppler measurement describes the frequency shift in the

signal due to vehicle (and clock) dynamics, and the carrier-phase can be thought of as

an integrated Doppler. The term “raw” is included to distinguish these measurements

from the navigation processor outputs such as position, velocity, and acceleration.

DGPS techniques will be distinguished based on using code, carrier-phase, or both.

2.4.3 Code Measurements. The code pseudorange represents the true range

between the satellite and user plus the impact of a number of error sources. The

calculation of the time difference between the transmission and reception time mul-

tiplied by speed of light (providing the range in meters) yields the pseudorange. The

pseudorange measurement expressed in the equation below as

ρ = r + c(δtu − δtsv) + T + I + mρ + vρ (2.44)
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where

ρ = GPS pseudorange measurement (meters)

r = true range from the user to satellite (meters)

c = speed of light (meters / second)

δtu = receiver (user) clock error (seconds)

δtsv = transmitter (satellite vehicle) clock error (seconds)

T = errors due to tropospheric delay (meters)

I = errors due to ionospheric delay (meters)

mρ = errors due to pseudorange multipath (meters)

vρ = errors in pseudorange due to receiver noise (meters)

2.4.4 Carrier-Phase Measurements. For high precision solutions the carrier-

phase measurement of the received signal offers greater accuracy. The carrier-phase

measurement (expressed in cycles) is

φ = λ−1(r + c(δtu − δtsv) + T − I + mφ + vφ) + N (2.45)

where

φ= carrier-phase measurement (cycles)

λ= carrier-phase wavelength (meters / cycle)

N= carrier-phase integer ambiguity (cycles)

T= errors due to tropospheric delay (meters)

I= errors due to ionospheric delay (meters)

mφ= errors due to carrier-phase measurement multipath (meters)

vφ= errors in carrier-phase measurement due to receiver noise (meters)
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The rest of the terms previously defined in Equation (2.44) do not differ, with the

exception of the measurement noise and multipath, which become significantly smaller

for the carrier-phase versus the code. Some sources of error do not affect the code and

carrier-phase measurement in the same manner. The sign on the ionospheric delay

term represents the phenomenon of code-carrier divergence, in which the ionosphere

advances a carrier-phase measurement but delays a code measurement. Conversely,

tropospheric delay affects both the code and carrier-phase by the same magnitude

when expressed in equivalent units.

The carrier-phase integer ambiguity term introduces an error source present in

carrier-phase measurements, but not in code measurements. The ambiguity term

represents the unknown number of carrier-cycles present at the start of the signal

integration [23]. Attaining the highest level of accuracy requires determining the

unknown number of cycles (integer ambiguity) before signal integration.

2.4.5 Single Differencing. Differential GPS uses linear combinations of

observations (code or carrier measurements) between receivers, satellites, or times to

reduce the effect of some errors [24]. A single-difference may be between two satellites

(∇) or between two receivers (4). Figure 2.1 depicts the concept of a single-difference

between two receivers.
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Figure 2.1: Single-Difference GPS Between Receivers A and B and Satellite k

The single-differenced carrier-phase measurement between two receivers corre-

sponding to the above figure is defined as

∆φk
AB ≡ φk

A − φk
B (2.46)

where φk
A represents the phase measurement between receiver A and satellite k, and

φk
B represents the phase measurement between receiver B and satellite k.

This type of difference eliminates the satellite clock error and reduces the atmo-

spheric errors. Combining the carrier-phase measurement Equation (2.45) with the

single-difference Equation (2.46) yields

∆φk
AB = λ−1[rk

A + c(δtkuA
− δtksvA

) + T k
A − Ik

A + mk
φA + vk

φA] + Nk
A

− λ−1[rk
B + c(δtkuB

− δtksvB
) + T k

B − Ik
B + mk

φB + vk
φB] + Nk

B (2.47)
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Combining like terms yields

∆φk
AB = λ−1[(rk

A − rk
B) + c(δtkuA

− δtkuB
)− c(δtksvA

− δtksvB
) + (T k

A − T k
B)

− (Ik
A − Ik

B) + (mk
φA −mk

φB) + (vk
φA − vk

φB)] + (Nk
A −Nk

B) (2.48)

After eliminating the satellite clock term (due to synchronous measurements in which

the satellite clock error is the same for both), differences represented as (∆) transform

the above equation to

∆φk
AB = λ−1(∆rk

AB + c∆δtkuAB
+ ∆T k

AB − Ik
AB + ∆mk

φAB + vk
φAB) + ∆Nk

AB (2.49)

The integer value ∆Nk
AB represents the difference in the carrier-phase ambiguity be-

tween the two receivers’ measurements.

2.4.6 Double Differencing. Double differencing utilizes the combination of

single differencing between satellites (transmitters) and single differencing between

receivers. Because single differencing between receivers cancels the satellite clock

error and single differencing between satellites cancels the receiver clock error, double

differencing cancels both clock error terms.

Figure 2.2: Double-Difference Between Satellites j and k with Receivers A and B
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Using the phase measurement in the following example, the double-differenced

carrier-phase measurement is defined as:

∆∇φkj
AB = ∆φk

AB −∆φj
AB (2.50)

After substituting the single-differenced phase Equation (2.49) in the above equation:

∆∇φk
ABj = λ−1(∆rk

AB + c∆δtkuAB
+ ∆T k

AB −∆Ik
AB + ∆mk

AB + ∆vk
AB + ∆Nk

AB

− [
λ−1(∆rj

AB + c∆δtjuAB
+ ∆T j

AB −∆Ij
AB + ∆mj

φAB + ∆vj
φAB + ∆N j

AB

]

(2.51)

After cancelling the user clock error term, the double-difference operator (∆∇) ex-

presses the double-difference error terms, rendering:

∆∇φkj
AB = λ−1(∆∇rkj

AB +∆∇T kj
AB−∆∇Ikj

AB +∆∇mkj
φAB +∆∇vkj

φAB)+∆∇Nkj
AB (2.52)

Differencing reduces the effects of correlated errors (such as atmospheric errors) at the

expense of increasing the effects of uncorrelated errors (such as measurement noise and

multipath). The single-difference increases the magnitude of the noise and multipath

by a factor of (
√

2), while the double-difference increases the magnitude by a factor

of 2. Although the integer ambiguity term (∆∇Nkj
AB) differs from the ambiguity term

from the observation equation, it maintains its integer nature.

The double-differenced code measurement can be adapted from Equation (2.52)

by dropping the ambiguity terms and expressing the range in terms of meters

∆∇ρkj
AB = ∆∇rkj

AB + ∆∇T kj
AB −∆∇Ikj

AB + ∆∇mkj
ρAB + ∆∇vkj

ρAB (2.53)

However, double-difference code measurements seldomly see practical use. Rather,

direct estimation of the receiver clock error combined with single-difference measure-

ments denote typical practice [6].
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2.4.7 Carrier-Phase Ambiguity Resolution. Carrier-phase ambiguity resolu-

tion refers to the process of selecting the correct integer value for the phase ambiguity.

Ambiguity resolution generally consists of two primary operations [24]. The first cre-

ates the ambiguity search space by the generation of candidate ambiguity sets. The

second operation selects the correct ambiguity set. However, integer ambiguity reso-

lution is not always possible due to measurement constraints or receiver properties.

Since this research does not involve integer ambiguity resolution, no further develop-

ment is necessary.

2.5 Pseudolites

The term pseudolite (short for “pseudo-satellite”) refers to ground-based GPS-

like transmitters. Pseudolites feature the flexibility to vary the location, power, and

frequency of the transmitter. Pseudolites additionally provide signals for navigation

purposes in adverse environments such as open-pit mining, warehouses, and GPS

jammed environments where GPS signals often become unusable [23]. Many of the

assumptions made with GPS navigation cannot be applied to pseudolites. This section

begins with a discussion of differences between GPS and pseudolite navigation, then

presents typical pseudolite applications, and ends with descriptions of the problems

and sources of error in pseudolite measurements.

2.5.1 GPS-Pseudolite Differences. Many of the assumptions used in GPS

processing differ for pseudolite navigation. These include:

• Expected ranges for pseudolites prove much more dynamic than for GPS oper-

ation and will affect receiver power levels.

• When using a static reference receiver, there exists no relative motion between

the reference receiver and each pseudolite such as between a reference receiver

and the orbiting GPS satellites. This results in measurement biases due to

pseudolite location errors that do not average out over time. Also the multipath

error between pseudolites and the reference receiver will have stronger time
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correlations than the multipath experienced at the mobile receiver, when in

motion.

• Pseudolites are not constrained to operate at the GPS L1 and L2 frequencies.

Likewise, the code sequences and chipping rates may differ from those GPS

satellites use.

• Due to the short ranges between pseudolite transmitters and receivers, the mea-

surement model becomes more nonlinear, compared to GPS operation.

• Pseudolites do not bear an orbital or ephemeris error, but rather a position

error dependent on the accuracy of the estimated phase center of the pseudolite

antenna.

• Elimination of ionospheric delays stems from the fact pseudolite signals do not

travel through the ionosphere.

• Tropospheric error reduction through single and double differencing yields smaller

gains than for GPS due to uncommon signal paths between pseudolites and re-

ceivers.

2.5.2 Pseudolite Applications. The four categories of pseudolite applications

include direct positioning, digital data transmission, carrier-phase ambiguity resolu-

tion, and as a differential reference station [10]. Direct positioning using a network of

pseudolites known as LocataLites describes the application addressed in this research.

Pseudolite direct positioning accomplished with both the code and carrier-phase

measurements represents a method similar to conventional GPS positioning. The

majority of work with pseudolites pertains to augmentation of GPS or GPS/INS.

Pseudolites improve the overall geometry of the augmented system, providing greater

positioning accuracy, reliability, availability, continuity, and integrity monitoring [22].

Additionally, GPS signals are typically weak or not present indoors, and pseudolites

provide an indoor navigation source. This research specifically targets implementing

pseudolites as the sole source of navigation.
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Several methods exist to improve pseudolite positioning. Digital data transmis-

sion via pseudolite transmitters offers advantages such as GPS reference data requiring

only slight modification of the GPS receiver [10]. Another method assists and speeds

up the carrier-phase ambiguity resolution in a GPS system augmented by pseudolites,

accomplished through the large changes in geometries of the pseudolite signal [22].

The Kinematic GPS Landing Systm (KGLS) at Stanford [10] exemplifies this tech-

nique. Lastly, when a pseudolite rebroadcasts a coherent replica of received GPS

signals, it becomes a differential reference station [10]. This difference between the

direct and reflected signal allows use of navigation methods.

2.5.3 Signal Interference and Near-Far Problem. The largest issues facing

practical pseudolite applications are the signal interference and the associated near-far

problem. While the distance from any GPS satellite to a receiver remains relatively

constant, the ranges between a pseudolite and receiver vary greatly. The large dy-

namic difference in ranges results in large differences in received power levels. This

may cause the automatic gain control in a receiver to adjust to the highest powered

signal, which effectively jams all other pseudolites.

Pseudolites possess both a “near” and a “far” radius defined by the usable area.

A pseudolite jams all other pseudolites within the near radius. The far radius iden-

tifies the distance within which a receiver must stay to maintain lock on a particular

pseudolite. The transmission power determines the near and far radii, increasing or

decreasing power increases or decreases the near and far radii by the same ratio. For

practical systems a ratio of 1/10 typifies the relationship between the near and far ra-

dius [10], although this varies depending on the cross-correlation of the codes. Figure

2.3 shows an example of the near-far radii.
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Figure 2.3: Near-Far Problem [6]

Three categories represent the various techniques proposed to reduce the near-

far problem—Time Division Multiple Access (TDMA), Frequency Division Multiple

Access (FDMA), and Code Division Multiple Access (CDMA) [6].

TDMA occurs through the pulsing of the pseudolites, a process in which trans-

mission only occurs at fixed intervals. Pulsed pseudolites operated at greater than

20-25 percent of a duty cycle effectively jam the GPS signal [6]. One proposal sug-

gests operating two pseudolites, each pulsing at 10-12.5 percent of the duty cycle, to

facilitate an integrated GPS/Pseudolite navigation system [6]. This arrangement still

only allows the use of two pseudolites while maintaining GPS capability. If GPS is

not of interest, 10 pseudolites could be used (given a 10 percent duty cycle each).

The second technique for interference reduction, FDMA implementation, mod-

ifies GPS signals with small frequency offsets. Elrod et. al [6] suggested offsetting

the frequency to the first null of the GPS satellite signal in order to reduce cross-

correlation with the GPS signal. It resembles a large Doppler offset most receivers

handle easily.

CDMA demonstrations via concatenations of C/A codes showed through sim-

ulation a code length of 4092 (4 times that of C/A code) would provide a 6 dB

enhancement, and thus double the far radius while maintaining the same near radius,

according to Ndili [22]. By combining 20 C/A codes for a length of 20460 in addition
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to operating at a P-code chipping rate would add a 23 dB enhancement. The longer

the code length and higher the chipping rate, the larger the near-far ratio.

2.5.4 Sources of Error. Pseudolite errors separate into measurement and

measurement model errors. Both affect the accuracy of a pseudolite system and are

apparent in the residual term formed by subtracting the measurement prediction from

the measurement as shown by the following equation:

ri = zi − h[x̂(t−i ); ti] (2.54)

The next two subsections describe the errors present in pseudolite measurements and

measurement models.

2.5.4.1 Pseudolite Measurement Errors. Double differencing error

reduction proves less effective for pseudolites than for the analogous GPS equations

due to a different geometric configuration [6]. The measurement noise, multipath,

and residual tropospheric error (i.e., the error after a tropospheric model application)

define the remaining errors in a pseudolite carrier-phase measurement after a double-

difference operation.

The quality of the receiver determines the measurement noise associated with

pseudolites (just like for a GPS measurement). Along with proper modeling in the

navigation filter, improving the receiver design constitutes one of the ways to reduce

the effect of measurement noise.

Multipath dominates pseudolite applications as an error source [6]. Multipath

mitigating techniques (such as antenna placement and choke-ring antennas) imple-

mented in a pseudolite system offer less impact on pseudolite signals compared to

satellite signals [6]. This also stems from the relative geometries in the transmitter-

receiver setup in a pseudolite network.
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Time-invariant or standing multipath represents a major concern for pseudolite

applications, especially when the receiver remains in a static (non-moving) position.

This contributes to a multipath error which is much more difficult to handle than

the multipath error associated with satellite signals. The navigation filter assumes

white (uncorrelated in time) error sources, and the more time-invariant the multipath

becomes, the more this assumption becomes invalid. Removing this constant error

from the corresponding measurements requires careful calibration. The use of carrier-

phase measurements and antenna design appear promising in reducing multipath [6].

Multipath affects code measurements to a higher degree than carrier-phase measure-

ments for both a pseudolite or satellite source. Antenna gain shaping helps to reduce

multipath by adjusting the gain in the direction of large reflectors [6].

Precision pseudolite applications require accounting for the residual tropospheric

error that exists after applying a tropospheric model. The amount that single and

double differencing reduce the effect of tropospheric delay in GPS operation becomes

a function of the baseline difference in the mobile receiver position. Pseudolite appli-

cations display the same characteristics as a very large baseline for which differencing

may reduce, but not significantly remove, tropospheric delay.

2.5.4.2 Pseudolite Measurement Model Errors. Pseudolite measure-

ment model errors include the effect of position errors in the location of the pseudolites

in addition to the error due to linear approximations in the measurement model.

Analogous to the ephemeris or orbital errors in GPS satellite locations, im-

precise locations comprise the source of errors of the pseudolite transmitters. Like

tropospheric errors, single and double differencing impacts these position errors for

pseudolites less than for GPS.

For outdoor pseudolite applications, static surveying techniques using carrier-

phase DGPS can solve for the pseudolite positions within centimeters. Generally,

this technique remains unusable indoors. Kee [8] presented a method to calculate

the pseudolite positions using only the user’s position information and the pseudolite
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signals. This method proves advantageous because the location yields the phase

center of the antenna instead of the physical center. The phase center of the antenna

represents the true position and is not always the same as the physical center, which

is commonly referenced as the true position.

The typical ranges between transmitters and receivers represent one of the

biggest differences between GPS and pseudolite navigation. GPS signals travel 20,000

kilometers or more, while pseudolite signal ranges typically measure in meters (de-

pending on signal power). As the ranges in pseudolite navigation become shorter, the

signal waveform becomes more spherical than planar. Figure 2.4 depicts this relation-

ship with a planar signal from a GPS satellite and a spherical signal from a pseudolite.

In reality a GPS signal is spherical, but the large radius makes it essentially planar

for a GPS user.

Figure 2.4: Spherical and Planar Wavefronts [6]

The measurement model equation for the extended Kalman filter (EKF) re-

mains nonlinear for both GPS and pseudolite navigation. An EKF linearizes the

nonlinear measurement equation by using a first order Taylor series approximation.

As the waveforms become more spherical, the measurement nonlinearity becomes

more severe and the first order approximation becomes more inadequate. While for

GPS signals the approximation error stays small enough to be ignored, pseudolite

navigation requires care in handling the large measurement nonlinearities.
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The nonlinearity error explained graphically in Figure 2.5 shows a spherical

waveform at the receiver location. The uncertainty orthogonal to the line-of-sight

from transmitter to receiver only increases the range. This results in a range un-

derestimation. As the waveforms become more spherical, this error becomes more

substantial.

Figure 2.5: Nonlinear Elongation of Range [6]

This problem typically refers to a nonlinear elongation of measured range and suggests

applying nonlinear filtering techniques to enlarge the region of convergence for a

Kalman filter. Divergence may occur if the nonlinearity approaches the size of the

measurement error.

2.6 LocataNet

A LocataNet consists of four or more LocataLites geometrically positioned with a

single LocataLite designated as the master. All other LocataLites synchronize with the

master via TimeLoc (see Section 2.6.3) and allow carrier-phase point positioning of the

receiver while in range of the LocataNet. Since the LocataLites remain synchronized

in time, a reference receiver is not necessary. Each LocataLite does not necessarily

have to be in range of the master due to retransmission by other LocataLites in the

LocataNet [3]. This allows placement of LocataLites outside the field of view of the
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master, but in possibly better locations to capture receiver movement. The following

list describes additional advantages of the LocataNet as found in Locata development

articles [3]:

• Wireless connectivity - No radio modems or physical wires connect the LocataL-

ites, which require 12VDC via batteries or transformer.

• Reduced latency - Carrier point positioning using time synchronized signals

from the LocataLites allows real-time position computation.

• Intelligent signal transmissions - Standard pseudolites typically use pulsing to

prevent jamming and reduce the near-far problem discussed earlier. However,

multiple devices may end up transmitting at exactly the same time and cause

interference problems. The LocataNet precisely controls signal transmissions to

ensure the LocataLites do not transmit at the same time, preventing interference

between LocataLite signals.

• Theoretically greater precision - In DGPS the double-differenced observable is

formed from four carrier-phase measurements. Assuming all measurements pos-

sess equal precision and are uncorrelated, the precision of the double-differenced

measurement is two times worse than a single carrier-phase measurement (the

basic measurement used by LocataLites).

• Time solution - In DGPS the double differencing procedure eliminates the clock

biases, while the LocataNet allows time estimation with position.

2.6.1 LocataLites . LocataLites differ from conventional pseudolites due to

several enhancements not typically found on pseudolites. Barnes et.al. [3] describes

the LocataLite as an “intelligent pseudolite transceiver” due to the software advance-

ments. The main advantage to this flexible approach stems from the ability to enact

design changes without hardware revision.

2.6.2 LocataLite composition. To facilitate faster development of the Lo-

cataLite system, existing GPS hardware provided quick development with small mod-
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ifications. The receiver portion utilizes a commercially available GPS chipset with

modifications in the signal acquisition, tracking loops, and navigation algorithm. The

antennas consist of commercially available patch antennas for the receive portion and

a custom 1/4 wave antenna for the master transmitter.

2.6.3 TimeLoc. To achieve carrier-phase point positioning without a refer-

ence receiver, LocataLites require a high degree of time synchronization. Therefore

TimeLoc performs this synchronization of all LocataLites in a LocataNet. The follow-

ing excerpt from [3] describes the steps to perform TimeLoc between LocataLite A

(the master) and LocataLite B (the slave).

1. LocataLite A transmits C/A code and carrier signals on a particular PRN code.

2. Receiver section of LocataLite B acquires, tracks, and measures the signal (C/A

code and carrier-phase ) generated by LocataLite A.

3. LocataLite B calculates the difference between the code and carrier of the re-

ceived signal and its own locally generated signal. Ignoring propagation errors,

the differences between the two signals represent the difference in the clocks of

the two devices and the geometric separation between them.

4. LocataLite B adjusts its local oscillator using Direct Digital Synthesis (DDS)

technology [3] to bring the code and carrier differences between itself and Lo-

cataLite A to zero. Monitoring the code and carrier differences between Lo-

cataLite A and B maintains a zero difference.

5. The final stage corrects for the geometrical offset between LocataLite A and B

by using the known coordinates of the LocataLites, thus achieving TimeLoc.

The above procedure allows synchronization with inexpensive temperature con-

trolled crystal oscillators (TCXO) instead of expensive atomic clocks. Additionally,

this removes the timing issue between LocataLites leaving only the time difference

between the LocataNet and the receiver to resolve.
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2.7 Summary

This chapter provided a basic overview of Kalman filter theory including ex-

tended Kalman filters. GPS techniques, including carrier-phase differential algo-

rithms, were presented. The section on pseudolites described the challenges and

issues of pseudolite navigation, while the section on LocataLites outlined differences

and advantages of LocataLites over standard pseudolites.
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III. Methodology and Algorithm Development

3.1 Overview

This chapter outlines the provided measurements, differencing method, and

floating-point filter for determining the position solution of real or simulated data.

Additional elements to the baseline filter include the tropospheric correction model,

a residual tropospheric error state, and position error states. Lastly, an overview of

the developed simulator and simulated errors provide distinction between real and

simulated data filter characteristics. Figure 3.1 depicts the overall algorithm.

Figure 3.1: Overall filter algorithm

The input flags determine whether code and carrier-phase or carrier-phase only mea-

surements will be used. The filter performs the same functionally with real or simu-

lated data, but loads the appropriate file based on input. The details of the Kalman

filter are developed later in this chapter.

3.2 Measurements

Sections 2.4.3 through 2.4.5 developed the standard and single-differenced mea-

surement equations for GPS applications. Those equations require adaptation for
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use with LocataLite measurements. Since LocataLite signals remain lower than the

ionosphere, the ionospheric error terms disappear. This results in the following code

measurement equation for LocataLite application for code (ρ) and carrier-phase (φ):

ρ = r + c(δtu − δtLL) + T + vρ (3.1)

φ = λ−1(r + T + vφ) + N (3.2)

For code measurements, δtLL denotes the time of the LocataNet. For the single-

difference carrier-phase from the base (1 below) to each LocataLite (k below)

∆φ1k = λ−1(∆r1k + ∆T 1k + vφ1k) + ∆N1k k = 2, 3, · · · , n (3.3)

The superscript term 1k represents the measurement from LocataLite 1 differenced

with the measurement from LocataLite k, where k=2 to n. Bear in mind the su-

perscript 1 denotes the LocataLite designated as the base, not necessarily LocataLite

with PRN 1, but labeled as such for convenience. Reference to LocataLite 1 assumes

base designation for this research, yet in actual testing the base may be any available

LocataLite. The single-difference clock error in Equation (2.49) is removed due to the

TimeLoc function discussed in Section 2.6.3. In both Equations (3.1) and (3.2), the

multipath term becomes assimilated into the measurement noise term due to the in-

ability to model multipath effectively and simply letting the Kalman filter account for

multipath as the dominant measurement noise. GPS navigation is affected by errors

in the predicted motion of the satellites, commonly referred to as ephemeris or orbital

errors. These errors occur when the receiver uses the imprecise satellite locations for

range calculations. LocataLites posess a corresponding error due to the imprecise esti-

mates of the LocataLite locations. These LocataLite position errors and tropospheric

delay error terms represent the primary errors of interest for this research.

The following sections describe the process of generating the measurement cor-

rections and state models used in the filter. This entails the LocataLite position
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errors, followed by the descriptions of measurement noise, SNR deviations, and lastly

tropospheric delay. Measurement noise and tropospheric delay error attempt to ac-

count for errors to the true ranges. The simulated SNR errors utilized actual SNR

measurements for different runs. Position errors affected true positions.

3.2.1 LocataLite Position Errors. The imprecise estimated positions of the

LocataLites affect the code and carrier-phase measurement by the same magnitude.

The location errors of the LocataLites were modeled as biases with an initial zero-mean

Gaussian distribution. The horizontal standard deviation of 1 cm and the vertical of 2

cm represent the expected accuracies of precision surveying [13,21]. Table 3.1 specifies

the surveyed LocataLite positions utilizing DGPS techniques.

Table 3.1: LocataLite Truth Locations in ECEF Coordinates

LocataLite X (m) Y (m) Z (m)

1 -4431516.461 2635737.865 -3743255.799

2 -4431939.3259 2636221.8376 -3742211.8162

3 -4432228.4352 2636339.2064 -37431769.434

4 -4432842.397 2635894.7 -3741362.46

5 -4432209.8086 2635733.7889 -3742244.2687

Origin for ENU -4432198.51525 2636230.218 -3741880.7353

The errors due to inaccurate positions of the LocataLites were not added to the true

range, but instead used by the filter in the measurement prediction calculation.

3.2.2 Measurement Noise. The addition of zero-mean white Gaussian noise

to the measurements embodies the dominant multipath as well as the true mea-

surement noise. Measurement noise becomes considerably smaller for carrier-phase

measurements than for code measurements, and was modeled with a 2.6 m standard

deviation for the code versus a 2 mm standard deviation for the carrier-phase [24].
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3.2.3 Tropospheric Delay. The generation of tropospheric delay taken from

reference [28] provides a method to calculate low elevation tropospheric delay using

temperature, atmospheric pressure, relative humidity, elevation angle, and range. The

atmospheric parameters utilized local weather observation stations. The original tro-

pospheric delay calculation for airport pseudolites (APLs) and the reference receiver

is given by Equation (1.1) and adaptation for LocataLites yields

τLL,u(Ru, ∆hLL) =
77.6Ps × (42700− hs)× 10−6

5Ts∆hLL

[
1−

(
1− ∆hLL

42700− hs

)5
]

Ru

+
Ns × (13000− hs)× 10−6

5∆hLL

[
1−

(
1− ∆hLL

13000− hs

)5
]

Ru (3.4)

with variables defined as

τLL,u = tropospheric delay for receiver (meters)

∆hLL = difference in height between LocataLite and receiver

hs = height of the LocataLite

Ru = slant range between the pseudolite and user (meters)

Ps = surface pressure (millibars)

Ts = surface temperature (Kelvins)

RH = relative humidity (percent)

Ns = surface refractivity

Both Equations (1.1) and (3.4) present valid solutions for positive and negative

elevation angles, but indeterminate for zero elevation angles [28]. The reference did

develop equations for zero elevation angles, but placement of the LocataLites did not

result in zero elevation angles for this research.

3.3 Floating-Point Differential LocataLite Kalman Filter

A post-processed floating-point differential LocataLite Kalman filter was modi-

fied from the filter developed in reference [24] and adapted for LocataLite navigation.
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The single-difference operation applied to the carrier-phase measurements allows the

removal of the clock error. This section presents the baseline filter development, with

modifications for residual tropospheric error and LocataLite position errors presented

in the next section. The baseline filter calculates position, velocity, acceleration,

clock bias, clock drift, and carrier-phase ambiguity estimates for the receiver. The

objective of the filter is to produce position, tropospheric scale-factor percentage, and

LocataLite position error estimates. Before filter processing begins, a pre-processing

step determines the number of visible LocataLites and a vector of visible LocataLite

PRNS ordered by SNR quality from which the base LocataLite for single-difference

operation is selected.

3.3.1 Differential LocataLite Model Equations. A First Order Gauss Markov

Acceleration (FOGMA) model defined the three position, three velocity, and three

acceleration states of the floating-point differential LocataLite Kalman filter. The

remaining states consisted of a clock bias and clock drift state and (n − 1) carrier-

phase ambiguity states, where n signifies the number of LocataLites in view at a

particular epoch.

To describe the FOGMA model, the time derivatives of the positions yield the

velocities, and the time derivatives of the velocities yield the accelerations. Filter

settings allow the position to be expressed in either the Earth-Centered-Earth-Fixed

(ECEF) or East-North-Up (ENU) coordinate frame. This research focused on solu-

tions in ENU with the origin located at the position of the first epoch. The following

equations represent the dynamics equations for the first nine states, where x1 − x3

represent the positions, x4 − x6 represent the velocities, and x7 − x9 represent the

accelerations.

ẋ1 = x4 ẋ4 = x7

ẋ2 = x5 ẋ5 = x8 (3.5)

ẋ3 = x6 ẋ6 = x9
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The position and velocity states do not include any direct driving noise and their

determination relies entirely on other states and observed measurements. The accel-

eration states, modeled as first order Gauss-Markov processes, are as follows:

ẋ7 = (−1/Ta)x7 + wa1(t)

ẋ8 = (−1/Ta)x8 + wa2(t) (3.6)

ẋ9 = (−1/Ta)x9 + wa3(t)

with associated dynamic driving noise processes given by

E {wa1(t)wa1(t + τ)} = E {wa2(t)wa2(t + τ)} = E {wa3(t)wa3(t + τ)}

=
2σ2

a

Ta

δ(τ) = qaδ(τ) (3.7)

The anticipated acceleration maneuvers and time correlations determine the correla-

tion time, Ta, and acceleration variance (or mean square value), σ2
a. This filter utilizes

a Ta set to 0.01 seconds to account for relatively short acceleration maneuvers, and

a σa of 19.6m/s2 to handle the highest possible accelerations. These values combine

to yield a qa of 76832 m2/sec5 and represent tuning parameters for the filter derived

from the original modified DGPS filter [24], then tuned for the LocataNet.

The ambiguity states, modeled as random walks rather than constant biases,

allowed the filter to correct itself if convergence leads to an incorrect value. The cycle

ambiguities consist of an additional (n−1) states always at the end of the state vector.

The single-differenced carrier-phase ambiguities are defined by:

ẋ12 = w∆N1−2

ẋ13 = w∆N1−3

...

ẋ(11+(n−1)) = w∆N1−n (3.8)
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where PRN 1 is given as the base and n represents the total number of LocataLites

visible.

The process noise, with statistical characterization as:

E{w∆Nbi(t)w∆Nbi(t + τ)} = qNδ(τ)

qN = 1.1× 10−7(cycles/ sec)2

will yield an increase of approximately 0.1 cycles in the ambiguity standard deviation

over a 1 hour period [24]. This will allow the filter to correct itself if it converged to

the incorrect value.

The state vector for the floating-point Kalman filter becomes

x =
[
E N U Ė Ṅ U̇ Ë N̈ Ü cb cd ∆N1−2 . . . ∆N1−n

]T

(3.9)
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where

x1 = E = ENU E position (m)

x2 = N = ENU N position (m)

x3 = U = ENU U position (m)

x4 = Ė = ENU E velocity (m/s)

x5 = Ṅ = ENU N velocity (m/s)

x6 = U̇ = ENU U velocity (m/s)

x7 = Ë = ENU E acceleration (m/s2)

x8 = N̈ = ENU N acceleration (m/s2)

x9 = Ü = ENU U acceleration (m/s2)

x10 = cb = clock bias (s)

x11 = cd = clock drift (m/s)

x12 = ∆N1−2 = single-differenced phase ambiguity (cycles)

x13 = ∆N1−3 = single-differenced phase ambiguity (cycles)

...

x11+(n−1) = ∆N1−n = single-differenced phase ambiguity (cycles)

The differential equation, similar to Equation (2.1), shows the exclusion of user

input represented as

ẋ(t) = F(t)x(t) + G(t)w(t) (3.10)
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which expands to:




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9

ẋ10

ẋ11

ẋ12

ẋ13

...

ẋn




=




0 0 0 1 0 0 0 0 0 0 0 · · · 0

0 0 0 0 1 0 0 0 0 0 0 · · · 0

0 0 0 0 0 1 0 0 0 0 0 · · · 0

0 0 0 0 0 0 1 0 0 0 0 · · · 0

0 0 0 0 0 0 0 1 0 0 0 · · · 0

0 0 0 0 0 0 0 0 1 0 0 · · · 0

0 0 0 0 0 0 −1
Ta

0 0 0 0 · · · 0

0 0 0 0 0 0 0 −1
Ta

0 0 0 · · · 0

0 0 0 0 0 0 0 0 −1
Ta

0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 1 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 0







x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

...

xn




+




0

0

0

0

0

0

wa1

wa2

wa3

wa4

wa5

w∆N12

w∆N13

...

w∆N1n




(3.11)

In Equation (3.11), Ta defines the FOGMA acceleration time constant. The G(t)

matrix remains an identity matrix for this research. Recall Q from Equation (2.22)
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defines the process noise and appears as the matrix below.

Q =




0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 qa 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 qa 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 qa 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 qc 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 qd 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 qN 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 qN · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 qN




(3.12)

Table 3.2 summarizes the acceleration mean squared value, time constant, and accel-

eration noise, along with the phase ambiguity noise values.

Table 3.2: Dynamics Driving Noise Values for Floating-Point Filter

Term Definition Value

σ2
a Acceleration mean squared value (19.6 m/sec2)2

Ta Acceleration time constant 0.01 seconds

qa Acceleration noise strength 76832 m2/sec5

qN Phase ambiguity noise strength 1.1× 10−7 cycles2/sec

The DGPS position at first epoch provided a very good first position, resulting

in very low initial covariance values for the position states. Conversely, the accelera-

tion and velocity covariances remained higher due to the uncertainty at first epoch.
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The clock bias and drift variance values were taken from [24] since the receiver clock

characteristics for the Locata closely resemble typical GPS receivers. The initial co-

variance matrix is given as

P(t0) =




σ2
E 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0

0 σ2
N 0 0 0 0 0 0 0 0 0 0 0 . . . 0

0 0 σ2
U 0 0 0 0 0 0 0 0 0 0 . . . 0

0 0 0 σ2
Ė

0 0 0 0 0 0 0 0 0 . . . 0

0 0 0 0 σ2
Ṅ

0 0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 σ2
U̇

0 0 0 0 0 0 0 . . . 0

0 0 0 0 0 0 σ2
Ë

0 0 0 0 0 0 . . . 0

0 0 0 0 0 0 0 σ2
N̈

0 0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 σ2
Ü

0 0 0 0 . . . 0

0 0 0 0 0 0 0 0 0 σ2
cb

0 0 0 . . . 0

0 0 0 0 0 0 0 0 0 0 σ2
cd

0 0 . . . 0

0 0 0 0 0 0 0 0 0 0 0 σ2
∆N12 0 . . . 0

0 0 0 0 0 0 0 0 0 0 0 0 σ2
∆N13 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
∆N1n




(3.13)

with initial covariance values given in Table 3.3.

Table 3.3: Initial Covariance Values for Floating-Point Filter

Term Definition Value

σ2
E,N,U Position state variance (1 mm)2

σ2
Ė,Ṅ ,U̇

Velocity State variance (1 cm/s)2

σ2
Ë,N̈ ,Ü

Acceleration state variance (384.16 m/s2)2

σ2
cb

Clock bias variance (200 s)2

σ2
cd

Clock drift variance (100 m/s)2

σ2
∆N1k Phase ambiguity variance ( 5

λ
cycles)2
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3.3.2 Differential LocataLite Measurement Model. Code, single-differenced

carrier-phase measurements, and the DGPS altitude measurement create a (2n) mea-

surement vector (where n represents the number of LocataLites available) as input to

the floating-point differential LocataLite Kalman filter. The filter uses a non-linear

measurement model with measurement vector

z(ti) = [∆φ12 · · · ∆φ1n ρ1
corr · · · ρn

corr hgps]
T (3.14)

where ρ1
corr is the pseudorange from the receiver to LocataLite 1 (the base, not nec-

essarily LocataLite with PRN 1 but stated so for convenience), corrected by applying

the tropospheric model defined in Equation (3.3). The inclusion of hgps as a mea-

surement represents DGPS height from an external source and allows the filter to

overcome the poor geometry of the LocataNet during this testing. The filter allows

exclusion of the code and height measurements and has the ability to produce solu-

tions based on carrier-phase only; code and carrier-phase only; code, carrier-phase,

and height; or carrier-phase and height only. This provides a platform to accommo-

date varying geometries and capitalize on additional measurements. This also allows

the filter to operate with the additional measurements, depending on the type of

testing performed.

Recalling the EKF development in Section 2.3 along with Equation (3.2) leads

to an expansion of the single-differenced range term and combining the measurement

errors yield the carrier-phase equation expressed as

∆φ1k =
1

λ

[
(r1 − T 1)− (rk − T k)

]
+ ∆N1k + v∆φ k = 2, 3, · · · , n (3.15)

In the preceding equation, T represents the tropospheric delay from the correction

model. The v∆φ term represents a white noise, and attempts to account for the

combination of the single-differenced measurement noise, multipath, and residual tro-

pospheric delay. The tropospheric delay term in the noise specifies the residual tro-

pospheric delay after a correction model application. Further expanding the range
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terms in Equation (3.15) and expressing them in terms of state variables results in

∆φ1k =
1

λ

[
(E1 − x1)

2 + (N1 − x2)
2 + (U1 − x3)

2
]1/2

− 1

λ

[
(Ek − x1)

2 + (Nk − x2)
2 + (Uk − x3)

2
]1/2

(3.16)

+ ∆T 1k + ∆N1k + v∆Φ k = 2, 3, · · · , n (3.17)

where E1k, N1k, U1k represent the position of the LocataLites indexed by 1 and k.

The partial derivatives for each row of the single-differenced carrier-phase mea-

surements show

∂h[x, ti]

∂x1

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
E1−x1

[(E1−x1)2+(N1−x2)2+(U1−x3)2]1/2

}

− 1
λ

{
Ek−x1

[(Ek−x1)2+(Nk−x2)2+(Uk−x3)2]
1/2

}
(3.18)

= 1
λ

{
e1
1 − ek

1

}

∂h[x, ti]

∂x2

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
N1−x2

[(E1−x1)2+(N1−x2)2+(U1−x3)2]1/2

}

− 1
λ

{
Nk−x2

[(Ek−x1)2+(Nk−x2)2+(Uk−x3)2]
1/2

}
(3.19)

= 1
λ

{
e1
2 − ek

2

}

∂h[x, ti]

∂x3

∣∣∣∣
x=x̂(t−i )

= 1
λ

{
U1−x3

[(E1−x1)2+(N1−x2)2+(U1−x3)2]1/2

}

− 1
λ

{
Uk−x3

[(Ek−x1)2+(Nk−x2)2+(Uk−x3)2]
1/2

}
(3.20)

= 1
λ

{
e1
3 − ek

3

}

∂h[x, ti]

∂xhgps

∣∣∣∣
x=x̂(t−i )

= 1 (3.21)

∂h[x, ti]

∂x∆N

∣∣∣∣
x=x̂(t−i )

= 1 (3.22)
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where

ej = [ej
1 ej

2 ej
3] j = 1, 2, · · · , n (3.23)

provides the unit line-of-sight vectors pointing from the mobile receiver to LocataLite

j.

When combined, these individual partial derivatives represent one row of the H

matrix

H1k =

[
1

λ
(e1 − ek) 0 0 0 0 0 0 · · · 1 · · · 0

]
k = 2, 3, · · · , n (3.24)

where 1
λ
(e1 − ek) represents the scaled difference vector between two unit line-of-site

vectors from the mobile receiver to LocataLite 1 and the mobile receiver to LocataLite

“k”. The “1” is placed in the column for the appropriate ambiguity state.

The corresponding rows for the code measurements drop the 1
λ

term and the

“1” for the ambiguity states and insert a “1” for the clock state, giving

H =
[
e1 0 0 0 0 0 0 1 · · · 0] (3.25)

The entire measurement matrix H is then

H =




1
λ
(e1 − e2) 0 0 0 0 0 0 0 0 1 0 · · · 0

1
λ
(e1 − e3) 0 0 0 0 0 0 0 0 0 1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
. . . 0

1
λ
(e1 − en) 0 0 0 0 0 0 0 0 0 0 · · · 1

e1 0 0 0 0 0 0 1 0 0 0 · · · 0

e2 0 0 0 0 0 0 1 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . .
...

en 0 0 0 0 0 0 1 0 0 0 · · · 0

0 0 1 0 0 0 0 0 0 0 0 · · · 0




(3.26)

where superscript “1” represents the base LocataLite for n LocataLites.
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The measurement covariance matrix R defined in Equation (2.11) and required

by the filter represents 5 different types of covariance terms.

• Case 1: Variance of code measurement errors

• Case 2: Variance of phase measurement errors

• Case 3: Variance of height measurement errors

• Case 4: Covariance of two different code measurement errors

• Case 5: Covariance of two different phase measurement errors

The full R matrix is

R =




Rphase 0 0

0 Rcode 0

0 0 Rhgps


 (3.27)

where the phase variances and covariances denoted by cases 2 and 4 are located in

the upper left corner. The code variance and covariances denoted by cases 1 and 3

are placed in the middle, and the height variance is placed in the lower right corner.

The off-diagonal terms between the code and carrier-phase covariances represent the

cross-covariance of a code and phase measurement, which were assumed sufficiently

small and set to zero.

Non-tropospheric components (transmitter location error, multipath, and mea-

surement noise) along with the residual tropospheric error typify the code measure-

ment variances. The standard deviation for the code measurement noise is 2.6 meters

[24]. Additionally, the tropospheric contribution to the total standard deviation is suf-

ficiently small and ignored. The single-differenced tropospheric and non-tropospheric

standard deviations are 0.004 m2 for the carrier-phase variance with the covariance

terms set to half this value [24]. The following matrix displays the components of the
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Rphase matrix.

Rphase =




r∆φij ,∆φij r∆φij ,∆φik · · · r∇∆φij ,∇∆φik

r∆φij ,∆φik r∆φij ,∆φij
. . .

...
...

. . . . . . r∆φij ,∆φik

r∆φij ,∆φik · · · r∆φij ,∇∆φik r∇∆φij ,∇∆φij




(3.28)

The associated Rcode matrix is

Rcode =




rρi,ρi 0 · · · 0

0 rρi,ρi · · · 0
...

...
. . .

...

0 0 · · · rρi,ρi




(3.29)

and the values for the full R matrix are shown in Table 3.4.

Table 3.4: Measurement Covariance Values

Term Definition Value

rρi,ρi Code variance error 2.6 m2

rρi,ρj Code covariance error 0 m2

r∆φij ,∆φij Single-differenced carrier-phase variance error .004 m2

r∆φij ,∆φik Single-differenced carrier-phase covariance error .002 m2

rhgps GPS height measurement variance error 10−7 m2

The rhgps term reflects a “perfect” measurement and therefore only aides the fil-

ter, thus the very small variance value, yet large enough not to affect filter convergence.

Since the truth comparison for this research is DGPS, identifying the incorporated

altitude measurement as perfect is reasonable.

3.3.3 Discrete-Time Models. For use on a digital computer, conversion

of the linear stochastic differential equations requires formulation to describe the

equivalent discrete-time system model [17]. The discrete-time state transition matrix
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Φ(tk+1, tk) for this filter is

Φ(tk+1, tk) = Φ(∆t) = eF∆t (3.30)

where ∆t ≡ tk+1 − tk which results in the matrix

Φ(tk+1, tk) =




1 0 0 ∆t 0 0 A 0 0 0 0 · · · 0

0 1 0 0 ∆t 0 0 A 0 0 0 · · · 0

0 0 1 0 0 ∆t 0 0 A 0 0 · · · 0

0 0 0 1 0 0 B 0 0 0 0 · · · 0

0 0 0 0 1 0 0 B 0 0 0 · · · 0

0 0 0 0 0 1 0 0 B 0 0 · · · 0

0 0 0 0 0 0 C 0 0 0 0 · · · 0

0 0 0 0 0 0 0 C 0 0 0 · · · 0

0 0 0 0 0 0 0 0 C 0 0 · · · 0

0 0 0 0 0 0 0 0 0 1 ∆t · · · 0

0 0 0 0 0 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 1




(3.31)

where

A = T 2
a (e−∆t/Ta − 1) + Ta∆t

B = Ta(1− e−∆t/Ta)

C = (e−∆t/Ta)

The discrete dynamics driving noise covariance is given by

Qd(tk) =

∫ tk+1

tk

Φ(tk+1,τ)G(τ)Q(τ)GT (τ)ΦT (tk+1,τ )dτ (3.32)
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which, for this filter, results in

Qd=




D 0 0 E 0 0 G 0 0 0 0 · · · 0

0 D 0 0 E 0 0 G 0 0 0 · · · 0

0 0 D 0 0 E 0 0 G 0 0 · · · 0

E 0 0 K 0 0 L 0 0 0 0 · · · 0

0 E 0 0 K 0 0 L 0 0 0 · · · 0

0 0 E 0 0 K 0 0 L 0 0 · · · 0

G 0 0 L 0 0 M 0 0 0 0 · · · 0

0 G 0 0 L 0 0 M 0 0 0 · · · 0

0 0 G 0 0 L 0 0 M 0 0 · · · 0

0 0 0 0 0 0 0 0 0 N 0 · · · 0

0 0 0 0 0 0 0 0 0 0 N · · · 0
...

...
...

...
...

...
...

...
...

...
...

. . . 0

0 0 0 0 0 0 0 0 0 0 0 0 N




(3.33)

wherethese values were taken from reference [24] and are defined as

D =
1

2
T 5

a qa(1− e−2∆t/Ta) + T 4
a qa∆t(1− 2−∆t/Ta)− T 3

a qa(∆t)2 +
1

3
T 2

a qa(∆t)3

E = T 4
a qa(

1

2
e−2∆t/Ta − e−∆t/Ta +

1

2
) + T 3

a qa∆t(e−∆t/Ta − 1) +
1

2
T 2

a qa(∆t)2

G =
1

2
T 3

a qa(1− e−2∆t/Ta)− T 2
a qa∆te−∆t/Ta

K =
1

2
T 3

a qa(−e−2∆t/Ta + 4e−∆t/Ta + 2
∆t

Ta

− 3)

L = −1

2
T 2

a qa(−e−2∆t/Ta + 2e−∆t/Ta − 1)

M = −1

2
Taqa(−e−2∆t/Ta − 1)

N = qN∆t
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3.4 Floating-Point Filter Features

The floating-point filter includes a pre-filtering step, a tropospheric model, and

adaptations to improve upon the performance of the baseline filter. These adaptations

consisted of estimating errors in the tropospheric model and estimation of LocataLite

position errors.

3.4.1 Pre-filter. A pre-filter function determined the number of available

LocataLites, vector of available LocataLites, and base LocataLite for single-difference

operations. The vector of available LocataLites was rank ordered by the signal-to-

noise (SNR) measurement quality, with the base chosen as the LocataLite with the

highest average SNR.

3.4.2 Filter Initialization. The state vector of the filter requires initialization

before processing begins. For the position states, the ENU origin (0,0,0) serves as an

adequate starting point. The velocity and acceleration states are assumed to be zero

in all directions, since there is no assumed knowledge of movement at initialization.

The clock bias and clock drift states also take on the zero assumption, as well as the

tropospheric and position error states if included. This leaves the single-differenced

floating-point ambiguities, which employ the following code-carrier difference.

N ≈ φ− ρ

λ
(3.34)

For single-differencing, this becomes

∆N ≈ ∆φ1k − ∆ρ1k

λ
k = 2, 3, · · · , n (3.35)

3.4.3 LocataNet Adaptation. LocataLites possess an SNR measurement for

each epoch which provides an indication of measurement quality. Although not ideal,

this allowed a level of control to prevent increasingly poor measurements from entering

the filter and allowed previously discounted LocataLites an avenue for inclusion. Once

3-19



the SNR value for a measurement is deemed worthy, the measurement is included in

the measurement vector. The current revision of the LocataNet inhibits traditional

cycle slip detection due to the dominance of the frequency lock loop (FLL) and lack of

a true phase lock loop (PLL) (i.e., a loop that attempts to drive the phase difference

between incoming and receiver generated values to zero). This also prevents integer

ambiguity resolution. Therefore, the SNR measurements determined which LocataL-

ites remained in view, or were included/excluded before measurement incorporation

and filtering.

When LocataLites drop below the SNR threshold, the filter re-initializes the

appropriate state estimate and the rows and columns associated with this LocataLite

in the covariance matrix. For example, if LocataLites 1 through 5 retained SNR values

above threshold with LocataLite 1 as the single-difference base, sample ambiguity state

values might be

x12 = ∆N12 = 150075.54

x13 = ∆N13 = 160805.47

x14 = ∆N14 = 164483.71

x15 = ∆N15 = 127251.37

These four ambiguity states would be in states 12 through 15, because the first 11

states represent the 3 position, 3 velocity, 3 acceleration, and 2 clock states. If Lo-

cataLite 4 falls below the threshold, the new ambiguity vector remains the same, but

the ambiguity value (∆N14) would not be updated until LocataLite 4 obtains SNR

values above the threshold. The covariance matrix P also requires adjustment. Con-

sider a case in which the 4-by-4 partition of the ambiguity variances and covariances

is

P =




0.00059357 0.00024635 0.00031054 0.0004863

0.00024635 0.00036501 0.0000279 0.0001695

0.00031054 0.00002791 0.00032214 0.00031669

0.0004863 0.0001695 0.00031669 0.00050136
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In order to hold the ∆N14 state the second to last row and second to last column are

re-initialized. As a result, the covariance becomes

P =




0.00059357 0.00024635 0 0.0004863

0.00024635 0.00036501 0 0.0001695

0 0 1621 0

0.0004863 0.0001695 0 0.00050136




which represents the initialized value of
(

5
λ
cycles

)2
. The off-diagonal terms for the

row and column are set to zero. The measurement vector no longer contains a mea-

surement for LocataLite 4, thus requiring a change in H as well, removing the cor-

responding row for the absence of measurement 4. This allows the filter to maintain

constant state and covariance sizes without using measurements deemed too poor.

3.4.4 Tropospheric Model Error State. The errors in the tropospheric model

include measurement errors in the sensors, atmospheric errors due to ground effects,

and the use of estimated positions of the transmitters and receivers. In addition, the

model used to predict each of these errors remains imperfect, thus even given perfect

measurements, a perfect model does not exist.

The first error source is the set of errors due to imprecise instruments for mea-

suring atmospheric pressure, temperature, and relative humidity. These errors will

affect all measurements by roughly the same percentage.

The second error is due to ground effects from foliage and buildings. The height

of a typical test mission could be 2500 meters above the earth’s surface, so ground

effects that only affect the first 25 meters represent 1 percent of the total signal range.

However for missions at or near ground, such as landing, the tropospheric effects can

be more significant.
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The third error is due to estimated positions of the transmitters and receivers

to calculate the tropospheric error. Because these errors are in the centimeter range,

their effect is almost insignificant to the total error of the tropospheric model.

An additional state added to the filter attempts to account for the remaining

tropospheric errors after a model has been applied. This state represents an error

percentage for the measurements modeled as a first order Gauss-Markov process.

The state is modeled as a percentage to account for the inaccuracies described above

which postulate the remaining error is of the same order as the errors found, but some

percentage related to the original errors modeled [6]. The resulting measurement

model equations become

ρ = r + c(δtu − δtLL) + T (1 + Tr) + vρ (3.36)

∆φ1k =
1

λ

[
(r1 − T 1)− (rk − T k)

]
+∆N1k+∆T 1k(Tr)+v∆φ k = 2, 3, · · · , n (3.37)

The tropospheric scale-factor was modeled as a first order Gauss-Markov process

ẋ12 = (−1/Tt)x12 + wt(t)

with associated dynamic driving noise

E {wt(t)wt(t + τ)} =
2σ2

t

Tt

δ(τ) = qtδ(τ) (3.38)

The correlation time, Tt, and variance, σ2
t , are based on the anticipated error per-

centages and time correlations from [6]. A value of 1 hour (3600 seconds) for Tt to

account for typical changes in atmospheric effects and 0.2 (20 percent) for σt attempt

to handle the “worst case” error percentage. These values were determine via tun-

ing under simulated conditions. The inclusion of the tropospheric scale-factor state

augments the state vector, creating

x =
[
E N U Ė Ṅ U̇ Ë N̈ Ü cb cd Tr ∆N12 . . . ∆N1n

]T

(3.39)
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where the state and dynamic driving noise are given in Equations (3.42) and (3.43)

respectively. Equation (3.18) now includes the following addition of

∆Tr = ∆T 1k(x12) (3.40)

and the resulting H matrix includes

∂h[x, ti]

∂x12

∣∣∣∣
x=x̂(t−i )

=
∆T 1k

λ
(3.41)

3.4.5 LocataLite Position Error States. The LocataLite position error states

(PES) are modeled as random walks, just as the floating-point ambiguities in Section

3.3.1.

ẋ13 = wLL1
E

ẋ14 = wLL1
N

...

ẋ(11+(n−2)) = wLLn
E

(3.42)

ẋ(11+(n−1)) = wLLn
N

(3.43)

(3.44)

where 1 is given as the base and n represents the total number of LocataLites.

The process noise has an autocorrelation kernel given by

E{wLLn
E
(t)wLLn

E
(t + τ)} = qLLδ(τ)

qLL = 5× 10−11(m2/ sec)

This yields
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x =
[
E N U Ė Ṅ U̇ Ë N̈ Ü cb cd Tr LL1

E LL1
N . . . LLn

E LLn
N ∆N12 . . . ∆N1n

]T

(3.45)

providing the full state vector with all possible states. Updating Equations (3.1) and

(3.3) to include the tropospheric scale-factor and the LocataLite position errors yields

ρ = r + c(δtu − δtLL) + T (Tr) + eLL
rec · [LLE LLN 0] + vρ (3.46)

∆φ1k = λ−1(∆r1k + ∆T 1k(Tr) + ∆eLL
rec

1k · [LL1
E −LLk

E LL1
N −LLk

N 0] + vφ1k) + ∆N1k

(3.47)

where eLL
rec · [LLE LLN 0] represents the LocataLite position error vector composed of

the east and north LocataLite position errors.

3.5 Simulator Design

This research developed a Kalman filter based processing algorithm for cal-

culating position and floating-point ambiguities for the LocataLites, as well as an

associated simulator for confidence and error analysis. The simulator created perfect

measurements (code pseudorange and carrier-phase) which could then be manipu-

lated by known errors of varying type. This allowed quality checking of the Kalman

filter in every aspect to ensure live data accuracy remained at a premium. Addi-

tionally, investigation of specific error sources such as tropospheric and position error

highlighted similar events in live data and enhanced Kalman filter tuning. Lastly the

simulator proved a valuable tool in determining LocataLite placement in upcoming

tests to predict dilution of precision (DOP) values yielding better placement. The

overall simulator algorithm is depicted in Figure 3.2.
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Figure 3.2: Simulator algorithm

3.5.1 Simulated Measurement Noise. Using a predetermined trajectory and

known LocataLite positions allowed creation of perfect pseudorange and carrier-phase

measurements. To simulate the noise encountered in real measurements, a zero mean

white Gaussian noise with a standard deviation (1-σ) of 0.02 cycles for carrier-phase

measurements and 2.6 meters for pseudorange measurements was added.

3.5.2 Simulated Tropospheric Delay. The simulated tropospheric delay val-

ues stem from the same model correcting the measurements in the actual filter for real
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measurements. In simulation, the delays in meters are simply added to the perfect

pseudorange measurements and ultimately the carrier-phase measurements, which

result from dividing the simulated pseudorange measurement by λ.

3.5.3 Simulated Tropospheric Scale-Factor Error. The calculated tropo-

spheric delay terms in meters receive an additional percentage of the calculated tro-

pospheric delay value to simulate the inclusion of the remaining tropospheric delay.

For example, if the calculated tropospheric delay for a pseudorange was found to be

7cm, a 3 percent scale-factor error means that 3 percent of 7cm (.21cm) would be

added to 7cm resulting in a tropospheric delay value of 7.21cm.

3.5.4 Simulated LocataLite Position Errors. The known locations of the

LocataLites were simply modified in the E,N, or U direction by small values before the

pseudorange and carrier-phase measurement creation. This allowed investigation into

specific LocataLite position errors and the ability to distinguish errors in a particular

LocataLite for a particular direction (E,N, or U).

3.6 Chapter Summary

This chapter outlined the Floating Point LocataLite Kalman Filter along with

associated steps to produce position, velocity, acceleration, and ambiguity terms for

a LocataNet. Filter preparation included measurement setup, noise characteristics,

tropospheric model application, and initialization. Additions to the filter included

the tropospheric scale-factor state and position error states for each LocataLite.
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IV. Results

4.1 Overview

This chapter presents results for both real and simulated data to evaluate al-

gorithm performance. The first section covers simulation parameters and test cases

in order to confirm filter operation under perfect conditions with known induced er-

rors. The next section describes simulations designed to mimic real data concerns and

evaluates filter performance under these conditions. Finally, an analysis of real data

performance and a comparison of simulated performance versus real performance is

conducted. The chapter concludes with measurement analysis to determine discrep-

ancies between expected and realized performance.

4.2 Simulation Results With Perfect Measurements

This section describes the simulation trajectory and associated parameters which

define filter performance under perfect conditions and known parameters. In order

to create a simulation comparable to the real data available for testing, the DGPS

track (Figure 4.1) from a test run provides an excellent source to create simulated

measurements. The post-processed DGPS solution along with the position of the

LocataLites allow creation of code pseudorange and carrier-phase measurements. For

creating code measurements, the equation is

ρ =
√

(xLL −XDGPS)2 + (yLL − YDGPS)2 + (zLL − ZDGPS)2 + T + v (4.1)

where
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ρ = pseudorange measurement (meters)

xLL = ECEF x position of the LocataLite

yLL = ECEF y position of the LocataLite

zLL = ECEF z position of the LocataLite

XDGPS = ECEF X position of DGPS solution

YDGPS = ECEF Y position of DGPS solution

ZDGPS = ECEF Z position of DGPS solution

T = error due to tropospheric delay (meters)

vρ = error in pseudorange due to receiver noise (meters)

For this perfect measurement case, the measurement noise (vφ) was set to zero. The

corresponding carrier-phase measurements are the pseudorange values divided by the

wavelength. The tropospheric component for simulations represents values from the

application of the tropospheric correction model discussed previously in Section 3.2.3.

The filter then applies the same values from the tropospheric correction model during

processing, resulting in zero net effect for simulations. Figure 4.1 depicts the simulated

trajectory and LocataLite positions.
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Figure 4.1: Simulated trajectory and LocataLite positions

For the simulations and real data runs in this research, only carrier-phase mea-

surements were used for solutions. The ability to provide both code and carrier-phase

solutions does exist, but the focus remains on carrier-phase solutions due to concerns

about multipath-induced biases in the real pseudorange measurements.
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Figure 4.2: Simulated 2D trajectory with perfect measurements

Figure 4.2 depicts the solution trajectory on a two dimensional (2D) scale, along

with the “truth”, which cannot be clearly distinguished on this scale. The truth

trajectory combines the two GPS trajectories by matching their position solutions to

GPS time, and yields the trajectory from which the measurements for simulation are

created.

For the horizontal error, Figure 4.3 depicts the error defined as the Euclidian

distance between the true and computed positions in the horizontal directions at the

same epoch. This metric renders an initial indication of filter quality, clearly depicting

that, although perfect measurements may be given to the filter, the filter models are

not perfect. Figure 4.4 further defines specific errors in the east and north directions

of the ENU frame.
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Figure 4.3: Simulated horizontal error with perfect measurements
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Figure 4.4: Simulated east and north error with perfect measurements
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Although the figures do not reflect perfect performance given perfect measure-

ments, the filter remained tuned for real data runs and was not re-tuned for perfect

measurements. Due to the poor geometry of the LocataLite positions, altitude in-

formation incorporated as a measurement greatly increases the performance of the

filter.

Figures 4.5 and 4.6 represent the same simulation run with the truth altitude

incorporated.
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Figure 4.5: Simulated horizontal error with perfect measurements and known alti-

tude

These figures depict the best level of performance the filter achieved, clearly showing

the measurement correlations with the trajectory run. From zero to 40 seconds the

vehicle did not move, then began tight back and forth movements along the road until

approximately 180 seconds. From 180 to 320 seconds the vehicle changed to a more

elongated back and forth movement back down the road. The worst measurement

performance lies at the turnaround portion near the end of the test run (320 seconds)
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where the geometry becomes the poorest due to the location of the LocataLites. These

figures represent baseline filter performance for comparison with future simulation

runs and real data runs which all include the altitude incorporated as a measurement

to help overcome the poor geometry.
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Figure 4.6: Simulated east and north error with known altitude

4.2.1 Error incorporation in simulations. Since signal-to-noise ratio (SNR)

values provide the metric for determining inclusion or exclusion of a LocataLite from

the measurement sample, verification of the process under typical conditions is needed.

Actual SNR measurements from real data runs provided an excellent source for sim-

ulation. Figure 4.7 depicts the SNR values for each LocataLite over the test run.
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Figure 4.7: Real SNR values used in both simulation and real data runs; measure-

ments with SNR < 7 were not used

When the SNR value for a measurement falls below the threshold value, the

measurement is no longer used for the position solution. The measurement vector

shrinks to reflect the lost measurement, yet the single-differenced ambiguities are

simply reinitialized as in Equation (3.35) until the measurement becomes available

again. This allows the state vector to remain the same size for comparable analysis of

the ambiguities. While the SNR measurements do not reflect actual cycle slips, they

are handled in much the same way.

Figures 4.8 and 4.9 show little difference from figures 4.5 and 4.6, demonstrating

effective measurement management.
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Figure 4.8: Simulated horizontal error with real SNR values and perfect measure-

ments
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Figure 4.9: Simulated east and north error with real SNR values
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With this information, all further simulation runs include actual SNR values in an

attempt to keep the simulations as close as possible to real data.

4.3 Simulated Results With Added Noise

With confirmation the filter and all included functions work properly, simula-

tions designed to account for real world conditions such as measurement noise, residual

tropospheric effects, and position errors were conducted to characterize filter perfor-

mance. These simulations represent Monte Carlo analysis of the filter in which the

filter is measured against “truth” data instead of a truth model (i.e., a higher order

linear filter).

4.3.1 Simulated Measurement Noise. The position errors shown in Figure

4.10 for a ten run Monte Carlo analysis depicts the typical case for added measurement

noise consisting of a zero-mean white Gaussian noise with a 1-σ value of 0.02 cycles

for carrier-phase measurements.
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Figure 4.10: Ten-run Monte Carlo results, position error with no other errors
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The ensemble mean error represents the mean of the errors for all runs at cor-

responding time indices. The ensemble 1-σ represents the standard deviation of the

errors for all runs. The filter-computed 1-σ represents the covariance values in the

filter. Clearly measurement noise signifies a large factor by decreasing the accuracy of

the filter from tens of micrometers to centimeters. The plot shows good agreement be-

tween the ensemble and filter-computed standard deviations, which represents proper

tuning values.

4.3.2 Simulated Tropospheric Scale-Factor Error. As stated in Section 3.5.3,

the additional tropospheric delay typifies a percentage of the true tropospheric delay.

The additional tropospheric percentage error along with the simulated measurement

noise resembles the expected error. Figure 4.11 illustrates a ten-run Monte Carlo

analysis for a random tropospheric scale-factor generated as a zero mean Gaussian

random variable with zero mean and a 1-σ value of 10 percent.
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Figure 4.11: Ten-run Monte Carlo results, tropospheric scale-factor
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The ensemble mean represents the mean of all the Monte Carlo runs after the

original error percentage has been subtracted. The filter captures a significant portion

of the error with some agreement between the filter-computed and ensemble standard

deviations.

4.3.3 Simulated LocataLite Position Errors. LocataLite position error esti-

mation discussed in Section 3.5.4 requires observability in all directions (E,N, and U)

in order to determine the error properly. Even under perfect conditions, the geometry

utilized for this research possesses poor vertical characteristics, therefore no attempt

was made to estimate vertical position errors. However, estimation for E and N look

promising for each LocataLite and merited investigation. An initial ten-run Monte

Carlo analysis with no position errors revealed Figures 4.12 and 4.13. The initial

position error states values were set to zero, assuming no LocataLite position error in

any direction.
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Figure 4.12: Ten-run Monte Carlo results, LocataLite east position error estimates

with no LocataLite position errors, plot order LocataLite 4,2,3,5,1
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Figure 4.13: Ten-run Monte Carlo results, LocataLite north position error estimates

with no LocataLite position errors, plot order LocataLite 4,2,3,5,1

Figures 4.12 and 4.13 provide insight into whether the error will be distin-

guishable or not using these state estimates. In the easting plot, the collapse of the

filter-computed standard deviations shows promise of properly estimating an easting

error in LocataLites 2, 3, and 5, since the ensemble standard deviations collapse as

well. The filter-computed standard deviations show LocataLite 4 clearly indicates a

lack of observability in the state, while LocataLite 1 shows some improvement but

not enough to estimate the error with confidence. For the northing error, the confi-

dence is less for all LocataLites. LocataLites 2 and 3 still show some confidence, but

LocataLites 1, 4, and 5 remain difficult to estimate.

In order to estimate the LocataLite position errors deemed distinguishable, the

filter sets the indistinguishable states to zero. To accomplish this, the values in the H

matrix must be manually set to zero for LocataLites 4 and 1 in the east direction, and

4, 5, and 1 in the north direction. This allows the filter to compute the LocataLite
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position error estimates in the LocataLites without attempting to estimate position

errors in those determined to be indistinguishable.

LocataLites 2, 3, and 5 shown in Figures 4.14-4.18 provide the LocataLite po-

sition error estimates for a ten-run Monte Carlo using zero mean Gaussian random

variables with 1-σ values of 10cm. Recall that LocataLite 5 in the north direction is

not being estimated.
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Figure 4.14: Ten-run Monte Carlo results, LocataLite 2 estimated east position

error
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Figure 4.15: Ten-run Monte Carlo results, LocataLite 2 estimated north position

error
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Figure 4.16: Ten-run Monte Carlo results, LocataLite 3 estimated east position

error
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Figure 4.17: Ten-run Monte Carlo results, LocataLite 3 estimated north position

error
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Figure 4.18: Ten-run Monte Carlo results, LocataLite 5 estimated east position

error
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The LocataLite position error estimates demonstrate the ability to resolve vary-

ing LocataLite position errors with reliable accuracy. The filter-computed and ensem-

ble standard deviations display good agreement, indicating suitable tuning parame-

ters.

This information requires the first filter run with the position error states (PES)

to be used for analysis only, to determine which LocataLites and directions will be

distinguishable. Then the indistinguishable LocataLites will be “locked down” in the

filter to prevent them from affecting the error estimates. Similar performance could

be achieved by using an optimal smoother, but is not included in this research.

4.3.4 Tropospheric Scale-Factor and LocataLite Position Errors. The final

Monte Carlo analysis attempts to resolve both the tropospheric scale-factor and the

LocataLite position errors at the same time. Potentially, this represents the complete

solution for error mitigation and maximized performance. Figures 4.19-4.24 depict the

simultaneous estimation of the tropospheric scale-factor and the LocataLite position

errors.
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Figure 4.19: Ten-run Monte Carlo results, estimated tropospheric scale-factor error
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Figure 4.20: Ten-run Monte Carlo results, LocataLite 2 estimated east position

error, tropospheric scale-factor included
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Figure 4.21: Ten-run Monte Carlo results, LocataLite 2 estimated north position

error, tropospheric scale-factor included

4-18



0 50 100 150 200 250 300 350 400
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

seconds

er
ro

r 
(m

)

Ensemble Mean Error
Filter computed ±1−σ
Ensemble ±1−σ

Figure 4.22: Ten-run Monte Carlo results, LocataLite 3 estimated east position

error, tropospheric scale-factor included
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Figure 4.23: Ten-run Monte Carlo results, LocataLite 3 estimated north position

error, tropospheric scale-factor included
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Figure 4.24: Ten-run Monte Carlo results, LocataLite 5estimated east position

error, tropospheric scale-factor included

While the filter does resolve the errors to a reasonable level, performance in all

estimated states is degraded compared to estimating the tropospheric scale-factor and

LocataLite position errors separately. Closer inspection of the filter-computed and en-

semble standard deviations for Figure 4.11 and 4.19 exposes a severe lack of ability to

estimate the tropospheric scale-factor while simultaneously estimating the LocataLite

position errors. For this particular data set, the LocataLite position errors must be

estimated before attempting to estimate the tropospheric scale-factor error. This will

be supported in the real data performance shortly. With the information derived from

these simulations, the focus now shifts to real data concerns and implementing the

techniques used in simulation thus far to maximize real data performance.

4.4 Real Data Performance

Real data measurement solutions require comparison with an independent source

such as DGPS. The remainder of this section describes the DPGS solution as well as

the LocataNet solutions utilizing the various methods simulated above.
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4.4.1 Differential GPS Solutions. During real data runs, two independent

GPS receivers provided reference data for comparison with LocataNet solutions. Fig-

ure 4.25 depicts the antenna placement on the rover vehicle, showing the relative

position of the antennas to one another. The antennas were placed on the same

horizontal plane on top of the rover vehicle, a Mazda B2200 pickup.

Figure 4.25: Antenna placement for all real test runs

Furthermore, Table 4.1 defines the post-processed accuracy of the Leica and Ashtech

GPS receivers utilizing DGPS techniques with carrier-phase measurements [13, 21].

The combination of these independent, post-processed, DGPS solutions provides the

“truth” trajectory for comparing LocataNet solutions. While these solutions show

excellent agreement during the entire run, the table shows some uncertainty still

exists in the “truth”. Therefore the position solutions provided in the rest of this

section signify quality solutions, yet they cannot genuinely be referenced as the true

positions and true position errors. However, for this research it will considered the

truth reference.

Table 4.1: DGPS accuracies using post-processed carrier-phase measurements

Type Horizontal Vertical

Leica Static 3mm + 0.5ppm 6mm + 0.5ppm

Leica Kinematic 1cm + 1ppm 2cm + 1ppm

Ashtech Static 5mm + 1ppm 1cm + 1ppm

Ashtech Kinematic 1cm + 1ppm 2cm + 1ppm

Examining the trajectory more closely shows how the solution relates to the two

DGPS solutions, along with the reference truth created by combining the Ashtech and

Leica DGPS solutions. Figure 4.26 depicts the start and end of the real data run
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Figure 4.26: Close up of start/stop position depicting Ashtech and Leica DGPS

solutions compared to the AFIT LocataLite solution using real measurements and

reference truth

and shows excellent agreement between all solutions. Looking forward to Figures 4.30

and 4.31, the largest error occurs during the turnaround point of the run highlighted

in Figure 4.27. Even closer inspection of the first turnaround point (and the largest

error) reveals the small error between the filter solution and reference truth. Analyzing

the other turnaround point in Figure 4.28 renders similar results, even though it

corresponds to the poorest geometry as seen in the simulations.
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Figure 4.27: First turnaround point, highlighting largest error using real measure-
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Figure 4.28: Second turnaround point, corresponding to poorest geometry during

testing using real measurements

4-23



These figures provide a good indication of how the AFIT LocataLite solution compares

to the various DGPS solutions offered. Inspecting the position error versus time leads

to further error reduction using the tropospheric correction model, the tropospheric

scale-factor and LocataLite position error techniques explored in simulation.

4.4.2 Solution Error Generation. In order to compare the real data mea-

surements with DGPS accurately, the time difference between the LocataNet solution

and the DGPS solution must be resolved. This is accomplished by interpolating the

DGPS solution to match the LocataNet solution, adjusting for the time bias. In or-

der to check the alignment of the solutions, the velocity is plotted against the error

between the solution and the truth reference. From this plot, the timing alignment

can be inferred.
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Figure 4.29: Velocity vs. east position error between AFIT LocataLite solution and

DGPS
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Figure 4.29 depicts an alignment error of 10ms indicated by the general slope of the

plot. To correct for this error, a time bias is applied during interpolation of the DGPS

solution until the plot shows a zero slope in Figure 4.30.
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Figure 4.30: Velocity vs. east position error between AFIT LocataLite solution and

DGPS, 10ms correction applied

While not perfect, the procedure provides an effective method for time alignment

between the two solutions. The corresponding position solution error plots using the

altitude information without the tropospheric correction model show results for real

measurements. In addition, Figure 4.32 characterizes the overall solution performance

via a single figure encompassing the entire error of the AFIT LocataLite solution, the

horizontal error plot.
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Figure 4.31: East and north position error of AFIT LocataLite solution as compared

to DGPS without tropospheric corrections using real measurements
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Figure 4.32: Horizontal error of AFIT LocataLite solution as compared to DGPS

without tropospheric corrections using real measurements
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Correcting the measurements using the tropospheric correction model detailed

in Section 3.2.3 provides much better solutions, shown below in Figures 4.33 and 4.34.
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Figure 4.33: East and north position error for Locata generated and AFIT generated

solutions as compared to DGPS with tropospheric corrections using real measurements

The Locata generated solution depicted in Figures 4.33 and 4.34 was provided

from the Locata Corporation and represents a post-processed carrier-phase solution

with tropospheric corrections via a modified Hopfield model and no measurement

differencing. Comparison to this solution provides an independent metric to gauge

filter performance.
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Figure 4.34: Horizontal error between Locata generated and AFIT generated solu-

tions as compared to DGPS with tropospheric corrections using real measurements

The application of the low elevation tropospheric correction model reduces the

overall error to just over 6cm in the horizontal error while maintaining values of ±5cm

in the east and north respectively. The solid improvement in solution performance

justifies the tropospheric correction model, which will receive further validation later

in this chapter. Now, given the quality position solution obtained thus far, further

error reduction techniques can be applied.

Table 4.5 near the end of this chapter provides the mean and standard deviations

for Figures 4.33 and 4.34, as well as the rest of the position error plots throughout

this chapter. This permits a purely statistical comparison of the position error plots

to supplement the numerous figures.

4.4.3 Tropospheric Scale-Factor State. The tropospheric scale-factor state

attempts to model the remaining tropospheric error not captured using the tropo-

spheric correction model. In simulation, the error state performed very well in the
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noisy environment, able to delineate the additional error in all cases. For real data

measurements, Figure 4.35 depicts the remaining tropospheric scale-factor percentage

estimated by the filter applying the same tuning parameters of 2×10−6 for the process

noise (qt) and 10 percent for the initial standard deviation.
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Figure 4.35: Estimated tropospheric scale-factor percentage with real measure-

ments and initial tuning

This obviously exceeds the maximum of 10 percent expected during simulation.

The immediate reaction of increasing the initial standard deviation to 50 percent did

not fix this anomaly. The next step included increasing the process noise to allow

the filter to compensate for the anomaly. This also did not improve estimation and

actually allowed the state to become divergent. No amount of tuning yielded a result

with any confidence. Since this error clearly requires more investigation, it will be

addressed after correcting the LocataLite position errors.

4.4.4 LocataLite Position Error States. As stated in Section 4.3.3, the

indistinguishable position error states (PES) remain at zero to allow proper estimation
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of the remaining PES. Figures 4.36 and 4.37 depict the position error estimates for

LocataLites 2, 3, and 5.
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Figure 4.36: East LocataLite position error estimates for LocataLites 2, 3, and 5,

LocataLites 1 and 4 remain at zero, with real measurements
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Figure 4.37: North LocataLite position error estimates for LocataLites 2 and 3,

LocataLites 1, 4, and 5 remain at zero, with real measurements

The order of the LocataLite position errors (4,2,3,5,1) signifies the rank order of

measurement quality established before measurements enter the filter. After subse-

quent runs allowing the filter to find the entire position error, the corrections in Table

4.2 were applied.

Table 4.2: LocataLite estimated position errors at end of the run (cm)

LocataLite East North East 1-σ North 1-σ

2 -5.13379 -14.52001 0.23662 0.40417

3 0.59678 5.16921 0.19721 0.33255

5 -1.87257 0 0.19372 10
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This yielded Figures 4.38 and 4.39.
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Figure 4.38: East and north position error with real measurements and corrected

LocataLite positions
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Figure 4.39: Horizontal error with real measurements and corrected LocataLite

positions

While not drastically improved, close comparison with Figures 4.33 and 4.34

show improvement, especially in the east direction. Since post-processed static DGPS

provides very accurate surveying measurements, these results appear valid. Although

a few of the LocataLite position error estimates greatly surpass the limits stated

in Table 4.1, several factors may contribute to this error. These factors include the

antenna placement difference between the GPS used for surveying and the Locata used

for measurement, human error when making the corrections during placement, and

environmental factors such as kangaroos, wombats, and sheep since the antenna bases

were not permanently mounted. Therefore some repositioning may have occurred after

surveying.

4.4.5 Tropospheric Scale-Factor Revisited. After applying the position cor-

rections for LocataLites 2, 3, and 5, another attempt at estimating the tropospheric
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scale-factor was made. This time the filter estimated a value much closer to the

expected value from simulations, as seen in Figure 4.40.
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Figure 4.40: Estimated tropospheric scale-factor percentage with real measure-

ments and corrected LocataLite positions

Although a large deviation outside the filter-computed standard deviation exists,

this provides a more expected value of 5 percent. This large deviation, seen in both

the tropospheric scale-factor estimation and the LocataLite position error estimation

eludes to an observability problem throughout the test run. This will be addressed

later in this chapter. Applying this adjustment to the tropospheric corrections yields
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Figure 4.41: East and north error with real measurements, corrected LocataLite

positions, and tropospheric corrections adjusted by 5 percent
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Figure 4.42: Horizontal error with real measurements, corrected LocataLite posi-

tions, and tropospheric corrections adjusted by 5 percent
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Figures 4.41 and 4.42. Although the improvement is very minor, this justifies the

incorporation of the tropospheric scale-factor state to obtain the additional error not

captured by the tropospheric correction model.

As a cursory check, a simulation with known LocataLite position errors was

performed, attempting to estimate only the tropospheric scale-factor. The results

from this simulation closely resembled Figure 4.35 which uses real measurements.

This further warrants the estimation of the LocataLite position errors as the first

error resolution technique to be performed because the tropospheric scale-factor state

cannot overcome the inclusion of the LocataLite position errors for this scenario.

4.4.6 Tropospheric Scale-Factor and LocataLite Position Errors Simultane-

ously Estimated. For completeness, an attempt at resolving all of the postulated

errors simultaneously resulted in poor performance as foreseen in simulation. Table

4.3 provides the estimated LocataLite corrections, similar in all aspects to Table 4.2.

Table 4.3: LocataLite estimated position errors at end of the run (cm) with simul-

taneous tropospheric scale-factor estimation

LocataLite East North East 1-σ North 1-σ

2 -5.99671 -16.26633 0.26173 0.46593

3 0.096462 4.34814 0.20776 0.34625

5 -1.53553 0 0.46856 10

Figures 4.43 and 4.45 closely resemble Figures 4.36 and 4.37, yet Figure 4.45 portrays

a tropospheric scale-factor error of 28 percent, with little confidence.
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Figure 4.43: East LocataLite position error estimates with real measurements and

simultaneous tropospheric scale-factor estimation
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Figure 4.44: North LocataLite position error estimates with real measurements and

simultaneous tropospheric scale-factor estimation
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Figure 4.45: Estimated tropospheric scale-factor error with real measurements and

simultaneous LocataLite position error estimation

Running the filter with these LocataLite position errors and the 28 percent

adjustment to the tropospheric correction values produced a poor position solution.

This promotes resolving the LocataLite position errors before attempting to estimate

the tropospheric scale-factor. While this constitutes the proper technique for this

scenario, test setups with better observability may allow simultaneous estimation.

4.4.7 Alternate Runs. Corroboration of these findings requires investigating

more than one measurement run. A quick overview of an alternate run typifies the

results found for all alternate runs. The following data represents an alternate run

performed under similar conditions on the same test road, within 15 minutes of the run

investigated thus far. Figures 4.46, 4.47, and 4.48 show a typical alternate trajectory

and the corresponding position error plots.
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Figure 4.46: Alternate trajectory with real measurements
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Figure 4.47: East and north error with real measurements, no LocataLite position

error state estimation, or tropospheric scale-factor estimation, alternate run
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Figure 4.48: Horizontal error with real measurements, no LocataLite position error

state estimation, or tropospheric scale-factor estimation, alternate run

Figures 4.46-4.48 signify similar accuracy level and deviations, with the excep-

tion of the large spike at approximately 80 seconds into the run. This results from

a discrepancy within the SNR measurements, for which the SNR value shows the

measurement is good, while closer inspection reveals a cycle slip is still occurring [1].

While important, this detail is not the focus of this research and will not be investi-

gated further.

Since estimating the LocataLite position errors was deemed the proper first step,

the same technique applied to this alternate run yields the following Figures 4.49 and

4.50.

4-40



0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

seconds

ea
st

 (
m

)

LocataLite 4
LocataLite 2
LocataLite 3
LocataLite 5
LocataLite 1

Figure 4.49: East position error estimates with real measurements, alternate run
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Figure 4.50: North position error estimates with real measurements, alternate run
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After applying the initial corrections and making a second run, Table 4.3 contains the

applied corrections.

Table 4.4: LocataLite estimated position corrections at end of alternate run (cm)

LocataLite East North East 1-σ North 1-σ

2 .55314 -14.33998 0.19937 0.35396

3 1.42812 10.61069 0.19763 0.30942

5 -0.72241 0 0.16107 10

In comparison to Table 4.2, the values to do not match for all LocataLites in all

directions. LocataLite 2 in the north direction has similar results, but the similarities

end there. This distinctly indicates the LocataLite position error states are estimating

more than the LocataLite position errors. Applying these estimates as corrections to

the LocataLite positions does improve the position solution and allow the estimation

of the tropospheric scale-factor state. Therefore their application is merited, but more

investigation is required.

Now estimating the tropospheric scale-factor reveals Figure 4.51, and adjusting

the tropospheric correction values by the estimated 5.83 percent yields Figures 4.52

and 4.53. Here the comparisons to Figures 4.47 and 4.48 are not as easily discernible.

Close inspection exposes that Figure 4.52 contains solutions more closely centered on

zero error, but no real reduction in the position error at any point in either direction.

However, the process does strengthen the validity of the tropospheric scale-factor

percentage since estimates for both runs were very close (5 and 5.83 percent).
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Figure 4.51: Estimated tropospheric scale-factor with real measurements and Lo-

cataLite positions corrected, alternate run
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Figure 4.52: East and north error with real measurements, LocataLite positions

corrected, and tropospheric corrections adjusted by 5.83 percent, alternate run
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Figure 4.53: Horizontal error with real measurements, LocataLite positions cor-

rected, and tropospheric corrections adjusted by 5.83 percent, alternate run

In order to evaluate the many runs and their statistics, Table 4.5 outlines the

mean and standard deviations for the multitude of error plots shown. The 2D term

signifies the horizontal error, shortened for convenience.

Table 4.5: Temporal statistics for position error plots

Figures East mean East 1-σ North mean North 1-σ 2D mean 2D 1-σ

4.33, 4.34 -0.44cm 2.44cm -1.23cm 1.44cm 2.81cm 1.36cm

4.38, 4.39 1.35cm 1.45cm -1.46cm 1.39cm 2.49cm 1.34cm

4.41, 4.42 1.12cm 1.43cm -1.45cm 1.39cm 2.43cm 1.33cm

4.47, 4.48 -0.86cm 2.10cm -0.90cm 1.08cm 2.38cm 1.20cm

4.52, 4.53 2.15cm 1.43cm -0.89cm 1.19cm 2.60cm 1.45cm

4.4.8 Error analysis. Throughout the real data sets, the tropospheric scale-

factor estimate and the LocataLite position error estimates deviate significantly from

the expected values before providing near suitable estimates towards the end of the
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run. This deserves an explanation pertaining to the errors and why this happens in

real data and not simulation. Equations (3.46) and (3.47) provided the pseudorange

and carrier-phase measurement equations with all errors included. Since all solutions

employed single-differenced carrier-phase measurements, the error in the carrier-phase

measurement (neglecting the white noise term) can be expressed as

errorφ = λ−1(∆T 1k(Tr)+∆eLL
rec

1k·[LL1
E−LLk

E LL1
N−LLk

N 0])+∆N1k k = 2, 3, · · · , n

(4.2)

where Tr and [LL1
E −LLk

E LL1
N −LLk

N 0] represent the estimated states in the EKF.

Including the time dependence in Equation (4.2) yields

errorφ(t) = λ−1(∆T 1k(t)(Tr)+∆eLL
rec

1k
(t) · [LL1

E−LLk
E LL1

N−LLk
N 0])+∆N1k (4.3)

In order for the filter to estimate Tr and LL1
E, LLk

E, LL1
N , andLLk

N with any confidence,

there must be sufficient change in ∆T 1k(t) and eLL
rec

1k
(t). Due to the low dynamics of

the rover vehicle during the test runs, this doesn’t happen until the second turnaround

when the rover heads straight to the start point and maintains a high velocity. Figures

4.36, 4.37, 4.43, and 4.44 show this explicitly starting at approximately 320 seconds,

and Figures 4.49 and 4.50 corroborate this for the alternate runs which maintain a

high velocity throughout much of the run.

4.5 Measurement Analysis

In order to ascertain the difference between expected and realized performance,

a rigorous measurement analysis highlights variants between real measurements used

to compute the position solution, and the values the measurements should possess.

To conduct this analysis, actual measurements used for position solutions were com-

pared against the corresponding “truth” measurement. This “truth” measurement

was comprised of the true range calculated between each LocataLite and the DGPS

solution as in Equation (4.1), without the T or v terms, then divided by the wave-

length. Based upon the accuracy of DGPS over the short baselines involved in this
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test, it is estimated that the truth measurement has an accuracy on the order of 1cm

(≈ 1
12

cycle). For measurement comparison, Equation (4.2) describes the difference

between real data measurements and the truth measurement:

∆φactual −∆φcalc = ∆φdiff (4.4)

where ∆φdiff represents the unknown integer ambiguity and all the measurement

errors mentioned previously. Therefore the comparison focuses on the changes in

these external factors and shows any large deviations. Measurements discounted due

to poor SNR values are not computed in these values, since they were not used to

determine the position solution. However, their location is marked by the red dots

which also indicate the re-initialization of the floating-point ambiguities. Figures 4.56-

4.59 depict ∆φdiff after subtracting the first value in the vector to remove the bias

due to the cycle ambiguity.
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Figure 4.54: Measurement differences between actual measurements (∆φ41) and

calculated ranges, ambiguity bias removed
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Figure 4.55: Measurement differences between actual measurements (∆φ42) and

calculated ranges, ambiguity bias removed
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Figure 4.56: Measurement differences between actual measurements (∆φ43) and

calculated ranges, ambiguity bias removed
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Figure 4.57: Measurement differences between actual measurements (∆φ45) and

calculated ranges, ambiguity bias removed

Ideally, the difference should be zero or nearly zero for all cases. However the

figure clearly shows deviations attributed to large changes in ∆N , yet re-initialization

occurs at these transitions to mitigate their effect. These figures distinctly show a

relationship between the position errors seen previously and the measurement differ-

ences. Additionally, closer inspection of each figure shows a general trend of movement

away from the zero line. If an imaginary line were drawn through the center of the

difference line, it would be slightly curved. This alludes to phase movement in the

measurements, not enough to be labeled a cycle slip, but enough to cause additional

measurement error.

Inspecting the accelerations for both the filter-computed and DGPS inferred ac-

celeration renders enlightening results. The acceleration values in the north direction

look surprisingly similar to the north position errors. Overlaying the north acceler-

ation and the north position error plots on Figure 4.58 suggest the tracking loop in

the receiver is susceptible to acceleration errors.
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Figure 4.58: Overlay of acceleration (solid blue line) and position error (dotted red

line) with respective y-axis values

The tracking control loop allows the receiver to maintain measurement lock

during movement. The order and type of the tracking control loop determine the

response to different types of input. The order dictates the response characteristics

of the tracking control loop, while the type determines the steady-state error charac-

teristics. For the data given, the tracking loop most likely consists of a second-order

type-two system with a low bandwidth for smooth response. A type-two system can

effectively track the acceleration input, but will always have a steady-state error de-

pendent on the system. This explains the north position error closely resembling the

north acceleration. Ultimately, this susceptibility to acceleration signifies the most

prominent source of the remaining error for the position solution.
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4.6 Summary

This chapter explored the filter confirmation, simulation performance, and real

data performance under many scenarios. The simulated and real data sections high-

lighted the difference in expected and realized values for the tropospheric scale-factor

percentage and the LocataLite position error states. The greatest discovery for unre-

solved errors came during measurement analysis by pinpointing the susceptibility to

acceleration.
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V. Conclusions and Recommendations

5.1 Overview

This research presented the theory, models, simulation results, and real data

results for a LocataLite-based positioning system. Previous research indicated pseu-

dolites can be used successfully for positioning and ambiguity resolution. This research

concentrated on the ability to obtain centimeter level accuracy using the LocataNet

and resolving the various error sources inherent in the system.

The baseline algorithm consisted of an extended Kalman filter using single-

differenced carrier-phase measurements. Filter enhancements included a low eleva-

tion tropospheric correction model, a tropospheric scale-factor state, and LocataLite

position error states.

5.2 Conclusions

A single run of the filter using perfect measurements provided confirmation of all

aspects of position solution, tropospheric scale-factor, and LocataLite position error

state estimation. Filter performance was analyzed using noisy measurements typical

of those expected for measurements in the real data environment. Simulations allowed

Monte Carlo analysis of postulated errors such as the tropospheric scale-factor and

LocataLite position error states in a noisy, yet controlled environment.

The floating-point filter yielded position solutions within 1cm under simulated

conditions with noisy measurements, altitude aiding, and tropospheric delay correc-

tions applied. This became the baseline solution against which all future simulated

and real data solutions were compared. Monte Carlo analysis of the tropospheric

scale-factor with a zero mean white Gaussian random variable with 1-σ of 10 percent

in the measurements demonstrated excellent ability to estimate the error accurately.

Monte Carlo simulations for the LocataLite position errors yielded excellent response

after examining the filter-computed covariances to determine which LocataLites and

directions would be distinguishable by the filter. For those deemed indistinguishable,
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forcing the states to remain at zero allowed proper estimation of the other LocataLite

position error states. Simultaneous estimation of the LocataLite position errors and

the tropospheric scale-factor proved futile, producing poor estimation in all aspects.

Additionally, the filter-computed covariances showed little confidence in the estimates.

Filter solutions using real data measurements offered solutions within 6cm of

DGPS with measurement correction using the tropospheric correction model from

Section 3.2.3. This accuracy was verified by analyzing multiple measurement runs

yielding very similar results. Estimating the tropospheric scale-factor generated more

questions by producing an estimate quite different from expected. Although discon-

certing at first, revisiting this estimation after correcting the positions of the LocataL-

ites discovered that the gross difference was attributed to the inaccuracies of the Lo-

cataLite positions. A corresponding simulation of the same environment, estimating

the tropospheric scale-factor with LocataLite position errors, revealed quite similar

estimation performance. From this point on, the LocataLite position errors were re-

solved before attempting tropospheric scale-factor estimation. This information was

also substantiated using real measurement data from several runs. This highlights

the need to resolve the LocataLite position errors before other error analysis is per-

formed. Unfortunately, LocataLite position errors encountered in real data runs did

not correlate well between measurement runs. This creates an abnormality in which

the LocataLite position errors are “perceived” due to some unresolved measurement

error. Although every effort was made to ensure the positions of the LocataLites did

not change between measurement runs, there exists some uncertainty. At the time

of testing, there existed a temperature controlled crystal oscillator (TCXO) problem

which could produce measurement errors depending on wind conditions. This item

has since been resolved, but may account for differing LocataLite position errors be-

tween real data measurement runs. Final measurement analysis revealed the north

position error closely resembles the north acceleration, suggesting a susceptibility in

the receiver tracking loop to acceleration. This represents a significant portion of the

unresolved position error and must be analyzed to refine the position solution.
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5.3 Contributions

This thesis provided several contributions advancing techniques in error esti-

mation required for a navigation reference system. The following list identifies these

contributions:

• The greatest contribution lies in the validation of the low elevation tropospheric

correction model for real data measurements. The inclusion of this model allows

tropospheric delay corrections for both positive and negative elevation angles,

paramount for the LocataNet. This improved the position solution by 12cm for

the horizontal position error and delivered the largest melioration for the goal

of position accuracy.

• The difficulty of simultaneously evaluating both LocataLite position errors and

the tropospheric scale-factor was brought to light. In both simulated and real

data, attempting to estimate the tropospheric scale-factor with unresolved Lo-

cataLite position errors caused filter divergence. Without first resolving the

LocataLite position errors, the filter does not have enough information to dis-

tinguish the errors properly, resulting in poor estimates for all.

• Pinpointing the relationship between the acceleration and the position error

delivers a fundamental handicap the Locata system must overcome to improve

accuracy. Since the system ultimately projects using the LocataNet for flight

testing and landing, a steady-state acceleration error of zero is required.

• Resolving LocataLite position errors enhanced accuracy, accounting for errors in

DGPS surveying, human factors, and environmental hazards. This also satisfies

the conditions needed to resolve the tropospheric scale-factor.

• The tropospheric scale-factor state accounted for errors in the tropospheric cor-

rection model, such as observed temperature, pressure, and relative humidity

values. The improvement tendered an additional position improvement in some

areas and furnished the best overall position solution after accounting for the

LocataLite position errors.
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5.4 Recommendations

The filter in this research performed very well in resolving LocataLite position

errors and the tropospheric scale-factor in simulation. The real data performance

left unresolved errors and motivates further research in resolving the persisting error

difference between the AFIT LocataLite solution and DGPS. The following recom-

mendations offer suggestions for future endeavors.

• Increase the number of LocataLites available for positioning, paying particular

attention to the geometry of the setup. Depending on the terrain, vertical place-

ment will be the most challenging since very tall towers represent a logistical and

environmental challenge. The greater the height of the tower, the more suscep-

tible to wind conditions and surveying errors it will become. Since the ultimate

goal targets landing scenarios, the placement of such towers will pose additional

concerns near the proximity of the runway. However, this will help alleviate the

need for altitude aiding and establish the LocataNet as a stand-alone system.

• Widen the test range to allow testing using aircraft flight trajectories. This

will vastly improve the geometry and permit investigation into other errors,

unobtainable in this research. However, the susceptibility to acceleration in the

receiver tracking loop must be resolved first.

• Specific testing of the LocataLite position error estimation capability within a

controlled environment and known position errors. Careful attention to survey-

ing position and accuracy between DGPS and the LocataNet would allow known

position errors to be induced during real data measurements. Optimally, the

LocataNet would allow all LocataLites in all directions to be distinguishable.

• Implement a Multiple Model Adaptive Estimation (MMAE) algorithm for de-

termining position solutions. Since trajectories and dynamics can vary greatly,

an MMAE algorithm would provide solution robustness without retuning the

filter for specific situations.
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• Develop a method to detect cycle slips for carrier-phase measurements to replace

the use of SNR measurements for measurement quality determination. This will

increase measurement accuracy and ultimately, position accuracy.

• Incorporate an optimal smoother to help resolve the LocataLite position er-

rors and tropospheric scale-factor. This may allow the simultaneous estimation

which was unsuccessful in this research and supplant the ad-hoc technique used.
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